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Gluing complexes of sheaves
Martin Olsson

Abstract. We prove two variations of the classical gluing result of Beilinson—Bernstein—Deligne.
We recast the problem of gluing in terms of filtered complexes in the total topos of a D-topos, in
the sense of SGA 4, and prove our results using the filtered derived category.

1. Statements of results

1.1. The work in this paper grew out of investigating problems of gluing in two different
contexts:

(a) The results of this article are used in [5] where the following problem is studied.
Let f: X — Sand g: Y — S be two morphisms of schemes over a field k and
let K € D(X Xx; Y) be an object in the derived category of coherent sheaves.
Motivated by the study of derived equivalences, we would like to understand
reasonable conditions on K that ensure that K is the pushforward of a complex
on the fiber product X xg Y. A variant of this was considered in the context
of oco-categories in [2], and the transition from that work to ordinary derived
categories can be viewed as requiring a variant of the classical BBD gluing lemma
[3, Théoreme 3.2.4] for cosimplicial schemes. See in particular the proof of [5,
Theorem 1.1].

(b) Given a finite diagram of schemes one can consider compatible collections of £-
adic complexes of sheaves on this diagram and ask about the relationship between
this category and the derived category of ordinary £-adic sheaves on the diagram.
This problem arose in the study of sheaves on stacks, and its resolution again
requires a variant of the BBD gluing lemma for diagrams of £-adic sheaves.

We present here a general approach to these kinds of problems proving a generalization
of the BBD gluing lemma for very general diagrams of sheaves.

1.2. Let D be a category and let 7 be a D-topos in the sense of [1, V®*, Définition 1.2.1].
For an object d € D we write Ty for the fiber of T over d (so Ty is a topos), and for
each morphism § : d — e in D we write f5 : T, — Ty for the corresponding morphism
of topoi (see loc. cit.).

We write Sh(T') for the category of sheaves in 7'. The category Sh(7") can be described
as the category of systems ({Fy}gzep, {0s}5eMor(D)), consisting of an object Fy € Ty
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for each d € D and for every morphism § : d — e in D a morphism o3 : f{"Fq — Fe
satisfying a natural compatibility with composition.

Let A be a sheaf of rings in 7', and let A, be its component in 7. Let Sh(T, A) be
the category of A-modules in Sh(T"). For each d € D there is a restriction functor

eq : SW(T) — Sh(Ty), ({Fa}.{o5}) > Fa
which induces a functor (which we again denote by e;)
Sh(T, A) — Sh(T;, Ayg).

For an object M € Sh(T, A) we often write My for e;M € Sh(T;, Ag). For x €
{@, b, +, —} we have the corresponding derived category D*(T, A) of Sh(T, A). We can
also consider the triangulated subcategory D) (T, A) C D(T, A) consisting of complexes
M € D(T, A) for which My € D*(Tz, Ay) foralld.

Remark 1.3. As we discuss at the end of the introduction, the classical BBD gluing
lemma [3, Théoreme 3.2.4] can be formulated in terms of complexes in a A-topos, where
A is the standard simplicial category. It is also interesting to consider the theory for
D = AP (cosimplicial topoi), which arise naturally for example in [2, Theorem 4.7].
1.4. Given acategory D and D-topos T, define I to be the category of systems ({My}sep,
{ps}), where

(i) Mgy e Db(T;, Ay) is an object for each d € D

(i)  for each morphism § : ¢ — d we are given a morphism

@s M. — Rfs« Mg

. . .. . . . s 3
compatible with compositions in D in the sense that for a triple c — d — e the

diagram
%ﬁfmﬁ*
Rfes M,
commutes.
There is a functor
DY(T,A) T, M ({Ma},{gs™) (1.4.1)

sending a complex to its restrictions with the natural transition maps. The two basic prob-
lems we consider here are the following:

(i) Given M, M’ € D?(T, A), formulate conditions under which the map
Homps 7.2y (M, M') — Homr (({Ma} o™, (M) es™)))  (1.42)
is an isomorphism.

(i)  Given a system ({My}, {¢s™"}) € T', formulate conditions on the system that
imply that it is in the essential image of (1.4.1).
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The main results are the following.

