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ABSTRACT. Let X be a smooth geometrically connected projective curve over the field
of fractions of a discrete valuation ring R, and m a modulus on X, given by a closed
subscheme of X which is geometrically reduced. The generalized Jacobian Jy, of X with
respect to m is then an extension of the Jacobian of X by a torus. We describe its Néron
model, together with the character and component groups of the special fibre, in terms
of a regular model of X over R. This generalizes Raynaud’s well-known description
for the usual Jacobian. We also give some computations for generalized Jacobians of
modular curves X, (V) with moduli supported on the cusps.

Introduction. Let R be a discrete valuation ring, with field of fractions F' and residue
field k. Let X be a regular scheme, proper and flat over S = Spec R, whose generic
fibre X = X is a smooth curve. In [29] Raynaud describes the relationship between the
Néron model of the Jacobian J = Pic% sp of X and the relative Picard functor P = Picy/s.
The aim of this paper is twofold: first, to extend Raynaud’s results to the generalized
Jacobian Jy,, of X with respect to a reduced modulus m. Secondly, to apply these results
to compute the component and character groups of the Néron models of generalized
Jacobians attached to modular curves and moduli supported on cusps.

Our motivation for this work arises from applications to the arithmetic of modular
forms — the point being that just as the arithmetic of cusp forms of weight 2 on a
congruence subgroup of SL(2,7Z) is controlled by the Jacobian of the associated complete
modular curve, so the arithmetic of the space of holomorphic modular forms on the same
group is controlled by a suitable generalized Jacobian. Raynaud’s results have been used
extensively to study the arithmetic of cusp forms of weight 2 and their associated Galois
representations — for example, in [22,24,30,31]. In future work we plan to give arithmetic
applications of the results obtained here. We note that generalized modular Jacobians
with cuspidal modulus are considered in Gross [13], Yamazaki and Yang [37], Bruinier and
Li [5], Wei and Yamazaki [36], and Iranzo [15]. Another point of view, using 1-motives
rather than generalized Jacobians (see also Section 1.7 below), has been investigated by
Lecouturier [18].

Before describing our main results, we briefly recall from [29] the results of Raynaud
on Jacobians. To simplify the discussion, we assume for the rest of this introduction that
R is Henselian, k is algebraically closed, and that the greatest common divisor of the
multiplicities of the irreducible components of the fibre X; at the closed point s = Spec k
is 1. (We review Raynaud’s theory in §2.2-3 below in greater detail and under less
restrictive hypotheses.) Under these hypotheses, [29, (8.2.1)] shows that P is represented
by a smooth group scheme over S, and there is a canonical morphism of group schemes

2020 Mathematics Subject Classification. Primary 14K30; Secondary 11G18, 14G35.
Key words and phrases. Néron models, generalized Jacobians, modular curves, cuspidal modulus.
1


http://arxiv.org/abs/2207.13203v2

deg: P — Z, which maps a line bundle to its total degree along the fibres of X'/S. The
open and closed subgroup scheme P’ = ker(deg) then has J as its generic fibre.

Let r be the number of irreducible components of A;. If » > 1 then P is not separated
over S. Indeed, if Y C &A™ is an irreducible component, viewed as a reduced divisor on
X, then the line bundle Ox(Y) represents an element of P’(S), nonzero if r > 1, whose
image in P’(F) vanishes. The closure E C P’ of the zero section is then an étale (but
not separated) S-group scheme, whose generic fibre is trivial, and whose special fibre
is isomorphic to Z"~!, generated by the classes of the bundles Oy (Y) restricted to X.
Raynaud shows:

i) The maximal separated quotient P’/E is the Néron model J of J.

ii) The identity component J? of the special fibre of 7 is canonically isomorphic to the
Picard scheme Picg(S Ik

iii) Let J% be the maximal connected affine subgroup scheme of J9. Its character
group X(J,) := Homy,(J2"", G,,) is canonically isomorphic to Hy(Tx,,7), the integral
homology of the extended dual graph fxs of the singular curve X (we recall the
definition in §1.2 below).

iv) The component group ®(J) := J,/J? is canonically isomorphic to the homology of
the complex

Z[0] - 7€ - 7

where C' is the set of irreducible components Y C X4 the first map is given by
the intersection pairing C' x C' — Z on X, and the second by (my)y — >y dymy,
where Jy is the multiplicity of Y in the fibre.

In the special case where X is a reduced divisor on X with normal crossings, iii) and iv)
become:

iii’) Homy(J2" G,,) ~ H(Tx,,Z), where [y, is the reduced dual graph of X, whose
vertex set is C' and edge set is A58,

iv') ®(J) ~ coker (O: Z[C] — Z[C]o), where O = Oy is the 0-Laplacian (as in [16])
of the graph I'y,, which is the endomorphism of Z[C] taking a vertex v € C to
> (v) = (v'), where the sum is taken over all edges joining v to an adjacent vertex

v,

Now let m be a modulus (effective divisor) on X. Then one has [32,33] the generalized
Jacobian J, of X relative to m, which is an extension of J by a commutative connected
linear group H. Assume that m = )., (2;) is a sum of distinct points, whose residue
fields F; are all separable over F'. This is equivalent to assuming that H is a torus. Then
by the results of Raynaud [3, Chapter 10], J;, has a Néron model [J,, which is a smooth
separated group scheme over S, not necessarily of finite type, with generic fibre J,, and
satisfying the Néron universal property. (In the terminology of [3], J is an lft-Néron
model.) We obtain results analogous to (i)—(iv’) for J. Specifically, let R; be the integral
closure of R in F;, and 3 be the disjoint union of the Spec(R; ®g k), i € I. The inclusion
of the set of points x; in X gives a morphism >, — X,. We show:

i) There exists a smooth S-group scheme P, parametrizing equivalence classes of line
bundles on X with a trivialisation at each x;, and 7, is the maximal separated
quotient of P, = ker (deg: P, — Z) (Theorems 1.15 and 1.16).

ii) The identity component \7]375 of the special fibre of 7, is canonically isomorphic to
PiC?XS,ES) /i» the generalized Picard scheme classifying line bundles on X, of degree

zero on each irreducible component, together with a trivialisation of the pullback to

¥ (Corollary 1.18(a)).
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iii) The character group Homy, (71"

s Gm) is the integral homology of an extended graph
r x.,5, depending only on the combinatorics of the components of X, and the reduc-
tions z; € X of the points z; (Corollary 1.18(a)).

iv) The component group ®(Jn) = Jns/ T2, which is an abelian group of finite type

(not necessarily finite), is isomorphic to the homology of the complex (1.6.4)
ZC1oZ —-72° o7 - 7
(Theorem 1.19).

If X is a reduced divisor with normal crossings, and the points x; are F-rational, then
the character and component groups have simple descriptions in terms of the homology
and Laplacian of a generalized reduced dual graph (Corollary 1.20).

We then apply these results to a modular curve Xy(/N) and a modulus m supported
on the cusps. If p > 3 is a prime exactly dividing N, we compute the character and
component groups, together with the action of the Hecke operators on them. In particular,
if N =pand m = (c0) + (0) is the sum of the two cusps of Xy(p), then the component
group is infinite cyclic, with T, acting by ¢ + 1 for ¢ # p, and the representation of the
full Hecke algebra on the character group is given by the classical Brandt matrices. We
also compute the component group for N = p?, which for the full cuspidal modulus is
free of rank 2.

There has been considerable interest in “Jacobians of graphs” — for example, Lorenzini
20, 21], Bacher—de la Harpe-Nagnibeda [1] and Baker—Norine [2]. Our results here on
®(Jy) suggest that there is also a theory of “generalized Jacobians of graphs”. We
investigate this in the paper [16].

Let us briefly describe the contents of the rest of the paper. In Section 1, we prove
our results on Néron models of generalized Jacobians. Although not needed for the
applications we have in mind, we decided to work in a very general setting (in particular,
there are no conditions imposed on the base discrete valuation ring). Sections 1.1, 1.2 and
1.3 review well-known facts about Néron models, Weil restriction, and Picard schemes of
singular curves, as well as some of Raynaud’s results from [29].

In §1.4 and 1.5 we describe the structure of the generalized Picard scheme of a singular
curve with respect to a modulus, and discuss its functoriality. The main results on the
Néron models of generalized Jacobian are contained in §1.6. In the following two sections
we explain the relation with 1-motives, and describe some of the behaviour of the Néron
model of J, under correspondences.

In Section 2 we apply our results to the modular curves Xo(N) and cuspidal moduli,
computing in several cases the component and characters groups of the reduction of the
Néron model modulo a prime p > 3.

We describe some prior work on these topics. If the points (x;) are F-rational and
their closures in X are disjoint, then by identifying them, one obtains a singular relative
curve X' /m which is semifactorial. Some of our results in this case are then subsumed
by the works [25,26,28] on Picard schemes of semifactorial curves. In [27], Overkamp
proves general results on the existence of Néron models of Picard schemes of singular
curves. Finally, Suzuki [35] has defined Néron models of 1-motives and studied their
duality properties and component groups. We discuss its relation with the present work
in Section 1.7.

Notation. Throughout the paper, unless otherwise stated, R will denote a discrete val-
uation ring with field of fractions F', uniformiser w, and residue field k. Except where

stated otherwise, we make no further hypotheses on R or k. We write p = max(1, char(k))
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for the characteristic exponent of k. We put S = Spec R and denote by s its closed point.
Let R*" be a strict henselisation of R, and F*" its field of fractions. Write k%P for the
residue field of R*! (a separable closure of k), and s for its spectrum. We write (Sm/S)
for the category of essentially smooth S-schemes, and (Sm/S)g for its étale site. For a
scheme X, we write k(z) for the residue field at a point x € X, and if X is irreducible,
k(X)) for the residue field of the generic point of X. All group schemes considered in this
paper will be commutative. We frequently identify étale group schemes over a field with
their associated Galois modules.

If S is a finite set we write Z[S] for the free abelian group on S and Z[S], for the kernel
of the degree map Z[S] — Z, s — 1 for s € S.

1. NERON MODELS OF GENERALIZED JACOBIANS

1.1. Preliminaries. In this section we collect together properties of Néron models and
Weil restriction of scalars. Most of these may be found in [3], especially Chapter 10.

Recall that if G/F is a smooth group scheme of finite type, then a Néron model for
G is a smooth separated group scheme G/S with generic fibre GG, such that for every
smooth S-scheme S’, the canonical map G(S") — G(S%) = G(Sk) is bijective. If G exists,
it is unique up to unique isomorphism. (In [3] these are called Néron lft-models.) The
identity component G° of G is a smooth group scheme of finite type. The formation of
Néron models commutes with strict henselisation and completion of the base ring R. If
G ®p F® does not contain a copy of G, then G has a Néron model [3, 10.2 Thm.2]. (More
generally, this holds if S is merely a semilocal Dedekind scheme.) We write ®(G) for the
component group (Gs/G%)(k*P). If k is perfect, then by Chevalley’s Theorem [7] G, has a
unique maximal connected affine smooth subgroup scheme G and we then write X(G)
for the character group Hom (G @, k, G,,), a finite free Z-module with a continuous
action of Gal(k/k).

Let 0 - G; — G5 — G3 — 0 be an exact sequence of smooth connected F-groups
which have Néron models G;. Consider the complexes

(1.1.1) 0—=G1—Gs—>G3—~0
(1.1.2) 0—=G) =Gy =Gy —0
(1.1.3) 0— &(G1) = P(Gs) — P(G3) — 0

The following two exactness results are a restatement of [6, Remark (4.8)(a)], with the
same proof, which we give for the reader’s convenience.

Lemma 1.1. Suppose that the induced map Go — Gs is a surjection of sheaves for the
smooth topology. Then:

(a) The sequence (1.1.1) is ezact.
(b) If ®(G1) is torsion-free, then the sequences (1.1.2) and (1.1.3) are exact.

