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Abstract—Smart agriculture is one of the most promising
areas where IoT-enabled technologies have the potential to
substantially improve the quality and quantity of the crops
and reduce the operational cost. However, building a smart
agriculture system presents several challenges, including high
latency and bandwidth consumption associated with cloud
computing, Internet disconnections in rural areas, and the need
to keep costs low for farmers. To address these issues, this paper
proposes a fog-based smart agriculture infrastructure with
edge computing and LoRa communication. We address the top
concern of farmers - animals intruding - by proposing a solution
that detects animal intrusion using low-cost PIR sensors, cam-
eras, and computer vision and predicts animal locations using
a novel algorithm. Our system can detect animals before the
intrusion, identify them, predict their future locations, and alert
farmers promptly. The paper proposes three sensor layouts, and
experiments confirm the system’s effectiveness and lower cost
compared to state-of-the-art systems.

Index Terms—smart agriculture, animal intrusion detection,
LoRa, fog computing’

I. INTRODUCTION

Smart agriculture applies modern information technology,
integrates big data, mobile Internet, cloud computing and
IoT technologies relying on various sensing nodes to achieve
precise tracking, monitoring, automating and analyzing op-
erations. At present, cloud-based infrastructures are being
utilized to support various smart agriculture applications and
data processing. Data from smart sensors in the agricultural
field is transmitted to the cloud over the Internet, and then
stored and processed in the cloud for decision making.
While cloud-based infrastructures certainly offer enormous
processing power and storage capacity, there are two key
limitations that need to be addressed when used in the context
of smart agriculture [1]: (i) Sensor data transmitted over the
Internet requires continuous Internet connectivity, consumes
high bandwidth and incurs delays, which is not feasible in
rural areas where the internet connectivity is unstable. (ii)
Since IoT devices must transmit large volumes of data to
the cloud for storage and processing, the energy of battery-
powered IoT devices is quickly drained. These limitations
make cloud-based infrastructure ill-suited for smart agri-
culture. To address these limitations, we propose a LoRa-
enabled, fog-based smart agriculture infrastructure that dis-
tributes computation workload to Raspberry Pi intelligently
so as to reduce the quantity of data transferred to the server

'We use the term ‘fog computing’ and ‘edge computing’ interchangeably
throughout the paper, same as ‘fog server’ and ‘edge server’.

and enables the delivery of latency-sensitive services in real-
time.

After conducting a survey with the farmers to understand
the key issues they are facing that could be addressed by
smart agriculture, animal intrusion in the field becomes the
most concerning one. Farms are usually located in rural areas,
close to nature. This makes animal intrusion a major issue for
farm owners who must deal with the mess and damage these
animals can cause. Compared to some other smart services
such as smart irrigation, crop quality monitoring and pest
extermination, animal intrusion detection is more difficult
because of its uncertainty, uncontrollability, unpredictability.
Animals may eat crops and stroll around the field at any time,
resulting in a significant production loss. This necessitates
more time costs to recover from the damage as well as greater
financial security to cover the costs associated with damages.

In this paper, we propose an end-to-end, LoRa (Long
Range)-enabled, fog-based infrastructure for smart agricul-
ture along with a new strategy to detect animal intrusion
with PIR sensors and a rotating camera. We are committed
to helping farmers detect and locate animal invasions as
quickly as possible. To achieve it, a direct solution for field
monitoring would be to rely solely on cameras without using
PIR sensors. However, this approach necessitates either high-
resolution cameras or a greater number of cameras to cover
the same area, leading to higher costs and increased energy
consumption compared to PIR sensors. Furthermore, if only
cameras are employed, they must be fixed in one direction,
potentially diminishing the success rate of identification
when an animal appears at the boundary of the camera’s field
of view. Employing a rotating camera would ensure that the
animal is captured in the center of the image, significantly
enhancing the success rate of animal identification.

The paper is organized as follows: We begin by demon-
strating how LoRa’s low-power, low-bandwidth, and long-
range capabilities transform rural agricultural lands into a
smart agriculture system. Next, we detail the design and im-
plementation of a microservice-based edge server, delivering
crucial, time-sensitive services to farmers in disconnected
Internet environments. For optimized animal intrusion detec-
tion, we investigate various sensor placement strategies and
devise an algorithm to locate invasive animals and predict
future locations. Lastly, we assess our system’s performance,
comparing it with current state-of-the-art frameworks in
terms of cost, latency, and distance.
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This paper makes the following contributions:

« Adoption of LoRa protocol effectively addresses the
limitations of intermittent Internet connectivity and high
latency of cloud-based infrastructure.

