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Abstract: We introduce a novel concurrent learning (CL) algorithm designed to solve parameter
estimation problems within a user-prescribed time frame and by utilizing alternating datasets during
the learning process. The algorithm can tackle applications involving switching data sets (including
data sets that are completely uninformative) that are updated in real-time as the algorithm operates.
To achieve parameter estimation within a specified time independent of the dataset’s richness, the
switching algorithm employs dynamic gains. The main result establishes uniform global exponential
ultimate boundedness, with an ultimate bound that shrinks to zero as the magnitude of the
measurement disturbances decreases. The stability analysis leverages tools from hybrid dynamical
systems theory, along with a recently introduced dilation/contraction argument on the hybrid time
domains of the solutions. The algorithm and main results are illustrated via a numerical example.
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1. INTRODUCTION

Concurrent Learning (CL) is a data-driven framework
that is suitable for the design of estimation and learning
dynamics in a variety of applications where persistence of
excitation (PE) conditions are not feasible Kamalapurkar
et al. (2017). Examples include parameter estimation prob-
lems in batteries Ochoa et al. (2021), exoskeleton robotic
systems Casas et al. (2023), extremum seeking Poveda
et al. (2021), excavating robots Greene et al. (2021), and
reinforcement learning Ochoa and Poveda (2022); Chowd-
hary and Johnson (2010). In these applications, datasets
containing past recorded measurements of the relevant
signals within the systems are typically available for es-
timation purposes. When these datasets are considered to
be “sufficiently rich”, they can be integrated into dynamic
estimation algorithms to achieve (uniform) exponential
convergence to the unknown parameters in the absence of
PE. While these techniques have been recently enhanced
via non-smooth tools to achieve finite-time and fixed-time
convergence results Ochoa et al. (2021); Ŕıos et al. (2017);
Tatari et al. (2023), most CL techniques suffer from two
main limitations that are common in practice, see (Ochoa
et al., 2021, Sec. 4),Casas et al. (2023): First, the rate of
convergence is directly related to the “level of richness”
of the dataset used by the algorithm. This is true in
exponentially convergent CL algorithms Chowdhary and
Johnson (2010), as well as in finite-time and fixed-time
convergence approaches Ochoa et al. (2021); Ŕıos et al.
(2017); Tatari et al. (2023). Second, in many practical
applications, CL algorithms do not use a single dataset
during the learning process, but rather multiple datasets
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obtained at different time instants and exhibiting different
levels of informativity. Incorporating the dynamic nature
of these datasets into the convergence analysis of CL
algorithms is thus an essential task to inject confidence
in the applicability of CL techniques in practical settings.

In this paper, we introduce a novel CL architecture that
aims to simultaneously tackle the above two challenges.
The proposed algorithm has two main features: First,
instead of relying on momentum Ochoa et al. (2021), non-
Lipschitz vector fields Ochoa et al. (2021); Tatari et al.
(2023), or resetting techniques to improve transient perfor-
mance Le and Teel (2022), it makes use of dynamic “blow-
up” gains to achieve convergence to the true unknown
parameter in a time that is independent of the initial
estimate and of the level of richness of the dataset. In
this way, the convergence time can be fully assignable by
the user. The proposed technique is inspired by recent
advances in prescribed-time (PT) adaptive control and
regulation Orlov (2022); Song et al. (2023), which, how-
ever, have remained mostly unexplored in the setting of
CL. Yet, unlike standard PT results considered in the lit-
erature of continuous-time systems, we incorporate switch-
ing datasets into the PT-CL algorithm, thus enabling the
use of multiple datasets during the learning process. This
is achieved using a prescribed-time data-querying hybrid
automaton that generates switching signals satisfying suit-
able “blow-up” average dwell-time and average activation-
time constraints, recently introduced in Ochoa et al. (2023)
for a more general class of hybrid systems. In the proposed
Switching Prescribed-Time Concurrent Learning (SPT-
CL) algorithm, only some of the datasets are assumed to
be sufficiently rich, and at any given time only one dataset
can be used by the algorithm. This setting is common
in reinforcement learning in the context of mini-batch
optimization Stapor et al. (2022), but it has remained
unexplored in the context of CL.

On Hybrid Prescribed-Time Concurrent
Learning with Switching Datasets ⋆

Daniel E. Ochoa Jorge I. Poveda

Department of Electrical and Computer Engineering,
University of California, San Diego, CA 92093, USA

Abstract: We introduce a novel concurrent learning (CL) algorithm designed to solve parameter
estimation problems within a user-prescribed time frame and by utilizing alternating datasets during
the learning process. The algorithm can tackle applications involving switching data sets (including
data sets that are completely uninformative) that are updated in real-time as the algorithm operates.
To achieve parameter estimation within a specified time independent of the dataset’s richness, the
switching algorithm employs dynamic gains. The main result establishes uniform global exponential
ultimate boundedness, with an ultimate bound that shrinks to zero as the magnitude of the
measurement disturbances decreases. The stability analysis leverages tools from hybrid dynamical
systems theory, along with a recently introduced dilation/contraction argument on the hybrid time
domains of the solutions. The algorithm and main results are illustrated via a numerical example.

Keywords: Hybrid dynamical systems, Concurrent Learning, System Identification.

