
Towards a Scalable Architecture for Building Digital Twins
at the Edge

Khaled Alanezi
Department of Computing

College of Basic Education,
PAAET, Kuwait

kaa.alanezi@paaet.edu.kw

Shivakant Mishra
Computer Science Department

University of Colorado,
Boulder, USA

mishras@colorado.edu

ABSTRACT
This paper presents a system architecture for building digital
twins at the edge. In particular, it addresses two major chal-
lenges: system scalability and complexity. It introduces two
novel architectural components: a Context Aware Communi-
cation Component (CACC) that addresses the scalability issue
in communication between physical and virtual environments,
and second, an application-agnostic methodology, a service
registry component for integrating digital twin with EdgeAI
(DT-EdgeAI integration) at the edge. The paper describes this
architecture in detail and provides a preliminary prototype
implementation.

Author Keywords
Digital Twin Architecture; EdgeAI; Scalability; Complexity

CCS Concepts
•Computing methodologies ! Distributed computing
methodologies;

INTRODUCTION
In recent years, computer systems researchers are observing
a surge in the number of architectures utilizing the concept
of a digital-twin (henceforth DT) especially in IoT. An IoT
deployment can benefit from DTs by creating a digital replica
for the IoT environment consisting from virtual replicas of IoT
nodes, communications between them and the environment
they are deployed in. This digital replica of the complex IoT
system can then be utilized for analyzing the performance
of the system, monitoring the environment for problems and
studying the impact of alternative mitigation scenarios before
applying them. Take for example the impact of a downtime for
a system upgrade in a factory or closing an intersection in a city
which can be studied by means of the virtual DT environment
before actually performing the change physically.

At present, digital twins for IoT environment have mainly
been approached through cloud-driven technology for domain
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEC’23, December 6-9, 2023 Wilmington, DE, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 979-8-4007-0123-8/23/12. . . $15.00
DOI: 10.1145/3583740.3626807

specific architectures [1, 2, 3]. In this approach, the digital
replica is implemented in the cloud and the communication
layer involves communication from the physical environment
to the cloud over the Internet. However, this approach of
building digital twins in the cloud suffers from several critical
problems: (1) Communication between the IoT sensors on the
field and cloud incurs high latency. This is a critical problem
particularly for digital twins because low communication la-
tency between physical and digital entities is of paramount
importance to ensure a close, near realtime synchronization
between physical environments PE and virtual environments
VE. (2) Computing on the cloud incurs high bandwidth cost,
since all the raw sensor data needs to be transmitted over the
Internet, and modern IoT systems can comprise of thousands
and even tens of thousands of sensors transmitting continu-
ously rich IoT environmental data. (3) Several IoT systems
such as smart agriculture are often deployed in remote areas
where Internet connectivity is at best intermittent. In such
scenarios, it is challenging and sometimes even infeasible to
maintain a high-fidelity virtual replica of a physical system
where VE is implemented in the cloud.

To address these problems, there is a need for research in
building digital twins at the edge. In this scenario, Edge
Artificial Intelligence (EdgeAI) is a prime component. By
means of EdgeAI, machine-learning models are trained using
large volumes of data on the cloud and pushed to the edge
of the network near the data sources to enable low-latency
access to classification tasks. These concepts of big-data, IoT,
edge computing and DTs did not emerge in isolation however.
For example, DTs are seen as a technology that followed the
advances in IoT, big-data and AI [4].

Typically, an IoT system can be mapped into three layers as can
be seen in Figure 1. The figure also lists possible alternative
implementation scenarios for three example IoT applications
in each of the three layers. First, the perception layer is respon-
sible for sensing and actuation. Take for example gathering
medical information about a patient in case of an Internet of
Medical Things (IoMT) solutions or from a robot in a factory
in Industrial Internet of Things (IIoT). Second, the edge layer
provides access to localized AI models (edge AI) near the
data sources. Applying AI on the edge ensures low-latency
access to time-sensitive AI models such as real-time control in
a factory or irrigation control in a smart farm. Third, by hav-
ing a birds-eye-view for multiple IoT deployments, the cloud

10.1145/3583740.3626807

Figure 1. Motivating Scenarios

environment can develop AI models trained on big data such
as generic early diagnosis models for patients. These trained
models can then be pushed to the edge layer for localized
use. Indeed, the availability of a DT replica will benefit these
scenarios for several reasons. First, a DT data model must
strive to only replicate necessary sensory data for the Edge
AI model thereby saving communication energy to prolong
the IoT node lifetime. Second, communication bandwidth
and storage at the cloud will also be saved by minimizing the
amount of data reaching into the cloud servers. Finally, the
DT data model must also be designed so as to limit location
specific data reaching into the cloud for better privacy and
security.

