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We introduce a method for approximating the signed distance function (SDF)

of geometry corrupted by holes, noise, or self-intersections. The method

implicitly defines a completed version of the shape, rather than explicitly

repairing the given input. Our starting point is a modified version of the

heat method for geodesic distance, which diffuses normal vectors rather

than a scalar distribution. This formulation provides robustness akin to

generalized winding numbers (GWN), but provides distance function rather

than just an inside/outside classification. Our formulation also offers several

features not common to classic distance algorithms, such as the ability to

simultaneously fit multiple level sets, a notion of distance for geometry that

does not topologically bound any region, and the ability to mix and match

signed and unsigned distance. The method can be applied in any dimension

and to any spatial discretization, including triangle meshes, tet meshes,

point clouds, polygonal meshes, voxelized surfaces, and regular grids. We

evaluate the method on several challenging examples, implementing normal

offsets and other morphological operations directly on imperfect curve and

surface data. In many cases we also obtain an inside/outside classification

dramatically more robust than the one obtained provided by GWN.
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1 INTRODUCTION
A signed distance function (SDF) describes the distance to the clos-

est point on the boundary of a given shape, using sign to indicate

whether points are inside or outside. SDFs are a basic component of

numerous algorithms from geometric modeling [Museth et al. 2002],

physical simulation [Osher et al. 2004], rendering [Quilez 2008], path

planning [Oleynikova et al. 2016], geometric learning [Yariv et al.

2023] and computer vision [Vicini et al. 2022]. In many problems,

geometry exhibits severe defects due to errors in modeling or acqui-

sition. Unfortunately, traditional SDF algorithms assume a “perfect”

watertight description of the boundary, relying on a well-defined

inside and outside to determine the sign [Sethian 1999]. At the same

time, robust inside/outside tests do not provide a useful signed dis-

tance approximation [Jacobson et al. 2013]. Our method provides

the best of both worlds: a generalized signed distance (GSD) function
computed directly from broken geometry, which provides not only

an inside/outside classification, but also distance information.
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Fig. 1. The signed heat method computes a well-behaved signed distance
function (SDF), even for imperfect or incomplete input geometry. Here we
compute geodesic signed distance to the broken curve shown in magenta.

More precisely, we aim to approximate the signed distance to

the boundary of a shape within a fixed domain𝑀—for example, a

curve on a surface, or a surface in R3. When 𝑀 is itself a curved

manifold, we consider the signed geodesic distance, i.e., the minimal

length among all paths along𝑀 . We assume we are given as input

a defective description Ω ⊂ 𝑀 of the shape boundary: a “broken”

curve or surface which can have holes, self-intersections, and noise.

We then seek a reasonable approximation of the SDF for the true

(unknown) geometry.

Our solution to this problem, the signed heat method (SHM), pro-
vides a “least squares” approach: we find a signed distance approxi-

mation that matches the input geometry as well as possible, even

when it does not perfectly bound any region. There are three basic

steps (Figure 2):

I. Diffuse the normals of Ω for a small time 𝑡 > 0, by solving a

vector-valued heat equation.

II. Normalize the diffused vectors, yielding a unit vector field

that approximates the gradient of the (unknown) SDF.

III. Find the function whose gradient best matches the unit vector

field, by solving a scalar Poisson equation.

A diffusion-based approach is valuable because it extends in a robust

way to imperfect geometry. For instance, if a curve has gaps, or a

surface has holes, diffusion averages together normals at nearby

points—providing smooth interpolation of the observed data. Nor-

malization of gradients then ensure that we recover a distance ap-

proximation, rather than just a smooth function.

Why not simply “fix” the broken geometry before computing

distance? For example, one could fit an implicit function, extract

an explicit mesh, then compute signed distance using any standard

algorithm. Here, however, errors in reconstruction can propagate

into distance computation (Figure 3, left). Moreover, each step (say,

computing signed distance) already costs as much as our entire
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Fig. 2. The three basic steps of the signed heat method.

method. We avoid intermediate representations altogether, provid-

ing more accurate distance for about an order of magnitude lower

cost (Section 9.5.3).

By formulating our method from the perspective of short-time

heat diffusion, it also inherits many benefits of the original heat

method: it can compute (geodesic) distance on curved domains, it

applies directly to most discretizations (triangle/tet meshes, gen-

eral polygon meshes, point clouds, etc.), is robust to noise in both

the input geometry and the underlying domain (since it is based

on solving “nice” elliptic problems), and is easily accelerated and

parallelized using existing systems for sparse linear algebra (since

the main cost is solving two standard linear systems). More broadly,

a variational, PDE-based approach to SDF computation enables ex-

tensions not possible even with other geodesic distance algorithms—

such as finding the “best fit” distance function for a collection of

partially-observed level sets (Section 7.1), or computing a notion of

generalized signed distance for input shapes that do not topologi-

cally bound regions (Section 7.2).

2 RELATED WORK
Our algorithm complements a large set of existing methods:

• Methods for robust inside/outside classification, which do

not directly provide signed distance (Section 2.1).

• Methods for signed distance computation, which generally

do not work well for broken geometry (Section 2.2).

It also of course builds on earlier heat methods (Section 2.3). Un-

fortunately, simply signing the unsigned distance yields a function

completely different from the true SDF—see Figure 6. In general,

there are only a few methods that explore robust SDF computation—

and none suitable for curved geometry.

corrupted

original
shape

generalized
winding number

generalized
winding number

(constrained)(constrained)

generalized signed distancegeneralized signed distance

(unconstrained)(unconstrained)

Fig. 3. Both GWN and GSD implicitly define a completed surface—but GSD
also provides distance information. Moreover, GWN must interpolate the
input geometry, leading to noisy output (left). GSD can either interpolate
or approximate the input, yielding a more faithful completion (far right).

regular
grid

generalized
 signed
  distance

zero
level
set

offset surfaces

Fig. 4. Our method can be applied on virtually any spatial data structure, in
any dimension. Here for instance we compute generalized signed distance to
a badly broken surface (left), by solving on a regular grid in R3. Contouring
this function yields well-behaved and evenly-spaced offset surfaces (right).

2.1 Inside/Outside Classification
Given a corrupted region boundary 𝜕𝐴, there are two basic strategies

for estimating whether a given point 𝑥 ∈ 𝑀 is inside or outside:

• Pseudonormal test. Let 𝑛(𝑥) be the

normal at the closest point 𝑥 ∈ 𝜕𝐴. The sign
of the function𝜙𝑝 (𝑥) := ⟨𝑛(𝑥), 𝑥−𝑥⟩ indicates
whether 𝑥 is inside or outside 𝐴 [Bærentzen

and Aanæs 2005]. This test can be applied as-

is to broken geometry, effectively using the

tangent plane of the closest boundary point as

a proxy for missing geometry. However, since

tangent planes are not globally consistent, neither is the pseudonor-
mal distance 𝜙𝑝 , which in general is not even 𝐶0

continuous (inset).

•Winding number. Thewinding number captures the number

of times 𝜕𝐴 wraps around the point 𝑥 , and is hence nonzero only

when 𝑥 is inside 𝐴. It is equivalent (up to a constant) to signed

solid angle—known in graphics as the generalized winding number
(GWN) [Jacobson et al. 2013], which is well-defined even for broken

geometry. GWN supplies robust inside/outside queries in several

algorithms [Zhou et al. 2016; Hu et al. 2018], but defines a harmonic

function rather than an SDF—and hence cannot be used for a broad

variety of geometric tasks (e.g., Figure 26, top).

GWNpseudo-
normalinput Each method implicitly applies a prior

(linear vs. harmonic extension), suitable

in different scenarios (inset). GSD effec-

tively interpolates between these options:

as 𝑡→0, points inherit the normal at the

closest point; as 𝑡→∞, diffused vectors

become componentwise harmonic (Fig-

ure 5). Yet unlike the pseudonormal, GSD

is based on global integration, making it

less sensitive to small perturbations. Unlike GWN, which must (by

definition) interpolate the input, GSD is robust to noise in positions

(Figure 3), and yields better surface completions due to smooth

extrapolation of normal information (Figure 27).

2.1.1 Curved Domains. Inside/outside tests are also not easily gen-

eralized to curved domains. Here, closest point queries entail com-

puting the geodesic distance at every point—at which point one

may as well compute signed distance rather than the pseudonormal.

Likewise, the recent method of Feng et al. [2023] generalizes GWN

ACM Trans. Graph., Vol. 43, No. 4, Article 92. Publication date: July 2024.



A Heat Method for Generalized Signed Distance • 92:3
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Fig. 5. For different diffusion times, our method effectively interpolates
between the “linear” prior used by the pseudonormal test (as 𝑡 → 0) and
the “harmonic” prior used by generalized winding numbers (as 𝑡 →∞).

to curved surfaces, but again provides no notion of distance (and

has a similar cost to GSD).

2.2 Signed Distance Computation
For watertight geometry in R𝑛 , unsigned distance can be computed

via fast, exact closest point queries [Sawhney et al. 2020] and signed

via basic inside-outside tests like ray shooting [Haines 1994]. Alter-

natively, one can sample geometry onto a grid and use methods like

fast sweeping [Osher et al. 2004].

For broken geometry, it is tempting to again just sign the unsigned

distance—but unless gaps are very small, the resulting function will

be quite different from the true SDF (Figure 6). Likewise, wavefront-

based methods like fast marching [Kimmel and Sethian 1998] and

learning-based variants [Lichtenstein et al. 2019; Huberman et al.

2023] can be executed on broken geometry, but propagation of

orientation errors yields significant artifacts (Figure 7).

Some “signed distance” methods do not actually compute a true

distance function, but rather just a smooth implicit function that

vanishes near the input geometry. Like GWN, such functions are

unreliable for tasks like morphological modeling or sphere trac-

ing [Hart 1996]. For instance, smooth signed distance (SSD) [Calakli
and Taubin 2011] is actually a biharmonic function with unit-norm

gradient only at the zero set. Likewise, many so-called neural SDFs
encourage the signed distance property only near the zero set, or

weakly enforce the eikonal condition |∇𝜙 | = 1 [Gropp et al. 2020],

which is insufficient to characterize SDFs [Marschner et al. 2023].

2.2.1 Robust Signed Distance. Some past work considers regular-

ized signed distance for broken geometry. E.g., Xu and Barbič [2014]

effectively apply morphological operations on unsigned distance

to “heal” holes of a user-specified size—at the cost of losing small

details. Brunton and Rmaileh [2021] use smoothing to mitigate arti-

facts arising from pseudonormal-like sign estimation (Section 2.1);

Bærentzen [2005] likewise smooth a pseudonormal distance ob-

tained from voxelization. Mullen et al. [2010] sign the unsigned dis-

tance by performing ray intersection tests on a small band around

the zero set. As noted above, neural networks have also been used

to fit distance-like functions to noisy/incomplete input [Park et al.

2019; Atzmon and Lipman 2019; Gropp et al. 2020], but do not pro-

duce true SDFs even for watertight geometry. Unlike GSD, none

of the methods in this section apply to curved domains, nor gen-

eralize to alternative spatial discretizations, nor handle the richer

constraints furnished by our variational formulation.

signing unsigned distance our solution

Fig. 6. For broken geometry, simply signing unsigned distance does not
work, yielding completely different level sets (left) from the distance to the
unbroken curve (right).

ours fast marching

Fig. 7. Our elliptic formulation regularizes the available information, grace-
fully handling broken curves (left). In contrast, hyperbolic methods like
fast marching consider an expanding wavefront that propagates sign and
distance errors (right).

2.2.2 Geodesic Distance. With few exceptions, work over the past

40 years on geodesic distance computation has aimed largely at im-

proving speed and accuracy—Crane et al. [2020] provides a detailed

survey. We focus not on this performance race, but rather on a more

robust notion of signed distance that can be applied in a broader

range of real-world scenarios. However, robustness does not come

at a major cost: our method remains competitive with widely-used

methods such as the heat method and fast marching (Section 9.5).

