A Heat Method for Generalized Signed Distance
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We introduce a method for approximating the signed distance function (SDF)
of geometry corrupted by holes, noise, or self-intersections. The method
implicitly defines a completed version of the shape, rather than explicitly
repairing the given input. Our starting point is a modified version of the
heat method for geodesic distance, which diffuses normal vectors rather
than a scalar distribution. This formulation provides robustness akin to
generalized winding numbers (GWN), but provides distance function rather
than just an inside/outside classification. Our formulation also offers several
features not common to classic distance algorithms, such as the ability to
simultaneously fit multiple level sets, a notion of distance for geometry that
does not topologically bound any region, and the ability to mix and match
signed and unsigned distance. The method can be applied in any dimension
and to any spatial discretization, including triangle meshes, tet meshes,
point clouds, polygonal meshes, voxelized surfaces, and regular grids. We
evaluate the method on several challenging examples, implementing normal
offsets and other morphological operations directly on imperfect curve and
surface data. In many cases we also obtain an inside/outside classification
dramatically more robust than the one obtained provided by GWN.
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1 INTRODUCTION

A signed distance function (SDF) describes the distance to the clos-
est point on the boundary of a given shape, using sign to indicate
whether points are inside or outside. SDFs are a basic component of
numerous algorithms from geometric modeling [Museth et al. 2002],
physical simulation [Osher et al. 2004], rendering [Quilez 2008], path
planning [Oleynikova et al. 2016], geometric learning [Yariv et al.
2023] and computer vision [Vicini et al. 2022]. In many problems,
geometry exhibits severe defects due to errors in modeling or acqui-
sition. Unfortunately, traditional SDF algorithms assume a “perfect”
watertight description of the boundary, relying on a well-defined
inside and outside to determine the sign [Sethian 1999]. At the same
time, robust inside/outside tests do not provide a useful signed dis-
tance approximation [Jacobson et al. 2013]. Our method provides
the best of both worlds: a generalized signed distance (GSD) function
computed directly from broken geometry, which provides not only
an inside/outside classification, but also distance information.
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Fig. 1. The signed heat method computes a well-behaved signed distance

function (SDF), even for imperfect or incomplete input geometry. Here we
compute geodesic signed distance to the broken curve shown in magenta.

More precisely, we aim to approximate the signed distance to
the boundary of a shape within a fixed domain M—for example, a
curve on a surface, or a surface in R3. When M is itself a curved
manifold, we consider the signed geodesic distance, i.e., the minimal
length among all paths along M. We assume we are given as input
a defective description Q C M of the shape boundary: a “broken”
curve or surface which can have holes, self-intersections, and noise.
We then seek a reasonable approximation of the SDF for the true
(unknown) geometry.

Our solution to this problem, the signed heat method (SHM), pro-
vides a “least squares” approach: we find a signed distance approxi-
mation that matches the input geometry as well as possible, even
when it does not perfectly bound any region. There are three basic
steps (Figure 2):

L. Diffuse the normals of Q for a small time ¢ > 0, by solving a
vector-valued heat equation.
II. Normalize the diffused vectors, yielding a unit vector field
that approximates the gradient of the (unknown) SDF.
III. Find the function whose gradient best matches the unit vector
field, by solving a scalar Poisson equation.

A diffusion-based approach is valuable because it extends in a robust
way to imperfect geometry. For instance, if a curve has gaps, or a
surface has holes, diffusion averages together normals at nearby
points—providing smooth interpolation of the observed data. Nor-
malization of gradients then ensure that we recover a distance ap-
proximation, rather than just a smooth function.

Why not simply “fix” the broken geometry before computing
distance? For example, one could fit an implicit function, extract
an explicit mesh, then compute signed distance using any standard
algorithm. Here, however, errors in reconstruction can propagate
into distance computation (Figure 3, left). Moreover, each step (say,
computing signed distance) already costs as much as our entire
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Fig. 2. The three basic steps of the signed heat method.

method. We avoid intermediate representations altogether, provid-
ing more accurate distance for about an order of magnitude lower
cost (Section 9.5.3).

By formulating our method from the perspective of short-time
heat diffusion, it also inherits many benefits of the original heat
method: it can compute (geodesic) distance on curved domains, it
applies directly to most discretizations (triangle/tet meshes, gen-
eral polygon meshes, point clouds, etc.), is robust to noise in both
the input geometry and the underlying domain (since it is based
on solving “nice” elliptic problems), and is easily accelerated and
parallelized using existing systems for sparse linear algebra (since
the main cost is solving two standard linear systems). More broadly,
a variational, PDE-based approach to SDF computation enables ex-
tensions not possible even with other geodesic distance algorithms—
such as finding the “best fit” distance function for a collection of
partially-observed level sets (Section 7.1), or computing a notion of
generalized signed distance for input shapes that do not topologi-
cally bound regions (Section 7.2).

2 RELATED WORK

Our algorithm complements a large set of existing methods:

o Methods for robust inside/outside classification, which do
not directly provide signed distance (Section 2.1).

o Methods for signed distance computation, which generally
do not work well for broken geometry (Section 2.2).

It also of course builds on earlier heat methods (Section 2.3). Un-
fortunately, simply signing the unsigned distance yields a function
completely different from the true SDF—see Figure 6. In general,
there are only a few methods that explore robust SDF computation—
and none suitable for curved geometry.
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Fig. 3. Both GWN and GSD implicitly define a completed surface—but GSD
also provides distance information. Moreover, GWN must interpolate the
input geometry, leading to noisy output (left). GSD can either interpolate
or approximate the input, yielding a more faithful completion (far right).
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Fig. 4. Our method can be applied on virtually any spatial data structure, in
any dimension. Here for instance we compute generalized signed distance to
a badly broken surface (left), by solving on a regular grid in R®. Contouring
this function yields well-behaved and evenly-spaced offset surfaces (right).

2.1 Inside/Outside Classification

Given a corrupted region boundary dA, there are two basic strategies
for estimating whether a given point x € M is inside or outside:

e Pseudonormal test. Let n(x) be the
normal at the closest point x € dA. The sign
of the function ¢, (x) := (n(x), x—x) indicates
whether x is inside or outside A [Beerentzen
and Aanees 2005]. This test can be applied as-
is to broken geometry, effectively using the — +
tangent plane of the closest boundary point as — m
a proxy for missing geometry. However, since ’
tangent planes are not globally consistent, neither is the pseudonor-
mal distance ¢p, which in general is not even C° continuous (inset).

¢ Winding number. The winding number captures the number
of times dA wraps around the point x, and is hence nonzero only
when x is inside A. It is equivalent (up to a constant) to signed
solid angle—known in graphics as the generalized winding number
(GWN) [Jacobson et al. 2013], which is well-defined even for broken
geometry. GWN supplies robust inside/outside queries in several
algorithms [Zhou et al. 2016; Hu et al. 2018], but defines a harmonic
function rather than an SDF—and hence cannot be used for a broad
variety of geometric tasks (e.g., Figure 26, top).

Each method implicitly applies a prior
(linear vs. harmonic extension), suitable
in different scenarios (inset). GSD effec-
tively interpolates between these options:
as t — 0, points inherit the normal at the
closest point; as t — co, diffused vectors
become componentwise harmonic (Fig-
ure 5). Yet unlike the pseudonormal, GSD
is based on global integration, making it
less sensitive to small perturbations. Unlike GWN, which must (by
definition) interpolate the input, GSD is robust to noise in positions
(Figure 3), and yields better surface completions due to smooth
extrapolation of normal information (Figure 27).

: seudo-
input gormal GWN

2.1.1  Curved Domains. Inside/outside tests are also not easily gen-
eralized to curved domains. Here, closest point queries entail com-
puting the geodesic distance at every point—at which point one
may as well compute signed distance rather than the pseudonormal.
Likewise, the recent method of Feng et al. [2023] generalizes GWN



pseudonormal winding

generalized signed distance
1 number

i v\

L)

| NTA

t = 10h% t = 1000h?

t=0.1n%
Fig. 5. For different diffusion times, our method effectively interpolates

between the “linear” prior used by the pseudonormal test (as t — 0) and
the “harmonic” prior used by generalized winding numbers (as ¢ — ).

to curved surfaces, but again provides no notion of distance (and
has a similar cost to GSD).

2.2 Signed Distance Computation

For watertight geometry in R", unsigned distance can be computed
via fast, exact closest point queries [Sawhney et al. 2020] and signed
via basic inside-outside tests like ray shooting [Haines 1994]. Alter-
natively, one can sample geometry onto a grid and use methods like
fast sweeping [Osher et al. 2004].

For broken geometry, it is tempting to again just sign the unsigned
distance—but unless gaps are very small, the resulting function will
be quite different from the true SDF (Figure 6). Likewise, wavefront-
based methods like fast marching [Kimmel and Sethian 1998] and
learning-based variants [Lichtenstein et al. 2019; Huberman et al.
2023] can be executed on broken geometry, but propagation of
orientation errors yields significant artifacts (Figure 7).