Despite showing clear benefits, developing IoT architectures
fully utilizing the above concepts remains far from easy due to
technical and scalability challenges. An IoT architecture is a
complex distributed system and deploying applications on top
of the described perception-edge-cloud architecture is inher-
ently difficult. In addition, utilizing advanced concepts such as
DTs and EdgeAI further exacerbates the problem of complex-
ity. Next, modern IoT applications now-a-days are routinely
comprised of tens of thousands of sensors transmitting rich
sensor data over a wireless medium with limited bandwidth.
As a result, both the communication between the physical and
virtual environments and performing complex computations
at the edge become scalability bottlenecks. To tackle these
issues, we propose a modularized architecture for developing
digital twins at the edge allowing developers to focus on the
IoT application and digital twin logic.

In particular, we present an architecture that specifically ad-
dresses the the scalability and complexity issues. This archi-
tecture incorporates two important features: First a Context
Aware Communication Component (CACC) that addresses
the scalability issue in communication between physical and
virtual environments, and second, an application-agnostic
methodology, a service registry component for integrating
digital twin with EdgeAI (DT-EdgeAI integration) at the edge.
The paper describes this architecture and provides some pre-
liminary performance numbers.

PROPOSED ARCHITECTURE
The proposed architecture as shown in Figure 2 utilizes the
model of a cloudlet server [5]. In this model, a server is
placed near the edge nodes to provide low-latency access to
computation resources such as storage and CPU cycles. The
IoT Node is a microcontroller with sensors and actuators in-
stalled on board as required by the IoT application. Data from
IoT nodes’ sensors in the physical environment is replicated to
the corresponding DTs in the virtual environment through the
communication layer. This replication happens by means of
the Context-Aware Communication and Control (CACC)
component which employs various techniques for ensuring the
scalability of the architecture when dealing with large volumes
of sensory data. We describe the CACC component in details
in Section 3.

The Digital Twin Service is responsible for handling the com-
plete lifecycle of DTs in this architecture including DT cre-
ation, state update, state inquiry, code triggers, and DT ter-
mination. Note here that we employ Eclipse Ditto [6] which
provides all of the aforementioned DT functionality. Ditto
uses a Device-as-a-Service approach in which RESTful DT
APIs are exposed whenever a DT is created. These APIs can
then be used to mirror dynamic state data of the DT whenever
its physical counterpart is updated in the physical environment.
Note here that created DTs can be of DT instance (DTI) type
or a DT aggregate (DTA) type [7]. DTI is a virtual replica
focusing on a single aspect of the physical object whereas
DTA includes multiple DTIs to create an exact virtual replica
covering all aspects of the physical object. The DT service
also provides Service Triggers. Those are callback methods
that are invoked whenever a change happens to a particular
DT based on the DT identifier.

While the digital twin service is responsible for maintaining a
digital replica of the physical environment, we need an archi-
tectural component to link the digital replica with appropriate
edgeAI service to analyze the digital replica state and trigger
appropriate actuation in the physical environment via CACC
based on this analysis. To this end, our architecture introduces
the Service Registry component.

The service registry component integrates the digital replica
with appropriate edgeAI service in an application-agnostic
manner. It provides a lookup service to discover and call Edge
AI components available on the edge server. We use Eureka
server [8] to implement this service. Whenever an Edge AI
microservice such as the components listed in Figure 1 is de-
ployed, the host, port number and name of the service are
registered with the Eureka server. Such action enables the
service triggers in the Digital Twin Service to search for ser-
vices and invoke them by name without worrying about their
implementation details. Using this feature, a DT can define in
its static metadata the services that must be called whenever
a change in its state occurs. Accordingly, the service triggers
look for those services and invoke them programmatically.