Most past work considers distance to isolated points, which is

always unsigned, though a few methods consider unsigned distance

to curves embedded in surfaces [Bommes and Kobbelt 2007; Trettner

et al. 2021]; as in R𝑛 , signing unsigned distance will fail to yield

satisfactory results for broken curves. Overall, we are not aware of

any work that computes robust signed distance to broken curves

on surfaces, or more generally, submanifolds of a curved domain.

2.3 Heat Methods
The signed heat method (SHM) builds on the unsigned heat method
(UHM) of Crane et al. [2013b], and the vector heat method (VHM) of
Sharp et al. [2019c]. UHM diffuses a scalar distribution concentrated

on source points for a small time 𝑡 > 0; Varadhan’s formula then

implies that, as 𝑡 → 0, the gradient of the resulting heat distribu-

tion becomes parallel with the gradient of the distance function

𝜙 [Varadhan 1967]. Since the true distance function satisfies the

eikonal property |∇𝜙 | = 1, normalizing and integrating the initial

gradient field (via a Poisson equation) recovers an accurate distance

approximation. VHM instead starts by diffusing tangent vectors at

points; a similar normalization yields the parallel transport of these
vectors along minimal (shortest) geodesics.

Relative to UHM we change only the first step, diffusing normal

vectors concentrated along curves or surfaces, rather than a scalar
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measure concentrated at points. Relative to VHM, we change its

last three steps, integrating (normalized) diffused vectors to obtain

distance. Our basic insight, not considered in prior work, is that

diffused normals will be parallel to the gradient of signed distance,

since parallel transport ensures they are tangent to oriented min-

imal geodesics (Section 3.1). Hence, normalizing and integrating

these vectors recovers an accurate SDF approximation. For broken

geometry the story remains largely the same, except that diffusion

effectively interpolates normals from nearby points to obtain well-

behaved gradients.

Overall, our method inherits many benefits of past heat methods:

for instance, it is not tied to a particular spatial discretization (Sec-

tion 8), and is robust not only to broken source geometry, but also

poor discretization of the domain itself (Section 9.4). Other work im-

proves or applies heat methods in various ways—for instance, Sharp

et al. [2019b] and Gillespie et al. [2021] show how the accuracy and

robustness of the heat method can be significantly improved via use

of intrinsic triangulations—a strategy we also employ here. Several

works improve efficiency and scalability via parallel or iterative

solvers [Tao et al. 2019; Rawat and Biswas 2022a,b], Belyaev et al.

[2013] improve accuracy by iterating the integration step, Sun and

Liu [2022] extend the method to inhomogeneous and anisotropic

metrics, and Litman and Bronstein [2016] approximate all-pairs

distance using spectral methods. These extensions offer rich oppor-

tunities for future improvement and generalization of the signed

heat method.

3 SMOOTH THEORY
Fundamentally, our algorithm is defined in terms of operations in

the continuous setting, as described here. It can then be discretized

in many different ways, as explored in Sections 5 and 8.

Throughout we consider an 𝑛-dimensional

Riemannian manifold 𝑀 with metric 𝑔, and

want to compute the signed distance function

𝜙 for a codimension-1 submanifold Ω ⊂ 𝑀

(e.g., curves within a surface, or surfaces

within a volume). In general we assume that

this data might represent a corrupted version of ideal input, mean-

ing𝑀 and/or Ω may have holes, self-intersections, noise, and may

not be consistently oriented. (We also consider the more general

case where Ω can include isolated points—see Appendix A.1.) We

use 𝑁 to denote the unit normals of Ω, and 𝑛 for the unit normals

of the domain boundary 𝜕𝑀 . We use 𝜇Ω to denote a measure con-

centrated on Ω, similar in spirit to an indicator function
1
; 𝑁𝜇Ω

is likewise a vector field (or vector measure) equal to zero away

from Ω, and determined by 𝑁 for points in Ω. Finally, we use Δ
for the negative-definite Laplace-Beltrami operator on 𝑀 , and Δ∇

for the negative-definite connection Laplacian [Gallier et al. 2020];

intuitively, these operators measure the deviation of a scalar func-

tion and tangent vector field (resp.) from their average in a local

neighborhood.

1
More formally, for any Borel measurable set𝑈 ⊂ 𝑀 , 𝜇Ω (𝑈 ) :=

∫
Ω∩𝑈 𝑑𝑉 , where

𝑑𝑉 is the usual volume measure on Ω.

3.1 Signed Heat Method
The first step of our algorithm is to diffuse the normals 𝑁 from Ω
to the rest of the domain 𝑀 for a short time 𝑡 > 0, which extends

information about surface orientation to the rest of the domain. In

particular we solve a vector-valued diffusion equation

d

d𝑡
𝑋𝑡 = Δ∇𝑋𝑡 , 𝑡 > 0,

𝑋0 = 𝑁𝜇Ω .
(1)

On R𝑛 this equation simply diffuses each scalar component of the

vector field; more generally it accounts for how vectors diffuse across

a domain with curvature (see Sharp et al. [2019c, Section 4.3]). As

with scalar diffusion, the magnitude of 𝑋𝑡 decays exponentially

with distance from Ω, but its direction remains well-defined almost

everywhere since the support of the vector heat kernel is all of𝑀 .

Using diffusion to extrapolate orienta-

tion is not a heuristic, but is rather moti-

vated by a key observation from differen-

tial geometry: as 𝑡 → 0 the diffused vector

𝑋𝑡 (𝑥) at each point 𝑥 ∈ 𝑀 becomes paral-

lel to the normal 𝑁 (𝑥) at the closest point
𝑥 ∈ Ω. More precisely, it aligns with the

vector obtained via parallel transport of 𝑁 (𝑥) along a minimal geo-

desic 𝛾 [Berline et al. 1992, Theorem 2.30]. Since parallel transport

along geodesics preserves tangency, this vector will be tangent to 𝛾

itself—and since traveling along 𝛾 is the quickest way back to Ω, it
must be parallel to the unsigned distance gradient ∇𝜙 . Moreover,

since we transport oriented normals, we get the correct sign. We

can hence normalize 𝑋𝑡 to obtain an approximation 𝑌𝑡 ≔ 𝑋𝑡/∥𝑋𝑡 ∥
of the signed distance gradient.

The vector field 𝑌𝑡 will not describe exact gradients for any SDF,

due to both the diffusion approximation—and more significantly—

errors in the input. However, we can still look for the function 𝜙

whose gradient is as close as possible, in a least-squares sense, to 𝑌𝑡 .

In particular, we seek a minimizer for the problem

min

𝜙 : 𝑀→R

∫
𝑀

∥∇𝜙 − 𝑌𝑡 ∥2 . (2)

Using integration by parts, one can show that a minimizer satisfies

the Poisson equation

Δ𝜙 = ∇ · 𝑌𝑡 on𝑀
𝜕𝜙
𝜕𝑛 = 𝑛 · 𝑌𝑡 on 𝜕𝑀,

(3)

whose solution is determined up to a constant shift. To exactly in-

terpolate the input (and get a unique solution) we could also require

that 𝜙 = 0 along Ω—though if the input is corrupted, interpolation

may be ill-advised (Figure 3); see Section 7.1 for further discussion.

In summary, we arrive at the following algorithm:

(1) Solve a vector diffusion equation
𝑑
𝑑𝑡
𝑋𝑡 = Δ∇𝑋𝑡 (Equation 1).

(2) Evaluate the vector field 𝑌𝑡 = 𝑋𝑡/∥𝑋𝑡 ∥.
(3) Solve a Poisson equation Δ𝜙 = ∇ · 𝑌𝑡 (Equation 3).

4 TIME DISCRETIZATION
As in past heat methods we discretize Equation 1 in time via one

step of backward Euler [Crane et al. 2013b; Sharp et al. 2019c], and
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solve a linear equation

(id − 𝑡Δ∇)𝑋𝑡 = 𝑋0 (4)

for a single, fixed time 𝑡 > 0 (where id is the identity). To get a feel

for the behavior of this equation, we can consider the Euclidean

case (𝑀 = R𝑛), where applying Δ∇ to a vector field is equivalent

to applying the scalar Laplacian Δ to each component. Then as

𝑡 →∞ we approach a standard Poisson equation; moreover, since

𝑋0 = 𝑁𝜇Ω is zero almost everywhere, the solution will look nearly

harmonic away from Ω.

5 SPATIAL DISCRETIZATION
To implement the signed heat method on any geometric data struc-

ture, one need only provide sparse matrices representing the Lapla-

cian, connection Laplacian, and divergence operator. Section 8 ex-

plores several possibilities (regular grid, polygon mesh, point cloud,

etc.); in this section we focus on triangle meshes.

Here we use edge-based operators for the vector diffusion step

(Step I), which makes it straightforward to discretize curve sources;

we then use standard vertex-based operators for the Poisson equa-

tion (Step III), so that our final SDF is stored at vertices. As in

Djerbetian and Chen [2016] we adopt a complex encoding of the

connection Laplacian), which uses half as much storage/bandwidth

as the real-valued version used by Stein et al. [2020]: each 2x2 real

block (four floats) is replaced by a single complex value (two floats).

5.1 Notation
Our domain is a triangle mesh 𝑀 = (𝑉 , 𝐸, 𝐹 ) with
arbitrary topology (e.g., nonmanifold, nonorientable,

and/or with boundary); we use 𝐶 for the set of all

triangle corners. We denote 𝑘-simplices by (𝑘 + 1)-
tuples of vertex indices, i.e., vertices 𝑖 ∈ 𝑉 , edges

𝑖𝑗 ∈ 𝐸, and faces 𝑖𝑗𝑘 ∈ 𝐹 . Likewise, we denote the

corner of triangle 𝑖𝑗𝑘 at vertex 𝑖 as 𝑗𝑘
𝑖
∈ 𝐶 . These indices are also used

to express quantities stored on mesh elements—for instance, corner

angles are denoted by 𝜃
𝑗𝑘
𝑖
. We use < and > to indicate summation

over all elements contained by or containing another element (resp.).
For instance

∑
𝑖𝑗𝑘>𝑖𝑗 sums over all triangles 𝑖𝑗𝑘 containing edge 𝑖𝑗 .

We use | · | to denote the volume of a simplex—e.g., |𝑖𝑗 | is an edge

length and |𝑖𝑗𝑘 | is a triangle area. To avoid trigonometric functions,

we evaluate all angle cotangents via the formula

cot𝜃
𝑗𝑘
𝑖

= ( |𝑖𝑗 |2 − | 𝑗𝑘 |2 + |𝑘𝑖 |2)/(4|𝑖𝑗𝑘 |). (5)

For each edge 𝑖𝑗 , we let 𝑒𝑖𝑗 be a vector parallel to the edge with

arbitrary (but fixed) orientation, and magnitude equal to the edge

length. We let 𝑒⊥
𝑖𝑗
be the 90

◦
rotation of 𝑒𝑖𝑗 in the counter-clockwise

direction, and use 𝑒𝑖𝑗 , 𝑒
⊥
𝑖𝑗
for the corresponding unit vectors.

5.2 Edge Basis Functions
The Crouzeix-Raviart (CR) basis functions
associate each edge 𝑖𝑗 ∈ 𝐸 with a face-

wise linear function 𝜑𝑖 𝑗 : 𝑀 → R inter-

polating the value 1 at the midpoint of 𝑖𝑗 ,

and 0 at all other edge midpoints (inset).

A corresponding basis for vector fields is

expressed by identifying tangent vectors with

complex numbers. In particular, at each edge

𝑖𝑗 we choose a coordinate system such that 1

and the imaginary unit 𝚤 correspond to 𝑒𝑖𝑗 and

𝑒⊥
𝑖𝑗
, resp. The function 𝜓𝑖𝑗 := 𝜑𝑖𝑗 + 0𝚤 then de-

fines a basis vector field parallel to the edge, and

𝑧𝜓𝑖𝑗 describes a locally supported vector field

parallel to 𝑧 ∈ C (right inset).

