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Abstract— Cloud-native technologies consisting of containers,
microservices, and service meshes bring the traditional advan-
tages of Cloud Computing like scalability, composability, and
rapid deployability to the IoT Edge. An application built on
the microservices architecture relies on a collection of individual
containerized components offering modular services via REST
or gRPC interfaces over the network. Compared to a monolithic
application, the magnitude of data and control exchange between
the components of a microservices application is several orders
higher. Studies have shown that overheads caused by such inter-
container communication are a significant hurdle in achieving
the sub-50ms latencies required for 5G enabled network Edges
comprised of a much smaller compute cluster, unlike the Cloud.
In this paper, we present Shimmy - a shared memory-based
communication interface for containers that is cleanly integrated
into the Kubernetes orchestration architecture while offering
significant acceleration for microservices. Results have shown a
consistent 3-4x latency improvement over UDP and TCP, as much
as 20x latency improvement over RabbitMQ, while significantly
reducing memory and CPU usage in large data transfers as well
as real-time video streaming.

Index Terms—microservice, IoT, Cloud-native, intercontainer
latencymicroservice, IoT, Cloud-native, intercontainer latency

I. INTRODUCTION

A microservice-based architecture is commonly used to
structure complex applications at the Edge. In this architecture,
an application is built from a selection of individually isolated
microservices, where each microservice is a self-contained
piece of software with clearly-defined interfaces implementing
a simple functionality [1]. Containers provide a very conve-
nient way to implement microservices. However, they isolate
their functionality in their own compute environment resulting
in forming information barriers and raise a need for inter-
service communication over a (virtual) network. This results
in higher costs in terms of network stack latency and message
processing time. Indeed, recent performance studies conducted
at Google and Facebook data centers have revealed that the
CPU cycles consumed by operations that are not part of the
application logic can be as high as 80% of the total compute
times and a majority of that overhead comes from a need for
moving data between different microservices [2], [3].

In this paper, we address the critical issue of inter-container
communication performance in building a microservices-based
application. In particular, we propose that we exploit shared
memory communication channels and treat interconnected
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containers as being connected via a collection of shared
memory channels that can be either bi-directional streams (as
in TCP/IP) or publish/subscribe channels. This would not only
optimize communication when containers are co-located on
the same server but can also support fast and efficient remote
communication by synchronizing memory regions via Remote
Direct Memory Access (RDMA) technology [4].

We propose Shimmy, a shared memory-based inter-
container communication mechanism. For containers running
on the server, Shimmy creates shared memory that the contain-
ers can write into and read from, and for containers running
on different servers, Shimmy utilizes RDMA.

We have implemented a prototype of Shimmy that is in-
tegrated with Kubernetes. A detailed performance evaluation
demomstrates thatShimmy provides significant improvement
in communication latency over UDP, TCP, and RabbitMQ
for both packet-based and streaming communication while
significantly reducing the overall resource utilization. The
major findings of this paper are as follows:

o Shimmy provides significant performance improvement
in communication latency for both packet-based and
streaming applications.

o Shimmy significantly reduces the overall CPU and mem-
ory usage, which is particularly useful for relatively less
powerful servers at the edge when compared to the cloud.

o Shimmy has been integrated with Kubernetes, one of
the most popular container orchestration frameworks. As
a result, users may continue to take advantage of all
the wonderful features of Kubernetes while availing the
performance advantages of Shimmy without having to
modify their code in any significant way.

o A prototype of Shimmy has been implemented and we
plan to release it as open-source to the researchers and
developers to use and extend.

II. RELATED WORK

Various researchers have investigated and provided solutions
for the problem of optimizing inter-container networking given
its significance in achieving optimal Edge performance. Ubaid
et al. [6] have analyzed the inter-container network bandwidth
and compute utilization on an RDMA-enabled Kubernetes
cluster, comparing various networking frameworks and ob-
served significant advantages over traditional networks for
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live migration. Microsoft Freeflow [7] provides efficient inter-
container networking through virtual RDMA, a pure software
implementation over commodity RDMA NICs achieving near
bare-metal performance. Xue et al. [16] have shown how deep
neural networks can greatly benefit from using an RDMA
based system rather than the traditional systems which rely
on gRPC on TCP. Fent et al. [17] have extensively compared
TCP with a RDMA or a shared memory based solution
for a database management system. This work shows that
RDMA based solutions provide an order of magnitude better
performance than traditional TCP approach. The paper also
shows that this performance improvement comes due to lesser
context switches in the kernel.

