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Abstract— We investigate the stability and robustness
properties of a power transmission system under persis-
tent deceiving attacks on inverter-interfaced energy re-
sources. The attacks can corrupt the damping coefficients
in the inverters’ controllers and measurements of the fre-
quency at the points of coupling. Leveraging tools from
hybrid dynamical systems theory, we characterize a broad
family of persistent (and not necessarily periodic) attacks
acting on the inverters, under which the stability properties
of the transmission system can be shown to not be compro-
mised. To address potentially conservative conditions iden-
tified through conventional bounding techniques, sufficient
conditions on the average activation time of the attacks
are identified via Lyapunov theory, as well as the formula-
tion and solution of a class of bilinear matrix inequalities
(BMI). The results are obtained for constant and slowly
time-varying loads via input-to-state stability (ISS) tools.
Numerical simulations on the IEEE 39-bus test system are
also presented.

Index Terms— Cybersecurity in Power Systems, Hybrid
Systems, Stability Analysis.

I. INTRODUCTION

THE integration of inverter-interfaced distributed energy
resources (DERs) in power systems, at both transmission

and distribution levels, is a key driver for modernizing the
power infrastructure. While the goal is to enhance reliability,
efficiency, and sustainability, the emerging ‘cyber’ layer faces
increasing vulnerability to attacks and security threats [1], [2].
Evidence of this vulnerability exists [3], prompting the need
for new methodologies to study the resilience of modern grids
[4], [5]. Inspired by these challenges, this paper investigates
the stability and robustness properties of a power transmission
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Fig. 1: Scheme of DER under attack. The attacker can modify the inverter controller
and the frequency feedback.

system subjected to persistent, dynamic, and deceptive attacks
on inverter-interfaced energy resources.

Prior works: During recent years, tools from dynamical sys-
tems have been utilized to study the behavior of cyber-physical
systems (CPSs) under attacks, as seen in, for example, [6],
and for investigating the robustness of feedback optimization
methods [7] and energy management [8] in power systems.
For instance, in [9] the authors considered a DC microgrid
subject to persistent denial of service attacks and established
stability conditions in terms of linear matrix inequalities
(LMIs); however, no practical bounds were obtained. In [10],
the resilience properties of wide-area control systems were
studied with respect to a variety of attacks, deriving suitable
bounds via BMIs. In [11], the load frequency problem in AC
microgrids subject to data injection attacks was studied, lead-
ing to the design of a stabilizing controller via BMIs. However,
the analysis was restricted to certain non-persistent attacks.
Similarly, [12] considered a discrete-time setup for persistent
denial of service attacks, and studied the design of stabilizing
controllers based on feasibility properties of BMIs. Finally,
[4] studied operating constraints able to prevent attacks from
driving the system’s frequency to unsafe conditions using an
approach based on ellipsoidal approximations. In [13], the
authors studied the power system state estimator (PSSE) of
the SCADA system of a power grid subject to false data
injection attacks seeking to deceive the system. Similarly, in
[14] the authors considered a discrete-time LTI system using
an infinite-horizon LQG controller subject to deception via
replay attacks. In both works, the analysis is stochastic and
the attacks under study are not persistent.

Contributions: In contrast to existing works, we consider
DERs partaking in frequency regulation at the transmission
level [15], and study a class of persistent and intermittent



attacks acting on the controllers of the inverters. These attacks
are capable of evading detection due to their non-periodic
nature and can significantly affect the frequency response of
the DERs depending on their “persistency”. We leverage a
hybrid dynamical system’s formalism to model the effects of
the attacks and analyze the stability properties of the system
under attacks via Lyapunov theory. Constant and time-varying
loads are both considered in the analysis. In both cases,
we provide computable certificates for stability based on the
feasibility of a set of BMIs. The obtained certificates turn
out to be orders of magnitude less conservative compared to
previous approaches [7]. Lastly, we validate our theoretical
results via simulations on the IEEE 39-bus test system. To
the best of our knowledge, this is the first work considering
persistent, non-periodic, inverter-level attacks via BMI-based
stability certificates for both constant and time-varying loads
using tools frol hybrid dynamical systems theory.