5.3 Edge-Based Laplacian and Mass Matrix
If we use the CR bases to discretize the scalar Laplacian (via a

standard Ritz-Galerkin approach), we get a real-valued positive

semidefinite matrix L ∈ R |𝐸 |× |𝐸 | with nonzero entries

L𝑖𝑗, 𝑗𝑘 = −2 cot𝜃𝑘𝑖
𝑗
, ∀𝑖𝑗 ∈ 𝐸, 𝑖𝑗𝑘 > 𝑖𝑗,

L𝑖𝑗,𝑘𝑖 = −2 cot𝜃 𝑗𝑘
𝑖
, ∀𝑖𝑗 ∈ 𝐸, 𝑖𝑗𝑘 > 𝑖𝑗,

L𝑖𝑗,𝑖𝑗 = −∑𝑖𝑗𝑘>𝑖𝑗 L𝑖𝑗, 𝑗𝑘 + L𝑖𝑗,𝑘𝑖 , ∀𝑖𝑗 ∈ 𝐸,
(6)

where either the length/area or angle-based expressions can be used.

The mass matrix M ∈ R |𝐸 |× |𝐸 | is diagonal, with nonzeros

M𝑖𝑗,𝑖𝑗 = 1

3

∑
𝑖𝑗𝑘>𝑖𝑗 |𝑖𝑗𝑘 |, ∀𝑖𝑗 ∈ 𝐸. (7)

5.4 Edge-Based Connection Laplacian
Intuitively, the connection Laplacian mea-

sures the deviation of a vector field from

its average value in a small local neighbor-

hood. To compute this average on a mesh,

we must parallel transport vectors into a

common coordinate system at each edge

(see inset). Since edges are intrinsically flat,

parallel transport is simply a translation—

but we must also account for a change of

coordinates. In particular, for each triangle 𝑖𝑗𝑘 , we encode the paral-

lel transport of a vector from edge 𝑖𝑗 to the next edge 𝑗𝑘 in counter-

clockwise order as a rotation

𝑟𝑖𝑗→𝑗𝑘 := 𝑠𝑖𝑗→𝑗𝑘𝑒
−𝚤 (𝜋−𝜃𝑘𝑖

𝑗
)
= −𝑠𝑖𝑗→𝑗𝑘𝑒

𝚤𝜃𝑘𝑖
𝑗 , (8)

where the sign 𝑠𝑖𝑗→𝑗𝑘 ∈ {+1,−1} is equal to 𝑒𝚤0 = +1 if 𝑖𝑗 and 𝑗𝑘

have the same relative orientation with respect to 𝑖𝑗𝑘 , and 𝑒𝚤𝜋 = −1
otherwise. The positive-semidefinite connection Laplacian matrix

L∇ ∈ C |𝐸 |× |𝐸 | is then obtained by multiplying off-diagonal entries

of L by edge rotations 𝑟𝑖𝑗, 𝑗𝑘 , yielding nonzero entries

L∇𝑖𝑗, 𝑗𝑘 = −2𝑟−1
𝑖𝑗→𝑗𝑘

cot𝜃𝑘𝑖
𝑗
, ∀𝑖𝑗 ∈ 𝐸, 𝑖𝑗𝑘 > 𝑖𝑗,

L∇𝑖𝑗,𝑘𝑖 = −2𝑟𝑘𝑖→𝑖𝑗 cot𝜃
𝑗𝑘
𝑖

∀𝑖𝑗 ∈ 𝐸, 𝑖𝑗𝑘 > 𝑖𝑗,
L∇𝑖𝑗,𝑖𝑗 = L𝑖𝑗,𝑖𝑗 , ∀𝑖𝑗 ∈ 𝐸,

(9)

with cotans evaluated as in Equation 5. Since 𝑟𝑖𝑗→𝑗𝑘 = 𝑟−1
𝑗𝑘→𝑖𝑗

=

𝑟 𝑖𝑗→𝑗𝑘 , the matrix L∇ is Hermitian. It is positive semidefinite because

it is the Hessian of a convex energy [Stein et al. 2020, Equation 5].

5.5 Vertex-Based Laplacian and Divergence
Our vertex-based operators are identical to those used in Step III

of the unsigned heat method [Crane et al. 2013b, Section 3.2.1]. In
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Fig. 8. The unsigned heat method exhibits bias near the domain boundary
for large diffusion times (figure reproduced from Crane et al. [2013b], Figure
11 using 𝑡 = 100ℎ2). Using their proposed boundary condition heuristic
only slightly improves results. In contrast, our method has correct boundary
conditions.

particular, we use the cotan Laplacian C ∈ R |𝑉 |× |𝑉 | [Crane et al.
2013a, Chapter 6], which has nonzero entries

C𝑖, 𝑗 = − 1

2

∑
𝑖𝑗𝑘>𝑖𝑗 cot𝜃

𝑖𝑗

𝑘
, ∀𝑖𝑗 ∈ 𝐸

C𝑖,𝑖 = −∑𝑖𝑗>𝑖 C𝑖, 𝑗 , ∀𝑖 ∈ 𝑉 .
(10)

At interior vertices 𝑖 ∈ 𝑉 , the divergence of a per-

face vector field 𝑌𝑖𝑗𝑘 is

(∇ ·𝑌 )𝑖 := 1

2

∑︁
𝑖 𝑗𝑘>𝑖

(cot𝜃𝑖𝑗
𝑘
𝑒⇀
𝑖𝑗 +cot𝜃

⇀
𝑘𝑖
𝑗 𝑒⇀

𝑘𝑖 ) ·𝑌𝑖𝑗𝑘 ,

where 𝑒⇀
𝑖𝑗 denotes the vector from vertex 𝑖 to vertex 𝑗 (see Polthier

and Preuß [2003, Section 4]). For boundary vertices, the discrete

divergence includes (due to integration by parts) an additional 𝑛 · 𝑌
term—which we omit because it exactly cancels with our desired

boundary conditions in Equation 3.

5.6 Source Discretization
Wediscretize the initial conditions fromEquation 1 as values (X0)𝑖𝑗 ∈
C at edges 𝑖𝑗 , where the source set Ω can be a mix of oriented and

unoriented curves, as well as isolated points (Figure 9). Here we

treat oriented curves Γ; Appendix A treats other source types.

In principle our formulation works for arbi-

trary curves, though to establish explicit formu-

las we will assume Γ is comprised of straight seg-

ments, each of which is contained entirely inside

one face or edge. Note that when the domain 𝑀

is orientable, the normal 𝑁 to Γ is uniquely de-

termined by a 90
◦
counter-clockwise rotation; on

nonorientable domains, one must explicitly specify normals.

For each triangle 𝑖𝑗𝑘 ∈ 𝐹 , a segment 𝛾 contained in its interior

contributes to the initial values at all three of its three edges. For

instance, the contribution to (𝑋0)𝑖𝑗 is given by the complex value

|𝛾 |
(
𝑁𝛾 · 𝑒𝑖𝑗 +

(
𝑁𝛾 · 𝑒⊥𝑖𝑗

)
𝚤

)
𝜑𝑖𝑗 (𝑚𝛾 ) (11)

where |𝛾 |, 𝑁𝛾 , and 𝑚𝛾 are the length, normal, and midpoint of

the segment, resp. (and similarly for (𝑋0) 𝑗𝑘 , (𝑋0)𝑘𝑖 ). Empirically,

however, results are more accurate if we omit the factor 𝜑𝑖𝑗 (𝑚𝛾 ). If
𝛾 runs along an edge 𝑖𝑗 , then it makes the same contribution, but

only to (𝑋0)𝑖𝑗 . These contributions are summed over all segments to

obtain final values for 𝑋0. For intrinsic retriangulation (Figure 22),

Equation 11 can be expressed using purely intrinsic data, rather

Fig. 9. We can mix and match signed and unsigned distance, selectively
treating open curves as either broken region boundaries—or as literal open
curves. We can also incorporate distance to isolated points.

than vectors in R3, by writing all vectors as differences of points in

barycentric coordinates (see Sharp et al. [2021, Section 3.1]).

The formula in Equation 11 is obtained by projecting the contin-

uous measure 𝑁𝜇𝛾 onto the vector CR basis. A nice feature of CR

bases is that they are orthogonal. Hence, for a given segment 𝛾 we

need only integrate the function𝜓𝑖𝑗 with respect to the measure, or

equivalently, take a Hermitian inner product along the segment:∫
𝑀

𝜓 𝑖𝑗𝑁𝛾 d𝜇𝛾 =

∫
𝛾

𝜓 𝑖𝑗𝑁𝛾 d𝑠 = 𝑁𝛾

∫
𝛾

𝜓𝑖𝑗 d𝑠 = 𝑁𝛾 |𝛾 |𝜑𝑖𝑗 (𝑚𝛾 ) .

These equalities hold since 𝑁𝛾 is constant and𝜓𝑖𝑗 = 𝜑𝑖𝑗 + 0𝚤 is linear
along 𝛾 . Equation 11 expresses the final quantity in the edge basis.

6 ALGORITHM
Our discrete algorithm amounts to solving two sparse linear systems

using the discrete operators defined in Section 5. First we solve the

discrete vector heat equation,

(M + 𝑡L∇)X = X0, (12)

obtaining a diffused vector field X. Following Sharp et al. [2019c,

Section 7.3], we let 𝑡 = ℎ2, where ℎ is the mean distance between

nodes—in our case, edge midpoints, yielding half the mean edge

length.

Next, we average the diffused vectors X to each

face 𝑖𝑗𝑘 ∈ 𝐹 via 𝑋𝑖𝑗𝑘 := (𝑋𝑖𝑗 +𝑋 𝑗𝑘 +𝑋𝑘𝑖 )/3 (taking
care to express all vectors in the same basis, as

in Section 5.4), and compute unit vectors 𝑌𝑖𝑗𝑘 :=

X𝑖𝑗𝑘/∥X𝑖𝑗𝑘 ∥ which represent the gradient of our

(generalized) SDF. Finally, to obtain the SDF 𝜙 ∈ R |𝑉 | at vertices,
we solve a sparse linear system

C𝜙 = b (13)

where C is the cotan Laplacian (Section 5.5), b ∈ R |𝑉 | is the vector
of discrete divergences given in Section 5.5.

Boundary Behavior. Unlike the unsigned heat method, our signed

heat method exhibits the correct behavior at the boundary (Figure 8),

without any special boundary treatment (as in Edelstein et al. [2023,

Section 4.2]). The reason is that UHM obtains the vector field 𝑋 as
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no constraints constrain all to zero constant per component

Fig. 10. We can also fit a signed distance function to several partial level sets.
Left : Without constraints, isolines deviate slightly from source geometry.
Center : Blindly constraining to zero along all curves grossly violates the
distance property. Right : Constraining values to be constant along each
component nicely matches the input geometry.

the gradient of a scalar heat distribution𝑢 with either zero-Dirichlet

or zero-Neumann boundary conditions—in either case, the gradient

of 𝑢 cannot point in the right direction (either purely normal or

purely tangential, resp.); Crane et al. [2013b, Section 3.4] suggests

to simply take a fixed linear combination. In contrast, even at the

boundary our vector diffusion step directly provides the normal at

the closest point, which agrees with the gradient of the true SDF. The

basic reason is that the discrete connection Laplacian (Equation 9)

encodes zero-Neumann boundary conditions on the vector field

itself [Gelfand et al. 2000, I.6], rather than a scalar potential 𝑢.

7 OPTIONAL EXTENSIONS
Here we discuss some optional extensions of our basic method.

These extensions take advantage of the global variational nature

of our method to provide capabilities not possible with iterative

region-growing methods based on MMP [Mitchell et al. 1987] or

fast marching [Kimmel and Sethian 1998].