Theorem 1.5. Let M, M' € DP(T, A) be two objects such that for every morphism § :
¢ — d in D we have
Extpr. o) (Mec, Rfs«Ma) = 0

fori < 0. Then the map (1.4.2) is an isomorphism.

Remark 1.6. Note that the condition in Theorem 1.5 could also be formulated as
Ext;)(TdyAd)(Lfs*MC, Mg) =0

fori < 0.

Theorem 1.7. Let ({My},{@s}) be an object of T such that there exists a < b for which

M, € D@PY(T,; A y) (the subcategory of complexes whose nonzero cohomology all lies
between a and b) for all d € D. Suppose one of the following conditions hold.:

(i)  for every diagram

we have
Exthyr. Ay (RfsxMa, RfysM,) =0 (1.7.1)
fori <O0; or

@ii) for every diagram

we have
Ext’D(TC’AC)(LfS* Md,Lfy*Me) =0 (1.7.2)

fori <0
Then ({M;},{@s}) is in the essential image of (1.4.1).

Remark 1.8. Jacob Lurie explained in private correspondence the following alternate,
though closely related, approach proving the above in a more general setting of oco-
categories. Contemplation of his argument led, in particular, to removal of certain unnec-
essary assumptions in earlier drafts.

Though we will not use co-categorical perspective in this article, for the reader famil-
iar with this language we can rephrase the above as follows. For a ringed topos (7, A)
let (T, A) denote the co-category of complexes of A-modules in 7. The association
(T, A) — (T, A) can be upgraded to an co-functor

(ringed topoi) — (stable co-categories).

This is explained in a very general context in [6, Notation 2.4.4 and following paragraph].
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For a ringed D-topos (T, A) we therefore get a functor
D — (stable co-categories), d +— 2(Ty, Ag).

Using straightening/unstraightening (oo-categorical version of the Grothendieck construc-
tion) this gives rise to a cocartesian fibration of oco-categories U — N(D) whose fiber
overd € D is Z(Ty, Ag) and for which the infinity category of sections N(D) — U is
the derived category Z(T, A) of the total topos. This allows for the problems considered
in this article to be considered in a very general context: Let U — D be a cocartesian
fibration of co-categories (where we switch notation replacing N(D) by an arbitrary oo-
category as the base). Given a partial section defined on a subcomplex of D one can then
ask for conditions under which this partially defined section extends uniquely to a section
on all D. The negative vanishing conditions in the above results can be viewed as van-
ishing of the relevant obstruction spaces as one extends the partially defined section one
simplex at a time.

Example 1.9. The classical BBD gluing theorem [3, Théoreme 3.2.4] can be viewed as a
special case of Theorem 1.7.

Let (T, A) be a topos and let U € T be an object covering the final object of 7. Let
My € D®(T|y, Ay) be an object equipped with an isomorphism

g pri My — pr; My
in D(T |uxu, Auxu) satistfying the cocycle condition over U x U x U. Suppose that
Exty, (My, My) =0 (1.9.1)

for i < 0. Then we claim that (M, ¢) is induced by a unique object of D?(T, A).

For this we apply Theorem 1.7 with D = A and consider the simplicial topos given by
T|u,, where U, is the coskeleton of U — . So the fiber of T |y, over [n] € A is the topos
T|yn+1. For each [n] € A let M, € D(T|y,, Au,) be the pullback of My along the first
projection U, — U. The isomorphism ¢ defines maps ¢; (using the cocycle condition) so
we get an object

({My}, {gs}) € T. (1.9.2)

The vanishing condition (1.9.1) implies that condition (ii) in Theorem 1.7 holds. Indeed
the vanishing of the local Ext-groups implies that RHom(M, M) € DZ%(T, A) and there-
fore for all [n] € A the complex RHomy, (My, M) is also concentrated in degrees
> (0. Combined with the observation that for every morphism § : [n] — [m] in A the
induced map L f* M, — M, is an isomorphism we get condition (ii). Therefore the sys-
tem (1.9.2) is induced by a unique object Moy € D(T|y,, Ay,)- The object M, is cartesian
by construction. Therefore, by [7, Tag 0D8I] the object M, is induced by a unique object
M € D(T, A).