1. INTRODUCTION

Concurrent Learning (CL) is a data-driven framework
that is suitable for the design of estimation and learning
dynamics in a variety of applications where persistence of
excitation (PE) conditions are not feasible Kamalapurkar
et al. (2017). Examples include parameter estimation prob-
lems in batteries Ochoa et al. (2021), exoskeleton robotic
systems Casas et al. (2023), extremum seeking Poveda
et al. (2021), excavating robots Greene et al. (2021), and
reinforcement learning Ochoa and Poveda (2022); Chowd-
hary and Johnson (2010). In these applications, datasets
containing past recorded measurements of the relevant
signals within the systems are typically available for es-
timation purposes. When these datasets are considered to
be “sufficiently rich”, they can be integrated into dynamic
estimation algorithms to achieve (uniform) exponential
convergence to the unknown parameters in the absence of
PE. While these techniques have been recently enhanced
via non-smooth tools to achieve finite-time and fixed-time
convergence results Ochoa et al. (2021); Ŕıos et al. (2017);
Tatari et al. (2023), most CL techniques suffer from two
main limitations that are common in practice, see (Ochoa
et al., 2021, Sec. 4),Casas et al. (2023): First, the rate of
convergence is directly related to the “level of richness”
of the dataset used by the algorithm. This is true in
exponentially convergent CL algorithms Chowdhary and
Johnson (2010), as well as in finite-time and fixed-time
convergence approaches Ochoa et al. (2021); Ŕıos et al.
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Our main result, presented in Theorem 1, is derived using
tools from the hybrid dynamical system’s literature Goebel
et al. (2012), and a dilation/contraction argument on the
hybrid time domains of the solutions, recently introduced
in Ochoa et al. (2023) for the analysis of PT-convergence
in hybrid systems. To the best of our knowledge, the
proposed scheme is the first CL algorithm that achieves
PT convergence using switching datasets.

The rest of this paper is organized as follows. In Section
2 we present the notation and preliminaries on hybrid dy-
namical systems. Section 3 presents the main Prescrubed-
Time CL algorithm and the main result. Section 4 presents
the analysis and the proofs. Section 5 presents a numerical
example, and Section 6 ends with the conclusions.

2. PRELIMINARIES

Given a closed set A ⊂ Rn and a vector x ∈ Rn, we
use |x|A := infs∈A ∥x − s∥2 to denote the distance from
x to A. To simplify notation, for two (or more) vectors
u, v ∈ Rn, we write (u, v) = [u⊤, v⊤]⊤ to denote their
concatenation. Also, given a set O ⊂ Rn, we use IO(·) to
denote the indicator function, which satisfies IO(x) = 1 if
x ∈ O, and IO(x) = 0 if x /∈ O. In this paper, we will
work with hybrid dynamical systems (HDS) aligned with
Goebel et al. (2012), given by the inclusions:

x ∈ C, ẋ ∈ F (x), (1a)

x ∈ D, x+ ∈ G(x), (1b)

where x ∈ Rn is the main state, F : Rn ⇒ Rn is called the
flow map, G : Rn ⇒ Rn is called the jump map, C ⊂ Rn is
called the flow set, and D ⊂ Rn is called the jump set. The
data of (1) is represented as H = (C,F,D,G). Solutions to
system (1) are parameterized by a continuous-time index
t ∈ R≥0, which increases continuously during flows, and
a discrete-time index j ∈ Z≥0, which increases by one
during jumps. Therefore, solutions to (1) are defined on
hybrid time domains (HTDs). A subset E ⊂ R≥0 ×Z≥0 is

called a compact HTD if E = ∪J−1
j=0 ([tj , tj+1], j) for some

finite sequence of times 0 = t0 ≤ t1 . . . ≤ tJ . The set E is
a HTD if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, . . . , J}) is a
compact HTD. For definitions of solutions to HDS, their
connections to HTDs, and details on models of the form
(1) we refer the reader to (Goebel et al., 2012, Chapter 2).

The following lemma, instrumental for our results, follows
by direct integration.

Lemma 1. Consider the following “Blow-Up” ordinary dif-
ferential equation (BU-ODE): µ̇ = 1

Υµ2, µ ∈ R≥1 where
Υ > 0. For each µ(0) =: µ0 ∈ R≥1, the unique solution to
the BU-ODE is given by:

µ(t) =
Υµ0

Υ− t · µ0
, ∀ t ∈ [0, Tµ0) , Tµ0 :=

Υ

µ0
, (2)

where t → µ(t) is continuous in its domain, strictly
increasing, and satisfies limt→ Υ

µ0

µ(t) = ∞. □

3. PT-CONCURRENT LEARNING WITH
SWITCHING DATASETS

Consider a parameter estimation problem where the goal
is to estimate θ⋆ ∈ Rn using real-time and past recorded
measurements of the scalar signal

ψ(θ⋆, t) = ϕ(t)⊤θ⋆ + d(t), (3)

where d : R≥0 → R is an unknown, bounded, and Lebesgue
measurable disturbance function, and ϕ : R≥0 → Rn is
a known regressor that is assumed to be continuous and
uniformly bounded.

When the regressor ϕ satisfies a persistence of excitation
(PE) condition, the typical approach to estimate θ relies
on a “standard” recursive least-squares method Narendra
and Annaswamy (1987). On the other hand, when ϕ does
not satisfy a PE condition, but the practitioner has access
to “sufficiently rich” past recorded data of ϕ, concurrent
learning (CL) can be used to estimate the true parameter
θ∗ recursively. In general, depending on their transient
performance, there are three types of CL algorithms:

(1) Classic exponentially stable CL algorithms, intro-
duced in Chowdhary and Johnson (2010), and which
achieve exponential rates of convergence proportional
to the level of richness of the data. This approach ex-
tends the classic gradient-based parameter estimation
algorithm using a “data-driven” or “batch-based”
term that incorporates the recorded data. Other re-
cent approaches that use initial excitation conditions
(IEC) Basu Roy and Bhasin (2019) and integral CL
achieve similar properties Le et al. (2022).

(2) High-order exponentially stable CL algorithms, stud-
ied in Ochoa et al. (2021); Le and Teel (2022), which
incorporate momentum and sometimes resets to im-
prove transient performance. Such algorithms can
achieve exponential rates of convergence proportional
to the square root of the level of richness of the data,
which is advantageous whenever the level of richness
of the recorded data is “low”.

(3) Fixed-time stable CL algorithms (which generalized
finite-time convergence methods), studied in Ŕıos
et al. (2017); Ochoa et al. (2021) and Tatari et al.
(2023), which use non-smooth dynamics to achieve
exact convergence to the true parameter before a
fixed-time that is independent of the initial conditions
of the algorithm, but inversely proportional to the
level of richness of the data.