« A microservice-based architecture at the edge to enable
latency-sensitive services delivered just in time.

o Propose three sensor layouts and an algorithm that
accurately predicts the future locations of animals.

o Comprehensive analysis and comparison of the layouts
through experiments.

« Rigorous evaluation and discussion on the accuracy of
the algorithm and the practicality of the system.

II. RELATED WORK

With the rise of smart agriculture, numerous systems have
emerged. Yet, most grapple with safety hazards, high costs
and resource demands, dependency on internet connectivity,
or poor performance. Amid the plethora of systems in
literature, our focus lies on the latest intelligent agricultural
and animal intrusion detection methods.

Devaraj et.al. suggest using traditional electric fence,
which shock animals that cross the boundary [2]. While
effective and easy to install, it requires a consistent and
substantial power supply, along with regular maintenance.
In contrast, our system remains unaffected during power
outages and, importantly, does not pose risks to animals or
people. In [6], authors analyze why traditional methods such
as electric fencing are futile in some scenarios and high cost.

Cameras and computer vision are effective at identifying
intruding animals. Some researchers [3]-[5] use deep learn-
ing algorithms to recognize animals captured by the camera
at regular intervals. However, fixed interval detection wastes
resources and may miss some animals. Yadahalli et.al. [6]
instead send images to a TFT display and use a flash
light for better night images, which are more expensive and
consume more power. Compared to computer vision, it is also
harder for humans to accurately identify animals in images
where they make up a small percentage. Instead of capturing
images, Thomas et.al. [29], [30] analyze videos, which is
challenging to meet latency requirements and necessitates
significantly higher computational power.

Cloud-based infrastructures [10]-[12] are popular in smart
agriculture for their powerful computing capabilities. In these
systems, data is transmitted over the Internet to the cloud,
where the data is stored and processed for decision making.
However, these systems rely on Internet connectivity, which
may be unavailable in rural areas, and can result in high
latency due to data transmission to the cloud.

The systems proposed from 2017 to 2022 [14]-[20] that
use infrared sensors lack specifics on sensor placement and
algorithms. In [3], it fails to achieve better performance. The
works presented in [2], [7]-[9] can not support large service
coverage at a low cost.

In comparison, our proposed system excels at accurately
detecting and predicting animal locations while minimizing

power consumption and transmission latency, and eliminating
dependence on internet connectivity by leveraging LoRa
communication protocol.

III. PROPOSED SYSTEM

A. System Architecture

The architecture of the proposed microservice-based fog
enabled infrastructure for smart agriculture is shown in
Figure 1. It consists of two layers: sensing layer and fog
computing layer, which are linked by cross-layer upstream
and downstream communication for data and control infor-
mation flows [28].
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Fig. 1: Proposed system architecture.

The sensing layer is comprised of the sensors and actuators
deployed across the agricultural field to periodically sense the
physical parameters of interest such as air temperature, air
humidity, soil temperature and moisture at various depths,
wind speed and rainfall. To address the challenge of poor
Internet connectivity, we have adopted a LoRa and Lo-
RaWAN enabled communication system due to their support
for low power, wide area networking designed to wirelessly
connect limited energy operated IoT devices to an edge server
at a distance of 1-2 km. The fog layer is comprised of
one or more servers, and provides an administrative control
of the entire IoT infrastructure of the agricultural field. It
addresses the limitations of intermittent Internet connectivity,
high latency and high network bandwidth consumption of
cloud-based infrastructure. The fog nodes execute latency
sensitive services, such as animal intrusion detection. To
facilitate a flexible architecture that may utilize existing
container-based support for various ML/AI services, we have
structured the fog layer as a microservice architecture. In this
architecture, an application is composed from a collection of
loosely-coupled microservices, where each microservice is
fine-grained and the associated protocols are lightweight.
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B. Animal Intrusion Detection