Finally, as a result of executing the edge AI components spe-
cific interventions must be introduced to physical environment.
These interventions are planned by the CACC component

Figure 2. Digital Twin Architecture Spanning the Physical and Virtual Environments

Figure 3. Context Aware Communication Control

based on the Edge AI input and subjected to the environment
by means of calling the necessary sensors and actuators.

CONTEXT AWARE COMMUNICATION CONTROL (CACC)
Communication component between the physical IoT environ-
ment and its DT at the edge is a critical component in a DT
architecture providing the bidirectional transfer or sharing of
data between them, including quantitative and qualitative data
(related to material, manufacturing, process, etc.), historical
data, environmental data, and most importantly, real-time data.
This component is the key to (1) maintaining near real time
synchronization between the physical environment and its dig-
ital twin, and (2) ensuring a timely actuation of appropriate
actions in physical environment based on prediction/analysis
at the edge. So, a key challenge in building DTs at the edge
is managing the communication component under heavy load
with limited network bandwidth to ensure that physical en-
vironment and its DT remain well-synchronized and timely
actuation occur. The key issue here is how do we handle large
volume of raw sensor data being pushed from physical envi-
ronment in face of limited network bandwidth? A plethora
of flow control techniques exist for both wireline and wire-
less protocols to address congestion problem by automatically
slowing down the sender to prevent it from overwhelming the
receiver. However, these flow control techniques are either

insufficient or ill-suited for building DTs at the edge for a num-
ber of reasons. First, a DT is designed to provide appropriate
actuations based on the current and predicted future behavior,
which it learns from analyzing the real time sensor and other
data it receives from physical environment. To accurately
compute the current context, it may need to prioritize the trans-
mission of sensor data from one part of physical environment
over the other parts under specific conditions. For example,
in case of an unrest in a smart city, it would be preferable
to receive higher quality sensor data much more frequently
from the location where the unrest is taking place than from
other locations. Traditional flow control techniques do not
directly support such differentiated flow controls. Second, in
bandwidth saturation situations, DTs will prefer to receive
application-dependent pre-processed data from the source in-
stead of receiving raw sensor data at a lower pace (possibly)
with dropped packets. For example, to detect animal intru-
sion in smart agriculture when network bandwidth is being
saturated, it would be preferable to receive raw motion sensor
data and only pre-processed image data (instead of original
images) to conserve bandwidth (See [9]). Finally, to prevent
bandwidth saturation or focus on one part of physical envi-
ronment that requires special attention, DTs may even require
to change the spectrum (if feasible) over which specific data
is transmitted. To support such unique requirements for DTs
at the edge, there is a need for a system level support that
provides dynamic and fine-grained control of communication
to the DT infrastructure, so that it can dynamically control the
type of data transmitted, rates at which it is transmitted and
the spectrum over which it is transmitted. The key insight here
is that the DT infrastructure can compute a highly accurate
context of the IoT environment by analyzing the latest sen-
sor data and other historical data. It is in the best position to
determine the best way to manage communication using the
current context and application semantics and requirements.
Providing dynamic and fine-grained control of communication
to the DT infrastructure will potentially lead to a best possible
synchronization between physical environment and its DT,
and enable a much faster and accurate actuation. To this end,
we propose a context aware communication control (CACC)

Figure 4. Chain of Calls Representing the Implemented Prototype.

component running at the edge server that can dynamically
control data transmission software in the sensing devices in the
physical environment to cope up with current context. CACC
can provide a variety of features including (See Figure 3):

1. System support for both pull and push mechanisms, wherein
based on the current context, CACC can dynamically man-
date at runtime whether to pull data from PE or have PE
push data either event-driven or at some regular intervals.

2. System support for CACC to be able to dynamically man-
age/alter the software controlling the data communication
between physical and digital environments. In particular,
provide system support for

• uploading new data transmission code/code updates at
physical environment;

• tuning various data transmission parameters at physical
environment such as transmission rates;

• instantiating new code that is already present at physi-
cal environment; and

• changing the spectrum (if feasible) over which the data
is transmitted.