7.1 Preserving Level Sets
The final Poisson solve (Equation 13) recovers the signed distance

function 𝜙 only up to a constant shift. To make the zero level set

of 𝜙 approximate the source geometry Ω, a common strategy is

to shift 𝜙 by its average over Ω [Kazhdan et al. 2006; Calakli and

Taubin 2011; Crane et al. 2013b]. An alternative in our setting is to

add an explicit linear constraint to Equation 2 that ensures 𝜙 takes

the same value at all points of Ω.
On a surface mesh, for instance, suppose Ω has

at most one segment per triangle, with endpoints

𝛾0, . . . , 𝛾𝑚 on edges. Then we can impose linear con-

straints of the form

(1 − 𝑡𝑝 )𝜙𝑖𝑝 + 𝑡𝑝𝜙 𝑗𝑝 = (1 − 𝑡0)𝜙𝑖0 + 𝑡0𝜙 𝑗0 , 𝑝 = 1, . . . ,𝑚,

where 𝑡𝑝 ∈ [0, 1] encodes the location of 𝑥𝑝 along edge 𝑖𝑝 , 𝑗𝑝 (see

inset). We encode these constraints by a matrix A ∈ R𝑚×|𝑉 | . Mini-

mizing ∥∇𝜙 − 𝑌𝑡 ∥2
2
subject to A𝜙 = 0 then corresponds to solving a

Fig. 11. Soft level set constraints can easily be incorporated into our PDE-
based framework. Here soft constraints encourage the zero set to lie near
the input curves, without distorting the SDF near self-intersections as much
as a hard constraint.

saddle-point problem[
C AT

A 0

] [
𝜙

𝜇

]
=

[
∇ · Y𝑡
0

]
, (14)

where 𝜇 ∈ R𝑚 are Lagrange multipliers. Since 𝜙 |Ω is now constant

by construction, we can shift it to be exactly zero on all of Ω—so
long as the constraints are compatible. We apply this procedure

in all figures unless otherwise noted. More generally, suppose the

input Ω represents multiple, distinct level sets 𝜙−1 (𝑐1), 𝜙−1 (𝑐2), . . .
for values 𝑐𝑖 which are not known a priori. Here we can apply an

identical set of constraints per connected component, ensuring that

the value along each component is constant (Figure 10, right).
Finally, similar to Kazhdan and Hoppe [2013, Section 4], we can

replace the hard constraint with a soft penalty term

∫
Ω ∥𝜙 (𝑥) −

𝑐 (𝑥)∥2 d𝑥 , where 𝜆 > 0 is the penalty strength (Figure 11). The

minimizer is obtained by solving the system (C − 𝜆A⊤A)𝜙 = b.

7.2 Nonbounding Loops and Discontinuous Distance

nonbounding

Fig. 12. GSD extends to
curves that do not even
bound a region.

The gradient of unsigned distance

can be discontinuous on a lower-

dimensional set (analogous to the cut lo-
cus of a point), but is still tangent contin-
uous relative to this set, meaning vectors

on either side project to the same direc-

tion (Figure 13, top). In contrast, when

Ω does not bound a region of𝑀 , the vec-

tor field 𝑌𝑡 from Step II of our method

can fail to be tangent continuous—and

hence fail to be integrable via a globally

continuous function (Figure 13, bottom).

One possibility is to simply filter out

nonbounding components [Feng et al.

2023]; we instead consider a generalized

notion of signed distance that remains

meaningful. In particular, we now seek a piecewise continuous solu-

tion by replacing the 𝐿2 problem in Equation 2 with an 𝐿1 problem

that ignores neighborhoods where 𝑌𝑡 is highly nonintegrable. On

triangle meshes, we quantify nonintegrability via an edge-based

curl inspired by Polthier and Preuß [2003, Section 4]:

(∇ × Y)𝑖𝑗 := (𝑒𝑖𝑗 + 𝑒 𝑗𝑖 ) · Y𝑖𝑗𝑘 . (15)

This quantity directly captures tangent discontinuity along edges:

taking edge orientation into account, it is simply the difference
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tangent
continuous

ideal
solution

tangent
discontinuous

standard
integration (L2)

piecewise continuous
integration (L1)

Fig. 13. Unlike the gradient of an unsigned distance function (top), the unit
vector field we compute for signed distance might not be integrated by any
continuous function (bottom). In such scenarios, we can instead compute a
piecewise continuous SDF (right).

of projected vectors. Discontinuous functions 𝜙 are represented

as piecewise linear functions interpolating values at corners. To

integrate Y in a piecewise continuous sense, we then minimize a

weighted 𝐿1 norm that penalizes discontinuous jumps across edges:

min

𝜙∈R|𝐶 |

∑︁
𝑖𝑗∈𝐸
|𝑖𝑗 |𝑒−|∇×Y |𝑖𝑗 |𝜙 𝑗𝑘

𝑖
− 𝜙𝑙𝑗

𝑖
|

s.t. 𝜙𝑘𝑖𝑗 − 𝜙
𝑗𝑘
𝑖

= Y𝑖𝑗 · 𝑒⇀
𝑖𝑗 , ∀𝑗𝑘𝑖 ∈ 𝐶,

(16)

Exponential weights incur a lower penalty when the field is not

integrable; simultaneously, the 𝐿1 norm tries to minimize the length

of this discontinuity as much as possible. The constraints ensure

Y is integrated exactly within each triangle. In practice, we apply

the same transformations as Feng et al. [2023, Section 3.4] to obtain

a linear program with only |𝐹 | degrees of freedom. Examples are

shown in Figure 13 (right) and Figures 14 and 12. In Figure 12we also

use a small amount of heat flow to smooth out minor discontinuities

from 𝐿1 optimization.

7.3 Distance Sharpening
Unsigned geodesic distance can also be expressed as the solution to

a convex optimization problem, akin to the convex formulation of

graph distance [Dantzig 1963, Ch. 17], [Erickson 2019, Ch. H]:

max

𝜙

∫
𝑀

𝜙 (𝑥) d𝑥

s.t. |∇𝜙 | ≤ 1

𝜙 = 0 on Ω.

(17)

Belyaev and Fayolle [2020] solve Equation 17 via ADMM to compute

the distance to point sources. This formulation tends to be more

accurate than our method—but is an order of magnitude slower

(Section 9.5), and more importantly, can compute only unsigned

distance. If desired, however, one can “sharpen” our results using a

generalization of Equation 17. We simply replace the objective in

Equation 17 with

max

𝜙

∫
𝑀

sign(𝜙0 (x))𝜙 (x) dx (18)

where 𝜙0 is the distance computed by the signed heat method, and

use 𝜙0 as an initial guess for 𝜙 . An example is shown in Figure 15.

standardintegration: piecewise
continuous

consistently-
oriented curves

inconsistently-oriented curves

Fig. 14. Our algorithm works out-of-the-box for orientable input curves,
even on nonorientable domains (top). By adopting piecewise continuous
integration (Section 7.2) we can also handle inconsistently-oriented curves,
whether or not the domain itself is orientable (bottom).

Note that robust sign information is available only thanks to our

method—Equation 18 cannot be applied directly to broken curves.

In practice ADMM is quite slow, requiring repeated linear solves.

Since we have a good initializer, it might be better to use a first-order

method like the primal-dual hybrid gradient method, which is often

faster than ADMM [Chambolle and Pock 2011, Figure 5] and easily

implemented in parallel. We leave such exploration to future work.

8 OTHER SPATIAL DISCRETIZATIONS

8.1 Tetrahedral Meshes
The discretization from Section 5 generalizes directly to tet meshes—

extending our method from curve processing to broader surface

processing tasks. We again use a Crouzeix-Raviart finite element

discretization, detailed in Appendix B. Note that we do not need

a separate discretization for the connection Laplacian, since on a

flat domain we can just apply the scalar Laplacian componentwise.

For simplicity, we generate a mesh that conforms to input triangles

(via TetGen [Hang 2015]), so that the source term is just 𝑋 0 (𝑥) :=∑
𝑖𝑗𝑘∈Ω |𝑖𝑗𝑘 |𝑁𝑖𝑗𝑘𝜓𝑖𝑗𝑘 (𝑥). Examples are shown in Figures 19, 26.

convex formulation signed heat method

before sharpening
solve time: 0.51ssolve time: 0.70s a�er sharpening

additional time: 0.66s

convex solve

Fig. 15. Left: Methods based on convex optimization yield more accurate
distances, but compute only unsigned distance. Right: Using our method
as a warm start, we can “sharpen” distance while preserving the inside-
outside classification. Here we start with a large diffusion time (𝑡 = 100ℎ2)
to visually emphasize the effect.
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Fig. 16. Our method extends to polygon meshes, point clouds, and digital surfaces. Digital surface meshes are from Coeurjolly and Levallois [2015].

8.2 Regular Grids
To avoid the cost of tet mesh generation, we can also use a regular

grid on R3. Here, rather than solve a linear system in Step I, we

can directly approximate 𝑋𝑡 via the fundamental solution of the

operator id − 𝑡Δ, given in R3 by the Yukawa potential

𝐺𝑡 (𝑥,𝑦) = − 1

4𝜋 ∥𝑥−𝑦 ∥ 𝑒
−
√
1/𝑡 ∥𝑥−𝑦 ∥ .

(In practice, we find this approach works better than convolving

with the heat kernel directly.) The diffused vector field at each

grid node 𝑥 ∈ R3 is then approximated by midpoint quadrature at

triangle barycenters 𝑏𝑖𝑗𝑘 :

𝑋𝑡 (𝑥) =
∑︁
𝑖𝑗𝑘∈𝐹

∫
𝑖𝑗𝑘

N𝑖𝑗𝑘𝐺𝑡 (𝑥,𝑦) 𝑑𝑦 ≈
∑︁
𝑖𝑗𝑘∈𝐹

|𝑖𝑗𝑘 |N𝑖𝑗𝑘𝐺𝑡 (𝑥, 𝑏𝑖𝑗𝑘 ),

where N𝑖𝑗𝑘 are triangle normals; this step could be accelerated from

𝑂 ( |𝐹 |) to 𝑂 (log |𝐹 |) via the method of Barnes and Hut [1986]. Step

III uses a standard seven-point Laplacian, and evaluates ∇ · Y𝑡 using
forward differences. Figure 4 shows that we obtain high-quality

distances and offset surfaces even for badly corrupted geometry

(with contouring via marching cubes [Lorensen and Cline 1998]).

8.3 Polygon Meshes
On surface meshes made of general polygons

(which may be nonconvex or even nonplanar),

we adopt the Laplacian, divergence, and mass ma-

trices defined by Bunge et al. [2020] in terms of

a carefully-chosen triangular refinement. Since

Bunge et al. do not define a connection Laplacian, we define tan-

gent planes at vertices using the area-weighted sum of fine triangle

normals (picking an arbitrary basis in each plane). As in Equation 9,

a connection Laplacian is then obtained by multiplying off-diagonal

entries with complex numbers that encode the smallest rotation be-

tween tangent bases at adjacent vertices. For simplicity we assume

the curve Γ runs along edges; the initial conditions𝑋 0
at each vertex

𝑖 of Γ are then given by the average edge normal 𝑁 times half the

sum of incident edge lengths ℓ1, ℓ2 (inset). To compute divergence,

we prolong the diffused vector field X to the fine vertices, average

them onto faces, then apply the operator D from Bunge et al. [2020,

Section 4.5]. Examples are shown in Figure 16, left.

8.4 Point Clouds
For point clouds, we use the Laplacian of

Sharp and Crane [2020a, Section 5.7], which

also defines per-point tangent planes, and the

mass matrix from their tufted cover [Sharp and
Crane 2020a, Section 3.3]. We again augment

this Laplacian with off-diagonal rotations to

get a connection Laplacian, as described by Sharp et al. [2019c, Sec-

tion 6.2.2] and implemented in geometry-central [Sharp et al. 2019a].

Each component of Γ is a sequence of points 𝛾𝑖 from the cloud,

where normal 𝑁𝑖 can be computed by projecting 𝛾𝑖−1, 𝛾𝑖 , 𝛾𝑖+1 onto
the tangent plane at point 𝑖 and taking the in-plane normal (inset).

As in Section 8.3, we compute 𝑋 0
by accumulating length-weighted

normals at each point. To compute divergence, we average diffused

vectors onto faces of the tufted cover and apply the formula from

Section 5.5. An example is shown in Figure 16, center.

8.5 Voxelizations
Our method also extends to digital surfaces, which are the bound-

aries of voxelized volumes. We use the vertex-based Laplacian, diver-

gence, and connection Laplacian defined by Coeurjolly and Lachaud

[2022], using the implementation in DGtal [Coeurjolly et al. 2010].