In view of the serious problems caused by animal intru-
sion to farmers, our goal is to automatically detect animal
intrusions, identify animals, repel animals with automatic
actuations like beep sounds and laser lights, and inform the
farmer(s) in a timely manner about the intrusion. This work
is performed using two types of sensors: a PIR sensor for
detecting any motion in its field of view and an all-day
camera sensor attached to the Raspberry Pi for capturing
images that will be processed to identify animals. To meet
the low-latency requirement, the scheduling mechanism and
the prediction algorithm are implemented in the fog layer,
while the object detection is done on the Raspberry Pi. This
is because the low bandwidth of LoRa cannot support the
transmission of large-sized images. As shown in Figure 2,
there are three microservices: 1) The Security module passes
the sensor data it receives from authenticated sensors to the
appropriate Prediction container; 2) The Prediction container
runs localization and prediction algorithms on this data as
well as recorded data, and then sends the predicted position
at a future time to the camera; 3) The Notification module
notifies the farmer via messages once animals are detected.
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Fig. 2: System architecture for animal intrusion detection.

Corresponding to the process marked with capital letters
in Figure 2, the steps are described as follows:

A: Animal movement is detected by PIR sensors and the

data is transmitted to the server using LoRa.

B: A container on the edge server predicts the location of
the animal at a future time based on input from multiple
sensors and sends this location to the Raspberry Pi that
operates a camera on the field.

The edge server sends a “possible animal invasion” alert

to the farmer.

: The Raspberry Pi instructs the camera to rotate in the
direction of the predicted position and take a picture.
The Raspberry Pi then runs an animal detection algo-
rithm on this image and sends the results to the edge
server.

E: If an animal was identified, actuations are activated

immediately to repel it and the edge server sends a
reliable alert to the farmer.

e
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=

C. Sensor Layouts

For animal intrusion detection, a pivotal consideration is
the strategic placement of sensors in the field. The objective
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is to achieve maximum coverage, ensuring thorough data
collection, improving prediction accuracy, and accounting for
diverse scenarios, all while minimizing the number of sen-
sors. Given the ambiguity surrounding the optimal placement
strategy, we put forth and experiment with three plausible
layouts tailored for a square-shaped field. The optimal layout
certainly depends on the shape of the fields, but the idea
remains the same.
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Fig. 3: Virtual coordinate systems built upon the farm.

We establish four virtual coordinate systems based on the
four directions on the farmland (as shown in Figure 3), en-
compassing the x-axis and y-axis, with the corners serving as
the origins of these systems. Our localization and prediction
algorithms rely on this coordinate framework. This setup also
aims to simplify the process of farmers locating invasive
animals. In other words, when sensors detect an animal, the
animal’s location is regarded as a point (marked with R1, R2,
...1n Figures 4 to 6) rather than a range, which is convenient
for us to design algorithms to predict animals’ position. In
order to describe the specific location of the animal to the
farmer, we define four corners and four sides. Below we
describe the three sensor layouts in detail.
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Fig. 4: Layout A: Vertical Placement

1) Layout A - Vertical: We place all sensors at a height
of d meters above the ground and project them vertically
downward, with the coverage area of each sensor being a
circle of diameter h. This produces a coverage area consisting
of many circles. As shown in Figure 4, we put two rows
of interlocking and overlapping sensors at the boundary
of the field. This not only increases the coverage, but the
overlapping areas allow for relatively fine-grained segmen-
tation of the area to improve the accuracy of localization
and prediction. The increase in budget associated with an
additional row of sensors is well worth it compared to more
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accurately catching animal intrusions and thus preventing
damage to the farm. But the shortcoming of this layout
is that the farthest detectable location is too close to the
farm boundary, only //2, which leads to a greater chance of
animal damage to the farm.
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Fig. 5: Layout B: Horizontal Placement

2) Layout B - Horizontal: In contrast to Layout A, all
sensors are placed on the ground and horizontally projecting
towards the farm’s exterior, with each sensor covering an
isosceles triangle with h as the base and d as the height,
resulting in a coverage area of many triangles. As shown in
Figure 5, we put one row of interlocking and overlapping
sensors at the boundary. This also has the same advantages
as Layout A, i.e., increased coverage and fine-grained area
segmentation to improve localization and prediction accu-
racy. Moreover, it overcomes the limitations of Layout A
by extending the farthest detectable distance, thus improving
protection.
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Fig. 6: Layout C: Hybrid Placement

3) Layout C - Hybrid: With vertical and horizontal place-
ment, it was natural to explore a hybrid placement. We
still place two rows of sensors, one vertically along the
boundary and the other projected horizontally outward at the
same location, as shown in Figure 6. This layout provides
good coverage, fine-grained area segmentation, and a far-
reaching detectable location. However, uncovered middle
areas can lead to inaccurate or even outrageous predictions.
Additionally, this layout has a calculated minimal coverage
area.