Some “signed distance” methods do not actually compute a true
distance function, but rather just a smooth implicit function that
vanishes near the input geometry. Like GWN, such functions are
unreliable for tasks like morphological modeling or sphere trac-
ing [Hart 1996]. For instance, smooth signed distance (SSD) [Calakli
and Taubin 2011] is actually a biharmonic function with unit-norm
gradient only at the zero set. Likewise, many so-called neural SDFs
encourage the signed distance property only near the zero set, or
weakly enforce the eikonal condition |V¢| = 1 [Gropp et al. 2020],
which is insufficient to characterize SDFs [Marschner et al. 2023].

2.2.1 Robust Signed Distance. Some past work considers regular-
ized signed distance for broken geometry. E.g., Xu and Barbi¢ [2014]
effectively apply morphological operations on unsigned distance
to “heal” holes of a user-specified size—at the cost of losing small
details. Brunton and Rmaileh [2021] use smoothing to mitigate arti-
facts arising from pseudonormal-like sign estimation (Section 2.1);
Beerentzen [2005] likewise smooth a pseudonormal distance ob-
tained from voxelization. Mullen et al. [2010] sign the unsigned dis-
tance by performing ray intersection tests on a small band around
the zero set. As noted above, neural networks have also been used
to fit distance-like functions to noisy/incomplete input [Park et al.
2019; Atzmon and Lipman 2019; Gropp et al. 2020], but do not pro-
duce true SDFs even for watertight geometry. Unlike GSD, none
of the methods in this section apply to curved domains, nor gen-
eralize to alternative spatial discretizations, nor handle the richer
constraints furnished by our variational formulation.
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Fig. 6. For broken geometry, simply signing unsigned distance does not
work, yielding completely different level sets (left) from the distance to the
unbroken curve (right).

fast marching

Fig. 7. Our elliptic formulation regularizes the available information, grace-
fully handling broken curves (left). In contrast, hyperbolic methods like
fast marching consider an expanding wavefront that propagates sign and
distance errors (right).

2.2.2  Geodesic Distance. With few exceptions, work over the past
40 years on geodesic distance computation has aimed largely at im-
proving speed and accuracy—Crane et al. [2020] provides a detailed
survey. We focus not on this performance race, but rather on a more
robust notion of signed distance that can be applied in a broader
range of real-world scenarios. However, robustness does not come
at a major cost: our method remains competitive with widely-used
methods such as the heat method and fast marching (Section 9.5).
Most past work considers distance to isolated points, which is
always unsigned, though a few methods consider unsigned distance
to curves embedded in surfaces [Bommes and Kobbelt 2007; Trettner
et al. 2021]; as in R", signing unsigned distance will fail to yield
satisfactory results for broken curves. Overall, we are not aware of
any work that computes robust signed distance to broken curves
on surfaces, or more generally, submanifolds of a curved domain.

2.3 Heat Methods

The signed heat method (SHM) builds on the unsigned heat method
(UHM) of Crane et al. [2013b], and the vector heat method (VHM) of
Sharp et al. [2019¢c]. UHM diffuses a scalar distribution concentrated
on source points for a small time ¢ > 0; Varadhan’s formula then
implies that, as t — 0, the gradient of the resulting heat distribu-
tion becomes parallel with the gradient of the distance function
¢ [Varadhan 1967]. Since the true distance function satisfies the
eikonal property |V¢| = 1, normalizing and integrating the initial
gradient field (via a Poisson equation) recovers an accurate distance
approximation. VHM instead starts by diffusing tangent vectors at
points; a similar normalization yields the parallel transport of these
vectors along minimal (shortest) geodesics.

Relative to UHM we change only the first step, diffusing normal
vectors concentrated along curves or surfaces, rather than a scalar
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measure concentrated at points. Relative to VHM, we change its
last three steps, integrating (normalized) diffused vectors to obtain
distance. Our basic insight, not considered in prior work, is that
diffused normals will be parallel to the gradient of signed distance,
since parallel transport ensures they are tangent to oriented min-
imal geodesics (Section 3.1). Hence, normalizing and integrating
these vectors recovers an accurate SDF approximation. For broken
geometry the story remains largely the same, except that diffusion
effectively interpolates normals from nearby points to obtain well-
behaved gradients.

Overall, our method inherits many benefits of past heat methods:
for instance, it is not tied to a particular spatial discretization (Sec-
tion 8), and is robust not only to broken source geometry, but also
poor discretization of the domain itself (Section 9.4). Other work im-
proves or applies heat methods in various ways—for instance, Sharp
et al. [2019b] and Gillespie et al. [2021] show how the accuracy and
robustness of the heat method can be significantly improved via use
of intrinsic triangulations—a strategy we also employ here. Several
works improve efficiency and scalability via parallel or iterative
solvers [Tao et al. 2019; Rawat and Biswas 2022a,b], Belyaev et al.
[2013] improve accuracy by iterating the integration step, Sun and
Liu [2022] extend the method to inhomogeneous and anisotropic
metrics, and Litman and Bronstein [2016] approximate all-pairs
distance using spectral methods. These extensions offer rich oppor-
tunities for future improvement and generalization of the signed
heat method.

3 SMOOTH THEORY

Fundamentally, our algorithm is defined in terms of operations in
the continuous setting, as described here. It can then be discretized
in many different ways, as explored in Sections 5 and 8.

Throughout we consider an n-dimensional
Riemannian manifold M with metric g, and
want to compute the signed distance function
¢ for a codimension-1 submanifold Q ¢ M
(e.g., curves within a surface, or surfaces
within a volume). In general we assume that
this data might represent a corrupted version of ideal input, mean-
ing M and/or Q may have holes, self-intersections, noise, and may
not be consistently oriented. (We also consider the more general
case where Q can include isolated points—see Appendix A.1.) We
use N to denote the unit normals of Q, and n for the unit normals
of the domain boundary oM. We use pq to denote a measure con-
centrated on Q, similar in spirit to an indicator function; N 1o
is likewise a vector field (or vector measure) equal to zero away
from Q, and determined by N for points in Q. Finally, we use A
for the negative-definite Laplace-Beltrami operator on M, and &
for the negative-definite connection Laplacian [Gallier et al. 2020];
intuitively, these operators measure the deviation of a scalar func-
tion and tangent vector field (resp.) from their average in a local
neighborhood.

More formally, for any Borel measurable set U C M, pq (U) = /Qnu dV, where
dV is the usual volume measure on Q.
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3.1 Signed Heat Method

The first step of our algorithm is to diffuse the normals N from Q
to the rest of the domain M for a short time ¢t > 0, which extends
information about surface orientation to the rest of the domain. In
particular we solve a vector-valued diffusion equation

4x: = X t>o0,

1
Xo = Nug. @

On R" this equation simply diffuses each scalar component of the
vector field; more generally it accounts for how vectors diffuse across
a domain with curvature (see Sharp et al. [2019c, Section 4.3]). As
with scalar diffusion, the magnitude of X; decays exponentially
with distance from Q, but its direction remains well-defined almost
everywhere since the support of the vector heat kernel is all of M.

Using diffusion to extrapolate orienta-
tion is not a heuristic, but is rather moti-
vated by a key observation from differen-
tial geometry: as t — 0 the diffused vector
X;(x) at each point x € M becomes paral-
lel to the normal N(x) at the closest point
x € Q. More precisely, it aligns with the
vector obtained via parallel transport of N (%) along a minimal geo-
desic y [Berline et al. 1992, Theorem 2.30]. Since parallel transport
along geodesics preserves tangency, this vector will be tangent to y
itself—and since traveling along y is the quickest way back to Q, it
must be parallel to the unsigned distance gradient V¢. Moreover,
since we transport oriented normals, we get the correct sign. We
can hence normalize X; to obtain an approximation Y; = X; /|| X;||
of the signed distance gradient.

The vector field Y; will not describe exact gradients for any SDF,
due to both the diffusion approximation—and more significantly—
errors in the input. However, we can still look for the function ¢
whose gradient is as close as possible, in a least-squares sense, to Y;.
In particular, we seek a minimizer for the problem

i Vo - Yell% 2
Jmin [ 19p-vl @

Using integration by parts, one can show that a minimizer satisfies
the Poisson equation

V-Yy onM

P ©)
i n-Y; on oM,

‘on

whose solution is determined up to a constant shift. To exactly in-

terpolate the input (and get a unique solution) we could also require

that ¢ = 0 along Q—though if the input is corrupted, interpolation

may be ill-advised (Figure 3); see Section 7.1 for further discussion.
In summary, we arrive at the following algorithm:

(1) Solve a vector diffusion equation %Xt = NV X, (Equation 1).
(2) Evaluate the vector field Yy = X /|| X¢||.
(3) Solve a Poisson equation A¢ = V - Y; (Equation 3).

4 TIME DISCRETIZATION

As in past heat methods we discretize Equation 1 in time via one
step of backward Euler [Crane et al. 2013b; Sharp et al. 2019¢], and



solve a linear equation
(id - tA)X; = Xo 4

for a single, fixed time ¢ > 0 (where id is the identity). To get a feel
for the behavior of this equation, we can consider the Euclidean
case (M = R™), where applying A to a vector field is equivalent
to applying the scalar Laplacian A to each component. Then as
t — oo we approach a standard Poisson equation; moreover, since
Xo = Npug is zero almost everywhere, the solution will look nearly
harmonic away from Q.