Analogous to Section 8.3, we encode the source term via extrinsic

projection of curve normals onto tangent bases defined at vertices,

where vertex normals are normalized averages of per-face corrected
normals [Coeurjolly et al. 2014]. We assume that Γ is piecewise

linear on faces of the digital surface, and obtain initial conditions𝑋 0

by projecting segment normals onto tangent bases at vertices, and

multiplying by half the edge length of incident segments. Examples

are shown in Figure 16, right.

9 EVALUATION
We next evaluate our method via a broad range of numerical exper-

iments. As noted in Section 1, our primary focus is not on speed or

accuracy, but rather on improving the robustness and generality of

signed distance computation. Nonetheless, our signed heat method
(SHM) is quite competitive in speed and accuracy, since it boils down

to the same kinds of sparse linear systems as previous methods. In

particular, the method takes only a few hundred milliseconds for

meshes with hundreds of thousands of triangles, and exhibits the
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red = flipped orientation

ground truth topological errors

geometric errors

orientation errors

Fig. 17. Our method provides robust and reliable signed distance approximation, failing gracefully in the presence of significant topological, geometric, or
orientation errors. Errors 𝜖 in geodesic distance are displayed relative to the exact polyhedral SDF of a finely sampled version of the original curve.

same linear convergence with respect to mesh refinement as earlier

schemes. More importantly, for broken geometry it still provides an

accurate approximation of the distance to the original, uncorrupted

geometry—whereas past methods can fail to provide a reasonable

distance approximation (Figure 7, right).

9.1 Implementation
All methods were implemented in C++, in double precision, using

geometry-central [Sharp et al. 2019a] for mesh data structures and

intrinsic retriangulation, and Eigen [Guennebaud et al. 2010] for

sparse linear algebra. Timings were taken on an Apple M1 with 8GB

RAM. The error 𝜖 in any distance approximation 𝜙 is quantified via

𝐿2 error normalized by the range of the true distance 𝜙0, i.e.,

𝜖 (𝜙) := 1

(max(𝜙0 )−min(𝜙0 ) )A1/2

(∑
𝑖∈𝑉 𝐴𝑖

(
𝜙𝑖 − 𝜙0𝑖

)
2

)
1/2

,

where 𝐴𝑖 =
1

3

∑
𝑖𝑗𝑘>𝑖 |𝑖𝑗𝑘 | is the area associated with vertex 𝑖 , and

A :=
∑
𝑖∈𝑉 𝐴𝑖 is the total surface area.

9.2 Dataset
For evaluation, we consider a

dataset of closed, region-bounding

loops (since past methods do

not handle open or nonbounding

curves). This dataset is derived

from all 44 genus-zero meshes

without boundary from Myles

et al. [2014]. In order to perform

a study of convergence under refinement (Figure 25) we first remesh

each model to approximately 1.25k vertices using quadric error sim-

plification [Garland and Heckbert 1997], then compute four levels

of loop subdivision [Loop 1987]. At each level, we then extract level

sets of the same low-frequency Laplacian eigenfunctions [Lévy and

Zhang 2010] using marching triangles, and remesh to a constrained

intrinsic Delaunay triangulation containing these curves [Sharp and

Crane 2020b, Section 6.3].

9.3 Examples
9.3.1 Morphological Operations. One natural use case for general-
ized signed distance is to contour broken geometry, and generate

accurate fixed-distance offsets (Figures 26, 19, 4). Generating such

offsets from imperfect geometry is useful, for example, for 3D print-

ing, or for downstream mesh processing tasks that require closed

or manifold surfaces. One can also “inflate” or “shrink” shapes by

taking positive or negative offsets—and combining these two opera-

tions in sequence can be used to simplify high-frequency features

of broken shapes as if they were whole (Figure 20). Note that in

Figure 26 we sample both functions onto the same tet mesh, using

libigl to evaluate GWN [Jacobson et al. 2018].

smaller t larger t

Fig. 18. Adjusting diffusion time fills in
broken letters with either round or sharp
corners, yielding effects similar to differ-
ent line joins for 2D strokes.

9.3.2 Illustration on Surfaces.
Geodesic distance is also

used to design curves on

surfaces—where prior work

largely considers perfect closed

curves [Nazzaro et al. 2022].

Our algorithm can be used to

pre-process curves into the

requisite closed format, e.g.,
those hastily sketched on a

surface (Figure 21). To con-

trol the behavior of this com-

pletion operation, one can

use diffusion time to control completion behavior, providing an

analog of line join options from 2D vector graphics (Figure 18).
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Fig. 19. By extracting level sets of generalized signed distance, we can convert broken, noisy, and nonmanifold input geometry (far left) into closed, regular,
manifold surfaces and evenly-spaced offset surfaces.

Fig. 20. One can simplify high-frequency features of broken curves and
surfaces by taking consecutive positive/negative offsets of a generalized
signed distance function, akin to dilation/erosion.

9.4 Robustness
Since our method is built on

well-behaved elliptic PDEs, it per-

forms well on not only broken

input with corrupted topology,

geometry, and orientation (Fig-

ure 17) but also challenging surface domains (Figure 23). Since our

method is purely intrinsic, it applies to meshes that are only im-

mersed (rather than embedded); it also applies out of the box to

nonmanifold and nonorientable meshes (inset), since all our differ-

ential operators are local and defined per-face, and hence oblivious

to any nonmanifold features. Our method is robust across varying

degrees of nonmanifoldness and missing data (Figure 23, top and
bottom left). As with all methods that rely on discretizing PDEs, the

quality of the solution can degrade with poor tessellations of the

geometry, though we can easily apply intrinsic Delaunay triangula-
tion to get good-quality solutions (Figure 22). For surfaces in R3our
method remains robust, even for extremely corrupted input surfaces

(Figures 4,19).

As seen in Figure 27 we also obtain more natural surface com-

pletion than GWN, which for general surfaces is hard to contour

with any single level set value. Similar to spline interpolation, the

zero set of GSD nicely matches both positions and normals along

hole boundaries. Here meshes for both methods are extracted using

the marching tetrahedra implementation in libigl [Jacobson and

Panozzo 2017].

Fig. 21. Broken curves easily arise from attempting to draw curves on sur-
faces of high genus, with overhangs, and with holes and scanner noise.
Our method yields signed distance functions robust to these challenges.
(Scanned bench from from Choi et al. [2016].)

9.5 Accuracy and Performance
We compare against the unsigned heat method (UHM) of Crane

et al. [2013b], which provides a useful reference point since nearly

all work on geodesic distance algorithms from the past decade com-

pares against this method. As a more recent reference point, we also

compare with the convex formulation of Belyaev and Fayolle [2020]

(labeled BF). Since neither method directly handles curve sources,

we either integrate the initial scalar heat distribution against hat

functions (for UHM) or simply use the set of curve vertices as the

source set (for BF). (Methods that directly handle curve sources do

not have an open source implementation [Bommes and Kobbelt

2007], or do not include curve sources in their public release [Tret-

tner et al. 2021].) Finally, since BF must constrain the zero set, we

impose the same constraints on UHM/SHM (Section 7.1), and do

not pre-factor any matrices. Note, however, that for multiple source

Fig. 22. The quality of our method depends on the underlying mesh quality;
but since our formulation is purely intrinsic, we can trivially improve accu-
racy and robustness by invoking intrinsic Delaunay refinement [Gillespie
et al. 2021], without changing anything else about our implementation.
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large holes

nonmanifold & self-intersectingmore nonmanifold

ground
truth

GSD

Fig. 23. Our method robust not only to errors in the source geometry, but also in the domain mesh itself. Here we obtain well-behaved SDFs even for meshes
found “in the wild,” such as amateur-created 3D scans [Choi et al. 2016]. Even in cases where a notion of inside and outside is meaningless (such as the
rightmost mesh), our method fails gracefully—still producing a good signed distance approximation near the input curve.

terms, heat methods can achieve about two orders of magnitude

speedup by omitting factorization [Crane et al. 2013b, Table 1].

9.5.1 Planar Domains. As noted by Crane et al. [2013b, Figure 21],

even exact polyhedral distance (including MMP) provides only a

2nd-order accurate estimate of true (smooth) geodesic distance, due

to errors in the approximation of the domain itself. To avoid con-

flating these two sources of error, we first consider closed, planar

curves—where the exact SDF is easily computed via closest-point

queries [Sawhney et al. 2020], and sign can unambiguously be de-

termined via standard inside/outside tests [Haines 1994]. As seen in

Figure 24, our method is slightly slower but slightly more accurate

than UHM.Without sharpening, it is not as accurate as BF—but is an

order of magnitude faster. Moreover, BF must trade off between bias

near the boundary [Edelstein et al. 2023, Figure 3, left], or distortion
in the presence of curve sources, depending on whether Hessian

regularization is omitted or included (resp.).

9.5.2 Surface Domains. We next consider closed curves on sur-

face meshes. Here we can no longer obtain the true distance on an

unknown underlying smooth surface; we hence compute “ground

UHMSHM (ours)

0.37s 0.14%

0.27s 0.38%

0.17s 0.15%

0.11s 0.57%

1.89s 0.13%

1.04s 0.16%

BF

Fig. 24. Distribution of error in distance approximation for a perfect, unbro-
ken curve on a high- and low-quality mesh (top/bottom). Both meshes have
about 100k faces. Inset numbers on SDF and error plots indicate compute
time and mean error (resp.). Overall our method is quite comparable to
the original heat method, and less accurate than BF on the low-quality
mesh—but about 4–5x faster.

truth” distance as the exact polyhedral distance to a finely-sampled

version of the input curve (100 samples per curve edge) using MMP

[Mitchell et al. 1987], which itself has 𝑂 (ℎ2) error. We plot conver-

gence and solve times in Figure 25. We observe that our method has

approximately linear convergence in mean edge length, with better

consistency on curve sources compared to other methods. We find

the same trend in solve times as in Section 9.5.

9.5.3 Broken Curves. Finally, we compare against the end-to-end

pipeline of repairing broken geometry, computing unsigned dis-

tance to the fixed geometry, and signing the unsigned distance. In

particular, we use surface winding numbers (SWN) to contour broken
curves [Feng et al. 2023], and compute exact polyhedral distance us-

ing MMP [Mitchell et al. 1987] using the curve vertices as the source

set. As input surface domains, we use the meshes with ∼5k vertices

from the same dataset as Section 9.5.2. As input curves, we take

level sets of five different low-frequency Laplacian eigenfunctions,

and add geometric and topological errors by taking the union of the

curves with their offsets (found by taking boundaries of triangle

strips), and deleting about 50% of the curve at random intervals.

The repair-distance-sign pipeline is particularly sensitive to er-

rors in the input, since any errors made during contouring are

permanent and will destroy the quality of the final SDF no matter

how accurate the subsequent distance computation. In particular,

contouring the winding number is notoriously difficult, and often

Ours (0.83) FMM (0.23) UHM (0.59) ADMM-BF (0.70)

Fig. 25. We observe approximately linear convergence in distance accuracy
on a benchmark of unbroken (closed) curves on 44 different meshes. The
legend shows median orders of accuracy. Note that if we omit the zero set
constraint, enabling us to re-use both factorizations, our method and UHM
become 1–2 orders of magnitude faster.
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Fig. 26. Top: Generalized winding number (GWN) cannot be used for offset
surfaces, since it provides only a smooth indicator function—and not a
signed distance. Bottom: Our generalized signed distance (GSD) provides
much nicer offsets on the same broken mesh.

zero setinput
o�set
surfaces

bulges in bulges
in

bulges
out

generalized winding number

generalized signed distance

Fig. 27. GWN completes surfaces with saddle-shaped harmonic patches
that exhibit poor normal continuity with the observed geometry (across
many contour values). Ourmethod directly incorporates normal information,
providing more plausible reconstruction even for large holes.

leads to misclassified regions (Figure 28). Though Feng et al. [2023]

suggest a rounding procedure, it remains unclear which half-integer

level set to take as the boundary between inside and outside; we

use the values of the rounded winding number function that appear

most often along the input curves, though this results in 12% of

examples with >50% of surface area misclassified. We also try con-

touring winding number according to the average of the winding

number function along the input curves, but we find similar results.