In addition to these three layouts, we also considered
other layouts that required fewer sensors. However, they
were ruled out due to their limited coverage, which limits
their prediction accuracy, and their short sensing distance to
the boundary, which make them unsuitable for fast-moving
animals.

D. Proposed Algorithm

We propose and deploy an algorithm (as shown in Algo-
rithm 1) on the fog server to predict the future location of

intrusive animals based on the previous readings returned by
the sensors. Whenever a sensor detects an animal, it sends
the data back to the container running the algorithm on the
fog server in the format of “#side-#sensor-timestamp”. Each
set of data received by the container is combined with the
previous record to make a prediction. The “set of data” here
may have two scenarios: one is the data read back from a
non-overlapping coverage area; the other is the animal is
in the overlapping area covered by multiple sensors. In this
case there will be multiple sensors with similar timestamps
to send back data and the server needs to make the final
prediction after receiving data from all these sensors. We use
a “tolerance time difference” to define this similar timestamp.
In addition, we need to define another threshold as the
minimum time interval between animal intrusions, i.e., if
the server does not receive new data within the amount of
time, the next data received is considered to be a new animal
intrusion. It should be determined by the number of animals
within the vicinity and their appearance frequency around
the field.

We define a mapping of sensor numbers and position coor-
dinates in the algorithm. The server first converts the sensor
number in the received data into a coordinate and combines
the previous set of coordinates to calculate the distance and
direction, and then to calculate the average speed of the
animal’s movement with the timestamp difference. With the
direction and speed, the next position of the animal can be
predicted under the assumption that the animal will move in
the same direction with the same speed for a short period of
time. This period is the sum of the time it takes for the sensor
to return data, the time it takes for the algorithm to make the
prediction, the time it takes for the instruction to be passed
from the server to the Raspberry Pi, and the time it takes for
the camera to rotate to point to the predicted position.

The direction and speed of animal movement are not
stable, but the constant detection and updating of position
information by the sensors, the fast transmission of LoRa,
and the high speed calculation of the system can make the
predicted deviation be calibrated quickly and continuously.
The field of view of the camera can also provide a certain
degree of tolerance. Taken together, our proposed algorithm
is expected to effectively and accurately locate and predict
the location of animals. Next, we evaluate and verify the
adequacy of the algorithm through experiments.

IV. EVALUATION

All experiments presented in this paper using the parame-
ters shown in Table I. To evaluate our work, we constructed
an end-to-end LoRa communication system, deployed the
three sensor layouts proposed in Section III-C, and gathered
sensing data by moving along various trajectories. We then
implemented our proposed algorithm to analyze the collected
data. The tolerance for time difference is set at 0.1 second,
and the time threshold is established at 120 seconds.
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Algorithm 1 Algorithm to predict animal locations

Input: side number side, sensor number sensor, and times-

tamp teur

Output: A coordinate of predicted animal position

{wpredich ypredict}
I Tprev > x value of previous location
2! Yprev >y value of previous location
3 tprev > Timestamp of previous reading

. time_threshold > Interval to refresh the collected data

: time_tolerance > Interval to define similar timestamp

: latency > Time required from detection to camera pointing to
the predicted position

7: pos_mapping < {sensor : {z : y}}

8: function PREDICT(side, sensor, teyur)

9: Zeur <— pos_mapping|sensor||z]

10: Yeur — pos_mapping[sensor][y]

11: if tcur — tprev > timing_threshold then

12: Do nothing

AN N A

13: else if teur — tprev < time_tolerance then

14: Wait until all data received

15: else

163 dZSt — \/(xcur - zp'r‘e'u)z + (ycu'r‘ - ypre'u)2
17: speed < dist/(teur — tprev)