In this section, we introduce a novel CL architecture that
complements the existing methods by offering a new prop-
erty that has not been studied before in the context of
CL: Prescribed-Time stability Song et al. (2023). Such
property induces convergence to the true parameter as
time approaches a prescribed time that is independent of
the richness of the data used by the algorithm. We show
that such property can be achieved even when the algo-
rithm uses, during bounded periods of time, data sets that
are completely uninformative. In practice, this situation
emerges when the recorded data is persistently updated
during the implementation of the CL algorithm, leading to
different batches of available data for the algorithm. Since
the practitioner cannot anticipate whether or not the new
data is “sufficiently rich”, establishing stability guarantees
under sporadic implementations of uninformative data can
inject confidence in the implementation of the techniques.

3.1 The PT-Estimation Problem

To estimate θ⋆, we consider the algorithm shown in Figure
1, where θ ∈ Rn is the estimate of the parameter; q ∈ Z≥1

is a logic switching state kept constant between switchings
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Our main result, presented in Theorem 1, is derived using
tools from the hybrid dynamical system’s literature Goebel
et al. (2012), and a dilation/contraction argument on the
hybrid time domains of the solutions, recently introduced
in Ochoa et al. (2023) for the analysis of PT-convergence
in hybrid systems. To the best of our knowledge, the
proposed scheme is the first CL algorithm that achieves
PT convergence using switching datasets.

The rest of this paper is organized as follows. In Section
2 we present the notation and preliminaries on hybrid dy-
namical systems. Section 3 presents the main Prescrubed-
Time CL algorithm and the main result. Section 4 presents
the analysis and the proofs. Section 5 presents a numerical
example, and Section 6 ends with the conclusions.
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use |x|A := infs∈A ∥x − s∥2 to denote the distance from
x to A. To simplify notation, for two (or more) vectors
u, v ∈ Rn, we write (u, v) = [u⊤, v⊤]⊤ to denote their
concatenation. Also, given a set O ⊂ Rn, we use IO(·) to
denote the indicator function, which satisfies IO(x) = 1 if
x ∈ O, and IO(x) = 0 if x /∈ O. In this paper, we will
work with hybrid dynamical systems (HDS) aligned with
Goebel et al. (2012), given by the inclusions:

x ∈ C, ẋ ∈ F (x), (1a)

x ∈ D, x+ ∈ G(x), (1b)

where x ∈ Rn is the main state, F : Rn ⇒ Rn is called the
flow map, G : Rn ⇒ Rn is called the jump map, C ⊂ Rn is
called the flow set, and D ⊂ Rn is called the jump set. The
data of (1) is represented as H = (C,F,D,G). Solutions to
system (1) are parameterized by a continuous-time index
t ∈ R≥0, which increases continuously during flows, and
a discrete-time index j ∈ Z≥0, which increases by one
during jumps. Therefore, solutions to (1) are defined on
hybrid time domains (HTDs). A subset E ⊂ R≥0 ×Z≥0 is

called a compact HTD if E = ∪J−1
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a HTD if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, . . . , J}) is a
compact HTD. For definitions of solutions to HDS, their
connections to HTDs, and details on models of the form
(1) we refer the reader to (Goebel et al., 2012, Chapter 2).

The following lemma, instrumental for our results, follows
by direct integration.

Lemma 1. Consider the following “Blow-Up” ordinary dif-
ferential equation (BU-ODE): µ̇ = 1

Υµ2, µ ∈ R≥1 where
Υ > 0. For each µ(0) =: µ0 ∈ R≥1, the unique solution to
the BU-ODE is given by:

µ(t) =
Υµ0

Υ− t · µ0
, ∀ t ∈ [0, Tµ0) , Tµ0 :=

Υ

µ0
, (2)

where t → µ(t) is continuous in its domain, strictly
increasing, and satisfies limt→ Υ

µ0

µ(t) = ∞. □

3. PT-CONCURRENT LEARNING WITH
SWITCHING DATASETS

Consider a parameter estimation problem where the goal
is to estimate θ⋆ ∈ Rn using real-time and past recorded
measurements of the scalar signal

ψ(θ⋆, t) = ϕ(t)⊤θ⋆ + d(t), (3)

where d : R≥0 → R is an unknown, bounded, and Lebesgue
measurable disturbance function, and ϕ : R≥0 → Rn is
a known regressor that is assumed to be continuous and
uniformly bounded.

When the regressor ϕ satisfies a persistence of excitation
(PE) condition, the typical approach to estimate θ relies
on a “standard” recursive least-squares method Narendra
and Annaswamy (1987). On the other hand, when ϕ does
not satisfy a PE condition, but the practitioner has access
to “sufficiently rich” past recorded data of ϕ, concurrent
learning (CL) can be used to estimate the true parameter
θ∗ recursively. In general, depending on their transient
performance, there are three types of CL algorithms:

(1) Classic exponentially stable CL algorithms, intro-
duced in Chowdhary and Johnson (2010), and which
achieve exponential rates of convergence proportional
to the level of richness of the data. This approach ex-
tends the classic gradient-based parameter estimation
algorithm using a “data-driven” or “batch-based”
term that incorporates the recorded data. Other re-
cent approaches that use initial excitation conditions
(IEC) Basu Roy and Bhasin (2019) and integral CL
achieve similar properties Le et al. (2022).

(2) High-order exponentially stable CL algorithms, stud-
ied in Ochoa et al. (2021); Le and Teel (2022), which
incorporate momentum and sometimes resets to im-
prove transient performance. Such algorithms can
achieve exponential rates of convergence proportional
to the square root of the level of richness of the data,
which is advantageous whenever the level of richness
of the recorded data is “low”.