Remark 1.10. Note that the cartesian condition only enters in at the very end of the
argument and the principal issue is to construct the object M,.
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2. Preliminaries on the filtered derived category

2.1. Let (T, A) be a ringed topos and let DF(T, A) denote the filtered derived category
of A-modules [4, V] (see also [7, Tag 05RX]). Objects of DF(7, A) are complexes K
equipped with a finite decreasing filtration, indexed by Z. Note that this differs slightly
from the definition in [7, Tag 05RX], but this distinction will not be important here. We
also consider the subcategory D? F(T, A) (resp. DT F(T, A), D™ F(T, A)) of DE(T, A)
consisting of objects K such that for all i the complex gr’;,,- K is a bounded (resp. bounded
below, bounded above) complex.

Lemma 2.2. Let H € DF(A) be an object in the filtered derived category of an abelian
category A such that gi'" H € D="(A) for all n > 0. Then for all s > 0 we have FSH €
D=5(A) and the sequence

0> HS(FSH) - H*(gr' H) — H* Y (g T1 H),

obtained from the projection map HS(F* H) — H*(F* H/F**2 H) and the distinguished
triangle
e T'H — F’H/F*T?H — g H — g T H[1],

is exact.

Proof. We proceed by descending induction on s. By the definition of DF(4) the result
holds for s sufficiently big, so it suffices to show that if the result holds for s 4+ 1 then it
also holds for s. For this note first that by the distinguished triangle

FSY'H - FSH — g’ H — FST H[1]

and the inductive hypothesis, which implies that H/(F*T1) = 0 for j < s + 1, we get
that F* H € D=*(+) and an exact sequence

0~ H*(F°H) - H*(g' H) - H**'(F*T'H).

Since the map
HS+1(FS+1H) — HS+1(gI.S+1H)

is injective, by the inductive hypothesis, we then get the result. ]

Lemma 2.3. Let E € D™ F(T,A) and E' € DY F(T, A) be objects such that
Ext’(gr' E,gr/E') =0

foralli < jands < j —i. Then the sequence

0 — Hompg(r,2)(E, E') — @HomD(T,A)(gri E.g'E")

1

— @HomD(T,A) (griE, gri+1E'[1])

1

is exact and RHompg(r,7)(E, E') € DZ°(Ab).
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Remark 2.4. The map

@ Hompx)(gr' E, gr' E') — @ Hompx)(gr' E, gr' T E'[1]) (2.4.1)

1 1

is obtained as follows. Note that for all i there is a distinguished triangle
. oo A P
g’ V'E - F'/F'*2 » ot E 5 o' TLE(N],
and similarly for E’. The map (2.4.1) is obtained by sending a collection of maps (¢;) to

the differences of the two ways of going around the squares

. 5 .

g E —— gri 1 E[1]
l‘/’i l("i-%—l[l]
. 9 .

gl B/ —— gr' TV E'[1].

Proof of Lemma 2.3. 'We can reformulate our assumption on Ext-groups as follows. Recall
[4, V, Proposition 1.4.9] that we have

RHom(E, ~ Ext® (gr’ , r 4.
H (g E.E' S(gr'E, gr' ™" E’ (2.4.2)

14

for all n and s. Using this, our assumption on Ext-groups can then be reformulated as
saying that
H’(gr'"RHom(E, E')) = 0

forn > 0and s < n. Applying 2.2 with H = RHom(E, E’) we conclude that the sequence
0 — H°(F'RHom(E, E')) — H°(gr°RHom(E, E')) — H'(gr'RHom(E, E'))
is exact, which gives the result when combined with (2.4.2) and [4, V, Corollaire 1.4.6]. =
2.5. For an object E € DY F(T, A) we get a bounded complex
cei > PS5 pstL L

in D(T, A) by setting P* := gr’ E[s] and the maps ds : P* — P**! given by the 9;. Note
that ds 1 o ds = 0. This follows from the fact that 9; : gr’ E — gr’+! E[1] factors through
a map

er' E — FSYYE/FST3E[];

namely, the boundary map arising from the distinguished triangle
FSTYE/FST3E — FSE/FST3E — o' E — FSTYE/FST3E[.