18: 0 <+ arctangent(Yeur — Yprev, Teur — Tprev)
19: d « latency x speed

20: Tpredict < Teur + d * math.cos(6)

21: Ypredict < Yeur + d x math.sin(0)

22: return Tpredicts Ypredict

23: end if

24: xpre'u — Teur

25: Yprev = Yeur

26: tprev < teur

27: end function

28: while true do

29: PREDICT(stde, sensor, teyr)
30: end while

A. Experiments and Results

1) Lora Transmission. We build an end node which
consists of PIR sensors, one Arduino Mega microcontroller,
LoRa Hat with Antenna. LoRa hat is built using LoRa
SX1276 IC. To experiment the scheduling capability of
fog node, we connected three end nodes with one LoRa
enabled gateway (Raspberry Pi with PG1302 LoRaWAN
Concentrator) which is located 3 km away from the field as
shown in Figure 7. The end nodes are scheduled in a round
robin fashion by fog node to avoid interference of data during
simultaneous communication by the three end nodes.

2) Sensor Placement: To detect animals in a 25 by 25 me-
ters field, we use PIR sensors. As described in Section III-C,
the layouts of the sensors were accurately deployed. The
sensors were fixed to a strip and placed around the perimeter
of the field to ensure complete coverage. We used an Arduino
ATMega2560 along with a LoRa hat using LoRa SX1276 IC
powered by a lithium-ion battery to send data to the Gateway
for processing and decision-making.

We changed different speeds, directions, and trajectories
to simulate 18 different movements (M1-M18 in Figure 8)
of animal (cow) to evaluate the accuracy and effectiveness
of our algorithm. For each of these movements, our system

TABLE I: System Configuration

Specifications

256 KB Flash Memory, 8KB SRAM,
4KB EEPROM, 16 MHz Clock Speed

Component Name

Arduino Mega

Quad core Cortex-A72 (ARM v8) 64-bit

Raspberry Pi 8GB RAM, 1.5GHz Clock Speed

Detection range d is 7 meters;

PIR Sensor Detection distance h is 5 meters

Resolution 2592x1944, Optical Size 6.35mm,

Camera Focal Length 2.25mm, FOV 130°(D) 105°(H)

3.1 GHz Dual-Core Intel Core i5,
8 GB RAM, 256GB Disk

LoRa Gateway H

PIR sensor data from the
end nodes

Edge Server

Prediction location data from the
fog server to the camera
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Fig. 7: Experimental setup architecture

sensed and transmitted PIR sensor values to the edge server
for multiple locations depending on which sensors detected
movements. For example, Table II shows the location values
received for Movement M2. This location data collected
from 18 different movements forms the ground truth for our
evaluation.

M10
M18

M17

Fig. 8: Movement Trajectories

3) Position Prediction: We use a PC as fog server in our
experiments. It was placed 10 meters above the ground to
increase the transmission speed with end nodes [28]. The
prediction algorithm runs continuously waiting for data. To
evaluate our algorithm, we make use of our ground truth
data, wherein the container extracts three sets of location
data from a movement, uses the first two sets of data to
predict the location for the time corresponding to the third
set of data, and then compares this predicted location with
the actual location to assess the accuracy of the prediction.
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One measure of accuracy we use is the distance offset, which
is the distance between the predicted location and the actual
location. We measured distance offsets for all movements for
which we have at least three location values. For movements
such as M2 (Table II) for which we have more than three
location values, we measured distance offset for each triplet
of location values resulting in 10 distance offsets measured.
Figure 9 shows the average distance offset of each movement.

TABLE II: M2 location values: side — coordinate(x, y)

Layout A Layout B Layout C
1 [ A-(0,15) [ A-(20,35) [ A-(20,5.5)
2 | A-(1515) | A-(1535) | A-(1555)
3 A-(1515) | A-(15 35 | A-(15,55)
4| A-(0,1.5 | A-(0,35 | A-(10,55)
5] A-(515) A - (5,3.5) A -(5,55)