(3) Fixed-time stable CL algorithms (which generalized
finite-time convergence methods), studied in Ŕıos
et al. (2017); Ochoa et al. (2021) and Tatari et al.
(2023), which use non-smooth dynamics to achieve
exact convergence to the true parameter before a
fixed-time that is independent of the initial conditions
of the algorithm, but inversely proportional to the
level of richness of the data.

In this section, we introduce a novel CL architecture that
complements the existing methods by offering a new prop-
erty that has not been studied before in the context of
CL: Prescribed-Time stability Song et al. (2023). Such
property induces convergence to the true parameter as
time approaches a prescribed time that is independent of
the richness of the data used by the algorithm. We show
that such property can be achieved even when the algo-
rithm uses, during bounded periods of time, data sets that
are completely uninformative. In practice, this situation
emerges when the recorded data is persistently updated
during the implementation of the CL algorithm, leading to
different batches of available data for the algorithm. Since
the practitioner cannot anticipate whether or not the new
data is “sufficiently rich”, establishing stability guarantees
under sporadic implementations of uninformative data can
inject confidence in the implementation of the techniques.

3.1 The PT-Estimation Problem

To estimate θ⋆, we consider the algorithm shown in Figure
1, where θ ∈ Rn is the estimate of the parameter; q ∈ Z≥1

is a logic switching state kept constant between switchings

Fig. 1. Block diagram of the proposed Switching
Prescribed-Time Concurrent Learning algorithm.

of the algorithm; µ ∈ R is a dynamic gain, and τ ∈ R≥0

is used to model any explicit dependence on the time
t. Between switching times, the states (θ, µ, q, τ) evolve
according to the following continuous-time dynamics:

θ̇ = µ · Ωq (θ, τ) , µ̇ =
1

Υ
µ2, q̇ = 0, τ̇ = 1, (4)

where Υ > 0 is a tunable gain, and Ωq is a mode-
dependent mapping to be characterized. By Lemma 1, in
this dynamics the state µ will always exhibit finite escape
times at the time Tµ0

. In our algorithm, this is a desirable
feature since, by Lemma 1, these finite escape times are
“controlled” by Υ and µ(0). In practice, the algorithm
is usually stopped before Tµ0

, inducing a small residual
error. Thus, borrowing similar terminology used in the PT-
literature Orlov (2022); Song et al. (2023), we will refer to
µ as a blow-up gain, and to Tµ0

as the prescribed time
(PT). In the literature on PT regulation for ODEs Orlov
(2022), µ0 is typically set to 1. However, for generality, in
this paper, we express our results in terms of µ0 ∈ R≥1

to characterize how the initial conditions of µ impact the
performance of the CL dynamics.

To define the mapping Ωq in (4), we let χ : Rn×R≥0 → Rn

be given by

χ(θ, t) := ϕ(t) ·
(
ϕ(t)⊤θ − ψ(θ⋆, t)

)
, (5)

where ϕ and ψ come from (3). Note that χ(θ, t) is a signal
available to the practitioner at any time t. Indeed, in the
context of concurrent learning, it is typically assumed that
(ϕ, χ) can be measured in real-time, and that there exists a
sequence of recorded measurements of (ϕ(·), χ(θ, ·)), taken
at times {tk}, k ∈ {1, 2, . . . , k̄}, that is available to the
algorithm. We are interested in CL applications where the
recorded data can be segmented among multiple datasets,
some of which might be “uniformative”.

Remark 1. In this paper, the use of the term “recorded
data” should be considered in a more broad sense com-
pared to traditional CL. In particular, since we will assume
that the algorithm switches between multiple data sets Dq,
a given data set implemented in the future after T > 0
seconds could be obtained after recording the data during
an initial window of time [0, T ]. This situation cannot
occur in standard CL, where all recorded data must be
obtained before running the algorithm. However, to make
our analysis tractable, we will impose a priori assumptions
on the data sets Dq, including situations where such data
sets are uninformative. □

To formalize the model of the PT-Estimation algorithm,
we associate each dataset with a different value of the state
q ∈ Q := {1, 2, . . . , q}, with q ∈ Z≥1. Therefore, we use Q

to represent the set of indices of the multiple datasets, each

dataset of the form Dq:={ϕ(tq,k), ψ(θ⋆, tq,k)}
kq

k=1, where

k̄q ∈ Z≥1, and {tq,k}
k̄q

k=1 is a collection of times. The
following definition, which is standard in the CL literature
Chowdhary and Johnson (2010), formalizes the informa-
tivity properties of these collections.

Definition 1. A dataset Dq is said to be sufficiently rich
(SR) if there exists αq > 0 such that

kq∑
k=1

ϕ(tq,k)ϕ(tq,k)
⊤ ⪰ αqI, (6)

where αq is called the “level of richness” of Dq (a measure
of informativity). If (6) is not satisfied, Dq is said to be
insufficiently rich (IR). □

To differentiate the informative datasets from the uninfor-
mative ones, we partition Q as follows:

Q = Qs ∪ Qi, Qs ∩ Qi = ∅, Qs,Qs,⊂ Z≥1,

where the modes in Qs correspond to datasets that are
SR, while the modes in Qi are IR. Additionally, we let:

Ωq(θ, τ) := −ktχ (θ, τ)− kr

kq∑
k=1

χ (θ, tq,k) , (7)

where kt, kr>0 are tunable weights. System (4) with Ωq

describes the continuous-time dynamics of the PT algo-
rithm.

To guarantee that (4) can solve the parameter estimation
problem we need to impose suitable conditions on the
switching signals q. Namely, our goal is to characterize how
frequently the PT-algorithm can switch between data sets
while preserving stability and convergence. To answer this
question we introduce a PT-“Data-Querying” automaton
that will characterize the family of switching signals that
lead to stable closed-loop systems.