Proof. (a) Since locally for the smooth topology the morphism Gy — Gs of group schemes
has a section, it is evidently surjective. Let G’ denote its kernel. By [19, Lemma 4.3(b)],
G’ is smooth. The canonical morphism G; — G, factors though a morphism ~: G; — G’
which is the identity on generic fibres, and since G; is a Néron model, there is a morphism
0: G' — Gy which is the identity on generic fibres. As G; and G’ are separated over S, ~y
and ¢ are mutually inverse isomorphisms.

(b) The map GY — G is surjective, so we have an exact sequence

0—=G NG =G =Gy —0
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in which each term is of finite type over S. Hence gg{s has finite index in G; s N gg,s, and
since ®(G) is torsion-free we have Gy NGY = GY. So (1.1.2) and therefore also (1.1.3) are
exact. 0

Corollary 1.2. Suppose that Gy is a product of tori of the form Rp/pT, where F'/F is
finite separable, T is an F'-torus which splits over an unramified extension, and Rp//p is
Weil restriction of scalars. Then (1.1.1), (1.1.2) and (1.1.3) are ezact.

Proof. Replacing R by R*®, we may assume that each T'//F" is split. According to [4, 4.2],
(6, (4.5)], one then has R'jg,.G1 = 0, where jon: (Spec F)gm — Sem is the inclusion of
small smooth sites. Therefore G, — G5 is surjective as a map of sheaves on Sy, . By
Proposition 1.4(a) below, ®(G) is torsion-free, so everything follows from the lemma. [

We will need the following minor generalization of a result from [3].

Proposition 1.3. Let

0—=6G =G —G;—=0
be an exact sequence of smooth S-group schemes. If Gi and Gz are the Néron models of
their generic fibres, the same is true for Gs.

Proof. This follows by the same argument as in the proof of §7.5, Proposition 1(b) in [3]
(middle of p.185), using the criterion of §10.1, Proposition 2. O

From [3, §7.6] we recall basic properties of Weil restriction. Let Z’/Z be a finite
flat morphism of finite presentation. If Y is a quasiprojective Z’-scheme, then the Weil
restriction Rz ;Y exists, and is characterised by its functor of points Rz /7Y (—) =
Y(—xzZ"). 'Y is smooth over Z’ then Rz/,zY is smooth over Z. If Y — X is a closed
immersion of quasiprojective Z’-schemes, then Rz/,zY — Rz,zX is a closed immersion.
If 7/ — Z is surjective and Y is a quasiprojective Z-scheme, then the canonical map
Y = Ryz(Y xz Z') is a closed immersion.

Now let k£ be a field, k&’ a finite k-algebra, and k" a finite flat &’-algebra. Let Y be a
quasiprojective k-scheme. There is then a canonical map

g: R (Y @k k') = R (Y @y k).

We may write k' = k] x ki, where Speck] C Speck’ is the image of Speck” (and kK is
possibly zero). The morphism ¢ then factors

Rivu(Y @1 k) = Ry (Y @k k) Xspeck Ry (Y @ k) —

and the second arrow is a closed immersion. In particular, if Y is a smooth k-group, then
g is a surjection onto a closed subgroup scheme, and its cokernel is smooth.

Let k be a field and %' a finite k-algebra. Then Ry /4Gy, is a connected smooth k-group
scheme of finite type. It is a torus if and only if £'/k is étale.

We return to Néron models. Recall that the multiplicative group G,,/F has a Néron
model G, /S, whose special fibre is G,, X Z. It fits into an exact sequence of group schemes

0= Gy — G 5 5.7 — 0

where on R-points vp is the normalised valuation vp: Gp(R) = F* — Z.

Let F’ be a finite étale F-algebra, R’ C F’ the normalisation of R in F’, S = Spec R'.
Let F! @p FP = Hie ; Fi, where the fields F; are totally ramified extensions of Fb of
degrees e;p*, where p* is the degree of the (purely inseparable) residue class extension.

Proposition 1.4.



(a) The Néron model of Ry pGyy, is RS//SQm, and the product of the valuations

el
induces an isomorphism

(1.1.5) (Rrr/rGm) = mo((Rs1/5Gm)s) — L.

(b) The adjunction map G, — Rs1/sGm 18 a closed immersion, and its cokernel is the
Néron model of (Rp/jrGwm)/Gm, inducing a isomorphism

O(Rp//rGum)/Gm) — coker(e = (e;): Z — Z").
Here we use G,, to denote also the Néron model of G,, over the semilocal base S’.

Proof. (a) The first statement follows from [3], Propositions 10.1/4 and 6. For the second,
replacing F' by F*®" we are reduced to the case of a totally ramified field extension F’/F.
Then as G s ~ G s xZ, we have (Rg//sGm)s = Rrak/tGm X Rrer/kZ. As the first factor
is connected, and the second is Z (since R’ ®@k/k is radicial) we get ®(Rp)pGy) ~ Z, and
the fact that this isomorphism is given by the valuation follows from [3, 1.1/Proposition
7].

(b) By Corollary 1.2, the exact sequence 0 = G, = Rpr)pGrn = (RprjpGn)/Gn — 0
gives rise to exact sequences of Néron models and component groups. So it is enough
to show that the map ®(G,,) = Z — ®(Rp//pGy) = Z' is equal to e. Replacing F' by
FsM again, we are reduced to the case when F'/F is a totally ramified field extension of
degree ep® with residue degree p*. Then by (a) we have a commutative square

Om — Rr//rRYm

l’UF lUF/
7 ——— 7
proving the result. O

1.2. Graphs and Picard schemes of singular curves. In this section we work over
an arbitrary field k. By a curve over k we shall mean a k-scheme X of finite type which
is equidimensional of dimension 1 and Cohen-Macaulay (i.e., has no embedded points).
Let {X;} be the irreducible components of X, and n; the generic point of X;. The local
ring Oy, is Artinian, and following Raynaud [29, (6.1.1) and (8.1.1)] we write d; for its
length, and 0, for the total multiplicity of X, in X. If k'/k is a radicial closure of k, and
n; € X ® k' is the point lying over 7;, then §; equals the length of the local ring of ;.
Moreover 0; = djlk(n;) Nk : k] = d;p™ for some n; > 0.

Until the end of thls section, k denotes an algebraically closed field. We review the
well-known description of the toric part of the Picard scheme of a singular curve over k.

Let Y/k be a reduced proper curve, and Y*"& C Y (k) its set of singular points. Write

o: Y — Y for its normalisation. Define sets
A=Y CY(k), B=¢ '(Y™) CY(k), C=m(Y).
We have maps
¢p:B— A, Y:B—-C

where ¢ maps x € B to the connected component of Y containing it.
The extended graph Iy = (V E) of Y is the graph with vertices V and edges E where

e V=AUC, E=B.



e The endpoints of an edge b € B are ¢(b) € A and ¥(b) € C.

The graph Ty is bipartite, and therefore has a canonical structure of directed graph, by
directing the edge b so that its source is ¢(b).

Suppose Y only has double points (meaning that if y € Y*"8 then ¢~'(y) has exactly 2
elements). The reduced graph I'y = (V, E) is the undirected graph (possibly with multiple
edges and loops) whose vertex set is V = m,(Y) and edge set is F = Y*"&_ It is obtained
from T'y by, for each vertex v € A, deleting v and replacing the two edges incident
to v with a single edge. There is a canonical homeomorphism between the geometric
realisations of I'y and I'y, under which v € A is mapped to the midpoint of the replacing
edge. If Y/k is a proper curve, not necessarily reduced, we define I'y = I'yrea, I'y = T'yred,
where Y™ C Y is the reduced subscheme.

Let G = Pic) be the identity component of the Picard scheme of Y. It is a smooth
group scheme of finite type over k, classifying line bundles on Y whose restriction to each
irreducible component has degree zero. The filtration of G by its linear and unipotent
subgroups is described as follows.

Let Y — Y be the “seminormalisation” of Y, which is obtained from Y by replac-
ing its singularities with singularities which are étale locally isomorphic to the union of
coordinate axes in AY. The normalisation map factors into a pair of finite morphisms

~ /
Y 4 Y' 5 Y. These give rise to a commutative diagram, whose rows are exact:

0 —— GWP — G = Pic), — Pic), —— 0

| |

0 y (Glin e > Pic% — 0

(where G"™P is the maximal connected unipotent subgroup of GG) giving an isomorphism
ker ¢* ~ G** = G!i" /GUP by the snake lemma.

To give a line bundle on Y’ is equivalent to giving a line bundle on Y together with
descent data for ¢': Y Y , so the toric part G*" classifies trivial line bundles on Y
equipped with descent data to Y’. For the trivial bundle Oy, to give such descent data
is equivalent to giving, for each singular point y € Y, an element of (k*)? @ /k*. The

w0 (Y)

automorphism group of Oy is (k*) . Hence G is canonically

Gro\ T (64 /diag(Gu)).

yGYsing

Here GV acts on G @ by the dual of the map ¢~*(y) C Y (k) LN mo(Y') associating
to x € Y the connected component of Y containing it. The character group of G** is
therefore the kernel of the map

(¢,¢)

Z|B| Z[C] & Z[A]

which (after replacing ¢ with —¢) is the chain complex of I'y. This gives the formula
8, 1.3]

(1.2.1) Hom(G™, G,,) = H,(Ty,Z).

Suppose now that Y is a proper curve over k, not necessarily reduced. The map Pic). —
Pic)...q is an epimorphism, and its kernel is a connected unipotent group scheme, so (1.2.1)

remains valid.
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If k is merely assumed to be perfect, (1.2.1) holds as an isomorphism of Gal(k/k)-
modules. _

If Y only has double points with distinct branches, then by the homeomorphism I'y —
I'y we obtain the formula

(1.2.2) Hom(G™, G,,) = H,(Ty,Z).

1.3. The Néron model of J. In preparation for §1.6, we review in more detail the
results of Raynaud. We will follow mainly the notation of [29] (see also [3], where the
notations are slightly different).

We consider a proper flat morphism X — S = Spec R, satisfying the hypotheses (H1-3)
below.

(H1) The generic fibre X := X is a smooth geometrically connected curve over F' (in
particular, I'(X, Oy) = R).
(H2) X is regular.
Let the irreducible components of X be indexed by the set C', and for j € C, let X; C &
be the scheme-theoretic closure of the corresponding maximal point of X, 0; = p™id,; its
total multiplicity (§1.2), and Y; = X7°. Define 6 = ged{d;}, d = ged{d;}.

(H3) (0,p) = 1.
Hypotheses (H1) and (H2) imply that Raynaud’s condition (N)* is satisfied [29, (6.1.4)].
Hypothesis (H1) is not particularly restrictive, since one may always reduce to this case
using Stein factorization. In the presence of (H1-2), hypothesis (H3) implies that X'/S
is cohomologically flat (equivalently, that T'(X;, Ox,) = k), by [29, (7.2.1)].

Let J = Pic% /i be the Jacobian variety of X, and let J be the Néron model of J.

The relative Picard functor P = Picy/g is the sheafification (for the fppf topology) of
the functor on the category of S-schemes

S’ PIC(X Xg S/)

There is a morphism of abelian sheaves deg: P — Z which takes a line bundle to its total
degree along the fibres, and P’ C P denotes its kernel. By [29, (5.2) and (2.3.2)], P and
P’ are formally smooth algebraic spaces over S, and the closure £ C P of the zero section
is an étale algebraic space over S, contained in P’. The maximal separated quotient () =
P/FE is a smooth separated S-group scheme, and the subgroup ' = P’/FE is the closure
in Q of the identity component Q° (proof of [29, (8.1.2)(iii)]). One also has the subgroup
Q™ C Q, which is the inverse image of the torsion subgroup of Q/Q". As X is regular,
condition d) of [29, (8.1.2)] holds, and so Q7 is closed in Q). By definition deg(Q™) = 0,
and therefore Q' = Q7. So [29, (8.1.2) and (8.1.4)(b)] imply that 7 = Q" = P'/E.

(If (H3) is not satisfied, then P is in general not representable, but it still has a
maximal separated quotient ) which is a smooth separated S-group scheme [29, (4.1.1)].
If moreover k is perfect, then Q" again equals J [29, (8.1.4)(a)].)