Proposition 2.6. Let (P°, ds) be a bounded complex in D(T, A) such that for s € Z and
r > 0 we have
Extpr,a)(P*. P°T7) =0 (2.6.1)
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fori < 0. Then there exists an object E € D? F(T, A), unique up to unique isomorphism,
inducing (P*®, ds) by the construction of Section 2.5.

Proof. For (P*,d,) obtained from E € D?F(T, A) the vanishing condition (2.6.1) is
equivalent to
Extpra) (@' E g/ E) =0

for j > i and s < j —i. The uniqueness of E therefore follows from Lemma 2.3.

To construct E € D? F(T, A) inducing a given (P*, do) we proceed by induction of
the number of terms in P*. For an integer s let o<, P* be the complex in D(7T, A) with
(0<sP*)! = P'ifi <sand 0ifi > s. We then have a term-wise split exact sequence
[7, Tag 0141] of complexes in D(T, A)

0— P’[—s] > 0<sP* > 0<5_1 P* — 0.
This defines a distinguished triangle in K(D(T, A)); in particular, a map
8s 1 0<5—1 P* —> P*[—s +1].

Concretely this is simply the map induced by ds_; : P*~! — P*. Note that the assump-
tions on (P°®, d,) are also satisfied by (0<s P°, d.) and therefore by induction it suffices
to show that if (0<s—1 P*, d.) is obtained from an object Es_; € DbF(T, A) then so is
(0<s P*, d,). For this it suffices, in turn, to show that §; is induced by a morphism in the
filtered derived category

8s: Eg_1 — (P°[=s + 1], Gs),

where for an integer ¢ we write G, for the filtration on P*[—s+ 1] for which G ;P S[—s+1]
equals P°[—s + 1] if i < g and 0 otherwise. For this note that we have

Ext” (gri (0<s_1E), gr’/ (P°[=s +1],Gs-1)) =0
if j #s—1ori > s, since in this case one of the factors is 0, and fori < s — 1 we have
Extr(gri (oss_lE),grS_l(PS[—s + 1], Gs—1)) = Ext" ST+ (pi ps).

In particular, this vanishes if r —s + 1 + i < 0, or equivalently, r < (s — 1) — i. Therefore
by Lemma 2.3 the map 8 lifts to a map

851 Es—1 = (P°[—s + 1], Gs—1)
in the filtered derived category. Let
85 0 Es—1 — (P*[—s + 1], Gy)

be the composition of §;, with the natural map

(P°[=s 4+ 1], Gs—1) = (P*[—s + 1]. Gy). n
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3. Filtered complexes in a D-topos
3.1. The functor e; discussed in 1.2 has both a right and left adjoint. The right adjoint
Ag :Sh(Tz,Aq) — Sh(T, A)

sends an object N € Sh(T;, Ay) to an object of Sh(7, A) whose e-component is given by

1_[ fS*N

§:e—d
The left adjoint
sq :Sh(Tz,Ag) — Sh(T, A)

sends an object N € Sh(7Ty, A4) to an object of Sh(7, A) whose e-component is given by

@S:d—wf&*N-

Since ey is exact the functor A4 takes injectives to injectives. For an object M €
Sh(T, M) the natural map M — [[; A4 M is injective. Therefore if we choose for each
d aninclusion My — J4 of M into an injective A z-module J; then we get an inclusion
into an injective M — [[; A4 J4. In particular, every injective object in Sh(7, A) is a
direct summand of a sheaf of the form [[; A4 J4 with each J; injective in Sh(7y, Ag).