3.2 The PT-“Data-Querying” Automaton

To model the switching dynamics of q, while simultane-
ously considering the goal of achieving prescribed-time
(PT) convergence to the true parameter θ⋆, we consider
a PT-data-querying hybrid automaton that can be seen
as an extension of the standard hybrid automaton that
induces average dwell-time constraints on the switching
signals Cai et al. (2008). The data-querying automaton
can be modeled as a hybrid dynamical system of the form
(1), with state y = (q, ρd, ρa, µ) ∈ Z≥1×R≥0×R≥0×R≥1

and set-valued dynamics:

y ∈ Cσ, ẏ ∈ µ · Fσ(y), (8a)

y ∈ Dσ, y+ ∈ Gσ(y), (8b)

where the elements in (8a) are given by

Cσ := Q× [0, N0]× [0, T0]× R≥1 (9a)

Fσ(y) := {0}×
[
0,

1

τd

]
×
([

0,
1

τa

]
−IQi

(q)

)
×{0} (9b)

and the elements of (8b) are given by

Dσ := Q× [1, N0]× [0, T0]× R≥1 (9c)

Gσ(y) := Q \ {q} × {ρd − 1} × {ρa} × {µ}, (9d)

where T0 > 0, N0 ≥ 1, τd > 0, and τa > 1 are tunable
parameters.
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When µ ≡ 1, HDS of the form (8) are common in the study
of asymptotic stability properties of switching systems
under average dwell-time and average activation time con-
straints on the switching signals, see for example Poveda
and Teel (2017); Liu et al. (2022). Yet, incorporating the
dynamic gain µ in the continuous-time dynamics generates
switching signals that differ from traditional average dwell-
time signals. For example, as t → Tµ0

, system (8) allows
for signals that switch at a faster rate.

The following Lemma provides some useful properties of
the solutions to (8). The proof follows as a particular case
of (Ochoa et al., 2023, Lemma 6) which covers a more
general class of hybrid systems, and can be found in the
extended manuscript Ochoa and Poveda (2024).

Lemma 2. Let y be a maximal solution to the HDS (8),
with µ(0, 0) = µ0. Then, the following holds:

(a) The total amount of flow time is bounded by Tµ0
, i.e.,

sup{t≥0 : ∃ j ∈ Z≥0, (t, j) ∈ dom(y)} ≤ Tµ0
. (10)

(b) For all (t1, j1), (t2, j2) ∈ dom(y) such that t2 ≥ t1, the
following “Blow-Up” Average Dwell-Time (BU-ADT)
condition is satisfied:

j2 − j1 ≤ Υ

τd
ln


Υ− t1µ0

Υ− t2µ0


+N0, (11)

(c) For all (t1, j1), (t2, j2) ∈ dom(y) such that t2 ≥ t1, the
following “Blow-Up” Average Activation Time (BU-
AAT) condition is satisfied: t2

t1

IQi(q(t, j(t)))

Υ− tµ0
dt ≤ 1

τaµ0
ln


Υ− t1µ0

Υ− t2µ0


+ T0,

(12)
where j(t) = min{j ∈ Z≥1 : (t, j) ∈ dom(y)}.

(d) For every hybrid arc q : dom(q) → Q satisfying (11)
and (12) there exists a maximal solution y to the HDS
(8) having the same hybrid time domain. □

Remark 2. Item (a) of Lemma 2 states that every solution
to the HDS (8) can flow for at most Tµ0

amount of time.
Such time domains are typical in the context of PT- control
Orlov (2022); Todorovski and Krstić (2023); Song et al.
(2023), where the behaviors of the algorithms are mostly
of interest during an initial finite window of time. □
Remark 3. In (8), the state ρd acts as a timer that regu-
lates how frequently q switches between modes. Since in
(8a) the flow map is multiplied by µ, the rate of change
of ρd during flows is allowed to increase as t → Tµ0

. This
leads to the BU-ADT condition (11), where the right hand
side of the inequality grows to infinity as t → Tµ0

, thus
allowing for more frequent switching as t → Tµ0

. □

Remark 4. The state ρa in (8) can be seen as a timer that
regulates the amount of time spent by q in the set Qi

compared to the time spent on Qs. By construction, any
maximal solution to this timer will induce the BU-AAT
bound (8), thus limiting the proportion of time that the
system spends in the uninformative modes. □

Remark 5. In the context of PT-Stable algorithms, im-
plementations are carried out by stopping the algorithm
“slightly” before the prescribed time to avoid any sin-
gularity. We refer the reader to the recent works Orlov
(2022); Todorovski and Krstić (2023); Song et al. (2023)
for a comprehensive discussion on practical applications
and implementation strategies. □

Remark 6. We stress that the main goal of the Data-
Querying automaton (8) is to provide a mathematical
model to capture a family of switching signals under which
the dynamics (4) achieve PT-convergence to the true pa-
rameter, i.e., it is used mainly for the purpose of analysis.
Such signals might be unknown to the practitioner who,
even though might control the switching times, is aware
a priori of the level of richness of the next data set Dq+ .
Again, this situation is common in practical applications
where the data used by the CL algorithm is “updated”
after a finite amount of time. Our hybrid model aims to
capture such types of heuristics, which, to the best of our
knowledge, have not been rigorously studied before, let
alone in the context of PT stability. □

3.3 Closed-Loop System and Main Result

By leveraging Lemma 2, we study the stability proper-
ties of the complete dynamics that describe the Switch-
ing Prescribed-Time Concurrent Learning (SPT-CL) al-
gorithm shown in Figure 1.

The continuous-time dynamics of the overall system evolve
in the flow set: C := Rn×R≥0×Cσ via the following set-
valued flow map

ẋ =


 θ̇

τ̇
ẏ


 ∈ F (x) :=


µ · Ωq(θ, τ)

1
µ · Fσ(y)


. (13a)

The discrete-time dynamics evolve in the following jump
set: D := Rn × R≥0 ×Dσ, via the set-valued jump map

x+ =




θ+

τ+

y+


 ∈ G(x) :=


θ
τ

Gσ(y)


. (13b)

We can now state the main result of this paper, which
provides stability guarantees for the PT-CL algorithm
with switching datasets. Its proof, which can be found in
the extended manuscript Ochoa and Poveda (2024), relies
upon a Lyapunov-based approach and leverages the results
of Lemma 2.