Kun et al. [9] has published a comprehensive comparison of
various container networking technologies, analyzing their per-
formance degradation and overheads in a Cloud environment.
A container is a standard unit of software that packages up
code and all its dependencies so the application runs quickly
and reliably from one computing environment to another.
Gerald et al. [8] have benchmarked various network policies
and CNI plugins in Kubernetes and analyzed their applicability
for 5G low-latency applications. Tanner et al. [11] have created
a software library called Dhmem that manages the shared
memory buffer between workflow tasks in separate containers,
with minimal code change and performance overhead. Dhmem
allows a separate container for each workflow task to be con-
structed completely independently, allowing easy integration
into existing workflow systems. Memif [12] is another open-
source implementation of an efficient inter-container shared
memory networking library using the Vector Packet Processing
(VPP) technology.

Kubernetes [5] is an open-source system for automating
deployment, scaling, and management of containerized appli-
cations. It groups containers that make up an application into
logical units for easy management and discovery. Pods are the
smallest deployable units of computing that you can create
and manage in Kubernetes. A Pod is a group of one or more
containers, with shared storage and network resources, and a
specification for how to run the containers. A Pod’s contents
are always co-located and co-scheduled and run in a shared
context. Inter-container communication is supported via the IP
addresses of the Pods. The type of network a container uses
for inter-container communication, whether it is a bridge, an
overlay, a macVLan network, or a custom network plugin, is
transparent from within the container. From the container’s
point of view, it has a network interface with an IP address, a
gateway, a routing table, DNS services, and other networking
details.

The idea of using shared memory for inter-container com-
munication was first proposed in [10]. A preliminary pro-
totype demonstrated the potential benefits of this approach.
However, the prototype was a stand-alone implementation that
would not work with a container orchestration framework.
The work presented in this paper is a stable implementation
that integrates the idea of using shared memory-based inter-
container communication with Kubernetes and provides a

detailed performance evaluation.

III. DESIGN AND IMPLEMENTATION

A. Design Overview
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Fig. 1: Shimmy Architecture
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Figure 1 shows the overall architecture of Shimmy and how
shared memory channels for inter-container communication
fit into the overall system. We add two new components
to the overall orchestration framework such as Kubernetes:
Shimmy agent and Shimmy master. A single instance of the
Shimmy agent runs on each host and shared by all Pods
running on that host, and the Shimmy master logically runs as
part of the container orchestrator. Logically, a single instance
of Shimmy master runs. A system administrator can define
new shared memory communication channels as part of the
multi-container application. Shimmy master is responsible for
tracking container deployment and interfacing with Shimmy
agents on each host to ensure that defined communication
channels are established between the associated containers
(whether local or remote).

In a container orchestration framework such as Kubernetes,
a Service is a resource type that provides a single entry point
to a group of Pods (containers) running the same application.
In Shimmy, we define a new resource type, SharedMemoryOb-
ject, that is described through a YAML file which includes (in
Kubernetes) a selector (to match against the container names)
and a type (pub/sub or stream). When Kubernetes, in this
case, deploys a Pod and matches a SharedMemoryObject, the
Shimmy master notes this and notifies the Shimmy agent on
the host on which the Pod is deployed, and then subsequently
attaches a shared memory object of the desired type to the
Pod.

B. Lock-Based and Lock-Free Channels

Shimmy is designed to provide two types of communication
between containers. In the Lock-Based approach, data written
to a shared memory channel can be read exactly once. This
is similar to a producer-consumer type of communication. On
the other hand, in the Lock-Free approach, data written to a
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shared memory channel remains available to read until either
a set number of readers (defined as a parameter) have read
that data or until a set timer has expired. This is similar to a
publish-subscribe type of communication.