Let P? be the identity component of P,. We have P? = Picggs /> the identity component
of the Picard scheme of X,. By [29, (6.4.1)(3)], the intersection P’ N E is a constant
group scheme over k, cyclic of order d, generated by the class of the line bundle £ =
O(>_,(d;/d)Y;). (Because X is regular, the integers d and d' [29, (6.1.11)(3)] are equal.)
Therefore 2 is canonically isomorphic to Pic%, sk /(L'), and in particular, if d = 1 then
J? = Pic, ;.

Suppose that k is perfect and d = 1. Combining the above with the discussion in §2.2,
we then have an isomorphism of Gal(k/k)-modules

X(J) := Hom(J""™ @4 k, Gy,) = Hl(fxsc@lév Z).
8



Finally, we recall the description of the component group. First suppose that R is strictly
Henselian (k not necessarily perfect). Then [29, (8.1.2)] shows that the component group
O(J) = Js/TJ? is computed as follows: by the above, ®(J) = Q./Q" is the cokernel of
the map

E, — P!/P? = ker(deg: P,/P? — 7).
One has an isomorphism

P,/P? ~ 7°, (L € P,) — (deg Lly,);.

Let D C DivX be the group of Cartier divisors supported in the special fibre, and
Dy C D the subgroup of principal divisors. By [29, (6.1.3)] one has E; = D/Dqy. As X is
regular and R = I'(X, Ox), D is freely generated by the set of reduced components {Y,},
and Dy is the subgroup generated by the divisor (w) of the special fibre. The complex
of [29, (8.1.2)(i)] then becomes

(1.3.1) 042 57[0]%7° 570
where the maps are:

i(1) =2 d)

(1.3.2) a(l) = (5% deg Ox (Yo)ly,) o0 = (ﬁ%-m)jec (e

b(m) = Zchmj, m = (m;) € Z
jeC
and ®(J) = ker(b)/im(a).

If X is semistable (meaning that X is smooth over k apart from double points with
distinct tangents), then both the character group and component group can be described
in terms of the reduced graph I'y,. The character group equals the homology of I'y,. The
map a: Z[C] — ker(b) = ZF° C ZC is, after identifying Z[C] with Z°, the 0-Laplacian
[0 =0y (as in [16]) of the graph I'y,, which takes a vertex v € C to > (v) — (v') € Z[C]o,
the sum taken over all edges joining v to an adjacent vertex v’.

In general, we have an isomorphism of Gal(k/k)-modules ®(J) = ker(b)/ im(a), where
a, b are the maps in the complex (1.3.1) for the base change X ®p R*".

1.4. Generalized Picard schemes of singular curves. Let k be a field, and Y/k a
proper curve (in the sense of §1.2 above). Write k' for the k-algebra I'(Y,Oy). By a
generalized modulus on Y we mean a morphism of k-schemes ¥ — Y, where X is a finite
k-scheme, flat over Spec k'

Lemma 1.5. Let g: ¥ — Y be a generalized modulus. Suppose that g(3) meets each
connected component of Y. Then (X,g) is a rigidifier' of Picx ), in the sense of [29,
(2.1.1)]

Proof. For (X, g) to be a rigidifier, it is necessary and sufficient that for every k-algebra A,
the map ¢*: ['(Y ®; A, Oyga) = ['(E® A, Osga) is injective. As k is a field it is enough
to show this for A = k, and this holds since by hypothesis > /&’ is faithfully flat. O

We define Pic(y,;sy/ to be the scheme classifying line bundles on Y together with a
trivialisation of the pullback to 3. Precisely, consider the functor F which to a k-scheme
S associates the set of equivalence classes of pairs (£, «), where £ is a line bundle on

krigidificateur” in [29], “rigidificator” in [3].



Y xS and a: Osygs — (g x idg)*L is a trivialisation, and where pairs (£, a) , (£', /) are
equivalent if there exists an isomorphism o: £ = £’ such that o/ = g*(c) o .

Let Y = Y] 1Y, where ¢g(X) is disjoint from Y5 and meets each connected component
of Y. If Y2 = ) then by Lemma 1.5 we are in the situation of [29, §2], and F is a sheaf
for the fppf topology which we denote Pic(y;x)/x. In general, we define Pic(y,x)/x to be
the sheafification of F for the fppf topology. Obviously Picy,sy/ = Pic(y, x)/kx X Picy, /.
Put &' = ki X ky where k; = T'(Y;, Oy;). From [29] we then obtain:

Proposition 1.6. The functor Pic(y,x), is represented by a smooth k-group scheme, and
there is an exact sequence of smooth group schemes

(]_4]_) 0—>H— PiC(y,g)/k — PiCy/k —0
where
H = Hy, := coker (Ry/i(Gm) = Rsk(Gw)) -

Proof. From (2.1.2), (2.4.1) and (2.4.3) of [29] we get the representability of Picy, x/k
along with an exact sequence

0— Rkl/ka — Rg/ka — PiC(yl,g)/k — PiCyl/k — 0

of smooth group schemes (since, in this setting, Raynaud’s I'y and I'}; are just Ry, /G
and Rx/rGn). By §1.1 above, the quotient H is a smooth group scheme, and taking
products with Picy, ;. gives the result. O

Let Pic?yvz) s denote the inverse image of Picoy/k (classifying line bundles which are of

degree zero on every component of Y). Then Pic(()yj) sk 18 a smooth connected k-group
scheme of finite type.

Example 1.7. Suppose Y is smooth over k and absolutely irreducible, and that > — Y is
a closed immersion. Then the image of ¥ is an effective divisor m = > m;(y;) for points
y; € Y(k). In this case Pic(()xz) s is none other than the classical [32,33] generalized
Jacobian J,(Y) of Y. The isomorphism J,(Y) = Pic?y,z) /i 18 given on k-points by
mapping the class of a divisor D € Div’(Y \ £) to the class of the pair (Oy (D), tiv),
where iy is the canonical trivialisation Oy, — Oy |y = Oy (D)]s.

Let k£ be perfect. Then Pic?yvz) s has a maximal connected affine subgroup Pic%’;i;) Ik
which is a linear group, and its character group has the following combinatorial descrip-
tion, generalizing §1.2 above.

First suppose that k is algebraically closed, and that Y, ¥ are reduced. As in §1.2,
let ¢: Y — Y be the normalisation, and define A = Y B = ¢~1(A), C = 7T0(Y).
Decompose Y = Y5837 where z € 2518 (resp. ¥'8) if g(z ) is a singular (resp. smooth)
point of Y. There are maps

B y O ! yree

A < A ysing
where ¢, ¢ are as before, \ is the restriction of g to X*"8 and 6(z) is the component of
Y containing ¢(z).
Define the eztended graph of (Y, %) to be the directed graph I'y s obtained by adding
to the graph I'y

e a single vertex vy
10



e for each z € ¥5% an edge from vy to the vertex A(z) € A € V(I'y)
e for each z € ¥, an edge from vy to the vertex 0(z) € C' C V(I'y).

If Y only has double points and ¥ = X8 then we may likewise define the reduced graph
I'ys;, which is the undirected graph obtained by adding to I'y a single vertex vy and, for
each z € ¥, an edge joining vy to 8(z) € C = V(I'y). As before, the geometric realisations
of fy,g and I'y s, are canonically homeomorphic.

For arbitrary perfect £ and proper curve Y, we define fy@], I'ys to be the graphs

attached to the curve with modulus (Yrd@k, ored@k), which are graphs with a continuous
action of Gal(k/k).

Proposition 1.8.

(a) The character group Hom(Pic?;;)/k, Gm) is canonically isomorphic to Hl(fxz, Z), as
Gal(k/k)-module.

(b) If Y™ has only double points, then Hom(Pic?%i;)/k, Gm) ~ Hi(T'yyx,Z).

Proof. We may assume that k is algebraically closed; the Galois equivariance of the
isomorphisms will be clear from the construction. By the homeomorphism between the
extended and reduced graphs, it suffices to prove (a).

The map g™¢: ¥red — Yed is a reduced modulus, and the obvious morphism induced
by pullback

PiC((JY,E)/k — Pic?yred’zred)/k‘
has unipotent kernel, since the same is true for the maps Ry Gy — Ryrea),Gn and
Picoy/k — Png'red Ik So the character group of Pic(()l’if;) Ik is unchanged by passing to
reduced subschemes; hence we may assume that both Y and X are reduced. Next, let
Y’ — Y be the seminormalisation. Then as ¥ is reduced, ¥ — Y factors uniquely through
Y’, and the resulting map
PiC?Y,Z)/k — Pic?ygz)/k

has unipotent kernel. So we may assume in addition that Y is seminormal. Finally,
normalisation induces an exact sequence

(1.4.2) 0 = G = Piclyyy 25 Pick =0

/

where G classifies equivalence classes of pairs (L, B), where L is a line bundle on Y whose
pullback to Y is trivial, and [ is a trivialisation of the pullback of £ to ¥. There is a
surjective map

(1.4.3) GExGZ™ xGZ* - G

m

given as follows: a tuple

((a:v):vEBa (bz)zezsi"gv (Cz)z62r9g> € (Gﬁ X Gismg X Ggeg>(k>
determines:

(i) for every y € A, and any z, 2’ € ¢~ !(y), isomorphisms a;'a,: v*Op =k = k =
2* Oy satisfying the cocycle condition, and thus a descent of Oy to a line bundle
LonY

(ii) for every z € Y8 and every x € ¢~ 1(g(2)), a trivialisation b,a;': k = k = 2*Oy.
These trivialisations are compatible with the descent data (i) and therefore give
trivialisations k — 2*L for every z € X8,

(iii) for every z € X', a trivialisation k — 2*£ = k given by multiplication by c.
11



What is the kernel of the map (1.4.3)? Fix y € A. Then multiplying a,, for x € ¢~1(y),
and b, for z € ¥*" such that g(z) = y, by a common element of £* does not change the
descent data (i) or the trivialisation (ii), so we obtain the same (£, 3). The equivalence
relation on pairs is realised by the automorphism group GS of ¢*£ = Oy, which acts on
tuples by

(dj)jec: ((az)zeB; (b2)zexsing, (Co)zesres) = ((dw(m)ax)v (b2), (dG(Z)CZ))'

Therefore G is the torus whose character group is the kernel of the map

(1.4.4) Z|B) @ Z[¥""8) @ Z[X"¥] — Z[C] @ Z[A]

with matrix
v 0 0
o A Of°
The homology complex of fy; is
(1.4.5) Z|B) ® Z[x"8] @ Z[X"¢) — Z[C)| ® Z[A] © Z

with differential given by the matrix

WY 0 0
- A 0
0 —& —¢

where e: Z[¥’] — Z is the augmentation z — 1, for z € X7, ? € {reg,sing}. There
is an obvious map from the complex (1.4.5) to the complex (1.4.4) which induces an
isomorphism on kernels. Since G is by (1.4.2) the maximal multiplicative quotient of

Pic%’ii;) Ik this gives the isomorphism (a). The construction is Galois equivariant by

transport of structure. U

1.5. Functoriality I. Let g: ¥ — Y, ¢: ¥ — Y’ be generalized moduli on proper
curves over k as in the previous section, and suppose we have finite morphisms f, fx
fitting into a commutative diagram

I ¥
(15.1) [
> 2=y
Then there is an associated pullback morphism
(f, f2)*: Picy,mym — Picor sy m
taking a pair (£,a: Ox = g*L) to the pair
(f°L, foa: O = frgL = g™ (fL)),

which we will simply denote by f* if no confusion can arise.
To define pushforward, consider the commutative diagram

YRGS RV (L BN 6

Y —m Y

We assume that f is flat, and that A is a closed immersion whose ideal sheaf 7 is nilpotent
and satisfies

(1.5.2) Nssyyrs(1+I) = {1}.