The rest of this paper is organized as follows: Section II
presents the preliminaries. Section III describes the model
of the power transmission system. Section IV characterizes
the attacks, and Section V presents the main theoretical and
numerical results. Finally, Section VI presents the conclusions.

II. PRELIMINARIES

We use I to denote the identity matrix, and S to denote the
class of right-continuous, piece-wise constant functions from
R≥0 to Q ⊂ Z>0. In this paper, we are interested in signals
σ ∈ S that satisfy the following notions:

Definition 1: A signal σ ∈ S is said to satisfy the average
dwell-time (ADT) condition with parameters τd > 0 and N0 ≥
1, if ∀ t2 > t1 ≥ 0, such that t2, t1 ∈ dom(σ) :

Nσ(t1, t2) ≤ N0 +
t2 − t1
τd

, (1)

where Nσ(t1, t2) is the number of switches of σ in (t1, t2].
The class of such signals is denoted as ΣADT(τd, N0). □

Definition 2: A signal σ ∈ S is said to satisfy the average
activation time (AAT) condition with parameters τa > 1 and
T0 ≥ 0, if ∀ t2 ≥ t1 ≥ 0 such that t2, t1 ∈ dom(σ) :∫ t2

t1

1Qµ
(σ(τ)) dτ ≤ T0 +

(t2 − t1)

τa
, (2)

where, for a given set Qµ, 1Qµ
(σ) = 1 if σ ∈ Qµ, and

1Qµ(σ) = 0 otherwise. The class of such signals is denoted
as ΣAAT(τa, T0). □

To study dynamical systems under persistent, intermittent
attacks, we will use the framework of hybrid dynamical
systems, which are modeled by the following inclusions:

x ∈ C, ẋ ∈ F (x, u), (3a)
x ∈ D, x+ ∈ G(x). (3b)

In system (3), x ∈ Rn denotes the state and u ∈ Rm denotes
the input. The state evolves via the differential inclusion (3a)
when it is in the flow set C, and jumps according to (3b)
when x is in the jump set D. Solutions to system (3) evolve
on hybrid time domains, which are special subsets of R≥0×N.
They are parameterized by a continuous-time index t which

increases continuously during the flows, and by a discrete-time
index j which increases by one after every jump. The distance
of x ∈ Rn to a compact set A ⊂ Rn is defined as |x|A =
infy∈A |x − y|. A compact set A is said to be exponentially
input-to-state stable (E-ISS) for (3) if every solution satisfies

|x(t, j)|A ≤ κ1e
−κ2(t+j)|x(0, 0)|A + κ3 sup

0≤τ≤t
|u(τ)|, (4)

for some κ1 > 0, κ2 > 0, κ3 > 0. For further details on hybrid
dynamical systems, we refer the reader to [16].

III. POWER TRANSMISSION SYSTEM MODEL

In this section, we outline the model of the power transmis-
sion network. We consider a power transmission system with
buses N := {1, ..., N} and lines E := {(m,n)} ⊂ N×N . Let
D ⊂ N be the set of buses where inverter-interfaced DERs
are connected, and let G ⊂ N be the set of buses where
conventional fossil-fuel generators are located. For simplicity
of exposition, and without loss of generality, we assume that
N = D ∪ G and D ∩ G = ∅. Assuming lossless lines, we
collect in Iℓ ∈ E all the lines connected to the bus ℓ. Next, we
formalize the models for generators, inverter-interfaced DERs,
and the transmission network.