Theorem 1. Consider the parameter estimation problem
characterized by (3), and suppose that:

(a) The set Qs is not empty.
(b) There exists δ ≥ 0 such that |d(t)| ≤ δ for all t ≥ 0.
(c) The BU-ADT and BU-AAT parameters satisfy τd > 0

and τa > 1 + 1
krα

, where α = minq∈Qs
αq.

Then, there exist κ1, κ2 > 0 such that for every solution
x = (θ, τ, y) to (13), the estimate θ satisfies:

|θ(t, j)− θ⋆| ≤ κ1


1− t

Tµ0

κ2Υ

|ϑ0| e−κ2j + γ(δ), (14)

for all (t, j) ∈ dom(x), where ϑ0 = θ(0, 0) − θ⋆ and γ is a
positive definite function. □

Remark 7. Bound (14) in Theorem 1 establishes a pre-
scribed time ultimate boundedness result with respect
to the true parameter θ⋆ for the PT-CL algorithm with
switching datasets. Since 1 − t

Tµ0
→ 0+ as t → Tµ0

, the

convergence to the ultimate bound γ(δ) is achieved in the
prescribed-time Tµ0 assigned by the user via the choice of
Υ > 0 and µ0 ≥ 1 in (10). To the authors’ best knowledge,
this is the first PT-result in the context of CL, let alone
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and Teel (2017); Liu et al. (2022). Yet, incorporating the
dynamic gain µ in the continuous-time dynamics generates
switching signals that differ from traditional average dwell-
time signals. For example, as t → Tµ0

, system (8) allows
for signals that switch at a faster rate.

The following Lemma provides some useful properties of
the solutions to (8). The proof follows as a particular case
of (Ochoa et al., 2023, Lemma 6) which covers a more
general class of hybrid systems, and can be found in the
extended manuscript Ochoa and Poveda (2024).

Lemma 2. Let y be a maximal solution to the HDS (8),
with µ(0, 0) = µ0. Then, the following holds:

(a) The total amount of flow time is bounded by Tµ0
, i.e.,

sup{t≥0 : ∃ j ∈ Z≥0, (t, j) ∈ dom(y)} ≤ Tµ0
. (10)

(b) For all (t1, j1), (t2, j2) ∈ dom(y) such that t2 ≥ t1, the
following “Blow-Up” Average Dwell-Time (BU-ADT)
condition is satisfied:

j2 − j1 ≤ Υ

τd
ln


Υ− t1µ0

Υ− t2µ0


+N0, (11)

(c) For all (t1, j1), (t2, j2) ∈ dom(y) such that t2 ≥ t1, the
following “Blow-Up” Average Activation Time (BU-
AAT) condition is satisfied: t2
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IQi(q(t, j(t)))
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dt ≤ 1
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ln


Υ− t1µ0

Υ− t2µ0


+ T0,
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where j(t) = min{j ∈ Z≥1 : (t, j) ∈ dom(y)}.

(d) For every hybrid arc q : dom(q) → Q satisfying (11)
and (12) there exists a maximal solution y to the HDS
(8) having the same hybrid time domain. □

Remark 2. Item (a) of Lemma 2 states that every solution
to the HDS (8) can flow for at most Tµ0

amount of time.
Such time domains are typical in the context of PT- control
Orlov (2022); Todorovski and Krstić (2023); Song et al.
(2023), where the behaviors of the algorithms are mostly
of interest during an initial finite window of time. □
Remark 3. In (8), the state ρd acts as a timer that regu-
lates how frequently q switches between modes. Since in
(8a) the flow map is multiplied by µ, the rate of change
of ρd during flows is allowed to increase as t → Tµ0

. This
leads to the BU-ADT condition (11), where the right hand
side of the inequality grows to infinity as t → Tµ0

, thus
allowing for more frequent switching as t → Tµ0

. □

Remark 4. The state ρa in (8) can be seen as a timer that
regulates the amount of time spent by q in the set Qi

compared to the time spent on Qs. By construction, any
maximal solution to this timer will induce the BU-AAT
bound (8), thus limiting the proportion of time that the
system spends in the uninformative modes. □

Remark 5. In the context of PT-Stable algorithms, im-
plementations are carried out by stopping the algorithm
“slightly” before the prescribed time to avoid any sin-
gularity. We refer the reader to the recent works Orlov
(2022); Todorovski and Krstić (2023); Song et al. (2023)
for a comprehensive discussion on practical applications
and implementation strategies. □

Remark 6. We stress that the main goal of the Data-
Querying automaton (8) is to provide a mathematical
model to capture a family of switching signals under which
the dynamics (4) achieve PT-convergence to the true pa-
rameter, i.e., it is used mainly for the purpose of analysis.
Such signals might be unknown to the practitioner who,
even though might control the switching times, is aware
a priori of the level of richness of the next data set Dq+ .
Again, this situation is common in practical applications
where the data used by the CL algorithm is “updated”
after a finite amount of time. Our hybrid model aims to
capture such types of heuristics, which, to the best of our
knowledge, have not been rigorously studied before, let
alone in the context of PT stability. □

3.3 Closed-Loop System and Main Result

By leveraging Lemma 2, we study the stability proper-
ties of the complete dynamics that describe the Switch-
ing Prescribed-Time Concurrent Learning (SPT-CL) al-
gorithm shown in Figure 1.

The continuous-time dynamics of the overall system evolve
in the flow set: C := Rn×R≥0×Cσ via the following set-
valued flow map

ẋ =


 θ̇

τ̇
ẏ


 ∈ F (x) :=


µ · Ωq(θ, τ)

1
µ · Fσ(y)


. (13a)

The discrete-time dynamics evolve in the following jump
set: D := Rn × R≥0 ×Dσ, via the set-valued jump map

x+ =




θ+

τ+

y+


 ∈ G(x) :=


θ
τ

Gσ(y)


. (13b)

We can now state the main result of this paper, which
provides stability guarantees for the PT-CL algorithm
with switching datasets. Its proof, which can be found in
the extended manuscript Ochoa and Poveda (2024), relies
upon a Lyapunov-based approach and leverages the results
of Lemma 2.