C. Shared Memory Channel - Lock Based Approach

In the Lock Based Approach, the Shimmy agent on each
pod is the Broker. It is a RESTful server responsible for
creating and deleting two sets of shared memory regions—data
region to store the data to be communicated, and metadata
region to store metadata used for managing access to the
data region. Data region is structured as a circular buffer
that consists of a fixed number of identical blocks. Metadata
region includes offsets for the producer and consumer and
semaphores. Semaphores facilitate synchronization between
the producer and consumer using the standard single-producer
and single-consumer synchronization mechanism.

A shared memory channel is identified by a topic-name.
The producer and consumer processes need to know the topic-
name to start using Shimmy. For each topic-name, a unique
identifier for the shared memory as well as its metadata and
semaphores are stored in the Redis database.

D. Shared Memory Channel - Lock-Free Approach

A shared memory channel in Lock Free Approach is com-
prised of three logical shared memory regions—data region
to store the data to be communicated, local metadata region
to store each consumer’s cycle count and offset, and global
metadata region to store the cycle count and offset of the
producer as well as the offset and cycle count of the slowest
consumer. As in the case of Lock-Based approach, the data
region in Lock-Free approach is a circular buffer, and the
producers and consumers maintain their respective offsets and
cycle counts. For each consumer, its offset and cycle count
is stored in the local metadata region. Producer offset and its
cycle count as well as the offset and cycle count of the slowest
consumer is stored in the global metadata region. Unlike
Lock-Based approach, no semaphores are used in Lock-Free
approach. Instead, cycle counts are used to distinguish between
new and stale data at any slot in the circular buffer. A Periodic
Scanner updates the slowest consumer offset and cycle count
in the global metadata region by scanning through the offsets
and cycle counts of all consumers in the local metadata region.
This functionality is extended to skip unread data from slow
consumers based on a timer.

E. Kubernetes Integration

Shimmy is integrated in Kubernetes using the Custom
Resource Definitions (CRDs), an extension of Kubernetes
API. While Custom Resources just let you store and retrieve
structured data, when combined with a Custom Controller, we
get a declarative API that lets us specify the desired state
of the cluster, and take care of keeping the current state of
the resources in sync with the desired state. So if a user
wants to declare a SharedMemoryObject, they can specify the
properties of the shared memory in a YAML file just like

deployments or services are specified and then follow that
with a kubectl apply -f sharedmemory.yaml. This request goes
to the Custom Controller for shared memory management,
responsible for creating the SharedMemoryObject as specified
in the YAML file.

F. Shimmy with RDMA

In a scenario where the two communicating containers are
hosted on two different servers, Shimmy uses RDMA for
memory sharing. Recall that RDMA enables two networked
devices to exchange data in main memory without relying on
the processor, cache or operating system. In particular, RDMA
bypasses the entire network stack. To use RDMA in Shimmy,
RDMA server and RDMA client run as part of Shimmy agent.
Figure 2 shows the architecture of Shimmy RDMA. We use the
RDMA Support to Docker containers provided using virtual
RDMA devices (VHCA) implemented using SR-IOV (Single
Root I/O Virtualization) capability of the Mellanox ConnectX-
4/ConnectX-5 HCAs.

Kubernetes API
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Store Master

Shimmy Agent/RDMA Client

Container

Controller Scheduler

Shimmy Agent/RDMA Server
[onainet [ Corarer

Docker

VF ‘ VF VF
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SR-IOV Enabled HCA! o

Ethernet

SR-IOV Enabled HCA|

Fig. 2: Shimmy-RDMA Architecture

IV. RESULTS AND PERFORMANCE ANALYSIS

We have done an extensive performance analysis of Shimmy
and compared it with other popular solutions for inter-
container communication in use today. These include tradi-
tional networking protocols (UDP and TCP), broker-based
message communication (RabbitMQ), transfer of video files,
and real-time streaming video. Performance characteristics that
we have measured are communication latency and resource
consumption.