1) Conventional Generators: We assume that the exciter
operates at a stable output, such that the terminal voltage mag-
nitude is constant. Based on this, we consider the following
model for the generator g ∈ G [17]:

δ̇g = ωs∆ωg, (5a)

Mg∆ω̇g = Pm
g −Dg∆ωg + Pg −

∑
ℓ∈Ig

Pgℓ, (5b)

τgṖ
m
g = −Pm

g + P r
g −Kgov,g∆ωg, (5c)

where δg , ∆ωg , ωs, and Pm
g are the rotor electrical angle,

the rotor speed deviation in per unit, the synchronous angular
speed, and the turbine mechanical power, respectively. Fur-
thermore, Mg is the constant of inertia, and Dg models the
equivalent load damping, which includes the damper windings.
The dynamics of the turbine mechanical power are captured by
a first-order turbine model [18], where Kgov,g is the governor
gain, modeling the inverse of the speed-droop regulation
constant, τg is the turbine time constant, and P r

g denotes the
reference-power setting computed from a higher layer control.
Finally, Pg is the real power injection at bus g, and Pgℓ is the
real power flow from bus g to ℓ.

2) Frequency-Responsive DERs: For each DER d ∈ D, we
consider the following dynamics [15]:

δ̇d = ωs∆ωd, (6a)

Md∆ω̇d = −Dd∆ωd + Pd −
∑
ℓ∈Id

Pdℓ, (6b)

where Dd models the frequency response of the DER, Md

determines the (virtual) inertial response, Pd is the real power
injected, and Pdℓ is the real power flow from bus d to ℓ. Notice
that Dd and Md do not represent mechanical parameters as
in (5). Instead, for DERs, these are digital parameters that may
be tuned to obtain a desired response [19], [20]. In Fig. 1,
these parameters are computed by the system operator (SO)
and communicated to the inverters.



3) Secondary Controller: To steer the average angular speed
deviation ∆ω ∈ R to zero, we consider a supervisory sec-
ondary controller that generates time-varying reference-power
signals P r

G ∈ R|G| (collecting {P r
i }i∈G) [21, Ch. 9]. Let z ∈ R

be the supervisory controller’s state and let P ∗
G ∈ R|G| denote

the baseline reference obtained via economic dispatch. The
controller’s equations are given by:

τz ż = −z + β∆ω + 1⊤Pm
G , (7a)

P r
G = P ∗

G + ζ(z − 1⊤P ∗
G ), (7b)

where ζ ∈ R|G|
≥0 is the vector of participation factors (i.e.,

ζi ∈ (0, 1) and 1⊤ζ = 1), β ∈ R<0 is a tunable gain, and
Pm
G := [{Pm

i }i∈G ]
⊤ collects the mechanical powers of every

generator g ∈ G. To ensure sufficient time-scale separation
between the primary and secondary frequency controllers, the
constant τz ∈ R>0 is assumed to be larger than τg, ∀ g ∈ G.

4) State-space model: We now present a unifying state
space model that combines the dynamics (5), (6) and (7). We
assume that the system initially operates at steady-state with
∆ωg = ∆ωd = 0, ∀g ∈ G, d ∈ D. Moreover, we assume that
∆ω is the same for all nodes, which is a valid assumption
for networks where electrical distances are negligible and all
the buses have the same frequency even during transients
(see, e.g., [22]). For a lossless network,

∑
g∈G

∑
ℓ∈Ig

Pgℓ +∑
d∈D

∑
ℓ∈Id

Pdℓ = 0 holds. Using (5) and (6) we obtain

Meff∆ω̇ =
∑
g∈G

Pm
g −Dnet∆ω − Pload, (8)

where Pload := −
∑

g∈G Pg −
∑

d∈D Pd is the total electrical
load, and the effective inertia constant Meff and the net
damping constant Dnet are defined, respectively, as:

Meff :=
∑
g∈G

Mg+
∑
d∈D

Md, Dnet :=
∑
g∈G

Dg+
∑
d∈D

Dd. (9)

Furthermore, from (5c) we have:

diag(τ)Ṗm
G = −Pm

G + P r
G −Kgov,G∆ω, (10)

where τ is a vector collecting {τi}i∈G and Kgov,G is a vector
collecting {Kgov,i}i∈G . Combining (7), (8) and (10) yields the
final state-space model of the power transmission system:

ẋ = Ax+Bu, u̇ =

[
Π(u)
0

]
, (11)

with the following state vector x ∈ R|G|+2, input u ∈ R|G|+1,
and matrices A ∈ R(|G|+2)×(|G|+2) and B ∈ R(|G|+2)×(|G|+1):

x = [∆ω, (Pm
G )⊤, z]⊤, u = [Pload, (P

∗
G )

⊤]⊤,

A =

 −DnetM
−1
eff M−1

eff 1⊤ 0
AτKgov,G Aτ −Aτ ζ
τ−1
z β τ−1

z 1⊤ −τ−1
z

 , (12)

B =

 −M−1
eff 0⊤

0 −Aτ

(
I− ζ1⊤)

0 0⊤

 ,

where Aτ := −diag(τ)−1. In (11), the time-varying loads
are modeled as signals generated by the exosystem u̇ ∈ Π(u)
where Π : R → R is a Lipschitz continuous function that

renders a compact set U ⊂ R forward invariant. The set
U abstracts the set of feasible electrical loads. Note that,
in our model, we do not consider frequency-sensitive loads,
load buses, and buses with no loads or DERs. However,
incorporating these elements into our model would not change
the results presented in the next section; see the remarks
in [15].

5) Steady-state Analysis: At steady-state, i.e., when ẋ =
0 and u̇ = 0, equations (11) and (12) yield the following
algebraic conditions:

Dnet∆ωss = 1⊤Pm
G,ss − Pload, (13a)

Pm
G,ss = −Kgov,G∆ωss + ζzss +

(
I− ζ1⊤)P ∗

G , (13b)

zss = β∆ωss + 1⊤Pm
G,ss, (13c)

and, since 1⊤ζ = 1, equation (13b) leads to:

1⊤Pm
G,ss = −1⊤Kgov,G∆ωss + zss. (14)

Substituting (13c) in (14), we obtain the steady state condition
(−1⊤Kgov+β)∆ωss = 0. Thus, since the elements of Kgov,G
are nonnegative and β < 0, we finally obtain that ∆ωss =
0, 1⊤Pm

G,ss = Pload and zss = Pload. We note that the
equilibrium point does not depend on Dnet.

IV. HYBRID MODEL OF THE SYSTEM UNDER ATTACKS

In this section, we study the dynamics of the power trans-
mission system under attacks using the formalism of hybrid
dynamical systems (3).

1) Attack model: We consider intermittent attacks able to
modify the feedback term Dd∆ωd in the inverters’ control
law (6b). This modification can be accomplished through a
variety of attacks, including deception attacks that can change
the sign and magnitude of the coefficient Dd [1], or by altering
the sign and magnitude of ∆ωd [4]. In general, the impact
of these attacks can be represented by sudden changes in
the coefficient Dnet in equation (12). While the effects on
Dnet resulting from attacks on Dd are evident from equation
(9), the effect of an erroneous frequency measurement ∆̃ωd

can be modeled as Dd∆̃ωd = (Dd∆̃ωd/∆ωd)∆ωd (whenever
∆ωd ̸= 0), with the term Dd∆̃ωd/∆ωd subsequently impact-
ing Dnet via equation (9). Since, in general, the attacks that
we study are not constant but rather intermittent and aperiodic,
their detection and mitigation becomes more challenging [9].

From a dynamical systems perspective, the attacks can be
seen as signals that are intentionally designed to render the
matrix A in (11) non-Hurwitz. Such modifications can be
viewed as switches in the matrix A, thus introducing multiple
unstable modes; in particular, each mode is associated with
a given value of Dnet and its corresponding state matrix
in (12). We denote the set of unstable modes (induced by
the attacks) as Qµ. When an attack is detected and corrected
by the System Operator (SO) (or if there is no attack) the
system dynamics revert back to operating in the nominal stable
mode, denoted by the singleton set Qs. In this way, using
Q := Qs∪Qµ, the transmission power system operating under
persistent adversarial attacks can be modeled as the following
switching dynamical system:

ẋ = Aσ(t)x+Bu, (15)



where σ ∈ S , and Aσ(t) = A in case of no attacks and
Aσ(t) ̸= A if σ(t) ∈ Qµ. It is important to note that the
equilibrium point of (15), under a given input u, does not
depend on Dnet. In fact, Aσ(t) is invertible for any value of
σ, leading to a unique equilibrium xeq . Therefore, using the
change of variable x̃ = x− xeq to shift the equilibrium to the
origin, the dynamics (15) become

˙̃x = Aσ(t)x̃+A−1
σ(t)Bu̇. (16)

Since the switching signal σ takes values in the unstable modes
Qµ (corresponding to attacks) and also in the stable modes Qs

(corresponding to rejected attacks or no attacks), we can use
Definitions 1 and 2 to model different families of attacks that
satisfy the bounds (1) and (2). Based on this, we pose the
following problem.

Problem 1: For any signal σ ∈ S satisfying (1) and (2),
characterize the values of τa and τd under which the power
transmission system, modeled as in (16), remains asymptoti-
cally stable.

When the loads are constant (i.e., u̇ = 0), the stability
properties of (16) can be studied with respect to the origin.
However, when the load is time-varying, the stability proper-
ties of (16) will be studied via the notion of E-ISS with respect
to a suitable compact set.

2) Hybrid Dynamics: To analyze the stability properties of
(16) under persistent attacks, we adopt the formalism of hybrid
dynamical systems (HDSs) [16]. In particular, the switching
signal is modeled as a logic state q ∈ Q that switches be-
tween different modes in Q. Since switching signals satisfying
bounds of the form (1) and (2) can be generated using dynamic
time-invariant hybrid automatons with auxiliary states τ1 and
τ2 (see [16], [23]) we can write the complete system as (3),
with state ξ = [x̃, τ1, τ2, q, u]

⊤, input v = u̇, and

C = R|G|+2 × [0, N0]× [0, T0]×Q× U , (17a)

D = R|G|+2 × [1, N0]× [0, T0]×Q× U , (17b)

ξ̇ ∈ F (ξ, u) =



Aqx̃+A−1
q Bv[

0, 1
τd

]
[
0, 1

τa

]
− 1Qu

(q)

0

Π(u)


, (17c)

ξ+ ∈ G(ξ) = x̃× {τ1 − 1} × {τ2} × Q \ {q} × {u}. (17d)

Note that, during the flows (17c), the state x̃ evolves according
to the vector field dictated by the current mode q. The
autonomous set-valued dynamics of τ1 and τ2 ensure that the
switching state q obeys the ADT condition [16, p. 40] and also
the AAT condition [23, Lemma 7] for all times. In this way,
studying the stability properties of system (17) is equivalent to
studying the stability properties of (16) under ADT and AAT
conditions on σ.
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Fig. 2: Distance from equilibria when the system starts off equilibria and is under attack
for τa = 3 and τa = 4.

V. MAIN RESULTS: THEORY AND APPLICATIONS

1) Theoretical Results: The following theorem is the first
main result of the paper. We provide sufficient conditions
under which system (17) is E-ISS.

Theorem 1: Suppose there exist a symmetric positive defi-
nite matrix P ∈ R|G|+2×|G|+2 and constants λs, λµ > 0 such
that the following bilinear matrix inequalities hold:

A⊤
s P + PAs + λsP ⪯ 0, (18a)

A⊤
µP + PAµ − λµP ⪯ 0, (18b)

for all s ∈ Qs and µ ∈ Qµ. Let

λs −
(λs + λµ)

τa
− κ(λs, λµ) · θ

λmin(P )
> 0, (19)

where κ(λs, λµ) = 2maxq∈Q∥PA−1
q B∥e(λs+λµ)T0 and θ >

0. Then, the set

A = {0}|G|+2 × [0, N0]× [0, T0]×Q× U

is E-ISS for system (17) with respect to the input v. □

Proof: Let Vq(x̃) = x̃⊤Px̃, ∀q ∈ Q. For each q ∈ Q,
the time-derivative of Vq satisfies:

V̇q(x̃) = ˙̃x⊤Px̃+ x̃⊤P ˙̃x (20a)

= x̃⊤(A⊤
q P + PAq)x̃+ 2x̃⊤PA−1

q BΠ(u). (20b)