Theorem 1. Consider the parameter estimation problem
characterized by (3), and suppose that:

(a) The set Qs is not empty.
(b) There exists δ ≥ 0 such that |d(t)| ≤ δ for all t ≥ 0.
(c) The BU-ADT and BU-AAT parameters satisfy τd > 0

and τa > 1 + 1
krα

, where α = minq∈Qs
αq.

Then, there exist κ1, κ2 > 0 such that for every solution
x = (θ, τ, y) to (13), the estimate θ satisfies:

|θ(t, j)− θ⋆| ≤ κ1


1− t

Tµ0

κ2Υ

|ϑ0| e−κ2j + γ(δ), (14)

for all (t, j) ∈ dom(x), where ϑ0 = θ(0, 0) − θ⋆ and γ is a
positive definite function. □

Remark 7. Bound (14) in Theorem 1 establishes a pre-
scribed time ultimate boundedness result with respect
to the true parameter θ⋆ for the PT-CL algorithm with
switching datasets. Since 1 − t

Tµ0
→ 0+ as t → Tµ0

, the

convergence to the ultimate bound γ(δ) is achieved in the
prescribed-time Tµ0 assigned by the user via the choice of
Υ > 0 and µ0 ≥ 1 in (10). To the authors’ best knowledge,
this is the first PT-result in the context of CL, let alone

Fig. 2. Switching Prescribed-Time Concurrent Learning with informative data Qs = {1, 2}, uninformative data
Qi = {3}, prescribed time Tµ0

= 10, N0 = 1.5, T0 = 2, τd = 1, τa = 2, and true parameter θ⋆ = (1,−2, 1).

with switching datasets containing informative and unin-
formative data. In particular, Theorem 1 can be seen as the
PT (and switching) counterpart of the recent fixed-time
stability results for CL algorithms established in Ochoa
et al. (2021); Ŕıos et al. (2017) and Tatari et al. (2023).
When δ = 0, (14) establishes exact PT convergence. □
Remark 8. Since by Lemma 2 every solution to (13) satis-
fies the BU-ADT and the BU-AAT conditions, the result
of Theorem 1 can also be interpreted as a PT-convergence
result for a switching system having a switching signal
q : R≥0 → Q that satisfies (11) and (12), where the
left hand side of (11) corresponds to the total number of
switches of q in the interval [t1, t2]. □
Remark 9. Theorem 1 can also be interpreted as a robust-
ness result concerning uninformative data sets. Namely, if
the PT-algorithm implements uninformative data sets Dq

during periods of time that satisfy the Blow-Up Average
Activation Time condition (12), then PT convergence to
the true parameter will still be achieved. □
Remark 10. As discussed in Orlov (2022); Todorovski and
Krstić (2023); Song et al. (2023), one of the limitations
of PT techniques that rely on dynamic gains is the need
for “stopping” the algorithm before the prescribed time.
The bound (14) provides some information on the residual
bounds one can expect to obtain in such scenarios. □
Remark 11. (On the use of PT-Algorithms in Estimation
Problems) Prescribed-Time stable algorithms were ini-
tially developed for regulation problems where the mag-
nitude of the regulation error can be used as a “signal”
to stop the PT routine. The lack of access to such error
signals in parameter estimation problems is not problem-
atic for the successful experimental implementation of PT-
estimation dynamics, as shown in Pan et al. (2022) for
energy systems (e.g., batteries), the numerical study of
Schrodinger systems Steeves et al. (2020), PT-estimation
problems in quadrotor UAVS Gong et al. (2023), etc. In
most scenarios, the proximity to the prescribed-time Tµ0

is used as a signal to clip the algorithm action. □

We finish this section by discussing the case when only
one (SR) dataset is available for the estimation of θ⋆, the

following corollary can be directly obtained. This result
follows by simply taking the states (q, ρd, ρa) as fixed
constants in the HDS (13).

Corollary 2. Consider the parameter estimation problem
characterized by (3), suppose that items (a)-(b) of Theo-
rem 1 hold and that Q = {1}. Then, there exist κ1, κ2>0
such that for every solution x = (θ, τ, y) to (13), the
estimate θ satisfies (14) for all (t, j) ∈ dom(x). □

4. NUMERICAL EXAMPLE

We numerically illustrate Theorem 1, by considering the
scalar-valued signal: ψ(θ⋆, τ) = (sin(τ)− 1)

2
+ d(τ), with

d(τ) = 1
4 tanh(τ). In this case, ψ takes the form of (3) with

θ⋆ = (1,−2, 1), and ϕ(τ) = (1, sin(τ), sin(τ)2). Consider
three datasets {Dq}3q=1 recorded at the sequences of times:

{t1,k}k1

k=1 =
{
0,−π

2 ,−
3π
2

}
, {t2,k}k2

k=1 =
{
0,−π

4 ,−
7π
4

}
,

and {t3,k}k3

k=1 = {0,−π,−2π}. The datasets D1 and D2

are SR with levels of richness α1 = 0.44 and α2 =
0.15, respectively, while D3 is IR. Using these datasets,
we implement the PT-CL dynamics with Tµ0

= 10. To
generate a switching signal q that satisfies the BU-ADT
and BU-AAT conditions (11) and (12) we use the PT-
hybrid automaton (8) with T0 = 1 and N0 = 2, τd = 1
and τa = 2. With this choice of parameters, all the
assumptions of Theorem 1 are satisfied. Figure 2 displays
the trajectories of each of the components of the state θ ∈
R3, the resulting switching sequence q, and the associated
average dwell-time and average activation time states ρd
and ρa. In gray, we show the uniform ultimate bound γ(δ).
As shown in the figure, the state θ rapidly approaches a
neighborhood of θ⋆ as t approaches the prescribed-time
Tµ0 , even when the algorithm repeatedly selects the IR
dataset D3. This result illustrates a common scenario that
emerges in many practical applications of data-enabled
adaptive dynamics, where the dataset used by the CL
algorithm is dynamically changed as the algorithm evolves
in time. On the other hand, the behavior shown in Figure 2
can also be interpreted as a robustness result of prescribed-
time CL with respect to intermittent and uninformative
dynamic data, and/or switching regressors.
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5. CONCLUSIONS