Our experimental setup is deployed on Google Cloud and
consists of a GKE Standard Kubernetes cluster running on the
1.21.6-gke.1500 version. The cluster node is an e2-standard-4
machine type and consists of four virtual CPUs and 16 GB
of RAM. It runs Container-Optimized OS from Google. The
allocatable CPU and memory units available to the resources
that we create inside this node are 3.92 CPU (3920 milliCPU)
and 13.94 GB.
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A. Shimmy vs UDP vs TCP

Our first experiment compares communication latency be-
tween producer and consumer processes for Shimmy, UDP
and TCP. Both the Lock-Based and Lock-Free approaches
of Shimmy were used in this experiment. The experiment
involved performing 10,000 iterations of sending and receiving
data packets varying in sizes from 100 to 65,000 bytes (the
maximum packet size for UDP). These data packets are
exchanged between the producer and consumer processes.
Figure 3 shows per-packet median latencies. Note that these
measurements do not include the one-time cost of creating
or binding sockets (UDP and TCP), connection establishment
(TCP), or setting up a shared memory channel (Shimmy).
The readings taken for each of the communication methods
in this experiment have been taken in isolation meaning that
the producer and consumer processes using that particular
communication method were the only processes running on
the Kubernetes cluster node.

Our first observation is that both the Lock-Based and Lock-
Free approaches of Shimmy consistently outperform UDP and
TCP, and they reduce communication latency by as much
as 4x. We also notice that the median latency of Shimmy
stays somewhat consistent even as the size of the data packets
increase, while median latency of UDP and TCP increases with
in increase in packet size. The reason for this is that latency in
Shimmy is dominated by locking/unlocking of semaphores in
Lock-Based approach and by the Periodic Scanner to update
slowest consumer’s cycle and offset values in the Lock-Free
approach. Increase in packet size has relatively lower impact
on latency. On the other hand, latency cost in TCP and UDP
is dominated by data copying across address spaces. Finally,
latency of Lock-Free approach was slightly larger than the
latency of Lock-Based approach in our measurement. We
observed that the latency of Lock-Free approach critically
depends on the the periodic time interval of the Periodic
Scanner.

Shimmy Lock-Based vs Shimmy Lock-Free vs TCP vs UDP
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Fig. 3: Latency comparison among Shimmy Lock-Based,
Shimmy Lock-Free, TCP and UDP

B. Shimmy vs RabbitMQ

Next, we assess the performance of Shimmy with cur-
rent state-of-the-art message brokers. Popular message bro-
kers at present include RabbitMQ [14], Apache Kafka [19]
and Apache Pulsar [18]. Previous studies have shown that
RabbitMQ provides lowest latency when compared to these
other message brokers (e.g. See [20], and so we chose to
evaluate Shimmy with RabbitMQ. RabbitMQ is one of the
most popular open-source message brokers used worldwide
by small startups to large enterprises. It facilitates an efficient
delivery of messages and is developed around the Advanced
Message Queuing Protocol (AMQP) [15], but it is also highly
compatible with existing technologies. For larger message
sizes (up to 10 MB), we have compared the communication
latency of Shimmy lock-based and Shimmy Lock-Free ap-
proaches with RabbitMQ. Figure 4 shows the median latency
(over 100 iterations) of Shimmy and RabbitMQ for packet
sizes ranging from 1,000 bytes to 10 MB (Note that the times
shown in this figure are on a log scale). We notice Shimmy
(lock-based and lock-free approaches) performs significantly
better than RabbitMQ for larger message sizes (roughly 20x
lower than RabbitMQ for message sizes above 1 MB). Even
for smaller message sizes, it performs around 5-10x better. The
high overhead of RabbitMQ can be attributed to the fact that
AMQP is an application layer protocol that enables message
passing through broker services over TCP/IP connections.

Shimmy Lock-Based vs Shimmy Lock-Free vs RabbitMQ (log-scaled)
85.67
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msm Shimmy Lock-Based
mmm Shimmy Lock-Free
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Fig. 4: Latency comparison among Shimmy Lock-Based,
Shimmy Lock-free and RabbitMQ (Median latency is reported
on a log scale)

C. Resource Usage

Edge servers typically have limited resources in terms of
processing and storage capacities when compared to cloud. So,
to assess resource usage of Shimmy, we measured the CPU
and memory usage over time for multiple parallel commu-
nication sessions. These parallel sessions are communication
channels between distinct producers and consumers that are
spawned concurrently. We compare resource utilization of
Shimmy against TCP over these parallel sessions. For Shimmy,
the communication channel is a shared memory buffer while
for TCP the communication channel is a TCP network socket.
Over each of these parallel sessions, data packets of size
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10,000 bytes were sent for 10,000 iterations. While doing
these measurements, only one set of parallel sessions was
active at the time on the cluster node. We used GKE usage
metering to capture these utilization metrics for our Google
Kubernetes Engine (GKE) cluster node. GKE usage metering
can be used to track information about resource requests and
actual resource usage of a cluster’s workloads.