Let τ = log(ω)τ1+(λs+λµ)τ2 and define the ISS Lyapunov
function V (ξ) = Vq(x̃)e

τ , where, ω ≥ 1 is such that Vq(x̃) ≤
ωVq′(x̃), for all q, q′ ∈ Q. During flows we have,

τ̇ ∈ log(ω)[0, 1/τd] + (λs + λµ)([0, 1/τa]− 1Qµ
(q))

= [0, γ]− (λs + λµ)1Qµ(q),

where γ = 1
τa
(λs + λµ) +

logω
τd

. During stable modes, the
time-derivative of V satisfies

V̇ (ξ) = V̇q(x̃)e
τ + Vq(x̃)e

τ τ̇ ≤ −(λs − γ)Vq(ξ)e
τ

+ 2 · ∥PA−1
q B∥ · ∥Π(u)∥ · ∥x̃∥ · elog(ω)N0+(λs+λµ)T0 .

The first inequality above follows from the feasibility of
(18a). Completing the squares [24, eq 5] and setting
κ̃ = 2 ·maxq∈Q∥PA−1

q B∥ · elog(ω)N0+(λs+λµ)T0 yields

V̇ (ξ) ≤ −(λs − γ)V (ξ) + κ̃·θ∥x̃∥2 + κ̃

4·θ
∥Π(u)∥2

≤ −(λs − γ)V (ξ) +
κ̃·θ

λmin(P )
V (ξ) +

κ̃

4·θ
∥Π(u)∥2

= −
(
λs − γ − κ̃·θ

λmin(P )

)
V (ξ) +

κ̃

4·θ
∥Π(u)∥2.
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Similarly, during unstable modes V̇ satisfies

V̇ (ξ) = V̇q(x̃)e
τ + Vq(x̃)e

τ τ̇

≤ λµV (ξ) + (γ − (λs + λµ))V (ξ) + κ̃ · ∥Π(u)∥ · ∥x̃∥
= −(λs − γ)V (ξ) + κ̃ · ∥Π(u)∥ · ∥x̃∥

≤ −
(
λs − γ − κ̃·θ

λmin(P )

)
V (ξ) +

κ̃

4·θ
∥Π(u)∥2.

The first inequality follows by the feasibility of (18b). For V
to decrease during flows, we require

(
λs − γ − κ̃(λs,λµ)·θ

λmin(P )

)
>

0. Additionally, our choice of a common Lyapunov function
implies ω = 1. This reduces our assumption to the bound
(19). Finally, during jumps we have τ+ = τ− log(ω) = τ and
V (ξ+) = Vq+(x̃

+)eτ
+

= x̃⊤Px̃ · eτ = V (ξ). The stability
result follows now from [25, Lemma 9].

2) BMI Informed Bounds: The use of a non-convex formu-
lation in terms of BMIs in (18) enables a less conservative
estimate of the parameter τa that satisfies (19). Indeed, setting
u̇ = 0, equation (20b) reduces to:

V̇q = x̃⊤(A⊤
q P + PAq)x̃. (22)

Requiring strong decrease of (22) during stable flows corre-
sponds to the inequality x̃⊤(A⊤

q P +PAq)x̃ ≤ −λsx̃
⊤Px̃. On

the other hand, during unstable modes, we require x̃⊤(A⊤
q P+

PAq)x̃ ≤ λµx̃
⊤Px̃. The BMIs in (18) now follow readily.