The main contribution of this paper is to present a novel
CL algorithm that achieves prescribed-time (PT) con-
vergence under switching datasets, thus offering another
potential alternative that contributes to the catalog of
existing CL approaches. However, unlike existing results, it
was shown that the PT convergence properties are retained
even when the algorithm uses recorded data that is not
sufficiently rich during bounded periods. Our convergence
analysis relies on using tools from set-valued hybrid dy-
namical systems to model the switching signals as solu-
tions of an autonomous system (with finite escape times).
The analysis also leverages a dilation/contraction trans-
formation on the hybrid time domains of the solutions,
which, to the best of our knowledge has not been used
before in the context of switching parameter estimation
algorithms. Future research directions will focus on exper-
imental implementations that will test the validity of the
theoretical results presented in this paper under different
realistic scenarios, e.g., noisy sensors, limited computation,
saturated actuators, etc.

REFERENCES

Basu Roy, S. and Bhasin, S. (2019). Novel model ref-
erence adaptive control architecture using semi-initial
excitation-based switched parameter estimator. Inter-
national Journal of Adaptive Control and Signal Pro-
cessing, 33(12), 1759–1774.

Cai, C., Teel, A.R., and Goebel, R. (2008). Smooth lya-
punov functions for hybrid systems part ii:(pre) asymp-
totically stable compact sets. IEEE Transactions on
Automatic Control, 53(3), 734–748.

Casas, J., Chang, C.H., and Duenas, V.H. (2023).
Switched concurrent learning adaptive control for tread-
mill walking using a lower limb hybrid exoskeleton.
IEEE Trans. on Ctrl. Systems Technology.

Chowdhary, G. and Johnson, E. (2010). Concurrent
learning for convergence in adaptive control without
persistence of excitation. 49th IEEE Conf. on Decis.
and Ctrl., 3674–3679.

Goebel, R., Sanfelice, R.G., and Teel, A.R. (2012). Hybrid
Dynamical Systems: Modeling, Stability and Robustness.
Princeton University Press.

Gong, W., Li, B., Ahn, C.K., and Yang, Y. (2023).
Prescribed-time extended state observer and prescribed
performance control of quadrotor uavs against actuator
faults. Aerospace Science and Technology, 138, 108322.

Greene, M.L., DuPuis, M., Cloud, J., and Dixon, W.E.
(2021). Simultaneous trajectory tracking control and
online mass estimation for a regolith excavating robot
via integral concurrent learning. In AIAA Scitech 2021
Forum, 1131.

Kamalapurkar, R., Reish, B., Chowdhary, G., and Dixon,
W.E. (2017). Concurrent learning for parameter estima-
tion using dynamic state-derivative estimators. IEEE
Trans. on Automatic Control, 62(7), 3594–3601.

Le, D.M., Patil, O.S., Amy, P.M., and Dixon, W.E. (2022).
Integral concurrent learning-based accelerated gradient
adaptive control of uncertain euler-lagrange systems. In
2022 American Ctrl. Conf., 806–811. IEEE.

Le, J.H. and Teel, A.R. (2022). Concurrent learning in
high-order tuners for parameter identification. In 2022
IEEE 61st Conf. on Decis. and Ctrl., 2159–2164. IEEE.

Liu, S., Tanwani, A., and Liberzon, D. (2022). ISS
and integral-ISS of switched systems with nonlinear
supply functions. Mathematics of Control, Signals, and
Systems, 34, 297–327.

Narendra, K.S. and Annaswamy, A. (1987). Persistent
excitation in adaptive systems. International Journal
of Control, 45(1), 127–160.

Ochoa, D.E. and Poveda, J.I. (2024). On Hybrid
Prescribed-Time Concurrent Learning with Switching
Datasets (Extended Version). URL: https: // bit. ly/
HybridPTCL .

Ochoa, D.E., Espitia, N., and Poveda, J.I. (2023).
Prescribed-time control in switching systems with re-
sets: A hybrid dynamical systems approach. Submitted
to IEEE Trans. on Automatic Control. Available on
Arxiv: https: // arxiv. org/ abs/ 2308. 16368 .

Ochoa, D.E. and Poveda, J.I. (2022). Accelerated
continuous-time approximate dynamic programming via
data-assisted hybrid control. IFAC-PapersOnLine,
55(12), 561–566.

Ochoa, D.E., Poveda, J.I., Subbaraman, A., Schmidt, G.S.,
and Pour-Safaei, F.R. (2021). Accelerated concurrent
learning algorithms via data-driven hybrid dynamics
and nonsmooth ODEs. In Learning for Dynamics and
Control, 866–878. PMLR.

Orlov, Y. (2022). Time space deformation approach to
prescribed-time stabilization: Synergy of time-varying
and non-Lipschitz feedback designs. Automatica, 144,
110485.

Pan, C., Peng, Z., Yang, S., Wen, G., and Huang, T.
(2022). Adaptive neural network-based prescribed-time
observer for battery state-of-charge estimation. IEEE
Transactions on Power Electronics, 38(1), 165–176.

Poveda, J.I., Benosman, M., and Vamvoudakis, K.G.
(2021). Data-enabled extremum seeking: a cooperative
concurrent learning-based approach. Int. J. of Adaptive
Control and Signal Processing, 35(7), 1256–1284.

Poveda, J.I. and Teel, A.R. (2017). A framework for a class
of hybrid extremum seeking controllers with dynamic
inclusions. Automatica, 76, 113–126.
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