In contrast, our method achieves greater robustness by averaging

normal vectors over the whole domain. The repair-distance-sign

pipeline is also about 10x more expensive due to its intermediate

steps; SWN alone has cost asymptotically equivalent to our method.

ours winding number
(alternate contouring)

winding number

Fig. 28. We compare, on 220 examples, the accuracy of GSD versus a hybrid
scheme that repairs broken geometry using winding numbers, computes
unsigned distance to the repaired geometry, then signs the unsigned dis-
tance. Winding numbers are worse at classifying inside/outside, regardless
of contouring method. As a result, the hybrid scheme yields about 3x lower
distance accuracy on average (0.11 vs. 0.04 𝐿2 error, resp.), even though it
benefits from exact distance (via MMP).

10 LIMITATIONS AND FUTURE WORK
As with past heat methods, diffusion time cannot be made arbitrarily

small: similar to Crane et al. [2013b, Appendix A], we observe em-

pirically that GSD behaves like graph distance as 𝑡 → 0 (see inset).

UHM

ours

As with past heat methods, however, SHM

consistently provides accurate distance ap-

proximation for 𝑡 = ℎ2. Our strategy for topo-

logically nonbounding and nonorientable

curves (Section 7.2) incurs a more expensive

𝐿1 problem—but is already a substantial gen-

eralization over anything handled by previ-

ous geodesic or SDF algorithms. A more care-

ful study of this situation (including mitiga-

tion of small per-edge discontinuities) is an

interesting direction for future work. Like-

wise, since broken input sometimes comes

with quantifiable measurement error, it might be interesting to ex-

plore a notion of “confidence” in the computed distance values,

along the lines of work by Sellán and Jacobson [2022].

Finally, like other robust inside-outside and reconstruction algo-

rithms [Bærentzen and Aanæs 2005; Kazhdan et al. 2006; Jacobson

et al. 2013; Feng et al. 2023], we assume input has mostly consistent

orientation. Though we are fairly robust to orientation errors (Sec-

tion 9.4), it may be interesting to explore diffusion of more general

line fields to factor out normal orientation, à la Alliez et al. [2007].
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A ADDITIONAL SOURCE GEOMETRY
Here we derive discretizations for isolated point sources and unori-

ented curves.

A.1 Point Sources
To compute unsigned distance to point sources, we encode a radially

symmetric vector field centered at each point source. We adopt

the approach of Sharp et al. [2019c, App. A] and consider a small

geodesic circle𝐶𝜀 of radius 𝜀 > 0 centered on a point source at vertex

𝑖 , and take the limit as 𝜀 → 0. We let 𝜇𝜀 := (Θ𝑖𝜀)−1H1

𝐶𝜀
be a measure

of unit mass supported on 𝐶𝜀 , whereH1

𝐶𝜀
is the Hausdorff measure

on𝐶𝜀 , and Θ𝑖 :=
∑
𝑖𝑗𝑘>𝑖 𝜃

𝑗𝑘
𝑖

be the discrete angle sum around vertex

𝑖 . We let 𝑁 denote the outward unit normals to 𝐶𝜀 . We integrate

the vector-valued measure 𝑁𝜇𝜀 against CR basis functions for each

edge 𝑒 ∈ 𝐸 (Section 5.6).

We restrict our attention to a single triangle 𝑖𝑗𝑘

containing 𝑖 and 𝑒; the final contribution to the

𝑖𝑗 entry is the sum of contributions from all 𝑖𝑗𝑘

incident on 𝑒 . W.l.o.g. we let 𝑒 = 𝑖𝑗 . We express

all quantities in complex numbers with respect to

the polar coordinate system with origin at vertex 𝑖 and real axis

along
⇀
𝑖𝑗 , parameterizing 𝐶𝜀 by the angle 𝜃 between 𝑥 ∈ 𝐶𝜀 and 𝑒⇀

𝑖𝑗 .

Expressed in this basis, the unit normal 𝑁 (𝜃 ) at 𝑥 = 𝜀𝑒𝚤𝜃 is simply

𝑒𝚤𝜃 . We let 𝛼 := 𝜃
𝑗𝑘
𝑖
, and evaluate

lim

𝜀→0

∫
𝑖𝑗𝑘

⟨𝑛,𝜓𝑖𝑗 ⟩ d𝜇𝜀 = lim

𝜀→0

1

Θ𝑖𝜀

∫ 𝛼

0

𝑁 (𝜃 )𝜀 d𝜃 (1 − 𝑒
𝚤𝛼 )𝚤

Θ𝑖
.

The contribution to edge 𝑖𝑗 multiplies this quantity by a sign 𝑠⇀𝑖𝑗 ∈
{+1,−1} equal to 𝑒𝚤0 = +1 if ⇀𝑖𝑗 agrees with the global orientation

of 𝑖𝑗 , and 𝑒𝚤𝜋 = −1 otherwise.
To compute the contributions to edge 𝑗𝑘 (resp.

𝑘𝑖), the only difference is that 𝑥 ∈ 𝐶𝜀 and 𝑛(𝜃 )
must be expressed relative to the tangent basis at

edge 𝑗𝑘 (resp. 𝑘𝑖) instead of 𝑖𝑗 . This amounts to

rotating the coordinate system by 𝑟𝑖𝑗→𝑗𝑘 (Equa-

tion 8). We arrive at the per-face contributions

(X0)𝑖𝑗 = 𝑠𝑖𝑗
(1−𝑒𝚤𝛼 )𝚤

Θ𝑖

(X0) 𝑗𝑘 = 𝑠𝑖𝑗𝑟𝑖𝑗→𝑗𝑘
(1−𝑒𝚤𝛼 )𝚤

Θ𝑖

(X0)𝑘𝑖 = 𝑠𝑖𝑗𝑟
−1
𝑘𝑖→𝑖𝑗

(1−𝑒𝚤𝛼 )𝚤
Θ𝑖

.

(19)

If we were to use basis functions at vertices, there would not be

enough degrees of freedom to encode radially symmetric vector

fields at vertices; Sharp et al. [2019c, App. A] ameliorate this short-

coming by arbitrarily taking the limit as 𝜀 → 1 instead of zero, but

this limit is not scale-invariant like ours.

A.2 Unoriented Curves
Here we consider open curves to which we

compute unsigned distance. Similar to Ap-

pendix A.1, we consider a geodesic 𝜀-offset Γ𝜀
of the (piecewise linear) curve Γ, with a mea-

sure of unit density concentrated on Γ𝜀 , and
take 𝜀 → 0. For simplicity, we consider unori-

ented curves that lie along edges of the mesh.

Then Γ𝜀 can generically be decomposed into

four types of curves: (𝐴) linear segments that

intersect faces incident on edges of the curve

Γ; (𝐵) segments that intersect faces incident

on interior vertices of Γ; (𝐶) circular arcs that
intersect faces incident on endpoints of Γ; and (𝐷) linear segments

that intersect faces incident on endpoints of Γ (inset).

As 𝜀 → 0, the contributions of type-𝐵 and 𝐷 segments go to zero.

A type-𝐴 segment lying within face 𝑖𝑗𝑘 , where edge 𝑖𝑗 lies on the
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curve Γ, converges to an oriented curve along edge 𝑖𝑗 as 𝜀 → 0;

its contributions to each edge within 𝑖𝑗𝑘 are given by Equation 11.

For type-𝐶 circular arcs, we obtain the same per-face formulas as

Equation 19, except we normalize not by the total angle sum around

the endpoint vertex but by the sum of corner angles of faces that

intersect the circular portion of Γ𝜀 , and weight by the length of the

adjacent edge.

B CROUZEIX-RAVIART IN 3D
Here we derive the Crouzeix-Raviart Laplace and mass matrices

for tetrahedral meshes. In general, Crouzeix-Raviart basis func-

tions are piecewise-linear and associated with the barycenters of

codimension-one simplices in an 𝑛-dimensional simplex. The basis

function 𝜃𝑖 associated with the (𝑛 − 1)-dimensional face 𝜎𝑖 oppo-

site vertex 𝑖 has value 1 on 𝜎𝑖 , and value 1 − 𝑛 at 𝑖 . Within each

(𝑛 − 1)-dimensional simplex incident on 𝜎𝑖 , the function 𝜃𝑖 is linear

and is defined as 𝜃𝑖 (𝑥) = 1 − 𝑛𝜆𝑖 (𝑥) where 𝜆𝑖 (𝑥) is the value of the
hat function associated with vertex 𝑖 at point 𝑥 [Ern and Guermond

2004, §1.2]. We use 𝜑𝑖𝑗𝑘 to denote the basis function associated with

triangle face 𝑖𝑗𝑘 in a tet mesh.

B.1 Scalar Laplacian
The |𝐹 | × |𝐹 | Crouzeix-Raviart Laplace matrix L of a tet mesh𝑀 =

(𝑉 , 𝐸, 𝐹,𝑇 ) has entries given by

L𝑓 ,𝑓 ′ =
∫
𝑀

⟨∇𝜑𝑓 (𝑥),∇𝜑𝑓 ′ (𝑥)⟩ d𝑥

which will be nonzero only if faces 𝑓 , 𝑓 ′ are adjacent, so w.l.o.g. we

let 𝑓 := 𝑖𝑗𝑘 , 𝑓 ′ := 𝑗𝑖𝑙 and compute

L𝑖𝑗𝑘,𝑗𝑖𝑙 =
∫
𝑀

⟨∇𝜑𝑖𝑗𝑘 (𝑥),∇𝜑 𝑗𝑖𝑙 (𝑥)⟩ d𝑥

=

∫
𝑀

⟨∇(1 − 3𝜆𝑙 (𝑥)),∇(1 − 3𝜆𝑘 (𝑥))⟩ d𝑥

=
∑︁

𝑖𝑗𝑘𝑙>𝑖𝑗𝑘,𝑗𝑖𝑙

9

∫
𝑖𝑗𝑘𝑙

⟨∇𝜆𝑙 (𝑥),∇𝜆𝑘 (𝑥)⟩ d𝑥 .

The gradient ∇𝜆𝑙 = 𝑛
𝑖𝑗𝑘

𝑙
/ℎ𝑖𝑗𝑘

𝑙
, where 𝑛

𝑖𝑗𝑘

𝑙
de-

notes the unit normal to face 𝑖𝑗𝑘 opposite

vertex 𝑙 , and ℎ
𝑖𝑗𝑘

𝑙
the height of the tetrahe-

dron with apex 𝑙 and base 𝑖𝑗𝑘 (and similarly

for ∇𝜆𝑘 ). Since the gradients ∇𝜆𝑙 , ∇𝜆𝑘 are

constant per tet, the inner integral is equal

to

|𝑖𝑗𝑘𝑙 | 1

ℎ
𝑖𝑗𝑘

𝑙
ℎ
𝑗𝑖𝑙

𝑘

cos(𝜋 − 𝜃𝑘𝑙𝑖𝑗 ) = −|𝑖𝑗𝑘𝑙 |
|𝑖𝑗𝑘 |
3|𝑖𝑗𝑘𝑙 |

| 𝑗𝑖𝑙 |
3|𝑖𝑗𝑘𝑙 | cos𝜃

𝑘𝑙
𝑖𝑗 (20)

where 𝜃𝑘𝑙
𝑖𝑗

denotes the dihedral angle at edge 𝑖𝑗 opposite edge 𝑘𝑙 .