5 SPATIAL DISCRETIZATION

To implement the signed heat method on any geometric data struc-
ture, one need only provide sparse matrices representing the Lapla-
cian, connection Laplacian, and divergence operator. Section 8 ex-
plores several possibilities (regular grid, polygon mesh, point cloud,
etc.); in this section we focus on triangle meshes.

Here we use edge-based operators for the vector diffusion step
(Step I), which makes it straightforward to discretize curve sources;
we then use standard vertex-based operators for the Poisson equa-
tion (Step III), so that our final SDF is stored at vertices. As in
Djerbetian and Chen [2016] we adopt a complex encoding of the
connection Laplacian), which uses half as much storage/bandwidth
as the real-valued version used by Stein et al. [2020]: each 2x2 real
block (four floats) is replaced by a single complex value (two floats).

5.1 Notation

Our domain is a triangle mesh M = (V, E, F) with j
arbitrary topology (e.g., nonmanifold, nonorientable,
and/or with boundary); we use C for the set of all
triangle corners. We denote k-simplices by (k + 1)- k
tuples of vertex indices, ie., vertices i € V, edges

ij € E, and faces ijk € F. Likewise, we denote the
corner of triangle ijk at vertex i as J;k € C. These indices are also used
to express quantities stored on mesh elements—for instance, corner
angles are denoted by 9{ K We use < and > to indicate summation
over all elements contained by or containing another element (resp.).
For instance ;x> ;; sums over all triangles ijk containing edge ij.
We use | - | to denote the volume of a simplex—e.g., |ij| is an edge
length and |ijk| is a triangle area. To avoid trigonometric functions,
we evaluate all angle cotangents via the formula

cot 0% = (i1? = |k + kil?)/ (4lijk]). 6)

For each edge ij, we let ej; be a vector parallel to the edge with
arbitrary (but fixed) orientation, and magnitude equal to the edge
length. We let ejjf be the 90° rotation of e;; in the counter-clockwise

direction, and use é;, éjj? for the corresponding unit vectors.

5.2 Edge Basis Functions

The Crouzeix-Raviart (CR) basis functions
associate each edge ij € E with a face-
wise linear function ¢;; : M — R inter-
polating the value 1 at the midpoint of ij,
and 0 at all other edge midpoints (inset).
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A corresponding basis for vector fields is
expressed by identifying tangent vectors with
complex numbers. In particular, at each edge
ij we choose a coordinate system such that 1
and the imaginary unit 1 correspond to é;; and i
él.#, resp. The function 1;; := ¢@;; + 01 then de-
fines a basis vector field parallel to the edge, and
zi);j describes a locally supported vector field
parallel to z € C (right inset).

5.3 Edge-Based Laplacian and Mass Matrix

If we use the CR bases to discretize the scalar Laplacian (via a
standard Ritz-Galerkin approach), we get a real-valued positive
semidefinite matrix L € RIEIXIEl with nonzero entries

Lijjk = —2cot 6K, Vij € E, ijk>ij,
Lyjsi = —2cot 0, Vij € E ijk>ij,  (6)
Lijij = — 2ijk>ij Lij jk + Lijki» Vij € E,

where either the length/area or angle-based expressions can be used.
The mass matrix M € RIEIXIEl i diagonal, with nonzeros

Mijij = % Zijksij lifkl, Vij € E. (7)

5.4 Edge-Based Connection Laplacian K

Intuitively, the connection Laplacian mea-

sures the deviation of a vector field from

its average value in a small local neighbor- /(9\ ”_ gki
hood. To compute this average on a mesh, J
we must parallel transport vectors into a - >
common coordinate system at each edge \Q/ J

(see inset). Since edges are intrinsically flat,
parallel transport is simply a translation—
but we must also account for a change of
coordinates. In particular, for each triangle ijk, we encode the paral-
lel transport of a vector from edge ij to the next edge jk in counter-
clockwise order as a rotation
ki ki
Tij— jk = 5ij—>jke_l(”_6j )= _sijﬁjkelaj ) (3)
where the sign s;;_, jx € {+1,-1} is equal to ¢ = +1if ij and jk
have the same relative orientation with respect to ijk, and e'* = —1
otherwise. The positive-semidefinite connection Laplacian matrix
IV e CIEIXIEL is then obtained by multiplying off-diagonal entries
of L by edge rotations ry; ji, yielding nonzero entries

Vi = —2ri;ij cot ej?", Vij € E, ijk>ij,
|—Vij,ki = —2rgijjcot 9{ Vij € E, ijk > ij, )
Vi = Ly Vij € E,

. . . . - _
with cotans evaluated as in Equation 5. Since ryj_, jx = Mkl =
Tij— jk> the matrix IV is Hermitian. It is positive semidefinite because
it is the Hessian of a convex energy [Stein et al. 2020, Equation 5].

5.5 Vertex-Based Laplacian and Divergence

Our vertex-based operators are identical to those used in Step III
of the unsigned heat method [Crane et al. 2013b, Section 3.2.1]. In
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scalar heat method [Crane et al. 2013]

OO

without heuristic

with heuristic

Fig. 8. The unsigned heat method exhibits bias near the domain boundary
for large diffusion times (figure reproduced from Crane et al. [2013b], Figure
11 using ¢ = 100h?). Using their proposed boundary condition heuristic
only slightly improves results. In contrast, our method has correct boundary
conditions.

particular, we use the cotan Laplacian C € RIVIXIVI [Crane et al.
2013a, Chapter 6], which has nonzero entries
- 1 ij p
Ci)j = —3 Zijk>ij COtek, Vl] €E
Cii = -2i>iCijs VieV.
At interior vertices i € V, the divergence of a per-
face vector field Yy is

- ejk

(V-Y); = % Z (cot Gge§+cot Hfiela) “Yijks J
ijk>i

where ejj denotes the vector from vertex i to vertex j (see Polthier

and Preuf8 [2003, Section 4]). For boundary vertices, the discrete

divergence includes (due to integration by parts) an additional n - Y

term—which we omit because it exactly cancels with our desired
boundary conditions in Equation 3.

5.6 Source Discretization

We discretize the initial conditions from Equation 1 as values (Xo);j €
C at edges ij, where the source set Q can be a mix of oriented and
unoriented curves, as well as isolated points (Figure 9). Here we
treat oriented curves I'; Appendix A treats other source types.

In principle our formulation works for arbi-
trary curves, though to establish explicit formu-
las we will assume T is comprised of straight seg-

i k ments, each of which is contained entirely inside
W one face or edge. Note that when the domain M
is orientable, the normal N to I is uniquely de-
termined by a 90° counter-clockwise rotation; on
nonorientable domains, one must explicitly specify normals.
For each triangle ijk € F, a segment y contained in its interior
contributes to the initial values at all three of its three edges. For
instance, the contribution to (Xp);; is given by the complex value

Iyl (Ny - &+ (Ny - €5 )1) i (my) (11)

where |y/, Ny, and my are the length, normal, and midpoint of
the segment, resp. (and similarly for (Xo) jx, (Xo)x;). Empirically,
however, results are more accurate if we omit the factor ¢;;(my ). If
y runs along an edge ij, then it makes the same contribution, but
only to (Xp);;. These contributions are summed over all segments to
obtain final values for Xj. For intrinsic retriangulation (Figure 22),
Equation 11 can be expressed using purely intrinsic data, rather
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Fig. 9. We can mix and match signed and unsigned distance, selectively
treating open curves as either broken region boundaries—or as literal open
curves. We can also incorporate distance to isolated points.

than vectors in R3, by writing all vectors as differences of points in
barycentric coordinates (see Sharp et al. [2021, Section 3.1]).

The formula in Equation 11 is obtained by projecting the contin-
uous measure Ny, onto the vector CR basis. A nice feature of CR
bases is that they are orthogonal. Hence, for a given segment y we
need only integrate the function ;; with respect to the measure, or
equivalently, take a Hermitian inner product along the segment:

/MJUNY dpy = /JijNY ds = Ny/‘//ij ds = Ny lyleij(my).
y ¥

These equalities hold since Ny is constant and ¥;; = @;; + 01 is linear
along y. Equation 11 expresses the final quantity in the edge basis.

6 ALGORITHM

Our discrete algorithm amounts to solving two sparse linear systems
using the discrete operators defined in Section 5. First we solve the
discrete vector heat equation,

(M + V)X = Xo, (12)
obtaining a diffused vector field X. Following Sharp et al. [2019c,

Section 7.3], we let t = h2, where h is the mean distance between
nodes—in our case, edge midpoints, yielding half the mean edge

Next, we average the diffused vectors X to each

face ijk € F via Xjj := (Xjj + X + Xg;) /3 (taking

Xpi care to express all vectors in the same basis, as

in Section 5.4), and compute unit vectors Y :=

Xk Xijk / IIXijk |l which represent the gradient of our

(generalized) SDF. Finally, to obtain the SDF ¢ € RIV at vertices,
we solve a sparse linear system

Cg=b (13)

where C is the cotan Laplacian (Section 5.5), b € RIVI is the vector
of discrete divergences given in Section 5.5.