Notation 3.2. Let ND denote the nerve of D (a simplicial set). In degree k the elements
of NDy, are the diagrams in D

i:d0—>d1—>---—>dk

consisting of k composable morphisms. For ¢ € D let a\NDj denote the set of pairs
(d, p) consisting of an object d € NDy and a morphism p : @ — dy. Similarly let NDy /b
denote the set of pairs (d, y) consisting of an object d € NDy together with a morphism
y 1 dx — b, and let a\ NDy /b denote the collection of triples (d, p, y) consisting of an
object d € NDy and morphisms p : a — dy and y : dy — b. Note that

a\NDy/b =[] (@\NDy/b)s,
o:a—b

where (a\NDy /b)s denotes the subset of triples for which the induced morphism ¢ — b
iso.
Ford e NDy let fy : Ty, — T4, be the morphism induced by the composition do — d.

3.3. For a sheaf M € Sh(T, A) we can associate an augmented cosimplicial object of
Sh(T, A)
M — C(M),

as well as an augmented simplicial object Sh(7, A)
LM)—>M

as follows.
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The object C (M) is defined by

= [T AafaxMay).

deNDy
So the restriction of C (M) to T, is the cosimplicial object of Sh(T,, A,) given by

Kl ] pefasMa,.
iEa\NDk

The transition maps are induced by the simplicial structure on ND. Note that

C(M)o =[] *aMa.
deD

The adjunction maps M — Ay M, induce the augmentation M — C(M).
The simplicial object L (M) is defined similarly by the formula

[k] = @QGNDksdk(fi*Mdo)'
So for b € D the restriction of L(M) to Tp is given by
[k] = @aenp,/pv™ 1 Ma,-

We have Z(M)O = @ ecp Sa Mg, and the augmentation Z(M) — M is induced by the
adjunction maps sa Mg — M.

34. Let C(M) (resp. L(M)) denote the normalized complex associated to C (M) (resp.
L(M)) so we have maps of complexes

M — C(M), L(M)— M. (3.4.1)

We will prove that these maps are quasi-isomorphisms (see 3.8 below). For later purposes,
however, we will show this using some slightly more general considerations.

3.5. Let o/ be an additive category with infinite products and let F : E — &7 be a functor
(we will apply this below with E =a\D or E = D/a fora € D and & = Sh(T,, Ay) —
hence the change in notation). For e € E write F, for the value of F' on e. We can then
repeat the construction of C (M) above to get a cosimplicial object C (F) in </ given by

Kl ] Fe-

eeNE}

3.6. Suppose now that £ has an initial object b € E. For k > 1 define

h : C(F)x — C(F)r—
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to be the map whose component in the factor corresponding to dg — --+ — dj—1 is the
projection
[ Fo— Fa

eg—>—>ey

onto the component given by
b—dy— - —di_.

Define
ho:C(F)o =[] Fe— F»
ecE
to be the projection onto the b-th factor, and let d_; : F, — C(F) to be the product of the
maps o, : F, — F, given by the fact that b is the initial object in E.

Lemma 3.7. For every k > 0 we have
dg gy, = dk—1hi + hirdy,

where dy, : G(F)k — 5(F)k+1 is given by the alternating sum of the maps &; - G(F)k —
C (F)k+1 provided by the cosimplicial structure.

Proof. Fix
i:(d()—>d1—)°--—>dk)€NEk

and let us calculate the composition of the maps C (F) — C (F)g in question with the
projection onto the d-th factor of C(F )k. For e € NDy write F, for the factor of C (F)x
corresponding to e (so F, = F,,, but this notation reflects also which factor in the product
we are considering).

Let 0 < ig < k be the smallest integer for which d; 7 b. For both of the maps dj_1 /1
and hg1dy the compositions in question factor through the projection from [ [,c vg, Fe,
to the product of F; with the factors of the form

F

b—do—>-dj-—>dy

for i > iy (note here that there may be several different choices of i corresponding to the
same factor). Thus it suffices to calculate the individual factors

b—>dy—-d; —d - Fi

of our maps.
On the factor F; the map dy_; Ay is given by (with the convention that if iy = 0 then

the sum is 0)
iop—1
( Z(—l)f) idr,

j=0
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and the map /4 dy is given by

(Zoj(—l)f) idr,,
Jj=0 -

so their sum is idg, .
To calculate the maps on a factor F
ments j for which

S dysdy ey let J denote the set of those ele-

~ ~

On a factor F

b do—s-dsd the map dy_1hy is given by Zjej(—l)f times the natural
map

F

b—)do—)zi,—)dk = Fdo—)&,—)dk - Fi’

whereas the map Ay 1dy is given by > el (—=1)7*! times this map. The two maps there-

fore cancel on the factor of F

b—>dg—>-ds—rdy." m

Corollary 3.8. The maps (3.4.1) are quasi-isomorphisms.