Since the volume of the tetrahedron 𝑖𝑗𝑘𝑙 can be expressed |𝑖𝑗𝑘𝑙 | =
2

3 |𝑖𝑗 | |𝑖𝑗𝑘 | | 𝑗𝑖𝑙 | sin𝜃
𝑘𝑙
𝑖𝑗
, we obtain

L𝑖𝑗𝑘,𝑗𝑖𝑙 = − 3

2
|𝑖𝑗 | cot𝜃𝑘𝑙

𝑖𝑗
, ∀𝑖𝑗𝑘 ∈ 𝐹, 𝑖𝑗𝑘𝑙 > 𝑖𝑗𝑘

L𝑖𝑗𝑘,𝑖𝑘𝑙 = − 3

2
|𝑘𝑖 | cot𝜃 𝑗𝑙

𝑘𝑖
, ∀𝑖𝑗𝑘 ∈ 𝐹, 𝑖𝑗𝑘𝑙 > 𝑖𝑗𝑘

L𝑖𝑗𝑘,𝑗𝑙𝑘 = − 3

2
| 𝑗𝑘 | cot𝜃𝑖𝑙

𝑗𝑘
, ∀𝑖𝑗𝑘 ∈ 𝐹, 𝑖𝑗𝑘𝑙 > 𝑖𝑗𝑘

L𝑖𝑗𝑘,𝑖𝑗𝑘 = −∑𝑖𝑗𝑘𝑙>𝑖𝑗𝑘 L𝑖𝑗𝑘,𝑗𝑖𝑙 + L𝑖𝑗𝑘,𝑖𝑘𝑙 + L𝑖𝑗𝑘,𝑗𝑙𝑘 , ∀𝑖𝑗𝑘 ∈ 𝐹
(21)

For both 𝑛 = 2, 3, the 𝑛-dimensional CR Laplacian has entries 𝑛2

times the corresponding entries of the so-called primal vertex Lapla-

cian Alexa et al. [2020], since CR basis functions are equal to the

hat functions on medial 𝑛-simplices.

B.2 Divergence Operator
As in 2D, we average vectors X from triangles to tetrahedra via

X𝑖𝑗𝑘𝑙 =
1

4

(
𝑋𝑖𝑗𝑘 + 𝑋 𝑗𝑖𝑙 + 𝑋𝑖𝑘𝑙 + 𝑋 𝑗𝑙𝑘

)
,

which corresponds to evaluating the CR-interpolated field at the

barycenter. Letting Y𝑖𝑗𝑘𝑙 := X𝑖𝑗𝑘𝑙/∥X𝑖𝑗𝑘𝑙 ∥ in each tet, the discrete

divergence is then

(∇ · Y)𝑖 =
∑︁

𝑖𝑗𝑘𝑙>𝑖

| 𝑗𝑙𝑘 |𝑛 𝑗𝑙𝑘 · Y𝑖𝑗𝑘𝑙 . (22)

B.3 Mass Matrix
The |𝐹 | × |𝐹 | Crouzeix-Raviart mass matrix M has nonzero entries

given by

M𝑖𝑗𝑘,𝑗𝑖𝑙 =

∫
𝑀

⟨𝜑𝑖𝑗𝑘 (𝑥), 𝜑 𝑗𝑖𝑙 (𝑥)⟩ d𝑥

=
∑︁

𝑖𝑗𝑘𝑙>𝑖𝑗𝑘,𝑗𝑖𝑙

6|𝑖𝑗𝑘𝑙 |
∫

1

0

∫
1−𝑢

0

∫
1−𝑡−𝑢

0

(1 − 3𝜆𝑙 (𝑥)) (1 − 3𝜆𝑘 (𝑥)) d𝑠 d𝑡 d𝑢

where 𝑥 is parameterized using barycentric coordinates of tet 𝑖𝑗𝑘𝑙

with vertex positions 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 , 𝑣𝑙 , as 𝑥 = 𝑠𝑣𝑖+𝑡𝑣 𝑗+𝑢𝑣𝑘+(1−𝑠−𝑡−𝑢)𝑣𝑙 .
We obtain entries of the symmetric matrix as

M𝑖𝑗𝑘,𝑗𝑖𝑙 = M𝑖𝑗𝑘,𝑖𝑘𝑙 = M𝑖𝑗𝑘,𝑗𝑙𝑘 = − 1

20
|𝑖𝑗𝑘𝑙 |, ∀𝑖𝑗𝑘𝑙 ∈ 𝑇

M𝑖𝑗𝑘,𝑖𝑗𝑘 = 2

5

∑
𝑖𝑗𝑘𝑙>𝑖𝑗𝑘 |𝑖𝑗𝑘𝑙 |, ∀𝑖𝑗𝑘 ∈ 𝐹 .

(23)

ACM Trans. Graph., Vol. 43, No. 4, Article 92. Publication date: July 2024.



A Heat Method for Generalized Signed Distance • 92:17

C PSEUDOCODE
We give pseudocode for surface domains, expressed via a halfedge

mesh data structure encoding a triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ). We use

⇀
𝑖𝑗 to denote the halfedge from 𝑖 to 𝑗 . We assume only that meshes

have been specified via intrinsic quantities including edge lengths

and corner angles, which we denote using the notation defined in

§5.1. Subroutines not defined here are described in the list below.

For simplicity, we assume here that𝑀 is oriented.

• Orientation(
⇀
𝑖𝑗 ) — returns +1 if the orientation of halfedge

⇀
𝑖𝑗

matches the canonical orientation of its edge 𝑖𝑗 , and −1 otherwise.
• Face(𝑝) — returns a face 𝑖𝑗𝑘 that the barycentric point 𝑝 lies

within.

• SharedHalfedge(𝐴, 𝐵) — returns the halfedge going from ele-

ment 𝐴 to 𝐵, which may be vertices or barycentric points, if any.

• SharedFace(𝐴, 𝐵) — returns a face shared by mesh elements 𝐴

and 𝐵, if any. The elements 𝐴 and 𝐵 may be vertices, edges, faces,

or barycentric points.

• BarycentricVector(𝑝𝐴, 𝑝𝐵 ) — returns a barycentric vector de-

fined by the barycentric points 𝑝𝐴 and 𝑝𝐵 as its endpoints. If 𝑝𝐴
and 𝑝𝐵 coincide with vertices, the barycentric vector lies on an

edge; otherwise, it lies in a face.

• BarycentricVectorInFace(
⇀
𝑖𝑗 , 𝑖𝑗𝑘) — returns the barycentric

vector defined by the endpoints of halfedge
⇀
𝑖𝑗 , with coordinates

expressed with respect to face 𝑖𝑗𝑘 .

• BarycentricCoordsInFace(𝑝, 𝑖𝑗𝑘) — returns the barycentric co-

ordinates of the barycentric point 𝑝 with respect to face 𝑖𝑗𝑘 .

• BarycentricCoordsInSomeFace(𝑝) — returns the barycentric

coordinates of the barycentric point 𝑝 with respect to one its

containing faces, along with the face itself.

• BarycentricCoordsInFace(𝜈, 𝑖𝑗𝑘) — returns the barycentric co-

ordinates of the barycentric vector 𝜈 with respect to face 𝑖𝑗𝑘 .

• Norm(𝑀,𝜈) — returns the norm of the barycentric vector𝜈 defined

on triangle mesh𝑀 .

• Dot(𝑀,𝜈𝐴, 𝜈𝐵 ) — returns the inner product ⟨𝜈𝐴, 𝜈𝐵⟩ ∈ R between

two barycentric vectors 𝜈𝐴 , 𝜈𝐵 defined on triangle mesh𝑀 .

• Rotated90(𝑀,𝜈) — returns the barycentric vector 𝜈 , rotated coun-

terclockwise 90
◦
in its local tangent plane on mesh𝑀 .

• SolveSparseSqare(A, b) — solves the sparse square linear sys-

tem Ax = b, returning x.
• SolveSparsePositiveSemidefinite(A, b) — solves the sparse pos-

itive semidefinite linear system Ax = b, returning x (and picking

an arbitrary shift if A has constants in its null space).

Algorithm 1 SolveGeneralizedSignedDistance(𝑀,Ω, 𝑡, C)
Input: Points and/or curves Ω on a triangle mesh𝑀 , diffusion time

𝑡 , and constraints C.
Output: The generalized signed distance function 𝜙 to Ω.
1: X𝑡 ← IntegrateVectorHeatFlow(𝑀,Ω, 𝑡)
2: Y𝑡 ← Normalize(X𝑡 )
3: 𝜙 ← IntegrateVectorField(𝑀, Y𝑡 , C)
4: return 𝜙

Algorithm 2 IntegrateVectorHeatFlow(𝑀,Ω, 𝑡)

Input: Integrate the vector heat flow in Equation 12 for time 𝑡

on the triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ), with initial conditions

defined by the geometry Ω.

Output: The diffused vector field X𝑡 ∈ C |𝐸 | .
1: L∇ ← CrouzeixRaviartConnectionLaplacian(𝑀)
2: M← CrouzeixRaviartMassMatrix(𝑀)
3: X0 ← BuildSource(𝑀,Ω)
4: X𝑡 ← SolveSparsePositiveSemidefinite(M + 𝑡L∇, X0)
5: return X𝑡

Algorithm 3 Normalize(𝑀, X)
Input: A vector field X ∈ C |𝐸 | expressed in the edge basis defined

in §5.2, defined on triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
Output: The normalized vector field Y ∈ R |𝐹 |×3, sampled onto face

barycenters and encoded via barycentric vectors.

1: Y← 0
|𝐹 |×3

2: for 𝑝𝑞𝑟 ∈ 𝐹 do
3: y← 0

3

4: for 𝑖𝑗𝑘 ∈ C(𝑝𝑞𝑟 ) do ⊲C: circular shifts
5: 𝑠⇀𝑖𝑗 ← Orientation(⇀𝑖𝑗 )
6: 𝜏 ← BarycentricVectorInFace(⇀𝑖𝑗 , 𝑝𝑞𝑟 ) · 𝑠⇀𝑖𝑗
7: 𝜈 ← Rotated90(𝑀,𝜏)
8: 𝜏 /= Norm(𝑀,𝜏)
9: 𝜈 /= Norm(𝑀,𝜈)
10: 𝜆𝜏 ← BarycentricCoordsInFace(𝜏, 𝑝𝑞𝑟 )
11: 𝜆𝜈 ← BarycentricCoordsInFace(𝜈, 𝑝𝑞𝑟 )
12: y += Re(X𝑖𝑗 ) · 𝜆𝜏
13: y += Im(X𝑖𝑗 ) · 𝜆𝜈
14: Y𝑝𝑞𝑟 ← y

15: return Y

Algorithm 4 IntegrateVectorField(𝑀, X, C)
Input: A vector field X ∈ R |𝐹 |×3 defined on a triangle mesh 𝑀 =

(𝑉 , 𝐸, 𝐹 ), and constraints C.
Output: The solution𝜙 ∈ R |𝐸 | to the Poisson problem in Equation 13

satisfying the constraints C (§7).

1: L← CotanLaplacian(𝑀)
2: b← Divergence(𝑀, X)
3: if C = ∅ then
4: 𝜙 ← −SolveSparsePositiveSemidefinite(L, b)
5: 𝜙 ← Shift(𝜙,Ω)
6: return 𝜙

7: if C = PreserveZeroLevelset then
8: A← ConstraintMatrix(Ω)

9: u← −SolveSparseSqare

( [
L AT

A 0

]
,

[
b
0

] )
10: 𝜙 ← Shift(u: |𝐸 | ,Ω)
11: return 𝜙

Algorithm 5 CrouzeixRaviartConnectionLaplacian(𝑀)
Input: A triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
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Output: The Crouzeix-Raviart connection Laplacian L∇ ∈ C |𝐸 |× |𝐸 |
(§5.4).