Boundary Behavior. Unlike the unsigned heat method, our signed
heat method exhibits the correct behavior at the boundary (Figure 8),
without any special boundary treatment (as in Edelstein et al. [2023,
Section 4.2]). The reason is that UHM obtains the vector field X as



no constraints constrain all to zero constant per component

Fig. 10. We can also fit a signed distance function to several partial level sets.
Left: Without constraints, isolines deviate slightly from source geometry.
Center: Blindly constraining to zero along all curves grossly violates the
distance property. Right: Constraining values to be constant along each
component nicely matches the input geometry.

the gradient of a scalar heat distribution u with either zero-Dirichlet
or zero-Neumann boundary conditions—in either case, the gradient
of u cannot point in the right direction (either purely normal or
purely tangential, resp.); Crane et al. [2013b, Section 3.4] suggests
to simply take a fixed linear combination. In contrast, even at the
boundary our vector diffusion step directly provides the normal at
the closest point, which agrees with the gradient of the true SDF. The
basic reason is that the discrete connection Laplacian (Equation 9)
encodes zero-Neumann boundary conditions on the vector field
itself [Gelfand et al. 2000, 1.6], rather than a scalar potential u.

7 OPTIONAL EXTENSIONS

Here we discuss some optional extensions of our basic method.
These extensions take advantage of the global variational nature
of our method to provide capabilities not possible with iterative
region-growing methods based on MMP [Mitchell et al. 1987] or
fast marching [Kimmel and Sethian 1998].

7.1 Preserving Level Sets

The final Poisson solve (Equation 13) recovers the signed distance
function ¢ only up to a constant shift. To make the zero level set
of ¢ approximate the source geometry Q, a common strategy is
to shift ¢ by its average over Q [Kazhdan et al. 2006; Calakli and
Taubin 2011; Crane et al. 2013b]. An alternative in our setting is to
add an explicit linear constraint to Equation 2 that ensures ¢ takes
the same value at all points of Q.

On a surface mesh, for instance, suppose Q has
i, jp at most one segment per trianglg, with e{ndpoints
AN S Y0 - - -, Ym on edges. Then we can impose linear con-
lipjpltp straints of the form
(1- tp)¢ip + tp¢jp =(1- to)Pi, + t0q5j0, p=1....m,
where t;, € [0, 1] encodes the location of x, along edge ip, jp (see

inset). We encode these constraints by a matrix A € R™*IV1 Mini-
mizing ||V¢ — Yt||§ subject to A¢ = 0 then corresponds to solving a
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soft constraint exact constraint no constraint
7]

N

|

Il

Fig. 11. Soft level set constraints can easily be incorporated into our PDE-
based framework. Here soft constraints encourage the zero set to lie near
the input curves, without distorting the SDF near self-intersections as much
as a hard constraint.

saddle-point problem
T
A 0f|u 0
where 1 € R™ are Lagrange multipliers. Since ¢|q is now constant
by construction, we can shift it to be exactly zero on all of Q—so
long as the constraints are compatible. We apply this procedure
in all figures unless otherwise noted. More generally, suppose the
input Q represents multiple, distinct level sets ¢~ (c1), ¢~ (c2), . ..
for values ¢; which are not known a priori. Here we can apply an
identical set of constraints per connected component, ensuring that
the value along each component is constant (Figure 10, right).
Finally, similar to Kazhdan and Hoppe [2013, Section 4], we can
replace the hard constraint with a soft penalty term fQ [[p(x) —
¢(x)||? dx, where A > 0 is the penalty strength (Figure 11). The
minimizer is obtained by solving the system (C — AATA)$ = b.

7.2 Nonbounding Loops and Discontinuous Distance

The gradient of unsigned distance
can be discontinuous on a lower-
dimensional set (analogous to the cut lo-
cus of a point), but is still tangent contin-
uous relative to this set, meaning vectors
on either side project to the same direc-
tion (Figure 13, top). In contrast, when
Q does not bound a region of M, the vec-
tor field Y; from Step II of our method
can fail to be tangent continuous—and
hence fail to be integrable via a globally
continuous function (Figure 13, bottom).

One possibility is to simply filter out
nonbounding components [Feng et al.
2023]; we instead consider a generalized
notion of signed distance that remains
meaningful. In particular, we now seek a piecewise continuous solu-
tion by replacing the L? problem in Equation 2 with an L' problem
that ignores neighborhoods where Y; is highly nonintegrable. On
triangle meshes, we quantify nonintegrability via an edge-based
curl inspired by Polthier and Preuf} [2003, Section 4]:

(VX Y)ij = (éij + éji) . Yijk' (15)
This quantity directly captures tangent discontinuity along edges:
taking edge orientation into account, it is simply the difference

nonbounding

=

Fig. 12. GSD extends to
curves that do not even
bound a region.
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tangent
continuous _ standard
integration (L%)
H 7 piecewise continuous
integration (L")
1
Wt
—
! 7
tangent

discontinuous
Fig. 13. Unlike the gradient of an unsigned distance function (top), the unit
vector field we compute for signed distance might not be integrated by any

continuous function (bottom). In such scenarios, we can instead compute a
piecewise continuous SDF (right).

of projected vectors. Discontinuous functions ¢ are represented
as piecewise linear functions interpolating values at corners. To
integrate Y in a piecewise continuous sense, we then minimize a
weighted L! norm that penalizes discontinuous jumps across edges:

. VXY gy Tkl
min " ijle”! VMg — g1

¢€R‘C| icE

je (16)

ki ik _ . .= jk

s.t. ¢j —¢; =Yi-ey, VEeC

Exponential weights incur a lower penalty when the field is not
integrable; simultaneously, the L! norm tries to minimize the length
of this discontinuity as much as possible. The constraints ensure
Y is integrated exactly within each triangle. In practice, we apply
the same transformations as Feng et al. [2023, Section 3.4] to obtain
a linear program with only |F| degrees of freedom. Examples are
shown in Figure 13 (right) and Figures 14 and 12. In Figure 12 we also
use a small amount of heat flow to smooth out minor discontinuities
from L; optimization.

7.3 Distance Sharpening

Unsigned geodesic distance can also be expressed as the solution to
a convex optimization problem, akin to the convex formulation of
graph distance [Dantzig 1963, Ch. 17], [Erickson 2019, Ch. HJ:

m;x ‘/Mgiw(x) dx
st Vol <1 (17)

¢ =0o0nQ.

Belyaev and Fayolle [2020] solve Equation 17 via ADMM to compute
the distance to point sources. This formulation tends to be more
accurate than our method—but is an order of magnitude slower
(Section 9.5), and more importantly, can compute only unsigned
distance. If desired, however, one can “sharpen” our results using a
generalization of Equation 17. We simply replace the objective in
Equation 17 with

i /M sign(do(:))$(x) dx (18)

where ¢y is the distance computed by the signed heat method, and
use ¢g as an initial guess for ¢. An example is shown in Figure 15.
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consistently- inconsistently-oriented curves

oriented curves

piecewise

integration: standard continuous

Fig. 14. Our algorithm works out-of-the-box for orientable input curves,
even on nonorientable domains (top). By adopting piecewise continuous
integration (Section 7.2) we can also handle inconsistently-oriented curves,
whether or not the domain itself is orientable (bottom).

Note that robust sign information is available only thanks to our
method—Equation 18 cannot be applied directly to broken curves.

In practice ADMM is quite slow, requiring repeated linear solves.
Since we have a good initializer, it might be better to use a first-order
method like the primal-dual hybrid gradient method, which is often
faster than ADMM [Chambolle and Pock 2011, Figure 5] and easily
implemented in parallel. We leave such exploration to future work.

8 OTHER SPATIAL DISCRETIZATIONS
8.1 Tetrahedral Meshes

The discretization from Section 5 generalizes directly to tet meshes—
extending our method from curve processing to broader surface
processing tasks. We again use a Crouzeix-Raviart finite element
discretization, detailed in Appendix B. Note that we do not need
a separate discretization for the connection Laplacian, since on a
flat domain we can just apply the scalar Laplacian componentwise.
For simplicity, we generate a mesh that conforms to input triangles
(via TetGen [Hang 2015]), so that the source term is just X°(x) :=
2ijkeq ijk|Njjx ik (x). Examples are shown in Figures 19, 26.

convex formulation

signed heat method

before sharpening
solve time: 0.51s

after sharpening

solve time: 0.70s additional time: 0.66s

Fig. 15. Left: Methods based on convex optimization yield more accurate
distances, but compute only unsigned distance. Right: Using our method
as a warm start, we can “sharpen” distance while preserving the inside-
outside classification. Here we start with a large diffusion time (¢ = 100h?)
to visually emphasize the effect.



polygon meshes point clouds

=

Fig. 16. Our method extends to polygon meshes, point clouds, and digital sur

8.2 Regular Grids

To avoid the cost of tet mesh generation, we can also use a regular
grid on R3. Here, rather than solve a linear system in Step I, we
can directly approximate X; via the fundamental solution of the
operator id — tA, given in R by the Yukawa potential

——— 1 _~VUilx-yl
Gr(*.9) = = g7 ¢ :

(In practice, we find this approach works better than convolving

with the heat kernel directly.) The diffused vector field at each

grid node x € R3 is then approximated by midpoint quadrature at

triangle barycenters b;j:

X = D) [ NG dys 3 likINgGr by

ijkeF ”Y ijkeF

where N;ji are triangle normals; this step could be accelerated from
O(|F]) to O(log |F|) via the method of Barnes and Hut [1986]. Step
IIT uses a standard seven-point Laplacian, and evaluates V - Y; using
forward differences. Figure 4 shows that we obtain high-quality
distances and offset surfaces even for badly corrupted geometry
(with contouring via marching cubes [Lorensen and Cline 1998]).