We may then define a morphism f, = (f, X).: Picy sy — Picysyk by fo: (L) —
(L, a), where £ = N;(L'), the norm of £’ [14, 6.5] and « is given as follows: if Z =0 is
zero, then (1.5.1) is Cartesian, and « is the composite

a: Oy —— Ny(g"L') = g*L
Ny ()

(the second isomorphism given by [14, (6.5.8)]). In general, o/: Osy = ¢*L’ can at
least locally be extended to an isomorphism o”: Osy,y — priLl’, well-defined up to
local sections of 1 + Z. Taking norms, we then get a well-defined global isomorphism
a = Nsy,ys(@”): Os = g L.

The maps f*, f. preserve Pic? in all cases.

Example 1.9. Suppose that Y, Y’ are smooth over k£ and absolutely irreducible, and
that X C Y, ¥’ C Y’ are closed subschemes defined by reduced moduli m, m’. Let J, =
Pic?y’z)/k, Sy = Pic(()y,z,)/k, be the associated generalized Jacobians. Let f: Y’ — Y be a
finite morphism with f=1(X)*d = ¥/, Then (1.5.2) holds, and therefore we get morphisms

[ ode = Jdi fer Jon = e

If f: Y'" — Y is another finite morphism with f'~1(3) D 3/, then we get an induced
endomorphism f, f*: Ju — Jn, compatible with the usual correspondence action on J
(pullback along f’ followed by norm with respect to f). For later reference, we will say
that the modulus m is stable under the correspondence f, f"*.

Returning to the general case, assume that k is algebraically closed, that f is flat and
that (1.5.2) holds. Write

. 0)lin - 0)lin
X = Hom(PlC?Y,E)/k’ Gm)’ X, — HOH](PIC(()Y,Z/)/R, Gm)

for the character groups of the linear parts of the generalized Picard schemes. Then f*,
f« induce by functoriality homomorphisms

(1.5.3) X(f): X =X, X(f,):X—=X.
By Proposition 1.8 and (1.4.4) we have canonical isomorphisms

X = ker([g 2 g] : Z|B) © Z[2"8] @ Z[X"8] — Z[C] @ Z[A])

- Hl (fY727 Z)

where A = (Yred)sing. B — ¢=1(A), C = my(Y), and similarly for X’. We now describe
the maps (1.5.3) combinatorially, under further hypotheses. Let A’, B’, C" denote the
corresponding sets for Y, and assume the following.

Hypotheses 1.10.
(i) f7Y(A) = A’, and f is étale at each point of A’.
(i) Xsine = () = 3sine and X, ¥/ are reduced.

(iii) X' = f71(%)rd.

Hypotheses 1.10(ii) and (iii) together imply that (1.5.2) is satisfied. Then f induces
maps A — A, B' — B, C" — C which we also denote by f. The diagram

A< ¢ Y o >
(1.5.4) lf lf lf lf
A < B y C' < by

/
, 0
S

¢ Y
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commutes, and so we have a commutative square

o
Z|B' & Z[3] M Z|C"] & Z|A

(1.5.5) lf o) lf

Z|B] & Z]x] —22 Z[C] & Z[A]

Proposition 1.11. Assume Hypotheses 1.10. The homomorphism X(f*) is induced by
the vertical maps in (1.5.5).

Proof. We first observe that we may assume in addition that ¥ and Y’ are seminormal
(and therefore reduced). Indeed, the descriptions of the character groups X and X' is
unchanged after replacing the curves by their seminormalisations. It remains to verify that
the induced map on seminormalisations f¥: Y’ — Y*" is flat. But YS"\ A =Y™ < A4
is smooth, and so the restriction of f* to Y’ \ A’ is automatically flat. By hypothesis,
there is a neighbourhood U C Y of A such that f: U’ := f~}(U) — U is étale. Then by

[11, Prop. 5.1], we have a Cartesian square

U/Sl’l U/

[ ]
Ut ——U
and in particular f** restricted to U™" is étale. .

We now compute the dual map f*: Pic(()éj;) = PiC?#I?E/) Ik which is a morphism of tori
(since we are assuming that ¥ and Y’ are seminormal and ¥, 3 are reduced). As explained
in §1.4, a k-point of Pic?%l;)/k is represented by a pair ((az)zeB, (¢2).ex) € ()P x (KX)%,
where (a,) determines descent data for Oy with respect to the normalisation morphism
¢:Y — Y, and (c,) determines trivialisations xc,: k = k = 2*Oy which descend to a
rigidification along ¥ of the descended line bundle. _

Let al, = afuy (2" € B') and ¢, = ¢y (27 € ¥'). Then if (£, ) € Pic?;lj;)/k(k) is
represented by the pair ((a,), (¢,)), the pullback f*(L,«) is represented by ((al), (c.)).
The obvious map

Aut Oy = (k)¢ = Aut Og, = (K*)¢

is induced by f: C" — C, and therefore X(f*) is induced by the vertical maps f in (1.5.5)
as required. O

We now compute X(fi). Let
Z[¥] — Z]¥]
[* 1 QZ[A] = Z[A']
Z|B] — Z|B']

be the inverse image maps on divisors. By Hypothesis 1.10(i), this means that if z € A
or x € B, then f*: (z) — ;). (2'), and if z € ¥, then

[ (2) — E ra:(2")
f(z)=2
14



where 7,//.is the ramification degree of f at 2’. Finally, define f*: Z[C] — Z[C'] by

[ 2y Y K2 R(2)](2)

f(z2h=2

where Z C }7, Z' C Y are connected components. These maps fit into the diagram

oy
Z[B) & Z[3] [50] Z[C) @ Z[A]

(1.5.6) y* VW] F
z[B] e z)x] 2 710 @ Z[A).

Proposition 1.12. Assume Hypotheses 1.10. The diagram (1.5.6) is commutative, and
the vertical maps induce the homomorphism X(f,): X — X'.

Proof. As in 1.11, we may assume that Y and Y’ are seminormal. Consider again the

dual map of tori f*: Pic?#,rjz,) s Pic(()}’lf;) e Let (£,0)) € Pic?gf,rjz,) k), reprfsented

by the pair ((a)aep; (¢L)wess). Since f is étale at B’, the normalised map f: Y’ — Y
induces a norm homomorphism
Nf: F((b/fl(Y/sing)’ OX) — (/{ZX)BI N F((bfl(ysing)’ OX) — (kX)B
which equals the homomorphism fi: (k) — (k*)” given by
fii(@)wen = (0)een,  Gr = H Wy

f(a)=z

The analogous statement holds for

Nf3 F(Y’Sing, OX) _ (kX)AI . F(Ysmg, OX) _ (kX)A.
Since f is étale at A’, the square

B

b

BLA

is in fact Cartesian, and therefore

¢*Of! _ f! O‘bl*: (kX)B/ — (kX)A.
Next, we consider the rigidification o/: Osy = ¢*L = ¢*Oy = Osy given by multipli-
cation by () € (k*)¥. Let " = f~1(X) be the scheme-theoretic inverse image of 3.

So X" =[], sy ' say, where 2’ ~ Speck[t]/(t"<'/=). According to (ii) above, to compute
f«(L', ) we need to extend o to a rigidification
O{”: OE// 1) £,|2// = 02”

and we may as well take o” to be the sum of the maps Oz =+ O given by multiplication
by c.,. Then N(a/): Oz = Oy is multiplication by (c.) = fi(c.), where fi: (k*)* —
(k*)* is the map
fri(d) = (), eo= ] (d)=r

f(z)==

whose dual is the map f*: Z[¥'] — Z[X] defined above.
15



Finally we need to compute the action of Aut Oy, = (k:x)c/ From §1.4 we know that
d € (k)¢ maps ((a,)wep, (C)zresr) to ((dys(ary@yr)s (dfyy€Lr)), Which under the norm
maps to

159 (I ) (I ) )

(z')=x f(z)=z
Let z € B be fixed. Then if Z = 1)(z) € C' is the component containing z, and Z’ € C’ is
a component of Y’ lying over Z, the set f~'(x) N Z’ has cardinality [k(Z') : k(Z)], since
f is étale at f~1(x). Therefore

H d,’(x’): H (d’Z)[“(Z, #(2)]

r ZBI — Z/EC/
&) F(Z ()

Similarly, let z € 3 be fixed, and Z = 0(z) € C the component of Y containing it. Then
if Z' € C' is a component of Y’ lying over Z,

S = 8(Z)  w(2)

Zef-1(z)nz’

H (dlel(z/))rZ,/z _ H (d/ )n(Z n(Z)}.

Z, = Zlecl
1) F(21Y=(2)

and therefore

In other words, the pair (1.5.7) equals
(et (o))

where
dr= [ (dy)@=).
Z/ecf/
[(zh=2
The dual of this map d’ — d is therefore the homomorphism f*: Z[C| — Z[C’] defined
above. 0

1.6. Generalized Jacobians over DVRs. We resume the notations and hypotheses of
§1.3. Let (z;);er be a nonempty finite family of distinct closed points of X, whose residue
fields F; are separable over F'. Let m = . _,(x;) be the associated modulus on X, and
Jn = Pic?xm) sp the generalized Jacobian of X with respect to m. The semiabelian variety
Jw is an extension of J by the torus

Ty = (H Rr, /FGm> G,

1€l
Write Jy for the Néron model of J,,.
Let R; be the integral closure of R in F;. Then the inclusion of the points (z;) in X
extends to a unique morphism

Y ::HSpecRiﬂX.
iel
As T'(X,, Ox,) = k, the special fibre gs: ¥, — X, is a generalized modulus, in the

sense of the previous section. By Proposition 1.4(b) the Néron model T of Ty, equals
(Rs/5Gm)/Gm, and its identity subgroup is 7 = (Rs/sGm)/Gum.

Lemma 1.13. The pair (X, g) is a rigidifier [29, (2.1.1)] of Picx/s.
16



Proof. Let S’ be any S-scheme. Since X'/S is cohomologically flat and ¥ is flat over S,
we have

F(X Xg S/, OXXSS/) = F(Sl, OS/) and
F(E Xg Sl, OZXSS’) = F(E, Og) KRR F(Sl, OS/).

As ¥ is nonempty, R — I'(3, Ox) is a split injection of R-modules, and therefore I'(X x g
S Oxxgs) = (X xg 5, Onxgs) is injective. O

Let Ps denote the rigidified Picard functor of [29, (2.1)]: for any S-scheme S’, Pg(S")
is the group of equivalence classes of pairs (£, «), where £ is a line bundle on X xg .5,
and a: Ozy .5 — (g x idg)*L is a trivialisation. Pairs (£, ) and (£, ') are equivalent
if there exists an isomorphism o: £ = £ such that o/ = (g x idg/)*(¢)oa. By [29, (2.3.1-
2)], Py is a smooth algebraic space in groups over S, and we have an exact sequence of
algebraic spaces in groups [29, (2.4.1)]

0— 72 =Rs/sGm/Gm — P — P —0

where 7 is the “forget the rigidification” functor. (Since X'/S is cohomologically flat and
f:Ox = Og, one has I'\, = G,,.) If S is strictly Henselian, Py is a scheme; indeed, P is a
scheme, and 720 is affine, so by flat descent for affine schemes [34, tag 0245], the T -torsor
Ps, over P is representable.

Define the sheaf P, to be the pushout of fppf sheaves:

0 > T y P —— P > 0

(1.6.1) j j

0 > T > Pp —— P > 0

Explicitly, P, is the sheafification of the functor on S-schemes
(1.6.2) S" = TSI\ (Ps(S) x Tu(S"))
where 72(S) acts on the product by a(b,c) = (ab,a™c).

Proposition 1.14. P, is a smooth algebraic space in groups over S. If S 1is strictly
Henselian, Py, is represented by a smooth S-group scheme.