3. System support for differentiated data transmission mech-
anisms based on the current context, wherein CACC can
dynamically control data transmission mechanism of indi-
vidual sensors or a group of sensors to allow, for example,
transmission mechanisms from one set of sensors to be
different than from other set of sensors.

We note here that the aforementioned adaptation methods dif-
ferentiate our DT framework from the many proposed frame-
works in literature. Context-aware replication is necessary
since replicating all data in an IoT-Edge-Cloud architecture is
neither practical not feasible.

EXPERIMENTS AND RESULTS

Prototype Implementation
We implemented a proof of concept for the architecture repre-
senting the various components described in Section 2. Note
that we have utilized some of the components from our DT-
based solution we have proposed in our previous work [10]
to detect data anomalies in IoT. The implemented prototype
is a chain of calls for the different components as shown in
Figure 4. In the beginning, an Arduino board contacts the
CACC component running on the edge server. We choose to
implement the connectivity between the IoT node and the edge
server using WiFi. However, the CACC component, which is

Figure 5. Average Time Between Updating DT State and Performing
Data Anomaly Detection on the Edge for Three Data Anomaly Classifiers

implemented using Python, can switch to different connectiv-
ity measures as per the context as described in Section 3. Upon
receiving the request to update the DT state from the Arduino
board, the CACC component calls the RESTful APIs provided
by Ditto to update the DT dynamic state data. Here, state data
represents four sensors we have installed on the Arduino board
to detect any data anomalies namely in temperature, humidity,
loudness and light sensors. Now, since Ditto is configured to
watch for any state changes for the DT by means of the DT
identifier, Ditto SDK client implemented in Java calls Eureka
server to check if any of the services corresponding to the DT
(listed in the DT static metadata) are registered on the edge
server. If the service is available, it is called to perform the
needed classification.

In our implementation, we utilized the data anomaly service
which we trained using three machine-learning classifiers (see
[10] for details) namely Random Forests (RF), Support Vector
Machines (SVM) and Multilayer Perceptron (MLP). We report
in Figure 5 the time within the edge server measured from
receiving a DT state update via Wi-Fi at the CACC until the
data anomaly classification result is returned from the data
anomaly service at the end of the chain. This time includes
updating the DT state, triggering the service lookup, locating
the data anomaly service by means of the Eureka server and
finally calling the data anomaly service and receiving the
classification results back. The total elapsed time is shown in
the diagram for the three classifiers.

We can see from Figure 5 that the utilized machine-learning
classifier has impact on the overall performance with RF pro-
ducing the minimum overall time of 2.2 seconds and SVM
producing the highest delay of 4.1 seconds. Note that this
time includes the overhead from the classification operation
as well as the overhead of the chain of calls between the dif-
ferent components. Also, note that MLP represented a middle
ground between the two scenarios when it comes to time per-
formance. Nonetheless, tolerating these delay numbers is
application-dependent and thus must be carefully visited by
the solution architects while designing the solution. In general,
optimization of the architecture can happen by optimizing the
calls between the components and the EdgeAI components
performance which we will be exploring in the future.

Full-Fledged Implementation Plans
The goal of the implemented prototype described in Section
4.1 was only to reflect on the feasibility to integrate the various
open-source components needed to implement the architecture.
As a future work, we plan to perform full implementation for
the architecture to study the design choices for each of the
components especially the CACC component and the service
discovery component. First, for the CACC component, we
plan to study mitigation scenarios that can be implemented
when the architecture is confronted with large volumes of
telemetry data or in case of extreme environment conditions
requiring special handling. By means of simulation, we plan
to subject the architecture to these special situations and ap-
ply solutions such as code uploads and/or parameter tuning
depending on the context. Consequently, we can test the abil-
ity of such mitigation measures to ensure the architecture
scalability under extreme conditions. We also plan to test
the architecture with different IoT applications to gauge the
benefit of the adaptation scenarios under different conditions.
First, we plan to implement a smart agriculture IoT scenario.
This scenario typically involves collection of scalar data from
remote locations with intermittent connectivity. In addition,
we plan to implement a smart city scenario representing the
other extreme which requires dealing with multimodal sensor
data (such as audio and video data) collected via Wi-Fi from
buildings and public squares.