8.3 Polygon Meshes

On surface meshes made of general polygons
(which may be nonconvex or even nonplanar),
we adopt the Laplacian, divergence, and mass ma-
trices defined by Bunge et al. [2020] in terms of
a carefully-chosen triangular refinement. Since
Bunge et al. do not define a connection Laplacian, we define tan-
gent planes at vertices using the area-weighted sum of fine triangle
normals (picking an arbitrary basis in each plane). As in Equation 9,
a connection Laplacian is then obtained by multiplying off-diagonal
entries with complex numbers that encode the smallest rotation be-
tween tangent bases at adjacent vertices. For simplicity we assume
the curve I' runs along edges; the initial conditions X° at each vertex
i of T are then given by the average edge normal N times half the
sum of incident edge lengths ¢1, £> (inset). To compute divergence,
we prolong the diffused vector field X to the fine vertices, average
them onto faces, then apply the operator D from Bunge et al. [2020,
Section 4.5]. Examples are shown in Figure 16, left.

N r
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digital surfaces [ \ g™

faces. Digital surface meshes are from Coeurjolly and Levallois [2015].

.}’i+1

8.4 Point Clouds

For point clouds, we use the Laplacian of
Sharp and Crane [2020a, Section 5.7], which
also defines per-point tangent planes, and the
mass matrix from their tufted cover [Sharp and
Crane 2020a, Section 3.3]. We again augment
this Laplacian with off-diagonal rotations to
get a connection Laplacian, as described by Sharp et al. [2019c, Sec-
tion 6.2.2] and implemented in geometry-central [Sharp et al. 2019a].
Each component of T is a sequence of points y; from the cloud,
where normal N; can be computed by projecting y;—1, yi, yi+1 onto
the tangent plane at point i and taking the in-plane normal (inset).
As in Section 8.3, we compute X° by accumulating length-weighted
normals at each point. To compute divergence, we average diffused
vectors onto faces of the tufted cover and apply the formula from
Section 5.5. An example is shown in Figure 16, center.

8.5 Voxelizations

Our method also extends to digital surfaces, which are the bound-
aries of voxelized volumes. We use the vertex-based Laplacian, diver-
gence, and connection Laplacian defined by Coeurjolly and Lachaud
[2022], using the implementation in DGtal [Coeurjolly et al. 2010].
Analogous to Section 8.3, we encode the source term via extrinsic
projection of curve normals onto tangent bases defined at vertices,
where vertex normals are normalized averages of per-face corrected
normals [Coeurjolly et al. 2014]. We assume that T' is piecewise
linear on faces of the digital surface, and obtain initial conditions X°
by projecting segment normals onto tangent bases at vertices, and
multiplying by half the edge length of incident segments. Examples
are shown in Figure 16, right.

9 EVALUATION

We next evaluate our method via a broad range of numerical exper-
iments. As noted in Section 1, our primary focus is not on speed or
accuracy, but rather on improving the robustness and generality of
signed distance computation. Nonetheless, our signed heat method
(SHM) is quite competitive in speed and accuracy, since it boils down
to the same kinds of sparse linear systems as previous methods. In
particular, the method takes only a few hundred milliseconds for
meshes with hundreds of thousands of triangles, and exhibits the
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ground truth topological errors ———

red = flipped orientation

Fig. 17. Our method provides robust and reliable signed distance approximation, failing gracefully in the presence of significant topological, geometric, or
orientation errors. Errors € in geodesic distance are displayed relative to the exact polyhedral SDF of a finely sampled version of the original curve.

same linear convergence with respect to mesh refinement as earlier
schemes. More importantly, for broken geometry it still provides an
accurate approximation of the distance to the original, uncorrupted
geometry—whereas past methods can fail to provide a reasonable
distance approximation (Figure 7, right).

9.1 Implementation

All methods were implemented in C++, in double precision, using
geometry-central [Sharp et al. 2019a] for mesh data structures and
intrinsic retriangulation, and Eigen [Guennebaud et al. 2010] for
sparse linear algebra. Timings were taken on an Apple M1 with 8GB
RAM. The error € in any distance approximation ¢ is quantified via
Ly error normalized by the range of the true distance ¢°, i.e.,

N 1/2
e(p) = (max(¢°)—niin(¢°))ﬂ1/2 (ZiEVAi (¢l _¢?) ) 4

where A; = % 2ijk>i |ijk| is the area associated with vertex i, and
A = Y ey Aj is the total surface area.

9.2 Dataset

For evaluation, we consider a
dataset of closed, region-bounding
loops (since past methods do
not handle open or nonbounding
curves). This dataset is derived
from all 44 genus-zero meshes
without boundary from Myles
et al. [2014]. In order to perform
a study of convergence under refinement (Figure 25) we first remesh
each model to approximately 1.25k vertices using quadric error sim-
plification [Garland and Heckbert 1997], then compute four levels
of loop subdivision [Loop 1987]. At each level, we then extract level
sets of the same low-frequency Laplacian eigenfunctions [Lévy and
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Zhang 2010] using marching triangles, and remesh to a constrained
intrinsic Delaunay triangulation containing these curves [Sharp and
Crane 2020b, Section 6.3].

9.3 Examples

9.3.1 Morphological Operations. One natural use case for general-
ized signed distance is to contour broken geometry, and generate
accurate fixed-distance offsets (Figures 26, 19, 4). Generating such
offsets from imperfect geometry is useful, for example, for 3D print-
ing, or for downstream mesh processing tasks that require closed
or manifold surfaces. One can also “inflate” or “shrink” shapes by
taking positive or negative offsets—and combining these two opera-
tions in sequence can be used to simplify high-frequency features
of broken shapes as if they were whole (Figure 20). Note that in
Figure 26 we sample both functions onto the same tet mesh, using
libigl to evaluate GWN [Jacobson et al. 2018].

9.3.2  Illustration on Surfaces.
Geodesic distance is also
used to design curves on
surfaces—where prior work
largely considers perfect closed
curves [Nazzaro et al. 2022].
Our algorithm can be used to
pre-process curves into the
requisite closed format, e.g.,

those hastily sketched on a Fig. 18. Adjusting diffusion time fills in
surface (Figure 21). To con- broken letters with either round or sharp

trol the behavior of this com- cornfers,iy!eldmg effects similar to differ-
. . ent line joins for 2D strokes.

pletion operation, one can

use diffusion time to control completion behavior, providing an

analog of line join options from 2D vector graphics (Figure 18).

smaller t

larger t
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+0.3-offset +0.4-offset

multiple

Fig. 19. By extracting level sets of generalized signed distance, we can convert broken, noisy, and nonmanifold input geometry (far left) into closed, regular,

manifold surfaces and evenly-spaced offset surfaces.

solve
positive offset

Fig. 20. One can simplify high-frequency features of broken curves and
surfaces by taking consecutive positive/negative offsets of a generalized
signed distance function, akin to dilation/erosion.

9.4 Robustness

Since our method is built on i
well-behaved elliptic PDEs, it per- <
forms well on not only broken %‘_M»jg
input with corrupted topology, M S
geometry, and orientation (Fig-

ure 17) but also challenging surface domains (Figure 23). Since our
method is purely intrinsic, it applies to meshes that are only im-
mersed (rather than embedded); it also applies out of the box to
nonmanifold and nonorientable meshes (inset), since all our differ-
ential operators are local and defined per-face, and hence oblivious
to any nonmanifold features. Our method is robust across varying
degrees of nonmanifoldness and missing data (Figure 23, top and
bottom left). As with all methods that rely on discretizing PDEs, the
quality of the solution can degrade with poor tessellations of the
geometry, though we can easily apply intrinsic Delaunay triangula-
tion to get good-quality solutions (Figure 22). For surfaces in R3our
method remains robust, even for extremely corrupted input surfaces
(Figures 4,19).

As seen in Figure 27 we also obtain more natural surface com-
pletion than GWN, which for general surfaces is hard to contour
with any single level set value. Similar to spline interpolation, the
zero set of GSD nicely matches both positions and normals along
hole boundaries. Here meshes for both methods are extracted using
the marching tetrahedra implementation in [libigl [Jacobson and
Panozzo 2017].

holey domain

imperfect curve
selection

noisy scan
Fig. 21. Broken curves easily arise from attempting to draw curves on sur-
faces of high genus, with overhangs, and with holes and scanner noise.
Our method yields signed distance functions robust to these challenges.
(Scanned bench from from Choi et al. [2016].)