Proof. We have an exact sequence 0 — 7.0 — Tn = s,®(T) — 0 of S-group schemes.
For h € ®(T) = (5.9(T))(9), let U, = 7~ *(h), an affine open subscheme of T,. Then
T is the union of the Uy, glued along their generic fibres. If h € To(S) = T(F) is any
lift of h, then U}, is the translate of 72 by h. Therefore P, is the union of copies of Ps
indexed by ®(T'), glued along their generic fibres by the isomorphism given by translation
by h € Ps,(F'), and the result follows from the corresponding statement for Ps. U

This result implies that P, is determined by its restriction to (Sm/S), the category
of essentially smooth S-schemes. We can describe this functor explicitly. Let F* be
the functor on (Sm/S) whose value on S’ is the group of equivalence classes of pairs
(L, B = (Bs)ic1), where L is a line bundle on X xS’ and for each i € I, f;: Og @r F; =
(z; x idg/)*L is a trivialisation of £ at x; xg S, Pairs (£, 3) and (L', 5’) are equivalent if
there exists an isomorphism o: £ = £’ and some u € O* (S’ @ F) such that for every i
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the diagram

Bi . "
OS/®RF1' E— (1'7, X ldsl) L

(1.6.3) l“ lg

OS’@RFi — (l’i X idg/)*ﬁl

!

commutes. Note that u is uniquely determined by o. If S” € (Sm/S) is actually an F-
scheme, then giving a pair (u, o) is the same as giving an isomorphism (£, 3) = (£, ),
since we can absorb u into ¢, and therefore the restrictions of F* and Ps, to (Sm/F) are
equal.

Theorem 1.15. The restriction of Py to (Sm/S)e is the sheafification for the étale
topology of the presheaf JF*.

Proof. We have an exact sequence of fppf sheaves

0= G 2% Ry /sGm X G 2 Ps X RiysGm
where the map 1 on S’-valued points is given by
’QZ)Z (a, b) — ((OXXSSHGJ . idozxsl),a_lb) S Pz(S,) X Qm(Z X5 S,)

By definition, P, is the cokernel of 1 in the category of fppf sheaves. As the coimage
of ¥ is a smooth S-group scheme, P, is also the cokernel of ¢ in the category of étale
sheaves. Let S" € (Sm/S) and consider the map

(bs/: Pz;(S,) X RE/ng<S,) = Pz;(S,) X Gm<2F Xg Sl) — .F*<S,)
given as follows: let (£, ) represent an element of Ps(S’) and v € G, (Xp xXg S'). We
map the pair ((£, @), v) to the equivalence class of (£, 3), where 8 = a ®@v: Osxgor —
(9 X idgrgr)*L. It is easy to see that this is well-defined and functorial, and that the
resulting sequence of presheaves on (Sm/S5)

Ry/sCm X G 2 Py X RysGm = F

is exact. Moreover, for any (£, ) € F*(S’), there exists a Zariski cover S” — S’ such
that (£, 5)|s~ is in the image of ¢g». The result follows. U

Let E,, denote the closure in P, of the zero section. It is contained in
Pl =Xker(deg: Py — P — 7).

Theorem 1.16.

(a) The map r' (1.6.1) induces an isomorphism Ey — E.
(b) The quotient P! /Ey, is represented by the Néron model Ty of Ji.
(¢) There is an exact sequence of Néron models

0—=Ta = Tn— T —0.
(d) Assume that S is strictly Henselian. Then there is a canonical isomorphism
Pus/Po, S Z° @7 el
where e = (e;): Z — Z! is as in Proposition 1.4.

The analogue of (a) need not hold for Ps; — see Example 1.17 after the proof.
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Proof. (a) By [29, (3.3.5)] and Proposition 1.14, E,, is an étale algebraic space in groups
over S. So we may compute it by restriction to (Sm/S)¢, using the description of
Theorem 1.15, and we may also assume that S is strictly Henselian. In this case, from
§1.3 we have that E(S) is generated by the classes of the line bundles Ox(Y;). Let
Biriv = (Buiv,) be the trivial rigidification of the generic fibre Ox(Y;)r = Ox at (x;).
Then E,, is generated by the equivalence classes of pairs (Ox(Y;), Biiv), and therefore
E,~FE.
(b),(c) We now have an exact sequence

0—Taw— P./Ew— P'/E—0

of smooth separated S-algebraic spaces in groups, which are therefore separated S-group
schemes [29, (3.3.1)], whose generic fibre is the sequence 0 — Ty — Jw — J — 0. As T
and P'/E are the Néron models of 7" and J, the result follows from Proposition 1.3.

(d) From §1.1 above, Ty /Ty, =~ coker(e: Z — Z'). We then have a commutative

diagram of étale sheaves on (Sm/S)

0 > T > P > P > 0

| | |

s.(Z2')el) — Py/PY —— P/P" —— 0

whose rows are exact (since my is right exact). For S’/S smooth, and (£,5 = (5;))
representing an element of F*(S), f;(1) is a rational section of (g; x idg/)*L so has a
well-defined order along the special fibre ord, 5;(1) € ['(S', s.Z). If (L', ') is equivalent
to (L, ) then (ord, 8i(1) — ords 5i(1)); € I'(S', s.(eZ)), which gives a splitting of the
bottom row in the diagram (which is therefore also exact on the left). U

Example 1.17. Let’s work out the simplest nontrivial example: assume that char(F) #
2, and let X be the closed subscheme of P% given by the equation TyT» = wTg. Then
X = X is a smooth conic, split over F', and X is the line pair 7775 = 0. Hypotheses
(H1-3) of Section 1.3 are all satisfied. Let xo, 1 € X (F) = X(5) be distinct points. Let
X, = YUY’ where the components are labelled in such a way that zy meets Y’'. We
consider the generalized Jacobian J, with m = (z¢) + (z1). The relative Picard space
P = Picy/g is a scheme, and is the union of its sections over S. We have P(F) = Z,
generated by the class of Oy(xg), and P(R) = P,(k) = Z?, generated by the classes
of Ox(Y) ~ Ox(=Y’) and Ox(xy). The restriction map P(S) — P(F) is the second
projection Z? — Z, and equals the degree map. Therefore P’ = E is the “skyscraper
scheme” s,Z, obtained by gluing copies of S indexed by Z along their generic points, and
P'(S) is generated by the class of Ox(Y).

There is an isomorphism G,, — J, = PL ® F, which on F-points takes a € F* to
the equivalence class of the pair (Ox,a = (ag,aq)), where «;: F' — 27Oy = F is the
identity for ¢ = 0 and multiplication by a for i = 1. As xy doesn’t meet Y we also have
2{Ox(Y) = Og. We now have two cases:

o If z; meets Y, then 20« (Y) = Og as well. So there is a canonical rigidification
() of Ox(Y') along 3, for which each «; is the identity map on Og, and therefore
Ps, ~ Gy, x P splits (and is not separated). Likewise, P5, ~ G, X s,Z. The
pushout P is simply the product G, X s,Z.

o If z; meets Y, then 2304 (Y) = Os(s) = w1Os. So there is a bijection Zx R* =
P{,(S) which takes (n,a) to the line bundle Oy(nY’) with rigidification oy = id,
ap(1) = w™". Its composition with restriction to the generic fibre is the bijection
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Z x R* — Px(F) = F* given by (n,a) — @ 'a. So P is separated, and is
isomorphic to the Néron model G,,. The pushout P is then the tautological
splitting of the extension G, — G, — s.Z after pushing out through G,, — G,
S0 is isomorphic to G, X s,Z in this case as well.

We return to the general case. From Section 1.3, P? N E is finite constant and cyclic
of order d, generated by the class of the line bundle £'. Therefore Pn(ls N By is finite
constant and cyclic of order dividing d. Applying the results of Section 1.4, we obtain:

Corollary 1.18. Assume that d = 1. Then:

(a) T, = Pic(x, )k _
(b) If k is perfect, there is a canonical isomorphism of Gal(k/k)-modules

Hom(jn?:}gin ®k‘ ]%7 Gm) = Hl(fX§7Z§7 Z’)
where the graph fxg,gg is as in Section 1.4.
Finally we compute the component group ®(Jy).

Theorem 1.19. Suppose that R is strictly Henselian. Then ®(Jy) is canonically isomor-
phic to the homology of the complex

(1.6.4) Z[0) & 78 & 71 fem 25 7
where a and b are as in (1.3.2), and h: Z[C] — Z! /eZ is induced by the map
CxI—Z

(j, ’L) — hij = OI'd(QX(yj) Btriv,i(]-)-
(Equivalently, h;; is the degree of the divisor ¢;Y; on Spec R;.)

Proof. By Theorem 1.16, ®(.J,,) is the group of connected components of the quotient

Py o/ En s, hence is the homology of the complex Ey(k) — mo(Pu,s) deg, 7. By Theorem
1.16(d), we may rewrite this complex as (1.6.4). What remains is to identify the map h.
By the proof of 1.16(a), Ey (k) is generated by the equivalence class of pairs (Ox(Y;), Briv),
and the proof of Theorem 1.16(d) then gives the desired formula for h. O

For general S we have ¥x ¢S = [[:_7 S;, where S; is the spectrum of a DVR finite over
Rh. Let C be the set of irreducible components of X ® k*P. Then Gal(F*P/F) acts on

I and C through its quotient Gal(k*/k), and the above gives a Gal(k*®/k)-equivariant
isomorphism between ®(.J,,) and the homology of the complex

(1.6.5) Z|C) 2 78 o 7T fem 225 7

attached to X xg S,
In the semistable case we can describe both the character and component groups in
terms of the reduced extended graph.

Corollary 1.20. Suppose that X @ R*™® is semistable and I = I**¢. Then
(a) If k is perfect, there is a canonical isomorphism of Gal(k/k)-modules
Hom(jn(‘]l:}sin Rk ]57 Gm) = Hl (FX§72§7 Z)

where the reduced extended graph I'x, s, is as in Section 1.4.
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(b) Assume that R is strictly Henselian. There is a canonical isomorphism
®(J) = coker ((3,0%): Z[C] — Z[C)o ® Z')

where O is the Laplacian of the reduced graph Ux,, and 0: I — C is the map from
Section 1.4.

Note that 6 depends only on the labelled graph (I'y, 5., v0). The hypothesis I = [*#
is satisfied if for example {z;} C X (F*").

Proof. (a) follows immediately from Corollary 1.18(b) and the fact that the geometric
realisations of I'y, s, and I'y, 5, are homeomorphic. For (b), it is enough to observe that
(0,6*) maps 1 € Z[C] to (0,1) € Z[Clo & Z', and so the result follows from Theorem
1.19. U

1.7. Description via Néron models of 1-motives [35]. An alternative approach to
the determination of the component group ®(.J,) is via duality and the theory of Néron
models of 1-motives developed in [35]. We recall some of the notions and results of that
paper. Recall that a 1-motive over F' is a two-term complex of group schemes over F

M=[L%q]

where L is étale, free and finitely generated (i.e. L& FP ~ Z"), and G/ F is a semiabelian
variety. Let T C G be its toric part, and A = G/T the abelian variety quotient. We
assume here that L and T split over an extension of F' in which R is unramified. Then
L extends to a local system A on S. Let G be the Néron model of G. By the Néron
property, f extends to a morphism fs: A — G of S-group schemes, and by definition, the
Néron model of M is the complex of S-group schemes

M=[A g
Its component complex is the complex of Gal(k*P /k)-modules
(M) = [As = (G) ]

in degrees —1 and 0. (In [35] this complex is denoted P(M).)
Let M’ be the 1-motive dual to M. So

M=)
where L' = Hom(T, G,,) is the character group of 7', and G’ is an extension 7" — G’ — A’,

where A’ is the dual abelian variety of A, and T” is the torus with character group L.
Then [35, Theorem B]| shows that if either

(i) A has semistable reduction, or

(i) k is perfect
there is a canonical isomorphism, in the derived category of Gal(k*P/k)-modules, between
®(M') and RHom(®(M), Z)[1].

Now let X'/S be as in Section 1.6. We will assume that R is strictly Henselian. Suppose
that all n; are zero (which holds, for example, if k is perfect), that § = 1, and that the
points (x;);es are all F-rational.

Since J is autodual, the dual 1-motive to J is the 1-motive

whose component complex ®(M) is the complex [Z[I]o — ®(J)] of abelian groups, con-
centrated in degrees —1 and 0. Using the description (1.3.1) of ®(.J), this is isomorphic
to the complex [Z[I]o — Z°°/a(Z°)].
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As 6 = 1, by [29, (8.1.2)] the complex (1.3.1) has only one nonzero homology group,
namely ker(b)/im(a) = ®(J), and the map a is given by the intersection pairing on the
components of the special fibre. Therefore (M) is quasi-isomorphic to the complex

Wzl @ Z[1]y <& 76 b 7.