Figure 5 shows CPU usage for up to twelve parallel sessions
for Shimmy and TCP. As we can see from these figures, TCP
reached CPU limit of four virtual CPUs that we used in our
experimental setup at 12 parallel sessions. On the other hand
CPU usage of Shimmy is significantly lower than that of TCP,
and remains somewhat consistent with very little increase with
increase in the number of parallel sessions, whereas TCP’s
CPU usage increases dramatically with increase in the number
of parallel sessions.

Figure 6 shows memory usage for up to twelve parallel
sessions for Shimmy and TCP. Once again, we observe that
memory usage of Shimmy is significantly lower than that of
TCP, and remains somewhat consistent with very little increase
with increase in the number of parallel sessions, whereas
TCP’s memory usage increases dramatically with increase in
the number of parallel sessions.

Figure 5 and 6 report resource usage of Lock-Based ap-
proach of Shimmy. Similar trends were observed with the
Lock-Free approach of Shimmy as well.
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Fig. 5: CPU Usage in Lock-Based Shimmy and TCP

D. Real Time Video Streaming

Finally, we compare resource usage in real-time video
streaming using Shimmy vs TCP. We hypothesized that using
Shimmy would potentially result in the reduction of the overall
resource consumption in comparison to TCP. Video stream
capture and segmentation of frames were achieved with the
OpenCV [13] library. OpenCV provides a real-time optimized
Computer Vision library, tools, and hardware. To transfer a
real-time video stream, we first capture and segment the stream
into frames in the Producer process and then transfer these
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Fig. 6: Memory Usage in Lock-Based Shimmy and TCP

frames to the Consumer process using Shimmy or TCP. The
consumer then stitches these frames into a video file. We
use the VideoCapture function from OpenCV to capture the
stream, the read function to segment the stream into frames,
and VideoWriter to reconcile these frames into a video file.

In this experiment we used a publicly available Wowza
media stream with H264 video and AAC audio codec as input.
This stream has a resolution of 240x160 pixels and a frame
rate of 24 fps. This media stream was transferred for over three
minutes, and CPU and memory usage metrics were collected
during this transfer.

CPU Utilization in video streaming
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Fig. 7: Comparison of CPU Usage in video streaming between
TCP and Shimmy

Figures 7 and 8 show CPU and memory usage during
this transfer as observed from the Google Cloud Dashboard
for Kubernetes, which uses the GKE usage metering. We note
that both the CPU and memory usage is significantly lower for
Shimmy compared to TCP. We see a total increase of 0.012
milliCPU and 2 MiB for transferring the stream over Shimmy
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Memory Utilization in video streaming
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Fig. 8: Comparison of Memory Usage in video streaming
between TCP and Shimmy

compared to a total increase of 0.042 milliCPU and 46 MiB
for TCP. Further, we note that both CPU and memory usage
increase with time during video transfer for both Shimmy
and TCP. However, this increase is much lower for Shimmy
compared to TCP.

E. RDMA Performance

Figure 9 provide a performance comparison between TCP
and RDMA when the two communicating containers are
running on two different servers. As we can see, the perfo-
mance gain of RDMA over TCP is significant, up to 41x
improvement, which is much higher than the performance
improvement when the two containers are running on the same
server and using Shimmy. The key reason for this significant
performance improvement is that the networking overhead
incured in TCP-based communication is quite significant.
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in communication latency over UDP and TCP and a 20x
improvement over RabbitMQ while significantly reducing the
overall CPU and memory usage. In future, we plan to evaluate
Shimmy against with other communication protocols such as
QUIC (Quick UDP Internet Connections) or SCTP (Stream
Control Transmission Protocol). In addition, since specialized
processing units such as accelerators are increasingly being
used at the edge, our future goal is to incorporate support for
CXL (Compute Express Link) that provides cache-coherent
interconnect for processors, memory expansion, and accelera-
tors.
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