9.5 Accuracy and Performance

We compare against the unsigned heat method (UHM) of Crane
et al. [2013b], which provides a useful reference point since nearly
all work on geodesic distance algorithms from the past decade com-
pares against this method. As a more recent reference point, we also
compare with the convex formulation of Belyaev and Fayolle [2020]
(labeled BF). Since neither method directly handles curve sources,
we either integrate the initial scalar heat distribution against hat
functions (for UHM) or simply use the set of curve vertices as the
source set (for BF). (Methods that directly handle curve sources do
not have an open source implementation [Bommes and Kobbelt
2007], or do not include curve sources in their public release [Tret-
tner et al. 2021].) Finally, since BF must constrain the zero set, we
impose the same constraints on UHM/SHM (Section 7.1), and do
not pre-factor any matrices. Note, however, that for multiple source

N

‘: with intrinsic refinement

Fig. 22. The quality of our method depends on the underlying mesh quality;
but since our formulation is purely intrinsic, we can trivially improve accu-
racy and robustness by invoking intrinsic Delaunay refinement [Gillespie
et al. 2021], without changing anything else about our implementation.
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more nonmanifold

round
gtruth

) N
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} L large holes

nonmanifold & self-intersecting

Fig. 23. Our method robust not only to errors in the source geometry, but also in the domain mesh itself. Here we obtain well-behaved SDFs even for meshes
found “in the wild,” such as amateur-created 3D scans [Choi et al. 2016]. Even in cases where a notion of inside and outside is meaningless (such as the
rightmost mesh), our method fails gracefully—still producing a good signed distance approximation near the input curve.

terms, heat methods can achieve about two orders of magnitude
speedup by omitting factorization [Crane et al. 2013b, Table 1].

9.5.1 Planar Domains. As noted by Crane et al. [2013b, Figure 21],
even exact polyhedral distance (including MMP) provides only a
2nd-order accurate estimate of true (smooth) geodesic distance, due
to errors in the approximation of the domain itself. To avoid con-
flating these two sources of error, we first consider closed, planar
curves—where the exact SDF is easily computed via closest-point
queries [Sawhney et al. 2020], and sign can unambiguously be de-
termined via standard inside/outside tests [Haines 1994]. As seen in
Figure 24, our method is slightly slower but slightly more accurate
than UHM. Without sharpening, it is not as accurate as BF—but is an
order of magnitude faster. Moreover, BF must trade off between bias
near the boundary [Edelstein et al. 2023, Figure 3, left], or distortion
in the presence of curve sources, depending on whether Hessian
regularization is omitted or included (resp.).

9.5.2  Surface Domains. We next consider closed curves on sur-
face meshes. Here we can no longer obtain the true distance on an
unknown underlying smooth surface; we hence compute “ground

0 1
percent error =]
» "

V

Fig. 24. Distribution of error in distance approximation for a perfect, unbro-
ken curve on a high- and low-quality mesh (top/bottom). Both meshes have
about 100k faces. Inset numbers on SDF and error plots indicate compute
time and mean error (resp.). Overall our method is quite comparable to
the original heat method, and less accurate than BF on the low-quality
mesh—but about 4-5x faster.
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truth” distance as the exact polyhedral distance to a finely-sampled
version of the input curve (100 samples per curve edge) using MMP
[Mitchell et al. 1987], which itself has O(h?) error. We plot conver-
gence and solve times in Figure 25. We observe that our method has
approximately linear convergence in mean edge length, with better
consistency on curve sources compared to other methods. We find
the same trend in solve times as in Section 9.5.

9.5.3 Broken Curves. Finally, we compare against the end-to-end
pipeline of repairing broken geometry, computing unsigned dis-
tance to the fixed geometry, and signing the unsigned distance. In
particular, we use surface winding numbers (SWN) to contour broken
curves [Feng et al. 2023], and compute exact polyhedral distance us-
ing MMP [Mitchell et al. 1987] using the curve vertices as the source
set. As input surface domains, we use the meshes with ~5k vertices
from the same dataset as Section 9.5.2. As input curves, we take
level sets of five different low-frequency Laplacian eigenfunctions,
and add geometric and topological errors by taking the union of the
curves with their offsets (found by taking boundaries of triangle
strips), and deleting about 50% of the curve at random intervals.
The repair-distance-sign pipeline is particularly sensitive to er-
rors in the input, since any errors made during contouring are
permanent and will destroy the quality of the final SDF no matter
how accurate the subsequent distance computation. In particular,
contouring the winding number is notoriously difficult, and often

Solve time (unbroken curves)

Error (unbroken curves)

10° | -
@ - o
P £
g 5
£ o
= N

o e
R e

77

10 10° 107 107 107! 10° 10!
number of mesh vertices mean edge length

Ours (0.83) ~ FMM (0.23) ~ UHM (0.59) * ADMM-BF (0.70)

Fig. 25. We observe approximately linear convergence in distance accuracy
on a benchmark of unbroken (closed) curves on 44 different meshes. The
legend shows median orders of accuracy. Note that if we omit the zero set
constraint, enabling us to re-use both factorizations, our method and UHM
become 1-2 orders of magnitude faster.



winding number

Fig. 26. Top: Generalized winding number (GWN) cannot be used for offset
surfaces, since it provides only a smooth indicator function—and not a
signed distance. Bottom: Our generalized signed distance (GSD) provides
much nicer offsets on the same broken mesh.

generalized signed distance

offset
surfaces

Fig. 27. GWN completes surfaces with saddle-shaped harmonic patches
that exhibit poor normal continuity with the observed geometry (across
many contour values). Our method directly incorporates normal information,
providing more plausible reconstruction even for large holes.

leads to misclassified regions (Figure 28). Though Feng et al. [2023]
suggest a rounding procedure, it remains unclear which half-integer
level set to take as the boundary between inside and outside; we
use the values of the rounded winding number function that appear
most often along the input curves, though this results in 12% of
examples with >50% of surface area misclassified. We also try con-
touring winding number according to the average of the winding
number function along the input curves, but we find similar results.
In contrast, our method achieves greater robustness by averaging
normal vectors over the whole domain. The repair-distance-sign
pipeline is also about 10x more expensive due to its intermediate
steps; SWN alone has cost asymptotically equivalent to our method.
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Fig. 28. We compare, on 220 examples, the accuracy of GSD versus a hybrid
scheme that repairs broken geometry using winding numbers, computes
unsigned distance to the repaired geometry, then signs the unsigned dis-
tance. Winding numbers are worse at classifying inside/outside, regardless
of contouring method. As a result, the hybrid scheme yields about 3x lower
distance accuracy on average (0.11 vs. 0.04 L, error, resp.), even though it
benefits from exact distance (via MMP).

10 LIMITATIONS AND FUTURE WORK

As with past heat methods, diffusion time cannot be made arbitrarily
small: similar to Crane et al. [2013b, Appendix A], we observe em-
pirically that GSD behaves like graph distance as t — 0 (see inset).
As with past heat methods, however, SHM
consistently provides accurate distance ap-
proximation for t = h?. Our strategy for topo-
logically nonbounding and nonorientable
curves (Section 7.2) incurs a more expensive /
L' problem—but is already a substantial gen-
eralization over anything handled by previ-
ous geodesic or SDF algorithms. A more care- >//
ful study of this situation (including mitiga- /
tion of small per-edge discontinuities) is an

interesting direction for future work. lee- \ %M/\/ %
wise, since broken input sometimes comes
with quantifiable measurement error, it might be interesting to ex-
plore a notion of “confidence” in the computed distance values,
along the lines of work by Sellan and Jacobson [2022].

Finally, like other robust inside-outside and reconstruction algo-
rithms [Beerentzen and Aanees 2005; Kazhdan et al. 2006; Jacobson
et al. 2013; Feng et al. 2023], we assume input has mostly consistent
orientation. Though we are fairly robust to orientation errors (Sec-
tion 9.4), it may be interesting to explore diffusion of more general
line fields to factor out normal orientation, d la Alliez et al. [2007].

NS NSN N

t =0.01h
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A ADDITIONAL SOURCE GEOMETRY

Here we derive discretizations for isolated point sources and unori-
ented curves.

A.1 Point Sources

To compute unsigned distance to point sources, we encode a radially
symmetric vector field centered at each point source. We adopt
the approach of Sharp et al. [2019¢, App. A] and consider a small
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geodesic circle C, of radius ¢ > 0 centered on a point source at vertex
i, and take the limitas e — 0. We let yi, == (@is)_lﬂl be a measure
of unit mass supported on C,, where H; L is the Hausdorff measure
on Ce, and ©; := Yk 9 be the dlscrete angle sum around vertex
i. We let N denote the outward unit normals to C,. We integrate
the vector-valued measure Ny, against CR basis functions for each
edge e € E (Section 5.6).

We restrict our attention to a single triangle ijk
containing i and e; the final contribution to the
ij entry is the sum of contributions from all ijk
incident on e. W.lo.g. we let e = ij. We express
all quantities in complex numbers with respect to

the polar coordinate system with origin at vertex i and real axis
along l_]\ parameterizing C, by the angle 6 between x € C; and ej;.

Expressed in this ba51s the unit normal N () at x = ee'? is simply
e’?. We let o = Hj and evaluate
( l(Z)l
hm/ (n, ¥ij) dpe = 11m —/ N(0)ed)—— Y
1

The contribution to edge ij multlphes this quantity by a sign sj; €
{+1,-1} equal to e’ = +1if §j agrees with the global orientation
of ij, and €' = —1 otherwise.