1: L∇ ← 0
|𝐸 |× |𝐸 | ⊲initialize empty sparse complex matrix

2: for 𝑝𝑞𝑟 ∈ 𝐹 do
3: for 𝑖𝑗𝑘 ∈ C(𝑝𝑞𝑟 ) do ⊲C: circular shifts
4: 𝑤 ← 2 cot𝜃𝑘𝑖

𝑗
5: 𝑟𝑖𝑗, 𝑗𝑘 ← EdgeRotation(𝑖𝑗, 𝑗𝑘)
6: L∇𝑖𝑗,𝑖𝑗 += 𝑤

7: L∇ 𝑗𝑘,𝑗𝑘 += 𝑤

8: L∇𝑖𝑗, 𝑗𝑘 −= 𝑤 · 𝑟 𝑖𝑗→𝑗𝑘

9: L∇ 𝑗𝑘,𝑖𝑗 −= 𝑤 · 𝑟𝑖𝑗→𝑗𝑘

10: return L∇

Algorithm 6 CrouzeixRaviartMassMatrix(𝑀)
Input: A triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
Output: The Crouzeix-Raviart mass matrix M ∈ C |𝐸 |× |𝐸 | (§B.3).
1: M← 0

|𝐸 |× |𝐸 | ⊲initialize empty sparse complex matrix
2: for 𝑝𝑞𝑟 ∈ 𝐹 do
3: for 𝑖𝑗 < 𝑝𝑞𝑟 do M𝑖𝑗,𝑖𝑗 += |𝑖𝑗𝑘 |

3

4: return M

Algorithm 7 CotanLaplacian(𝑀)
Input: A triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
Output: The positive definite cotan Laplacian L ∈ R |𝑉 |× |𝑉 | .
1: L← 0

|𝑉 |× |𝑉 | ⊲initialize empty sparse matrix
2: for 𝑝𝑞𝑟 ∈ 𝐹 do
3: for 𝑖𝑗𝑘 ∈ C(𝑝𝑞𝑟 ) do ⊲C: circular shifts
4: 𝑤 ← 1

2
cot𝜃

𝑖𝑗

𝑘
5: L𝑖,𝑖 += 𝑤

6: L𝑗, 𝑗 += 𝑤

7: L𝑖, 𝑗 −= 𝑤

8: L𝑗,𝑖 −= 𝑤

9: return L

Algorithm 8 Divergence(𝑀, X)
Input: A triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ), and vector field X ∈ C |𝐹 | .
Output: The finite-element divergence b := ∇ ·X ∈ R |𝑉 | , defined per

vertex.

1: b← 0
|𝑉 |

2: for 𝑖 ∈ 𝑉 do
3: for 𝑖𝑗𝑘 > 𝑖 do
4: 𝜈𝐴 ← BarycentricVectorInFace(⇀𝑖𝑗 , 𝑖𝑗𝑘)
5: 𝜈𝐵 ← BarycentricVectorInFace(⇀𝑘𝑖 , 𝑖𝑗𝑘)
6: 𝑑𝐴 ← Dot(𝑀,𝜈𝐴, X𝑖𝑗𝑘 )
7: 𝑑𝐵 ← Dot(𝑀,𝜈𝐵, X𝑖𝑗𝑘 )
8: b𝑖 += 1

2
cot𝜃

𝑖𝑗

𝑘
· 𝑑𝐴 + 1

2
cot𝜃𝑘𝑖

𝑗
· 𝑑𝐵

9: return b

Algorithm 9 ConstraintMatrix(Ω)
Input: Source geometry Ω considered as a set of barycentric points

{𝑝𝑖 } on triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).

Output: The constraint matrix A ∈ R𝑚×|𝑉 | defined in Equation 14,

where𝑚 is the number of constraints.

1: 𝑚 ← 0

2: 𝜆0, 𝑎𝑏𝑐 ← BarycentricCoordsInSomeFace(𝑝0)
3: for 𝑝 ∈ Ω do
4: 𝑖𝑗𝑘 ← Face(𝑝)
5: 𝜆 ← BarycentricCoordsInFace(𝑝, 𝑖𝑗𝑘)
6: for 𝑙 < 𝑖𝑗𝑘 do C𝑚,𝑙 += 𝜆𝑙

7: for 𝑙 < 𝑎𝑏𝑐 do C𝑚,𝑙 −= (𝜆0)𝑙
8: 𝑚 += 1

9: return C

Algorithm 10 BuildSource(𝑀,Ω)
Input: Source geometry Ω = {Γ, 𝑃} consisting of a collection

of curves Γ and points 𝑃 , defined on triangle mesh 𝑀 =

(𝑉 , 𝐸, 𝐹 ) (§5.6).
Output: The r.h.s. X0 ∈ C |𝐸 | to Equation 12.

1: X0 ← 0
|𝐸 | ⊲initialize empty complex vector

2: X0 += BuildOrientedCurveSources(𝑀, Γ)
3: X0 += BuildUnorientedPointSources(𝑀, 𝑃)
4: return X0

Algorithm 11 BuildOrientedCurveSources(𝑀, Γ)
Input: A collection of oriented curves Γ = {𝛾𝑖 } on triangle mesh

𝑀 = (𝑉 , 𝐸, 𝐹 ) consisting of linear segments 𝛾𝑖 , each defined

by barycentric points sharing a face (§5.6).

Output: A source term X0 ∈ C |𝐸 | encoding Γ.

1: X0 ← 0
|𝐸 | ⊲initialize empty complex vector

2: for 𝛾 = (𝑝𝐴, 𝑝𝐵) ∈ Γ do
3: ℓ ← Length(𝛾)
4:

⇀
𝑖𝑗 ← SharedHalfedge(𝑝𝐴, 𝑝𝐵)

5: if 𝑖𝑗 = Null then
6: 𝑖𝑗𝑘 ← SharedFace(𝑝𝐴, 𝑝𝐵)
7: for 𝑖𝑗 < 𝑖𝑗𝑘 do
8: (X0)𝑖𝑗 += ℓ · CurveNormal(𝑀,𝛾, 𝑖𝑗)
9: else
10: 𝑛 ← 𝚤 · Orientation(⇀𝑖𝑗 )
11: (X0)𝑖𝑗 += ℓ · 𝑛
12: return X0

Algorithm 12 BuildUnorientedPointSources(𝑀, 𝑃)
Input: A collection of vertices 𝑃 on triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
Output: A source term X0 ∈ C |𝐸 | encoding 𝑃 .
1: X0 ← 0

|𝐸 | ⊲initialize empty complex vector
2: for 𝑖 ∈ 𝑃 do
3: ⊲Compute angle sum.
4: Θ← 0

5: for 𝑗𝑘
𝑖
< 𝑖 do Θ += 𝜃

𝑗𝑘
𝑖

6: ⊲Add contributions per-face.
7: for 𝑗𝑘

𝑖
< 𝑖 do

8: 𝑠⇀𝑖𝑗 ← Orientation(⇀𝑖𝑗 )
9: 𝑠⇀𝑗𝑘 ← Orientation(⇀𝑗𝑘)
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10: 𝑠⇀𝑘𝑖 ← Orientation(⇀𝑘𝑖 )
11: 𝑟⇀

𝑖𝑗→⇀
𝑗𝑘 ← HalfedgeRotation(⇀𝑖𝑗 , ⇀

𝑗𝑘)
12: 𝑟⇀

𝑘𝑖→⇀
𝑖𝑗 ← HalfedgeRotation(⇀𝑘𝑖, ⇀𝑖𝑗 )

13: 𝑛 ← 𝚤 (1−𝑒𝚤𝜃
𝑗𝑘
𝑖 )

Θ
14: (X0)𝑖𝑗 += 𝑠⇀𝑖𝑗 · 𝑛
15: (X0) 𝑗𝑘 += 𝑠⇀𝑗𝑘 · 𝑟 ⇀

𝑖𝑗→⇀
𝑗𝑘 · 𝑛

16: (X0)𝑘𝑖 += 𝑠⇀𝑘𝑖 · 𝑟⇀
𝑘𝑖→⇀

𝑖𝑗 · 𝑛
17: return X0

Algorithm 13 Shift(𝑀, f,Ω)
Input: A function f ∈ R |𝑉 | and source geometry Ω = {Γ, 𝑃}, de-

fined on triangle mesh𝑀 = (𝑉 , 𝐸, 𝐹 ).
Output: The function g ∈ R |𝑉 | shifted to average zero along Ω.
1: 𝑐 ← 0

2: 𝐿 ← 0

3: for 𝛾 ∈ Γ do
4: ℓ ← Length(𝑀,𝛾)
5: 𝑖𝑗𝑘, 𝜆 ← Midpoint(𝛾)
6: for 𝑙 < 𝑖𝑗𝑘 do 𝑐 ← ℓ · 𝜆𝑙 · f𝑙
7: 𝐿 += ℓ

8: for 𝑝 ∈ 𝑃 do
9: 𝑖𝑗𝑘 ← Face(𝑝)
10: 𝜆 ← BarycentricCoordsInFace(𝑝, 𝑖𝑗𝑘)
11: for 𝑙 < 𝑖𝑗𝑘 do 𝑐 += f𝑙 · 𝜆𝑙
12: 𝐿 += 1

13: 𝑐 /= 𝐿

14: g← f − 𝑐 · 1 |𝑉 |
15: return g

Algorithm 14 EdgeRotation(𝑖𝑗, 𝑗𝑘)
Input: Two edges 𝑖𝑗 and 𝑗𝑘 in face 𝑖𝑗𝑘 .

Output: The complex number encoding the smallest rotation from

the local coordinate basis at edge 𝑖𝑗 to that of edge 𝑗𝑘 . (§5.4).

1: 𝑟⇀
𝑖𝑗→⇀

𝑗𝑘 ← HalfedgeRotation(⇀𝑖𝑗 ,⇀𝑗𝑘)
2: 𝑠𝑖𝑗→𝑗𝑘 ← Orientation(⇀𝑖𝑗 ) · Orientation(⇀𝑗𝑘)
3: 𝑟𝑖𝑗→𝑗𝑘 ← 𝑠𝑖𝑗→𝑗𝑘 · 𝑟 ⇀

𝑖𝑗→⇀
𝑗𝑘

4: return 𝑟𝑖𝑗→𝑗𝑘

Algorithm 15 HalfedgeRotation(⇀𝑖𝑗 , ⇀
𝑗𝑘)

Input: Two halfedges
⇀
𝑖𝑗 and

⇀
𝑗𝑘 in face 𝑖𝑗𝑘 .

Output: The complex number encoding the smallest rotation from

𝑒⇀
𝑖𝑗 to 𝑒⇀

𝑗𝑘 .

1: 𝑟⇀
𝑖𝑗→⇀

𝑗𝑘 ← −𝑒−𝚤𝜃
𝑘𝑖
𝑗

2: return 𝑟⇀
𝑖𝑗→⇀

𝑗𝑘

Algorithm 16 CurveNormal(𝑀, 𝑖𝑗)
Input: A curve segment 𝛾 = (𝑝𝐴, 𝑝𝐵) specified by two barycentric

points 𝑝𝐴 and 𝑝𝐵 , and edge 𝑖𝑗 defined on triangle mesh𝑀 .

Output: The complex number 𝑛 ∈ C encoding the unit normal to 𝛾 ,

expressed w.r.t. the local basis of 𝑖𝑗 (§5.4).

1: 𝛽 ← BarycentricVector(𝑖, 𝑗)
2: 𝜏 ← BarycentricVector(𝑝𝐴, 𝑝𝐵)

3: 𝜈 ← Rotated90(𝑀,𝜏)
4: 𝜏 /= Norm(𝑀,𝜏)
5: 𝜈 /= Norm(𝑀,𝜈)
6: 𝑛 ← Dot(𝑀,𝜈, 𝛽) + 𝚤 · Dot(𝑀,𝜏, 𝛽)
7: return 𝑛

Algorithm 17 Length(𝑀,𝛾)
Input: A curve segment 𝛾 = (𝑝𝐴, 𝑝𝐵) specified by two barycentric

points 𝑝𝐴 and 𝑝𝐵 , defined on the triangle mesh𝑀 .

Output: The length of 𝛾 .

1: 𝜈 ← BarycentricVector(𝑝𝐴, 𝑝𝐵)
2: ℓ ← Norm(𝑀,𝜈)
3: return ℓ

Algorithm 18 Midpoint(𝛾)
Input: A curve segment 𝛾 = (𝑝𝐴, 𝑝𝐵) specified by two barycentric

points 𝑝𝐴 and 𝑝𝐵 .

Output: The barycentric point at the midpoint of 𝛾 , expressed via its

containing face 𝑖𝑗𝑘 and barycentric coordinates w.r.t. 𝑖𝑗𝑘 .

1: 𝑖𝑗𝑘 ← SharedFace(𝑝𝐴, 𝑝𝐵)
2: 𝜆𝐴 ← BarycentricCoordsInFace(𝑝𝐴, 𝑖𝑗𝑘)
3: 𝜆𝐵 ← BarycentricCoordsInFace(𝑝𝐵, 𝑖𝑗𝑘)
4: return 𝑖𝑗𝑘, 1

2
(𝜆𝐴 + 𝜆𝐵)
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