To solve the BMIs, we employ a grid search method for
values of λs and λ∗

u, where λ∗
µ is defined as maxµ∈Qµ

λu

such that it satisfies equation (18b) for all µ ∈ Qµ. For
each (λs, λ

∗
µ) pair resulting from the grid search, we solve

equation (18) for P . If it exists a symmetric positive definite
matrix P ∈ R|G|+2×|G|+2, we record the pair (λs, λ

∗
µ). Upon

grid search completion, we want to select the pair (λs, λ
∗
µ)

such that τa obtained from 19 is minimum; it corresponds
to the tightest theoretical bound on τa we can find. In order
to achieve this objective, we let the tunable parameter θ be
sufficiently small, such that (19) can be approximated by
τa > 1+

λµ

λs
. Replacing λµ by λ∗

µ, the theoretical bound for τa
is obtained such that, for every pair (λs, λ

∗
µ) satisfying (18),

τbounda = 1 +
λ∗
µ

λs
is minimum. The above procedure can

generate bounds that are orders of magnitude less conservative
compared to those obtained via worst-case analyses, thus
providing a better assessment of the robustness properties of
the power transmission system.

3) Numerical Results: We consider the IEEE 39-bus test
system that is composed of 39 buses and 10 conventional
generators (CGs). For the CGs, we fix τg = 2, Dg = 1.5 and
Kgov,g = 1

0.05
Sg

Sbase
, ∀g ∈ G where Sg is the nominal power of

generator g and Sbase the system base power. This represents
a droop coefficient of 5% for every generator. The other
parameters for the generators are taken from the IEEE 39-bus
test system data. For the DERs, we impose Md = 40, Dd ∈
{1.5,−100,−200,−150,−120,−170}, ∀d ∈ D where Dd =
1.5 represents mode 1 and is the stable mode while Dd ∈
{−100,−200,−150,−120,−170} represents modes 2 to 6
and are the unstable modes. For the secondary controller,
we impose τz = 10, β = −0.1 and ζ = {ζi}i∈G such
that every generator does not participate equivalently to the

secondary frequency response, but
∑

i∈G ζi = 1. We assume
that the participation factors are the solution of an optimization
problem (i.e., maximizing efficiency or minimizing production
costs). By using the BMI informed bounds we found that
λs = 0.21 and λ∗

µ = 4.3, giving us a theoretical bound
τa > 21.47. This result suggests that the transmission system
remains stable whenever the “intensity” of the attacks on the
grid is below 5%, i.e., if for any given window of time the
attacks are rejected or corrected by the SO more than 95% of
the time. This estimate is conservative since it considers any
signal σ ∈ S satisfying (1) and (2).

Scenarios: Two different scenarios are considered: a) In the
first scenario, we investigate the stability of the system for
initial conditions different from the equilibria xeq . We consider
x0 = (1+ε1)xeq+ε21|G|+2, with ε1 = 0.05 and ε2 = 0.0005.
Figure 2 shows the distance from equilibria under attack for
τa = 4 and τa = 3, respectively. One can see that τa = 3
leads to instability. Our theoretical bound τa > 21.47 is in
the same order of magnitude. b) For the second scenario,
we investigate slowly time-varying loads modeled as Pload =
10+sin(0.01t). The results are shown in Figure 3, illustrating
the tracking capabilities of the system under attacks. We
have performed additional numerical studies, which can be
found in the extended manuscript [26]. Finally, Figure 4
illustrates the performance of the system under attacks for
the case when the load is constant. As observed, the power
transmission system remains stable provided the “persistency”
of the attacks satisfies the established bounds. The code used
in the simulations is available at https://github.com/

A-clt/GridResilience_BMIsApproach.git.

VI. CONCLUSIONS

In this work, we considered an LTI aggregate model of a
power transmission system subject to a class of persistent,
possibly non-periodic, and deceiving attacks. The persistence
of attacks was seen to be equivalent to a class of switching
signals obeying specific ADT and AAT bounds. Using the
framework of hybrid dynamical systems, a Lyapunov-based
stability analysis resulted in a non-convex, BMI formulation
for obtaining theoretical bounds on the parameters τa and τd.
The feasibility of the BMIs was checked on the IEEE 39-bus
test system via a grid search approach. It was seen that the
theoretical bounds were in the same order of magnitude as the
ones obtained via simulations of two scenarios with varying
changes in loads and initial conditions. Future research will
focus on relaxing the assumption of a common equilibrium
point in the switching system, as well as incorporating sudden
changes in the loads (deterministic and stochastic) by suitably
modifying the jump map G(·) in the hybrid dynamics (17).
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