To compute the contributions to edge jk (resp. k
ki), the only difference is that x € C, and n(0) A
must be expressed relative to the tangent basis at LN
edge jk (resp. ki) instead of ij. This amounts to \ €ij

rotating the coordinate system by ry;_, jx (Equa-
tion 8). We arrive at the per-face contributions

(Xo)yj = Sijw
1 1704
(XO)jk = sljrljﬂjku (19)
-1 (—ely e,

Xo)ri = STk O

If we were to use basis functions at vertices, there would not be
enough degrees of freedom to encode radially symmetric vector
fields at vertices; Sharp et al. [2019¢, App. A] ameliorate this short-
coming by arbitrarily taking the limit as ¢ — 1 instead of zero, but
this limit is not scale-invariant like ours.

A.2  Unoriented Curves

Here we consider open curves to which we
compute unsigned distance. Similar to Ap-
pendix A.1, we consider a geodesic e-offset I,
of the (piecewise linear) curve I, with a mea-
sure of unit density concentrated on I, and
take ¢ — 0. For simplicity, we consider unori-
ented curves that lie along edges of the mesh.
Then T, can generically be decomposed into
four types of curves: (A) linear segments that
intersect faces incident on edges of the curve
T'; (B) segments that intersect faces incident
on interior vertices of T'; (C) circular arcs that
intersect faces incident on endpoints of I'; and (D) linear segments
that intersect faces incident on endpoints of T (inset).

As ¢ — 0, the contributions of type-B and D segments go to zero.
A type-A segment lying within face ijk, where edge ij lies on the
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curve T, converges to an oriented curve along edge ij as ¢ — 0;
its contributions to each edge within ijk are given by Equation 11.
For type-C circular arcs, we obtain the same per-face formulas as
Equation 19, except we normalize not by the total angle sum around
the endpoint vertex but by the sum of corner angles of faces that
intersect the circular portion of I, and weight by the length of the
adjacent edge.

B CROUZEIX-RAVIART IN 3D

Here we derive the Crouzeix-Raviart Laplace and mass matrices
for tetrahedral meshes. In general, Crouzeix-Raviart basis func-
tions are piecewise-linear and associated with the barycenters of
codimension-one simplices in an n-dimensional simplex. The basis
function 6; associated with the (n — 1)-dimensional face o; oppo-
site vertex i has value 1 on ¢}, and value 1 — n at i. Within each
(n — 1)-dimensional simplex incident on o;, the function 6; is linear
and is defined as 6;(x) = 1 — nA;(x) where A;(x) is the value of the
hat function associated with vertex i at point x [Ern and Guermond
2004, §1.2]. We use ;. to denote the basis function associated with
triangle face ijk in a tet mesh.

B.1 Scalar Laplacian

The |F| x |F| Crouzeix-Raviart Laplace matrix L of a tet mesh M =
(V,E, F,T) has entries given by

Ly = [ Ty, Ty () ds

which will be nonzero only if faces f, f” are adjacent, so w.l.o.g. we
let f := ijk, f’ := jil and compute

Lijk,jil=/];4<V‘Pijk(x):v¢jil(x)>dx
- /M (V(1=34(x)), V(1 - 32, (x))) dx

= Z 9 / (VA;(x), VA (x)) dx.
ijkI> ik jil Uk I
The gradient VA; = n;j k / h?k
notes the unit normal to face ijk opposite
vertex [, and h;j k the height of the tetrahe-
dron with apex I and base ijk (and similarly
for VA). Since the gradients VA;, VA are
constant per tet, the inner integral is equal k
to

, where n?k de-

B 1 KIN s lijk|  Ljill kl

|ljkl|W COS(/T—GU-) = —|l]kllmm COS@ij (20)
where ijl denotes the dihedral angle at edge ij opposite edge kl.
Since the volume of the tetrahedron ijkl can be expressed |ijkl| =

2 Vel 51l s kel .
_3|ij||Uk||]ll|81n9ij’WeObtaln

Lijk,jit = —%Iijl cot 95.’, Vijk € F, ijkl > ijk
Lijkikt = —3 kil cot Gil., Vijk € F, ijkl> ijk
Lijk,jik = —31jk| cot 9j-k, Vijk € F, ijkl>ijk
Lijkijk = — Zijki>ijk Lijk, jit + Lijk,ikt + Lijk, jiks V(ZI;)E F
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For both n = 2,3, the n-dimensional CR Laplacian has entries n?

times the corresponding entries of the so-called primal vertex Lapla-
cian Alexa et al. [2020], since CR basis functions are equal to the
hat functions on medial n-simplices.

B.2 Divergence Operator

As in 2D, we average vectors X from triangles to tetrahedra via

1
Xijk1 = § (Xijk +Xji1 + Xik +lek)>

which corresponds to evaluating the CR-interpolated field at the
barycenter. Letting Y;jx; = Xjjki/I[X;jki |l in each tet, the discrete
divergence is then

(V-Y); = Z |jlk|n' “Yijki- (22)
ijkl>i
B.3 Mass Matrix

The |F| x |F| Crouzeix-Raviart mass matrix M has nonzero entries
given by

My it = fM (e (). 01(x)) dx

1 1-u pl-t-u
= Z 6|ijkl|/ / / (1=34(x)(1 = 34, (x)) ds dt du
ijkI>ijk, jil 0 J0 0
where x is parameterized using barycentric coordinates of tet ijkl
with vertex positions v, v}, vk, vy, as X = sv;+tvj+uvg+(1—s—t—u)o;.
We obtain entries of the symmetric matrix as
1 s ..
Mijk,jit = Mijkikl = Mijk jik = ;mhjk”, Vijkl € T
Mijkiik = § Zijki>ijk |iikll, Yijk € F.
(23)



C PSEUDOCODE

We give pseudocode for surface domains, expressed via a halfedge
mesh data structure encoding a triangle mesh M = (V, E, F). We use
?j to denote the halfedge from i to j. We assume only that meshes
have been specified via intrinsic quantities including edge lengths
and corner angles, which we denote using the notation defined in
§5.1. Subroutines not defined here are described in the list below.
For simplicity, we assume here that M is oriented.

° ORIENTATION(?]) — returns +1 if the orientation of halfedge 7
matches the canonical orientation of its edge ij, and —1 otherwise.

e FACE(p) — returns a face ijk that the barycentric point p lies
within.

e SHAREDHALFEDGE(A, B) — returns the halfedge going from ele-
ment A to B, which may be vertices or barycentric points, if any.

o SHAREDFACE(A, B) — returns a face shared by mesh elements A
and B, if any. The elements A and B may be vertices, edges, faces,
or barycentric points.

® BARYCENTRICVECTOR(p4, pp) — returns a barycentric vector de-
fined by the barycentric points p4 and pp as its endpoints. If p4
and pp coincide with vertices, the barycentric vector lies on an
edge; otherwise, it lies in a face.

° BARYCENTRICVECTORINFACE(?]', ijk) — returns the barycentric
vector defined by the endpoints of halfedge l_]\ with coordinates
expressed with respect to face ijk.

® BARYCENTRICCOORDSINFACE(p, ijk) — returns the barycentric co-
ordinates of the barycentric point p with respect to face ijk.

o BARYCENTRICCOORDSINSOMEFACE(p) — returns the barycentric
coordinates of the barycentric point p with respect to one its
containing faces, along with the face itself.

® BARYCENTRICCOORDSINFACE(v, ijk) — returns the barycentric co-
ordinates of the barycentric vector v with respect to face ijk.

o NorM(M, v) — returns the norm of the barycentric vector v defined
on triangle mesh M.

e DoT(M, v4, vg) — returns the inner product (v4, vg) € R between
two barycentric vectors v4, vg defined on triangle mesh M.

e ROTATED90(M, v) — returns the barycentric vector v, rotated coun-
terclockwise 90° in its local tangent plane on mesh M.

® SOLVESPARSESQUARE(A, b) — solves the sparse square linear sys-
tem Ax = b, returning x.

® SOLVESPARSEPOSITIVESEMIDEFINITE(A, b) — solves the sparse pos-
itive semidefinite linear system Ax = b, returning x (and picking
an arbitrary shift if A has constants in its null space).

Algorithm 1 SOLVEGENERALIZEDSIGNEDDISTANCE(M, Q, £, C)

Input: Points and/or curves Q on a triangle mesh M, diffusion time
t, and constraints C.
Output: The generalized signed distance function ¢ to Q.
1: X < INTEGRATEVECTORHEATFLOW(M, Q, 1)
2: Yy < NORMALIZE(X;)
3: ¢ < INTEGRATEVECTORFIELD(M, Y, C)
4: return ¢

Algorithm 2 INTEGRATEVECTORHEATFLOW (M, Q, t)
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Input: Integrate the vector heat flow in Equation 12 for time t
on the triangle mesh M = (V, E, F), with initial conditions
defined by the geometry Q.