As we can see, the average distance offset is relatively
low (less than 5 meters) for most movements and layouts.
We observe that Layout B shows relatively small distance
offsets in most of the movement tests, although in MI, it
has a higher offset in prediction than the other two layouts.
However, in M8, Layout B does not have sufficient readings
for the algorithm to make predictions due to the presence
of some blind triangles near the boundary where the sensor
cannot detect the animal once it moves there. Layout C
produces the largest distance offsets in most of the tests
due to the presence of many blind areas inside the coverage
area, which prevented the animal from being detected quickly
and continuously, resulting in more inaccurate predictions.
Layout A performs moderately and without data loss, which
is due to its continuous and extensive coverage area. Based
on our experiments and the analysis in Section 2, we recom-
mend Layout B as the optimal sensor deployment method,
which can be readily applied to rectangular fields of varying
dimensions.

TABLE III: Animal Detection Experiment Results

CNN Pre-Trained Model | Latency(s)

VGGI16 2.27
ResNet50 3.75
ResNet50V2 3.34
InceptionV3 4.75
MobileNet 1.64
MobileNetV2 2.74
EfficientNetBO 5.07

4) Animal Detection: To identify the intrusive animals, we
connect a camera to a Raspberry Pi to take pictures of the
animals (area where the predicted location is) and identify
them using computer vision algorithms. The specifications of
the Raspberry Pi are shown in Table I. We experimented with
several popular CNN pre-trained models to test their speed
of processing images. We first train these models on top of
a computer and then imported the trained models into the
Raspberry Pi. These event-driven models are continuously
running on the Raspberry Pi waiting for images to be taken.

The average detection time (based on 20 runs for each
image) is summarized in Table III. As we can see, these
models take 2 to 5 seconds to identify an animal, with
MobileNet having the best performance with an average time
of 1.64 seconds.

B. Prediction Accuracy

The goal of predicting location is to be able to rotate the
camera in a direction where the animal is expected to be.
Using the distance offset statistics, we can determine the
accuracy of the algorithm by combining the distance between
the predicted animal position and the camera placement. As
illustrated in Figure 10, the predicted location is represented
by point P, and the camera (point C) is positioned within
the boundary to point towards the predicted position. The
camera has a horizontal field of view of 105 degrees, as
shown in Table I, and the red shading indicates the current
range that the camera can cover. If the actual animal position
falls within the red shading, represented by point (), the
prediction is considered accurate. Conversely, if the actual
animal position falls outside the red shading, represented by
point R, the prediction is considered incorrect. Since we
only have the distance between the predicted location and
the actual location, without knowing their relative positions
with respect to the camera, () could be any place on the red
circle which is centered at point P. We make the assumption
that the angle formed by the edge P(Q and the edge C'P at
point P is a right angle, so that angle /5 is the maximum
value. In this way, the accuracy of the prediction is the most
conservative value.

Based on this validation method, we calculate the pre-
diction accuracy of the three layouts at different distances
between the predicted animal position and the camera place-
ment, as shown in the Table IV. The table shows again that
layout B is the best layout solution. For layout B, a placement
distance of 5 meters can achieve a very accurate prediction.
The farther the distance, the wider the coverage, and the
higher the accuracy. Nevertheless, we must also consider that
increasing the distance results in lower image quality of the
animal, which makes animal identification more difficult. We
will discuss this further in Section V.

TABLE IV: Camera placement and prediction accuracy.

Distance between Accuracy(%)
camera and animal(m) | Layout A | Layout B | Layout C
5 66.67% 94.44% 38.89%
10 100% 94.44% 94.44%
15 100% 94.44% 100%

C. System Performance and Cost

1) System Performance: Based on our experiments, we
estimate the total time required to achieve animal intrusion
detection with the current system configuration (as shown in
Table I), which is summarized in Table V. It takes approxi-
mately 7.11 to 8.61 seconds for the farmer to receive clear in-
trusion information, including the predicted location and type
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Fig. 9: Average distance offset between predicted and actual positions for different types of movements in the three layouts.

of the animal. Kindly note that this duration encompasses
both both location prediction and animal identification. This
isn’t solely the time it takes to locate the animal when
detected by PIR sensors. Furthermore, the farmer will receive
consecutive messages to fine-tune the animal’s location until
the threat is eliminated.
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Fig. 10: Camera placement

TABLE V: System Latency

Step Latency(s)
Transmission of 3 sets of data via Lora 1
Prediction with proposed algorithm 0.01
Instruction sent to camera via LoRa 1
Camera rotation, image capture and processing 4~5