(1.7.1) Z
Here 'h: Z[I]o — ZC is the transpose of h, and the term Z¢ is in degree 0. The dual of
(1.7.1) is

7 s zi0] L 7o @ 7l 7 2 7

The assumption n; = 0 ensures that a is symmetric, and that ¢ and b are transposes of
one another, by (1.3.2). Assuming that one of (i), (ii) above holds, we then recover the
description of ®(J,) as the homology of (1.6.4).

1.8. Functoriality II. We will need to understand the action of correspondences on
generalized Jacobians and their Néron models.

Suppose that we have two smooth geometrically connected curves X, X' over F,
with regular models X, X" satisfying the hypotheses of §1.3. Let m = Y. _ (2;), m’ =
Zjel, (z}), be nonzero moduli on X, X’. As in §1.6 we assume that the points x;, x’; are

distinct, and that their residue fields
Fy = k(r;), Fj=r(2))

are separable over F. Let R;, R;» denote the integral closures of R in Fj, FJ/ ,and X =
[Tic; Spec Ri, ¥' = [, Spec R}. Let Ju, Jy, be the associated generalized Jacobians.
Let f: X’ — X be a finite morphism such that f~'(Xp) = ¥/ as sets. We write
f:I' = I also for the induced surjective map on index sets. For j € I’, denote by r; the
ramification degree of f at ’;.
The discussion in §1.5 applies, and since f*, f. preserve line bundles of degree zero, we
obtain morphisms

[ 0 dn = Juy fer Ty =
By the universal Néron property, they extend uniquely to morphisms f*, f, of the Néron
models Jn, J.,. Let the induced homomorphisms of character groups be X(f*), X(fs)

m’*
and of component groups ®(f*), ®(f.). In the next section we will need to know explicitly

the restriction of these maps to the tori Ty, 7.,. For (a) and (b) below, recall that we
have a canonical isomorphism

Hom(T,, ® F*P, Gy,) = Z[X(F°P)]des=0
and similarly for 77,.
Proposition 1.21.
(a) The map

f* : Tm = (H RFZ/FGm> /Gm — Tl;/ = (H RF](/FGm> /Gm
i€l jer
is induced by the inclusions f*: F; — F}, i = f(j). Its transpose is the homomorphism
f* . Z[Z/<Fsep>]deg:0 SN Z[E(Fsep)]degzo

given by pushforward of divisors of degree zero.
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(b) The map f.: T, — T is given by the morphisms of tori, fori = f(j),
Rp/p,Gm = R ypGm
t = (Npyrt)" .
Its transpose is the homomorphism
Fro Z[D(FP)]des=0 _y 7[5y (frsep)|des=0

given by pullback of divisors.
(c) Assume that R = R". Then the induced maps between component groups ®(Ty,),
O(T),) are

O(f*): O(Tw) =2')eZ — O(T!,) ~Z" |7

(ni)ier ———— ((€j/er))ns) sy

d(f.): 7" ' VAN
(n)jer ——— ( > Tjnj)zez
jef~1({ip

(d) Assume that R = R*®, and that k is algebraically closed (so that X(k) ~ I, ¥/ (k) =~ I').
Then the induced maps on character groups of Néron models are

X(f): X(Ty,) » X(Thn)
H u
Z[I/]degzo f Z[I]dego
X(f): 20— Z[I]
i) ——— > nlFEIG)
jef~t{i})

Proof. For (a) and (b), it suffices to compute the map on character groups. The formulae
are then special cases of Propositions 1.11 and 1.12 with A = B =% = (), C' = {x}.
Combining these with Proposition 1.4 then gives the remaining parts.
O

Remark. From (a) and (b) we see that if f, f': X/ — X are finite morphisms and m
is a reduced modulus on X which is stable under the correspondence A = f,f* (in
the sense of Example 1.9), then the induced endomorphism ‘A of the character group
Hom(T,, ® F*P G,,) equals the map D — f!f*D on divisors of degree zero.

2. GENERALIZED JACOBIANS OF MODULAR CURVES

2.1. Generalities on modular curves. For an integer N > 1, let X(N)g denote the
usual complete modular curve over Q. Its non-cuspidal points parametrize pairs (E,C'),
where E is an elliptic curve (over some Q-scheme) and C' C E is a subgroup scheme which
is cyclic of order N. We write Xo(N)z for the integral model constructed by Katz and

Mazur [17, Ch. 8], which they denote M ([To(N)]). Its non-cuspidal points parametrize
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pairs (F,C), where C' C E is a subgroup scheme of rank N which is cyclic in the sense
of loc. cit., §6.1 — see also [9, §1.1].

For every prime ¢ we have a Hecke correspondence T, = v,u*, where the finite mor-
phisms u = u,, v = v, are given by:

Xo(N?)

0)
Xof (N) (B, (C) (E/NC,C/NC)

For £t N (resp. ¢ | N), the morphisms u, v are of degree £ + 1 (resp. £). For p | N we
also have the Atkin-Lehner involution W,: Xo(N) — Xo(NV). If v,(N) =r > 1 then

Wp: (E,C) = (E/(CNEP), (C+ EPT/(CNEPT).

When ¢4 N, u = v o W,. and the correspondence T} is symmetric. When ¢ | N, T} is no
longer symmetric, and what we call T} is often elsewhere defined to be the transpose of Ty
(and also often written U,). We have chosen our normalisations so that the endomorphism
Ty = v,u* of the Jacobian Jy(NN)g agrees with the Hecke operator in [30, p. 445] defined
by “Picard functoriality”.

Write Xo(N)g C Xo(NN)q for the cuspidal subscheme. It is classical that Xo(N)g is
the disjoint union, over positive divisors d | N, of schemes z4 ~ Spec Q(p4(a,n/q)) (Where
here (d, N/d) denotes greatest common divisor). We recall (e.g. from [8, IV.4.11-13])
that the cusps of X((V)g can be conveniently described using generalized elliptic curves.
Suppose that d | N, and let Nér, denote the standard Néron polygon over Q with d sides
8, I1.1.1], whose smooth locus Néry® equals Gy, X Z/d. For a primitive N-th root of
unity (v € Q, let Cy ¢, denote the cyclic subgroup scheme

Cacy = ((Cn, 1)) C Néri®.

Then the pair (Néry, Cyc,) determines a Q-point of Xo(N)>®. If 0 € Gal(Q/Q(p4)),
then Cyocy = Cacy, and if o € Gal(Q/Q(pu(a,n/a))) then the pairs (Nérg, Cyocy) and
(Néry, Cy ¢, ) are isomorphic (and the isomorphism is unique if it is required to be the iden-
tity on the identity component of Nér;). Therefore the isomorphism class of (Néry, Cy ¢y )

over Q is determined by the pair (d, CN/ (d,N/d) )

Spec Q(pua.v/a)) of Xo(N)F-

In particular, the (rational) cusps 00 = zy,;; and 0 = zy n correspond to the pairs
(Néry, pun) and (Néry, {1} x Z/N), respectively. We also know that the scheme-theoretic
closure of Xo(N)g in Xo(N)z is the disjoint union of copies of SpecZ(ji(q4,n/q)) (this
follows from [9, Thm. 1.2.2.1]).

Now let m be a reduced modulus on Xy(N)g, whose support is contained in X (N )63
Let ¢ be any prime such that the support of m is stable under 7Ty, in the sense of Example
1.9. Then T, determines an endomorphism 7, = v,u* of Jy,. Let p | N, and let J, be
the Néron model of J, over Zg,). By the universal Néron property, T; extends to an
endomorphism of 7, and therefore induces endomorphisms

To: ©(Jw) = P(Jn)
“Ty: X(Jn) = X( ).

and gives rise to a closed point z4 = 2y 4 =~

In order to compute these endomorphisms combinatorially, we need to compute the action

of T, on the torus T, using the formulae of Proposition 1.21. In other words, we need
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to compute the restrictions of © = uy, v = vy to the cusps, along with the ramification
degrees.

Let (¢ € Q be a primitive N/-th root of unity, and for L | N¢, ¢, = C]]VVf/L. Let

z = (Nérg, Cacy,) € Xo(NO)>®(Q) be a cusp. Then u(z) € Xo(N)>®(Q) is obtained
as follows: replace Cycy, by €Cacy, = ((Cn,¢)) C Gy, x Z/d, and then contract any
components of Nér, which do not meet it [8, IV.1.2]. Similarly, we obtain v(z) as the
quotient of (Néry, Cy¢,,) by the rank-¢ group scheme NCyc,, = ((¢s, N)) C Gy, X Z/d.
Explicitly, suppose that N = M/, (¢, M) = 1, and that d | N{. Let a, b € Z with
al +bM =1 and a = 1 (mod ¢*). Then if ¢{d,
(Néra, (G, 0)) = (Ner, Cugy)

but if £ | d, the subgroup (((n, ¢))) does not meet the components G, x {i} with (i, ¢) = 1.
The map Néry — Néry/, contracting them takes ((Cn,¢)) to Cyc,, and so
(Nél‘d, Cd7<]%) if ¢ T d

u: (Néry, C —
(Nérg, Cacy,) {(Nérd/z,Cd/é,Cw) otherwise.

On closed points of X¢(N)3 we then have

(2.1.1) uwMana) = {{zNZ,dZ} if ¢|d

{#Ntd, #Neae} otherwise.
If ¢ )N then u has degree ¢+ 1 and
deg 2y g = deg znpq = deg zyeae = ¢((d, N/d)).

It is well known (and follows, for example, from the Eichler-Shimura congruence relation)
that u is étale at zny 4, and so has ramification degree ¢ at zyy 4.
Suppose now that k£ > 1 and do| M, d = dol®. Then u has degree ¢ and

deg zna = GOSN G((do, M /dy))
deg 2npa/0 = (U™ ETIRI=NG((do, M/dy)) i s> 1
so by (2.1.1), the ramification degree of u at zys 4 equals
1 ifl<s<(k+1)/2, and
¢ if(k+1)/2<s<k+1.
Moreover, since

deg 2ne,ape = (€ = 1)d((do, M/dy))
deg 2nv.dy = deg zn.a, = ¢((do, M/dy))
the ramification degree equals 1 also for s € {0, 1}.

Similarly, if d | N, then the subgroup NCly,, C Néry® = Gy, xZ/d equals e x {0}, and
therefore is the kernel of the endomorphism (t,4) = (t‘,7) of Nérg. If d | N¢ but d { N then
NGy, = (¢, N)) is the kernel of the map Nérg — Nérgye, (t,0) = (t¢;",,i mod d/f),
which maps ((ne, 1) to (€%, 1), and therefore

(Nél‘d, Cd,CN) if d | N

v: (Nérg, C, —
(Nérg, Cacy,) {(Nérd/bcd/f,é“i‘v) otherwise.