Output: The diffused vector field X; € CIEl,

Y- CROUZEIXRAVIARTCONNECTIONLAPLACIAN (M)

M «— CROUZEIXRAVIARTMASSMATRIX (M)

: Xo < BUILDSOURCE(M, Q)

: Xt < SOLVESPARSEPOSITIVESEMIDEFINITE(M + tLV, Xo)

: return X;

G W =

Algorithm 3 NorRMALIZE(M, X)

Input: A vector field X € clEl expressed in the edge basis defined
in §5.2, defined on triangle mesh M = (V, E, F).
Output: The normalized vector field Y € RIFIX3, sampled onto face
barycenters and encoded via barycentric vectors.
Y — 0|F|><3
2. for pqr € F do
3: y < 03
4 for ijk € C(pqr) do
5 s7j < ORIENTATION( ij ) N
6: 7 < BARYCENTRICVECTORINFACE( if, pqr) - sij
7 v < ROTATED90(M, 1)
8 7 /= NorM(M, 1)
9 v /= NorM(M, v)

10: Ar < BARYCENTRICCOORDSINFACE(T, pqr)
11 Ay < BARYCENTRICCOORDSINFACE(v, pqr)
12: y += Re(Xij) -Ar
13: y +=Im(X;j) - Ay

14: Ypgr <Y

15: return Y

Algorithm 4 INTEGRATEVECTORFIELD(M, X, C)

Input: A vector field X € RIFI*3 defined on a triangle mesh M =
(V,E, F), and constraints C.
Output: The solution ¢ € RIE! to the Poisson problem in Equation 13
satisfying the constraints C (§7).

1: L « CoTaANLAPLACIAN(M)

2: b < DIVERGENCE(M, X)

3. if C = @ then

4 ¢ < —SOLVESPARSEPOSITIVESEMIDEFINITE(L, b)

5 ¢ « SHIFT(¢, Q)

6 return ¢

7: if C = PRESERVEZEROLEVELSET then

8: A «— CONSTRAINTMATRIX(Q)

9: u«— —SOLVESPARSESQUARE( L AT] [b])
A 0] |0

10: ¢ « SurFT(u,|g|, Q)

11: return ¢

Algorithm 5 CROUZEIXRAVIARTCONNECTIONLAPLACIAN (M)

Input: A triangle mesh M = (V, E, F).
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Output: The Crouzeix-Raviart connection Laplacian IV e CIEIXIE]

(§5.4).
1 IV e olEIXIE]
2: for pgr € F do
3 for ijk € C(pqr) do
4 w — 2cot ki
5 rij jk < EDGERoTATION(ij, jk)
6 L i, ij +=w
7 ijk,jk +=w
8 L ijjk == W Tijojk
? Y jkyj == W i jk
10: return LV

Output: The constraint matrix A € R™*IV| defined in Equation 14,

where m is the number of constraints.
.m0
2: A, abc < BARYCENTRICCOORDSINSOMEFACE(po)
3: for p € Q do
4 ijk « Facke(p)
5 A < BARYCENTRICCOORDSINFACE(p, ijk)
6: for [ < ijkdo Cp,; += 4

7: for [ < abcdo C,,; —= (Ao);
8: m+=1
9: return C

Algorithm 6 CROUZEIXRAVIARTMASSMATRIX (M)

Input: A triangle mesh M = (V,E, F).

Output: The Crouzeix-Raviart mass matrix M € CIEIXIE] (§B.3).
1: M« olEIXIE]
2: for pqr € F do

[ij

3 forij < pqr do Myj;; += %

4: return M

Algorithm 7 CotanLAPLACIAN(M)

Input: A triangle mesh M = (V, E, F).

Output: The positive definite cotan Laplacian L €
i L olVIXIVI
2: for pqr € F do
3: for ijk € C(pgr) do

RIVIXIV]

. 1 Y
4 w « 5 cot Qk
5: I—i,i +=w
6: Lj)j +=w
7: Lij—=w
8: Ljj—=w

9: return L

Algorithm 8 DIVERGENCE(M, X)

Input: A triangle mesh M = (V, E, F), and vector field X € clFl,
Output: The finite-element divergence b := V-X € RIVI, defined per
vertex.
1: b« 0|V|
2: forieVdo
3 for ijk > i do

4 VA — BARYCENTRICVECTORINFACE(Tj, ijk)
5: vg < BARYCENTRICVECTORINFACE(ki, ijk)
6: da < Dot(M, va, X;jk)

7: dp < Dot(M, v, X;jk)

8: b += 3 cot 0 - da + 3 cot 05 - dp

9: return b

Algorithm 9 CONSTRAINTMATRIX(Q)

Input: Source geometry Q considered as a set of barycentric points
{pi} on triangle mesh M = (V,E, F).
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Algorithm 10 BUILDSOURCE(M, Q)

Input: Source geometry Q = {T,P} consisting of a collection
of curves I' and points P, defined on triangle mesh M =
(V,E,F) (§5.6).

Output: The rh.s. X € ClEl to Equation 12.

1: Xo < ol £l

2: Xo += BUILDORIENTEDCURVESOURCES(M, T')

3: Xo += BUILDUNORIENTEDPOINTSOURCES (M, P)
4: return X

Algorithm 11 BurLDORIENTEDCURVESOURCES(M, I')

Input: A collection of oriented curves I' = {y;} on triangle mesh
M = (V,E, F) consisting of linear segments y;, each defined
by barycentric points sharing a face (§5.6).

Output: A source term X € clEl encoding T

1: Xg < ol

2: fory = (pa,pg) €T do

3 ¢ « LENGTH(y)

4 z_f < SHAREDHALFEDGE(p4, PB)

5 if ij = NuLL then

6: ijk < SHAREDFACE(p4, pB)

7 for ij < ijk do

8 (Xo)ij += ¢ - CURVENORMAL(M, v, ij)

9: else
10: n < 1 - ORIENTATION( ij )
11: (XO)ij +={-n

12: return Xo

Algorithm 12 BUILDUNORIENTEDPOINTSOURCES(M, P)

Input: A collection of vertices P on triangle mesh M = (V, E, F).

Output: A source term Xo € clEl encoding P.
1: Xg «— olEl

2: fori e Pdo

3

0«0 )

for jk < ido © += ka

for J;k <ido
sij < ORIENTATION( ij )
sjk < ORIENTATION jk)

R A A



10: Ski «— ORIENTATION(B)

11: rij—jk < HarrepGeRoTaTION( ], jK)

12: rki— 5’(;— E@)LFEDGEROTATION(/&', ij)
(1l—e"i

13: n ¢« — 8

14: (Xo)ij +=s3j - n

B (0 =P

16: (Xo)ki += Ski - Tkioif -1

17: return X

Algorithm 13 SHIFT(M, f, Q)

Input: A function f € RIVI and source geometry Q = {T, P}, de-
fined on triangle mesh M = (V, E, F).

Output: The function g € RIV! shifted to average zero along Q.

1: ¢« 0

22 L« 0

3. fory €T do

4 ¢ « LENGTH(M, )

5 ijk, A < MIDPOINT(y)

6 forl <ijkdo c—¢-A; -1
7: L+=¢

8: for p € Pdo

9: ijk < Facke(p)

10: A «— BARYCENTRICCOORDSINFACE(p, ijk)
11 forl <ijkdoc+=1 -4

12: L+=1

13: ¢ /= L

14 g —f—c-1Vl
15: return g

Algorithm 14 EDGEROTATION(ij, jk)

Input: Two edges ij and jk in face ijk.

Output: The complex number encoding the smallest rotation from
the local coordinate basis at edge ij to that of edge jk. (§5.4).

C Tk < HALFEDGEROTATION(Tj\,j_\k)

D Sijojk ORIENTATION(?j) ~OR1ENTAT10N(TI<)

CTijsjk < Sijojk TG —jk

: return ry;, i

[ T

Algorithm 15 HarrenGeRoTATION( i, jK)

Input: Two halfedges l_j\ and ]_\k in face ijk.
Output: The complex number encoding the smallest rotation from
~ fij to ej]f; ki
1 Iij—jk < —€ 7J
2: return rijj ik

Algorithm 16 CURVENORMAL(M, ij)

Input: A curve segment y = (pa, p) specified by two barycentric
points p4 and pp, and edge ij defined on triangle mesh M.
Output: The complex number n € C encoding the unit normal to y,
expressed w.r.t. the local basis of ij (§5.4).
1: ff < BARYCENTRICVECTOR(}, )
2. T < BARYCENTRICVECTOR(pA, PB)
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v < ROTATED90(M, 7)

7 /= NorMm(M, 1)

v /= Norm(M, v)

n <« Dot(M, v, f) +1-Dot(M, 7, B)
return n

Algorithm 17 LENGTH(M, y)

Input: A curve segment y = (pa, pp) specified by two barycentric
points p4 and pp, defined on the triangle mesh M.
Output: The length of y.
1: v < BARYCENTRICVECTOR(p 4, pB)
2: £ < Norm(M,v)
3: return £

Algorithm 18 MIDPOINT(y)

Input: A curve segment y = (pa, p) specified by two barycentric
points p4 and pp.
Output: The barycentric point at the midpoint of y, expressed via its
containing face ijk and barycentric coordinates w.r.t. ijk.
1: ijk < SHAREDFACE(p4, pB)
2: A4 < BARYCENTRICCOORDSINFACE(p 4, ijk)
3: Ap < BARYCENTRICCOORDSINFACE(pp, ijk)
4 return ijk, %(AA +g)
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