Results sent back to fog server via LoRa 1

Alert sent to farmer via LTE 0.1 ~ 0.6 [27]

In total 7.11 ~ 8.61

2) System Cost: To illustrate the expenses incurred during
our experiment in the 25 x 25 m? field, we have compiled
a detailed cost analysis of all the devices used, which is
presented in Table VI. With a total cost of $285.36 (US
dollars), our system is a cost-effective solution for monitoring
animal intrusions. As the size of the farm increases, the
cost will inevitably rise, but the advantage is that additional
expensive equipment, such as fog server, is not required.

V. DISCUSSION

A. Imaging Quality and Animal Identification

In Section IV-B, we assessed the accuracy of prediction
based on the presence or absence of animals in the picture
taken. However, to fully evaluate the performance of the
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TABLE VI: System Cost

Device Name Cost(US Dollars)
Arduino Shield for LoRa | $6.12/each x 3 = $18.36
Raspberry Pi 4 $95
GPS Concentrator $120
PIR Sensor $0.75/each x 36 = $27
Camera $25
In Total $285.36

system, we must also consider the ability to identify the
pictured animals. If the animal image is not clear in the
picture, it will be difficult to identify. This depends on two
factors: the number of pixels that the animal occupies in
the image and the pixel requirements of animal recognition
algorithms listed in Table VIII [26]. Assuming the animal
size is approximately 2 meters long and 1.5 meters high
(cow), we calculate the number of pixels occupied by the
animal at different distances between the camera and the
animal based on the camera parameters (as shown in Table I)
and present the results in Table VII.

By comparing these two tables, we can confirm that these
widely used models listed can successfully identify animals
when the distance between the animal and the camera is 40
meters, and we can still use the very effective GooglLeNet
and SqueezeNetl_1 when the distance is 80 meters. There-
fore, to ensure both a large camera coverage to improve the
quality of animal imaging and the tolerance of prediction
errors, we need to control the camera placement and max-
imum rotation angle. Specifically, we must ensure that the
maximum distance between the camera and the intersection
of the coverage boundary and the sensing boundary (i.e., D in
Figure 10) does not exceed 80 meters, with 40 meters being
the optimal distance. This allows us to adopt MobileNet
which can achieve the best performance shown in Table III.

B. Other Options for Communication

In addition to the combination of LoRa and cheap camera
sensors, alternatives could be to use 4G/5G cellular security
cameras or wired solutions. However, 4G/5G cellular security
cameras are much more expensive and require a license,
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TABLE VII: Pixels an animal occupies at different distances

[Distancem) | 10| 20 | 30 | 40 50 60 70 80|
[ Pixels | 199x151 | 99x76 | 66x50 | 50x38 | 40x30 | 33x25 | 28x22 | 25x19 |

TABLE VIII: Minimum pixel requirement for CNN models

[ Model [ GoogLeNet | SqueezeNetl_I | DenseNet201 | VGG16/19 | MobileNet |
[ Minimum Pixels | I5x15 | 17x17 | 20x29 | 3232 | 3202 |

making the total cost much higher. Wired solutions are also
undesirable since cables would be inconvenient for cultiva-
tion and prone to corrosion, making maintenance costly.

C. Instances when our work does not succeed

Based on the results presented in Table IV, it is evident that
when an animal is very close to the camera, the success rate
decreases. Naturally, fast-moving animals pose a challenge
for our system, as they can quickly move out of the camera’s
range or get too close, making it difficult to predict their
next location. This increases the likelihood of the camera
capturing the wrong area. Nevertheless, it’s worth noting
that fast-moving animals are typically not found in close
proximity to farm fields. Lastly, small animals that the
camera cannot capture clearly are also challenging to detect.

VI. CONCLUSION

This paper presents a fog-based smart agriculture system
that overcomes high latency and internet connectivity issues
by combining fog computing with LoRa communication and
Raspberry Pi workload distribution. The system detects and
predicts animal intrusion using low-cost PIR sensors and
cameras, and proposes various sensor layouts and an algo-
rithm. The paper also experimentally compares the layouts
and verifies the effectiveness and accuracy of the algorithm.
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