Second, for the service discovery component, we plan to inte-
grate large number of Edge AI services pertaining to different
IoT application such as smart city, IoMT, IIoT, smart building
and smart agriculture with the architecture. Afterwards, we
will gauge the complexity of developing various IoT applica-
tions while utilizing DTs in conjunction with the automatic
service discovery provided by Eureka. In addition, we plan to
simulate large workloads on these services to test the ability
of the Eureka server to perform load balancing by switch be-
tween different microservices instances when confronted with
high workloads. In addition, we plan to introduce multiple
instances of the Eureka server itself so as to avoid bottleneck
scenario for the discovery service.

CONCLUDING REMARKS
This paper presented an edge-based architecture utilizing DTs
to support IoT applications. The presented architecture relies

on two novel components to address scalabaility and complex-
ity issues in IoT. First, the Context-Aware Communication
Component (CACC) responsible for scalability while integrat-
ing between the physical environment (PE) and the virtual
environment (VE). Second, the service discovery component
responsible for application-agnostic deployment of EdgeAI
services. This component ensures reduced IoT application
development complexity and introduces modularity and scal-
ability when integrating with EdgeAI services. A prototype
implementation using open source components for the archi-
tecture on an edge server shows clear benefits and great practi-
cality. The presented architecture is currently undergoing full
scale implementation to evaluate its ability to handle the chal-
lenges of complexity and providing scalability while serving
various IoT applications’s workloads.

https://www.overleaf.com/project/64cb88c8fc2519b619c0b2e7

REFERENCES
[1] S. D. Okegbile, J. Cai, C. Yi, and D. Niyato, “Human

digital twin for personalized healthcare: Vision,
architecture and future directions,” IEEE network, 2022.

[2] M. Jafari, A. Kavousi-Fard, T. Chen, and M. Karimi, “A
review on digital twin technology in smart grid,
transportation system and smart city: Challenges and
future,” IEEE Access, 2023.

[3] Y. Wang, Z. Su, S. Guo, M. Dai, T. H. Luan, and Y. Liu,
“A survey on digital twins: architecture, enabling
technologies, security and privacy, and future prospects,”
IEEE Internet of Things Journal, 2023.

[4] L. Raes, P. Michiels, T. Adolphi, C. Tampere,
A. Dalianis, S. McAleer, and P. Kogut, “Duet: A
framework for building interoperable and trusted digital
twins of smart cities,” IEEE Internet Computing, vol. 26,
no. 3, pp. 43–50, 2021.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies,
“The case for vm-based cloudlets in mobile computing,”
IEEE pervasive Computing, vol. 8, no. 4, pp. 14–23,
2009.

[6] E. Foundation, “Open source framework for digital
twins., eclipse ditto,” https://eclipse.org/ditto/.

[7] M. M. Rathore, S. A. Shah, D. Shukla, E. Bentafat, and
S. Bakiras, “The role of ai, machine learning, and big
data in digital twinning: A systematic literature review,
challenges, and opportunities,” IEEE Access, vol. 9, pp.
32 030–32 052, 2021.

[8] I. VMware, “Spring cloud netflix - eureka server,”
https://cloud.spring.io/spring-cloud-netflix/.

[9] J. Miao, D. Rajasekhar, S. Mishra, S. Nayak, and
R. Yadav, “A fog-based smart agriculture system to
detect animal intrusion,” Tech. Rep., 2023,
arxiv:2308.06614.

[10] K. Alanezi and S. Mishra, “An iot architecture
leveraging digital twins: Compromised node detection
scenario,” https://tinyurl.com/5n9ahxhr.

https://eclipse.org/ditto/
https://cloud.spring.io/spring-cloud-netflix/
https://tinyurl.com/5n9ahxhr

	Introduction
	Proposed Architecture
	Context Aware Communication Control (CACC)
	Experiments and Results
	Prototype Implementation
	Full-Fledged Implementation Plans

	Concluding Remarks
	References