Proof. Tt suffices to verify that the maps restrict to quasi-isomorphisms over each 7,
(a € D).
To prove that M, — C(M), is a quasi-isomorphism apply Lemma 3.7 with

F :a\D — Sh(T,, Ag)

sending § : a — d to fg. M.
To get that L(M), — M, is a quasi-isomorphism apply Lemma 3.7 to the functor

F : (D/a)® — Sh(T,, Ag)®

sending
(6:d—>a)— fi'My. [

3.9. We view C(M) and L(M) as filtered objects using the “stupid filtration”, so for
k > 0 we have

gfCM) = ] Aay(faxMa)l=k].
i eND k
e *L(M) = ®aenp,sa, (/7 Ma,)[K].
Since the filtrations involved are infinite we cannot directly apply our results on the filtered

derived category. To get around this, note that for all n € Z the objects C(M ) /Fil", (resp.
Fil” L(M)) define projective (resp. inductive) systems in DF(T, A) and we have

C(M) ~ holim, C(M)/Fil", L(M) ~ hocolim,_, o (Fil"(M))
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in D(T, A). Indeed this follows from noting that for any index p the map
AP (C(M)/FiI"t) — P (C(M)/Fil") (resp. 77 (Fil"*(M)) — H? (FiI"T' (M)))

is an isomorphism for n sufficiently large (resp. sufficiently negative); see also [7,
Tag OCQE].

We can extend C(—) to DV (T, A) by applying the above construction termwise to
bounded below injective complexes to get a functor

C(-) : DT(T, A) — (projective systems in D ¥ F(T, A))

such that the composition of C(—) with the forgetful functor followed by holim is the
identity functor on DT (T, A) — DV (T, A).
Similarly we define

L(-) : D™(T. A) — (inductive systems in D~ F(T, A))

by considering flat complexes.

4. Proof of Theorem 1.5

We proceed with the notation of the theorem.
To show surjectivity of the map (1.4.1) fix a compatible collection of maps

oqg Mg — My “4.0.1)

defining a morphism in I". We show that these maps are induced by a morphism in D(7, A)
as follows.

View M as an object of DE(T, A) by setting Fil! M = M for i < 0 and 0 otherwise.
Consider the projective system C(M')/Fil" of objects of DF(T, A). We have gr' M = 0
fori # 0 and

Exth ) (@M. g/ C(M) = Exthyid o (M, [T 2an(RfanM,)
deND;

— s—j ’
= I EXUy 7, 6y (Mao- RfaMg,).
iGNDj

By assumption these groups vanish for j > 0 and s < j. Therefore the assumptions of
Lemma 2.3 hold and it follows that the map

0= l_[ad:M—> nde:i
deD deD
lifts uniquely to a compatible collection of morphisms M — C(M')/Fil” in the filtered
derived category. Passing to the homotopy limit over n we then get a morphism M —
C(M’) ~ M’ in D(T, A) inducing the oy proving the surjectivity.
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For the injectivity, note that a morphism 7 : M — M’ in D(T, A) induces, by compo-
sition with the map M" — C(M"), a compatible collection of maps in the filtered derived
category M — C(M')/Fil* which recovers t by passing to the homotopy limit. By the
preceding discussion these maps in the filtered derived category are uniquely determined
by the associated maps on graded pieces, which implies that t is determined by its image
inT. |

5. Proof of Theorem 1.7

5.1. Proof under assumption (i)

The uniqueness follows from Theorem 1.5.
For the existence set

Pk = 1—[ Ado(Rfi*Mdk) € D(T’ A),
iENDk

and let di : P¥ — P¥**1 be the maps induced by the alternating sums of the ¢s.
For a given
d = (dy —> -+ —dy) € NDy

and s < k let (NDys)q C NDy be the images of d under the various degeneracy maps
NDj — NDy. So (NDy)g is a finite set and there is a projection