A similar computation as for v shows that the ramification degree of v at zysq4 is 1 if

ve(d) > (k+1)/2, and ¢ otherwise.
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In particular, if m is any reduced modulus supported on Xo(N)g, then for every
¢ 4 N, m is stable under 7} (in the sense of Example 1.9) and therefore we obtain an
endomorphism 7, = v,u* of the generalized Jacobian J, = Jy(N)y. If m is the full
cuspidal modulus (i.e. the reduced modulus whose support is Xo(V)g') then m is stable
under T} for every ¢. Using the formulae from Proposition 1.21 together with the fact that
(Nérg, Cycy) depends only on (d, C]]\\,[/(d’N/d)
T, of the character group

Hom(Ty ® @, Gun) = Z[Xo( V)= (@)~
which is the restriction of u,v* to divisors of degree zero.
Proposition 2.1. (a) If (¢(, N) =1, then

"Ty(Nérg, Cycy) = (Nérg, Cdﬁfv) + (Nérg, Cycs,)-

(b) If N = MU* with (M,0) = 1 and k > 0, and v,(d) = i, then let d = dol’, ey =
(d07 M/do), I = Gal((@(/:ueoﬁl“l*i)/Q(/:ueoﬁk*i))' Then

), we can compute the induced endomorphism

E(Nérd, Cdvﬁj‘{f) i=0
tTg(NéI‘d Cd( ) _ E(Nérd/ﬁa Cd/K,CN) 0<i1< (k; + 1)/2
S > oer; O(Nérase, Cayrcy) (k+1)/2<i<k

ZJEFk o(Nérge, Cajocy) + (Nérg, C’d,chv) i=Fk
where a, b are as above, and ag =1 (mod N).
(In (b) T; ~ (Z/¢Z)* if i = k and Z/{Z otherwise, so consistent with deg ‘T, = ¢.)
Proof. First note that if v,(d) = k + 1 then
v: (Néry, Cd,chw) = (Nérase, Carecy)-

Then

v*(Nérg, Cycy) = {(Nérq, Cacy,) + (Nérag, Cypea )
hence (since ¢ = ¢ mod N when k = 0)

T, (Néry, Cacy) = {(Néry, Cd,(j@) + (Nérg, Cdg,cﬁi).

Then if vy(d) < (k + 1)/2,
v*(Nérd, CCLCN) = E(Nérd, Cd,CNe)
and applying u. to this gives {(Nérg, Cycq ).
If (k+1)/2 <wvy(d) < k then the inverse image of the cusp (Néry, Cycy) is the union
of ¢ cusps conjugate to (Néry, Cyc,,), namely

'U*(Nél‘d, Cd,CN) = Z O(NéI‘d, Cd,CNe)'

oel’;

Finally if v,(d) = k then
v*(Néry, Cycy) = Z o(Nérg, Cacy,) (¢ — 1 terms)

g

+ (Nérar, Capca )
Apply u, to this and we get the claimed formula. O

Example 2.2. Set D = (0) — (00). Here are particular cases we will need:
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(a) ((,N) =1, m=(oc0)+ (0) = (Néry, pun) + (Néry,Z/N). Then
“Ty: D ({+1)D

(b) N = p prime, m = (c0) + (0). Then ‘T},: D+ D.
(c) N = p?. There are (p + 1) elements of X,(p*)>(Q):

(00) = (Néry, Cl,Cpg)a (0) = (Nérye, Cp2 C2) (Gp) = (Néry, Cp,CPQ) (1 # G € p)-
Then if ¢ # p,
tTgI D — (6 + 1)
(Gp) = (00) = £(G,) +(G) = (£ +1)(c0)

and

'T,: D Z (¢p) +(0) = p(o0)
1£Gre

(¢p) = (00) = 0.

2.2. Character groups. Assume that N = pM, with p > 3 prime and (p, M) = 1. Let
SSys be the set of supersingular points of Xo(M)(F,), which is the set of isomorphism
classes of pairs (E, C), where E/F, is a supersingular elliptic curve and C' C E is a cyclic
subgroup scheme of order M.

For ¢ 1 M, we have the Hecke operator

(B,C)~ Y (E/D,(C+D)/D).

DCE, #D=(

Theorem 2.3. Let m = (00) + (0) and J = Jo(N) with N = pM as above. Then there
s a canonical isomorphism

X(Jm) = Z[SSM]
taking ‘Ty to Ty for every £ + N. Its restriction to X(J) < X(Jn) is an isomorphism
X(J) = Z[SSu]o-

(The second isomorphism is of course well known: see [30, Prop. 3.1].)

Proof. We work over S, the strict henselisation of SpecZ,), and use the notations from
§2, so that k = F,. Let X’ denote the Deligne-Rapoport model of Xo(N) over S. Since
p exactly divides N, X’ is regular apart from possible A; or As singularities at super-
singular points in the special fibre where j = 0 or 1728. Let X — X’ be its minimal
desingularisation. The special fibre &7 is the union of two copies of the modular curve
Xo(M )Fp meeting transversally at the supersingular points. The cusp oo (resp. 0) meets
the component of X! parametrizing (E,C) where C' contains the kernel of Frobenius
(resp. Verschiebung). Let us refer to these as the co-component Z,, and 0-component 7,
of X,.

First we assume that X’ = X is regular (which holds, for example, if M is divisible by
some prime ¢ = —1 (mod 12) or by 36 — see the second table in [10, 4.1.1]). Since X
has an irreducible component of multiplicity one, the hypotheses (H1-3) of Section 1.3
are satisfied. Let > — X be the morphism induced by m, so that X is the disjoint union
of two sections of X over S. Then

(2.2.1) TosF, = Picly, s
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and since X5 C AT by (1.4.4) we have

v 0
(2.2.2) X(Jn) = ker |Z[SS] & Z[=,] Lool, Z[C) & Z[SS)]
where C' = mo(X,), SS = SSy; ~ Xsie and SS is the inverse image of SS in the normali-
sation X, of X.
The map 0: Z[>3,] — Z[C] is a bijection since the cusps meets different components,

and X has only ordinary double points, so the vertical maps between the three 2-term
complexes

Z[SS] ® Z[S,] —— Z[C] & Z[SS]

| |

—~

288 — 5 7SS]

| [

Z[SS] > 0

are quasi-isomorphisms. Here i is the map taking = € SS to () — 2z with 2(>,
2 € X, being the supersingular points above z lying in the components containing oo,
0 respectively. These quasi-isomorphisms then induce the isomorphism X(.J,) ~ Z[SS].
To get X(J) we drop the factor Z[>;] from (2.2.2), and then the kernel becomes Z[SS]y.

Still assuming that X’ is regular, let ¢ # p be prime. Then the Deligne-Rapoport model
for Xo(N/) over S is also regular. Let us denote it X¥). Then maps u, v extend to finite
morphisms XY — X which are therefore also flat. Therefore the endomorphism T, of
jn(is is, under the isomorphism (2.2.1), identified with the endomorphism 7, = u,v* of

PiC(()XS,ES)/k- Now the maps u, v: XS(Z) — X, map the oo- and 0-component of XS(Z) to the
oo- and O-component, respectively, of X;, and on each of these, they are just the maps wu,
v: Xo(MC) — Xo(M). So u,v* induces the map Ty on Z[SSy,].

In general, choose a multiple N’ = nN = pM' of N with (p,n) = 1 such that the
Deligne-Rapoport model of X(N') over S is regular. Let f: Xo(N') — Xo(N) be the
map (E,C) + (E,nC), and m’ the reduced modulus f~!((00) + (0))*¢ on Xy(N’). Then
1 Jo(N)m — Jo(N') induces a surjection

XS (N )w) —— X(Jo(N)m)

1 1

Z|SSh'] Z|SSu]

which is equivariant with respect to *T} for all £4 N’. According to 1.11 this is induced by
the map f: SSpr — SSyr, hence commutes with the maps Ty on Z[SSy/] and Z[SSy]. O

Remark. Restricting to the case when p exactly divides N is rather natural, since the
toric part of the special fibre of the Néron model of Jo(p" M), r > 1, is a product of copies
of the toric part for Jo(pM).

In the case N = p we may describe everything (including 7},) in terms of the classical
Brandt matrices, whose definition we now recall [12]. Let {E; | 1 < i < h} be repre-
sentatives of the isomorphism classes of supersingular elliptic curves over [F, (so that h

is the class number of the definite quaternion algebra End(£;) ® Q). Let Hom(E;, Ej;),
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be the set of isogenies from F; to E; of degree n. Define an equivalence relation ~ on
Hom(E;, E;),, by

f~g<=kerf=kerg<= f=agfor an automorphism a of E}

and set Hom(E;, E}),, = Hom(E;, E;)/ ~. We then define the h x h Brandt matrix B(n)
forn > 1 by

(2.2.3) B(n);; = #Hom(E;, E;),,.

The matrices B(n) for n > 1 commute. They are constant row-sum matrices, with the
sum of the entries in any row of B(n) equal to

for n > 1.

Theorem 2.4. Let N = p and m = (00) + (0). The isomorphism X(Jn) = Z[SS1] of
Theorem 2.3 takes "Iy to the transpose 'B({) of the Brandt matriz, for every prime (
(including ¢ = p).

Proof. For ¢ # p this follows immediately from the definition of the Brandt matrix B(¢).
For ¢ = p, we first note that the endomorphism 7, + W), of Jy(p)m is zero. Indeed, on
the quotient Jy(p) it is zero, by [30, Proposition 3.7], and since W, interchanges the two
cusps and T}, fixes (0) — (00), it is zero on the torus Ty = Gy C Jo(p)m. So as any
morphism from Jy(p) to Gy, is constant, T, + W), is zero on Jy(p)m. Therefore it is enough
to compute the action of W), in X(Jy(p)m). For this it is convenient to compute using
the extended reduced graph I'y: s defined in §1.4, with ¥ = X,(p)3° = {00, 0} (where we
have fixed an orientation):

Vo
0 o0
L
Ep

As the regular model X is obtained by replacing the As- and As-singularities by chains of
lines, the extended graphs of X; and X! are homotopy equivalent, and so we may restrict
to X!. On the special fibre X!, W, interchanges the two irreducible components. Recall
also that the supersingular points SS; are F,.-rational, and if x € SS; is a supersingular
point, corresponding to the class of a supersingular elliptic curve E/F,, then W, (x) = z®)
is the point corresponding to E® = E/ker(F). So the automorphism W, extends to to
an automorphism of the graph, fixing vy and interchanging 7, and Z.,, and mapping the
edges labelled E; to Ei(p ). The homology H;(I'x: 5, Z) is freely generated by the cycles

vi = (0)+ (Ei) — (00), and Wt v; —%(p) =—(0)— (Ei(p)) + (00). Now the only element

of Hom(E;, E}), is the Frobenius E; — EZ-(p ) = E;, and therefore the matrix of T, = —W,

equals *B(p). 0
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2.3. Component groups. Throughout this section, we assume that p > 3. Let N =
p"M, with (p, M) = 1 and r > 1. As in the previous section, work over S, the strict
henselisation of Spec Z,). Let m be a reduced modulus on X(/V) supported at the cusps,
and T a subalgebra of the Hecke algebra Z[{7T,}] which preserves the support of m. Let Jy,
be the generalized Jacobian of Xy(NV) for the modulus m. Then T acts on Jy, stabilising
the torus T,. It therefore acts on the extension of component groups

0— &(Ty) = ¢(Jn) = D(J) — 0

and the action commutes with the action of Gal(F,/F,). For the action of T on ®(J) we
have the following result, proved by Edixhoven [10], generalizing Ribet [31] who treated
the case of N squarefree.

Theorem 2.5. For every ( + N, T, acts on ®(J) as multiplication by £ + 1.

Corollary 2.6. Assume that M is squarefree and p > 3. Then for every £t N, T, acts
on ®(Jn) as multiplication by € + 1.

Proof. Let x ~ Spec Q(pt(a,n/a)) € Xo(IN)* be a cusp, where d | N. As M is squarefree,

(d,N/d) is a power of p. Therefore Gal(Q/Q) acts trivially on ®(T},) by (1.1.5). So T,
acts on ®(7},) as multiplication by ¢4 1. So the endomorphism 7, —¢ —1 of ®(.J,) factors
through a map ®(J) — ®(7},), which is zero as ®(.J) is finite and ®(T},) is free. O

Remark. Similarly, let N be arbitrary, and m the reduced modulus on Xy(N) which is
the sum of all the cusps. Write T, — T, for the maximal quotient which is split
over Q(ppr). Let J,op be the corresponding quotient of Jy,. Then by Corollary 1.2 the
sequence of Néron models

0— 7;)—spl — jp—spl — j —0
is exact, and the same argument shows that 7, = ¢ 4+ 1 on ®(J,.sp1)-

Now we turn to the abelian group structure of ®(Jy,).

For N = pM, (p, M) = 1, the structure of ®(.J) was determined completely by Deligne,
and described by Mazur and Rapoport in [23], using the description of the regular model
of Xo(N) given in [8] — see Table 2 on p. 174 and the calculations of §2 in loc. cit.,
and the corrections to their calculations made by Edixhoven [10, 4.4.1]. We recall these
formulae in 2.8 below.