75 PS> Pii= [ eo(RfexMe,).
e€(NDs)g

Note that for s < k the composition

s
ds—l

T
d
Pl == pS — p;

factors through n;_l. This implies that if 0<; P*® is defined as in the proof of Proposi-
tion 2.6, then we get a map of complexes in D(T, A)

mg:0<sP* — 0Py
Since (N Dy)g is finite, our vanishing assumption (1.7.1) implies that
Exthypa)(Pg. P*T7) =0

foralli <0, r > 0 and s < k. In particular, by Proposition 2.6 there exists for every
d € NDy and s < k a unique filtered complex K s@) € DF(T, A) inducing the complex
0<s P . Furthermore, for d " € NDy for which d € (NDy) 4’ We have by Theorem 1.5 a
unique morphism in DF(T, A)

KD S k@

T,i,.

s
d

inducing the natural map o< Pi.’ — o< Py,
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We now construct for each integer n > 0 an object K,, € DF(T, A) with maps

d
qnd - Kn — K,,L)

for d € NDy and k > n, and distinguished triangles

In+1

Pn+1[_(n + 1)] - Ky — K, — P”+1[—n] (5.1.1)

such that the following hold:
0 otherwise,
(i)  the filtered structure on K, induces the maps dj (as in Section 2.5),

(iii) the map t,4; induces an isomorphism K, /Fil"*! ~ K,, in DF(T, A) com-
patible with the isomorphisms in (i).

(iv) Fork’ > k,d' € NDy andd € (NDy), the diagram

Kn
‘IV %/
@ “dd @)
KPP — = LK

commutes.

For this we proceed by induction on 7.
For n = 0 we take Ky = P° with the qo,4 the projection maps.
To pass from n to n + 1 note that K, 4, will be specified by a map

oy i Ky — P —n] = 1_[ Ady(Rfg« Mg, )[—n]
deNDy, 1

in DF(T, A), where P "1 is viewed as filtered with Fil¥ P"+! = P"*1! fory <n + 1 and
0 for u > n + 1. To give this map it suffices to specify for each d € ND, 4+ a map

Un,d : Kn — Aagy(RfaxMg,)[—n],

dnd
and we take for this map the composition of K, 2K ,(,i) and the map
d
Ki® = Ay (RfaxMag)[-n)

arising from K, 1 4. The above properties follow from the construction.
In particular, we get a tower of complexes

coi = Ky = Ky — -+ = Ko,

with distinguished triangles as in (5.1.1). Let K denote the homotopy limit of the K.
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Precisely, K is defined to be the cocone of the map
L—t:][[Kn =[] Kn
n n

We claim that K is the desired object of D(T, A).
By our assumptions there exists an integer ng such that My € D="°(T,;, A,) forall d.
Using the distinguished triangle (5.1.1) we obtain that for every s there exists an integer r

such that the map
5 (Ky) — 75 (Kin—1)

is an isomorphism for m > r. This in turn implies that for every s the map
(1 —1) : j‘fs(l_[ K,,) = %S(HKn)
n n

is surjective with kernel .7#° (K). From this we conclude that the projection map K — K,
induces an isomorphism J7°(K) — 5¢°(K,) for n sufficiently big.
Fix a € D. The restriction of P" to T, is the complex
Pl=J] Rp«RfseMy,
deN(a\Dy)

with the transition maps induced by the ¢;. If we view M, as a filtered object with

M, forr <0

FirM,={ ¢ "=
0 forr >0

then by the vanishing (1.7.1) we have
Ext;_)(Ta,Aa)(gri M, g’ K,) = Exti)_(j}mAa)(gr" My, PJ)=0
for s < j and all i. It follows from this and Lemma 2.3 that the natural map
M, — gi’K, = 1_[ Rfs«Mg
8:a—d

lifts uniquely to a morphism B, , : M; — K, 4 in DF(T,, A,). By the uniqueness, the
diagram