For general N, the minimal desingularisation X — X’ was computed by Edixhoven [9]
using the description of &’ in [17]. Since the component of X! meeting the cusp oo has
multiplicity one, X satisfies hypotheses (H1-3). From this it is in principle an exercise
to compute ®(J) in any given case, and in [10, 4.4.2] this is done for N = p?.

We will compute ®(.J,,) in various cases. First some notation: as in the previous section,
let SSy C Xo(M)(F,) be the set of supersingular points, and n = #SS,,. For j € {2,3}
let e; be the number of elements (E, C') € SSy; for which #Aut(E,C) = 2j.

2.3.1. Xo(pM) with (p, M) =1 and m = (oc0) + (0).
Theorem 2.7. Let N = pM with (p, M) = 1. Let Jy be the generalized Jacobian of
Xo(N) with respect to the modulus m = (0o) + (0). Then:

(a) (I)(Jm) ~7 @ (Z/Qz)max(ez—l,o) ) (Z/gz)max(eg—l,o)
30



(b) The homomorphism ®(Ty) = Z — P(Jn) is given in terms of the isomorphism (a)
by

’if€2:€3:0
1 s (277,—62, ,...,1) if€2>o, e3 =0
(3n —2e3;1,...,1) ifea =0, e3 >0

(6n — 3ey —4es;1,...,1;1,...,1) otherwise.

Proof. Recall that the special fibre X! of the Deligne-Rapoport model of Xy(N) is the
union of two copies of Xo(M )Fp’ meeting tranversally at the supersingular points. The
cusps oo and 0 belong to different components. The total space X’ has a type A; quotient
singularity at each point where # Aut(E,C) = 2j € {4,6}. Taking their minimal reso-
lution gives the model X. Its special fibre is obtained by replacing each crossing point
which is an A;-singularity with a chain of (j — 1) copies of P!. In other words, X; has
2 + eg + 2e3 irreducible components:

o 7, and Zj, the strict transforms of the irreducible components of X!, isomorphic
to Xo(M)g,, and labelled in such a way that the cusp o € {o0, 0} belongs to Z,.

e Components in the fibres of X; — X7: denote these as E; (for 1 < i < ey), and
Foi, Fy; (for 1 <i < es), where F, ; intersects Z,.

Their intersection numbers are

o (ZyZy) =—n, (ZeoZyp) =N —ey— €3
L4 (ZaEz) =1= (Zoz-Foz,i)

e All other intersection numbers are zero.

We now use the formula for ®(J,,) from Theorem 1.19. We have C' = mo(X,), and write
YV € Z% for the basis element dual to Y € C. We also have I = {00,0}, and e (as in
Theorem 1.19) equals (1,1). Therefore Z! /eZ = Z.V where V is the image of the dual of
oo (so that —V is the image of the dual of 0). The map h: Z[C]| — Z!/eZ takes Z,, to
V and Z, to —V, and all other elements of C' to 0. The map (a, h): Z[C] — Z° © Z /eZ
is then given by the matrix:

Zoo ZO El Tt Eez Foo,l FO,l e Foo,eg FO,eg

ZYr  -n n—ey—e 1 - 1 1 0o - 1 0 7
Zy |n—es—e3 —n 1 -1 0 1 - 0 1
EY 1 1 2

EY 1 1 —2

Fv 1 0 —2 1

F(}/Cl 0 1 1 -2

F; . 1 0 2 1

Ry, 0 1 1 -2
V L 1 -1 0 0 J

As a basis for Z%° we take Z = ZY, — Zy, E; = EY — Z3, Fo; = F)l; — Zy. So ®(Jn)

is isomorphic to the quotient of the free module generated by Z, {E;}, {Fa.;} and V by
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the submodule of relations
7 = QEZ- = 3?0,2‘, Foo,i = 2F0,i

V:nz—iﬁi—Qezgfoﬂ‘.
i=1 i=1

If e, > 1 then for every i > 1, U; = E; —Eo_hzls order 2, and if ez >1 then V; = Foﬂ- —fo,o
has order 3. The subgroup generated by Z, F; (if e; > 1) and Fyq (if e3 > 1) is infinite
cyclic, with generator

if62:63:0

=N

ifea >0, e3=0
7071 ifeo =0, e3>0
B, — FOJ otherwise
This gives (a), and (b) follows since the inclusion ®(7},) = Z — ®(Jy) maps 1 to V. O
Since ®(J) = ®(Jy)/P(Tw), an easy computation gives:
Corollary 2.8. ([23, Table 2[; [10, 4.4.1])
O(J) ~ Z/PL & (Z/22)"*~>0 & (7,/37)m(cs=20)

where
P— 2min(eg,2)3min(e3,2) <7’L _ 2 _ %) .

2.3.2. Xo(p) with m = (0c0) 4+ (0). In the setting of Theorem 2.7, if ey and es are at
most 1, then ®(.J,) is infinite cyclic and the map ®(T,,) ~ Z — ®(J,,) is, up to sign,
multiplication by the order of the cyclic group ®(J). Therefore the actions of all the
Hecke operators T (including for p | N) can be computed from the actions on ®(T,).
For example, suppose N = p. Then by Example 2.2(b), without appealing to the results
of Ribet and Edixhoven we obtain:

Corollary 2.9. Suppose that N = p and m = (00) + (0). Then
o O(Jy) is infinite cyclic.
o O(J) = coker(P(Ty,) — P(Jn)) is cyclic of order n, the numerator of (p — 1)/12.
o Forl#p, Ty =L0+1 on ®(Jn), and T, =1 on ®(Jy).

2.3.3. Xo(pM) with (p, M) = 1 and m a general cuspidal modulus. Now let m be any
nonzero reduced modulus supported on the cusps of Xy(N), with p exactly dividing N.
Recall that we are working over the strict henselisation R of Z,. Then since p* { N, all
the cusps are rational over F' so e = (1,...,1) and

O(J) = coker(Z[0] 1% 760 @ 71 /diag(Z))
with I = supp(m) C Xo(N)>(Q).

Proposition 2.10. If the closure of the support of m meets just one component of the
special fibre X!, then there is a canonical splitting

O(Jy) =0(J) @ P(Th).
Otherwise, if rog = 0o, ry € supp(m) meet Zy,, Zy respectively, and w' = (r) + (x¢),
then there is a canonical splitting

D(Jp) = O(Joy) @ 2 1oem0},
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Proof. In the first case, we may assume that the closure of the support of m meets only
the component Z,,. Then h(Y) =0if Y € C, Y # Z, but h(Zy) = (1,...,1), so the
composite h: Z[C] — Z!/diag(Z) is zero.
In the second case, we have h(Y) =0if Y ¢ {Z, Zp}, and
(Z

MZsx)=(1,...,1,0,...,0)
hZy) = (0,...,0,1,...,1)
for a suitable ordering of I. Therefore
7' /diag(Z) = im(h) @ {b € Z' | b(Zs) = b(Zy)}/diag(Z)
giving the splitting. O

2.3.4. Xo(p?). Finally, let us consider the curve Xy(p?), p > 3. The Katz-Mazur model
X’ over S has three irreducible components in its special fibre, which we denote Z;
(0 < i < 2). The non-supersingular non-cuspidal points of Z! parametrize pairs (F,C),
where E is an elliptic curve and C'is a cyclic (in the sense of Drinfeld) subgroup scheme
of rank p?, whose étale quotient has rank p’. The components 7}, Z; have multiplicity 1,
and Z] has multiplicity p — 1. They meet at the supersingular points.

The cuspidal divisor Xo(pz)%’ consists of three closed points co = z; = SpecQ, z, =
Spec Q(jp) and 0 = z,2 = SpecQ, in the notation of Section 2.1. For each i, the closure
in X’ of the point z, meets the component Z; in a single point, and the completed local
ring at the intersection is computed in [9, Proposition 1.2.2.1] as

Zp(lq]] ifi=0
(2.3.1) Zp i) (1] 1
Z,([¢"") 2

where ¢ is the usual parameter at infinity on the modular curve of level 1.

The minimal resolution 7: X — X’ is described in detail in [9, §1.5]. We summarise
the final result. Write p = 12k 4+ 1 + 4a + 6b, with a, b € {0,1}. We again work over the
strict henselisation R of Z,)

The Katz—Mazur model X’ has exactly two singular points, which are the points z,
T172s € Zj lying over the points j = 0, 1728 in the curve X(1)f . Let £ = 7 (2 1708) ",
F =7"Yx). Then E ~ F ~ P!, FE has multiplicity (p—1+2b)/2 and F has multiplicity
(p—1+2a)/3.

Let Z; be the reduced strict transform of Z!. The intersection matrix of X is:

Zo Zi Zy E F

Zo[-L k k b

Zi |k =1 k 1

(2.3.2) Zs | kK k —L b
Elb 1 b -2
a 1 a 0 -3

o 2

where L = (p?> — 1)/12 — k. As a basis for ker(Z¢ LA 7Z) we take Y =YV — dy Zy, for
Y € {Z, Z1,E, F} and where dy is the multiplicity of Y. (Since the residue field is
perfect, dy = dy.)

We first consider the modulus m = Xo(p®)§ = D g<;<a(2yi) of all cusps. Since the
cusp z, is isomorphic to Spec Q(y,), and the other cusps are rational, e = (1,p — 1,1).

From the description (2.3.1) of the completed local rings at the cusps, we see that > ~
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Spec R U Spec R[] U Spec R, and the pullback of the divisor Z; to the component of ¥

which it meets has degree 1. Therefore the matrix (h;;) giving the pairing C' x I — Z in
Theorem 1.19 is
Zy Zy Zy E F

21 0 0 0 0

Zp [0 1 0 0 O] :

z2 LO 0 1 0 0
Let V; € Z'/eZ be the image of the i-th basis vector (dual to z,) of Z’. We will take
{Vi, 1} as basis for Z! /eZ.

Next consider the modulus m" = (00) + (0) = (21) + (2,2). Then e = (1, 1), and the
pairing C' x I — Z is given by the same matrix with the z,-row deleted, and Z'/eZ is
generated by Vy = V5.

Under the isomorphism of 1.19, the image of Z!/eZ in the homology of the complex
(1.3.1) is the subgroup ®(7;,) of ®(Jy). The analogous statement holds for nv'.

Theorem 2.11. (a) The component group ®(Jy,) is isomorphic to Z*, and (for a suitable
choice of isomorphism), the image of the generators Vy, Vi of ®(1y,) are

(L+ (3b—2a)k —a+b,—6k —2a—3b) and (—k—"0b,1).

(b) The component group ®(Jy) is isomorphic to Z, and (up to sign), the image of the
generator Vo of ®(Ty,) is (p* — 1)/24.

Remark. (i) From the computation in (b) we recover the result [10, Sect. 4.1, Prop. 2]
that ®(J) is cyclic of order (p? —1)/24.

(ii) In both cases the map ®(Ty,) — P(J) is an injection of free abelian groups of
the same rank, so the action of Hecke operators on ®(7},) determines that on ®(.J,) and
therefore on the quotient ®(.J), “by pure thought”.

Proof. From (2.3.2) we see that ®(.J,) is generated by {Vy, Vi, Zo, Z1, E, F'} with relations
Vo=LZy—kZ, —bE — aF
Vi=—-kZy+7Z,—E—F
bZy+7Z,—2E=0=aZy+ Z, — 3F

and linear algebra then gives an isomorphism ®(.J,,) — Z?2 by

Zo — (1,0)
Z1>—> 2 — 3b, 6)
a—10,3)

(

= (

— (a—10,2)
— (L — (2k+1)a+ (3k + 1)b, —6k — 2a — 3b)
(=k=0b,1)

This proves (a). For (b), we compose with the map Z? (1,k-+b)

subgroup generated by Vi, and which takes Vj to

Z., whose kernel is the

p*—1

L—2k+1)a+ (Bk+1)b+ (k+b)(—6k —2a —3b) = 51
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