Mo =2 Ko

tn
Kn—l,a

commutes. The maps f,,, therefore induce a map B, : M, — K,. To see that this map
is an isomorphism note that the spectral sequence of the filtered complex K, (see for
example [7, Tag 012K]) takes the form

EPY = 1(PP) = HPTI(K,),


https://stacks.math.columbia.edu/tag/012K
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and the differentials
(PP — %ﬂq(PpH)

are induced by our given maps P? — PP+ From this it follows that the map S induces
an isomorphism

HU(My) — Ey? = Ker(#1(P°) — #(P)),
and that £2? = 0 for p # 0. Indeed consider the functor
F:a\D — D(T;,Ay), (§:a—>d)+— Rfs<My,

and form the associated cosimplicial object C (F) in D(T,, Ay). Then we see that the
complex E f 1 is equal to the complex obtained by taking g-th cohomology sheaves level-
wise of C (F) and then taking total complex. By Lemma 3.7 it follows that the natural
map
A1 My) — ET?

is a quasi-isomorphism.

We therefore obtain the desired isomorphisms § : M, >~ K,, and by the construction
these isomorphisms are compatible with the transitions maps ¢;.

5.2. Proof under assumption (ii)

Once again the uniqueness follows from Theorem 1.5.
For existence define for k > 0

P~ = @genn,Sa, (LS May)

and let d_g : P~ — P~5*1 be the map obtained by taking the alternating sum of the
maps given by the simplicial structure. We then get a complex, concentrated in degrees
(—00,0],in D(T, A).

For d € NDj we can also consider for s < k the complex

Pi_s = @QE(NDs)ises(Lfg*MeO) C P_S.
This defines a subcomplex
0>—sPj Co>_P°
in D(T, A).
Our assumptions imply that for all 5,7 € Z and i < 0, Ext' (P, Pj;) = 0. By Propo-
sition 2.6 the complex P, is induced by a unique filtered complex 77_(%) e DF(T, A).
Moreover, for k < k" and d’ € NDy for which d € (NDy,) 4/ We have unique maps

IV FD , @D

in DF(T, A) inducing the natural maps on complexes in D(T, A).
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We now construct for each integer n > 0 an object F_, € DF(T, A) with maps
d
qnd : Ff;) — F_,

for d € NDy and k > n, and distinguished triangles

tht1

F o, F,1— P""n+1]— F_[1]
such that the following hold:

PS if0>s>—k
i r'F_, = -
@ e k { 0 otherwise,
(i)  the filtered structure on F_, induces the maps dj (as in Section 2.5),
(iii) the map ;41 induces an isomorphism F_, ~ Fil™" F_,_; in DF(T, A) compat-
ible with the isomorphisms in (i).

(iv) Fork’>k,d € NDy andd € (NDy), the diagram

F_,
N
5, ’
JolC L

commutes.

The objects F_,, are constructed by induction on n. For set Fy := P°.
To obtain F_,_; given F_,, note that F_,_, is determined by a morphism

a: P"tn + 1] — F_,[1],
or equivalently for each d € ND,;; a map
ag : Sa, (Lfy Ma,)In + 1] — F_u[1].
We take for atg the map induced by the natural map

FD - FD - Fo).

—n—1

The above properties follow immediately from the construction.
We therefore get a sequence of objects in D(T, A)

F() — F—l — F_2—>~" .
We let K denote the homotopy colimit of this sequence.
We have
P0== E£>SdA4d’

deD
and therefore fora € D
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The maps ¢s therefore define a map e, : P‘? — M,. By Lemma 2.3 these maps are given
by unique maps ek 4 : Fyqo — M, in DF(T,, Ay), where M, is viewed as being filtered
with Fil' M, = 0 for i > 0 and FilM, = M,. The uniqueness of the maps imply that
ey,q Testricts to exyq,, on Fyy , and we consequently get a map e, : K, — M,. By
the same argument as in the proof under assumption (i), using the spectral sequence of a
filtered complex and looking at cohomology sheaves, we find that e, is an isomorphism
compatible with the maps @s.

This completes the proof of Theorem 1.7. ]
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