
1224 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

An IoT Architecture Leveraging Digital Twins:
Compromised Node Detection Scenario

Khaled Alanezi and Shivakant Mishra

Abstract—Modern Internet of Things (IoT) environments with
thousands of low-end and diverse IoT nodes with complex inter-
actions among them and often deployed in remote and/or wild
locations present some unique challenges that make traditional
node compromise detection services less effective. This article
presents the design, implementation, and evaluation of a fog-based
architecture that utilizes the concept of a digital twin to detect
compromised IoT nodes exhibiting malicious behaviors by either
producing erroneous data and/or being used to launch network
intrusion attacks to hijack other nodes eventually causing service
disruption. By defining a digital twin of an IoT infrastructure at
a fog server, the architecture is focused on monitoring relevant
information to save energy and storage space. This article presents
a prototype implementation for the architecture utilizing mali-
cious behavior datasets to perform misbehaving node classification.
An extensive accuracy and system performance evaluation was
conducted based on this prototype. Results show good accuracy
and negligible overhead especially when employing deep learning
techniques, such as multilayer perceptron.

Index Terms—Compromised node detection, digital twin, fog
computing, Internet of Things (IoT).

I. INTRODUCTION

THE Internet of Things (IoT) has brought increased conve-
nience and productivity to homes, factories, malls, hos-

pitals, sidewalks, city squares, and more. Typically, an IoT
application is a distributed system with components deployed
across the IoT-fog-cloud continuum. IoT components perform
data collection from the environment and feed the data to smart
decision-making systems running in the cloud with the fog layer
playing a staging role for data filtering and aggregation.

Building applications on top of such complex infrastructure
is inherently difficult due to several reasons. First, the compo-
nents that form the IoT system typically come from different
vendors. The lack of an agreed communication and integration
standards often leads to interoperability issues [1]. To tackle this
issue researchers proposed to use standard web technologies [2]
and web gateways to enable sensor discovery and semantic
communication [3]. Second, IoT systems face scalability issues
since they require connecting large number of sensors producing

Manuscript received 2 August 2023; revised 14 December 2023 and 21 March
2024; accepted 8 May 2024. Date of publication 12 June 2024; date of current
version 20 June 2024. (Corresponding author: Khaled Alanezi.)

Khaled Alanezi is with the College of Computing and Systems, Ab-
dullah Al Salem University, Khalidya, Kuwait (e-mail: khaled.alanezi@
aasu.edu.kw).

Shivakant Mishra is with the Department of Computer Science, University of
Colorado Boulder, Boulder, CO 80309 USA (e-mail: mishras@colorado.edu).

Digital Object Identifier 10.1109/JSYST.2024.3403500

massive amounts of data. Mining this data requires shipping
it to cloud servers, which is impractical as it will overwhelm
the backbone of the network. To tackle this issue, researchers
proposed to push the computation to the edge of the network near
the data sources [4]. Edge computing is also used as a means of
minimizing the data reaching to the cloud so as to protect the
security and privacy of IoT users.

Given the aforementioned challenges, digital twins (hence-
forth DTs) have been proposed as a tool for managing IoT
systems, predicting their behavior under different scenarios and
improving their performance. DT is defined as a virtual replica
of a physical entity, such as people, assets, systems, or pro-
cesses [5]. The replication with the physical world is often envi-
sioned to be bidirectional and happening in near real time. It also
incorporates multidimensional data views, such as quantitative,
qualitative, historical, and environmental data, which can bring
many benefits to IoT systems [6]. First, in the design phase, new
concepts can be modeled and applied to the virtual environment
for verification before application to the actual IoT system. Sec-
ond, during the operation phase, thorough analysis can be done
on virtual twins in order to discover and react to abnormalities re-
sulting from malfunctioning hardware or software components
or even cyberattacks [7]. Finally, the DT virtual environment
can serve as a medium for performing predictive maintenance to
discover failures before they occur. The concept of DT is not new,
however, as it stems from existing mature concepts, such as IoT,
AI, and Big Data [8]. Despite of the abovementioned benefits
the concept of DT provides for IoT, a systems implementation
showing how to utilize DTs in an IoT application and how the
interplay of different components affects the performance is still
lacking. Hence, the motivation of this work is to fill this gap
by designing, implementing, and evaluating the performance
of a DT-IoT architecture while focusing on compromised node
detection as an example application. The key novelty of this work
comes from utilizing the concept of DT for efficient misbehavior
monitoring and combining data anomaly and network intrusion
for enhanced misbehavior detection coverage. Our choice of ap-
plication stems from the fact that privacy and security are major
obstacles hindering wide adoption of IoT systems. While IoT
applications have enhanced our lifestyles in many areas, there
is an associated cost of potentially exposing user’s privacy and
security. Typically, IoT nodes embed wide array of sensors and
are connected to the network, thereby making them prime targets
for attackers. Once an IoT node is exploited, an attacker would
typically couple the attack with payload codes that can achieve
certain objectives. First, an attacker can carry a cyber-physical

1937-9234 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9493-6288
https://orcid.org/0000-0001-5070-9366
mailto:khaled.alanezi@aasu.edu.kw
mailto:khaled.alanezi@aasu.edu.kw
mailto:mishras@colorado.edu

ALANEZI AND MISHRA: IOT ARCHITECTURE LEVERAGING DIGITAL TWINS: COMPROMISED NODE DETECTION SCENARIO 1225

attack [9] to introduce data anomalies causing control system
failure thereby leading to physical damage [10], [11]. Second,
once inside the network (i.e., network intrusion), an attacker can
utilize the node to launch large scale botnet attacks, such as the
Mirai IoT Botnet [12], which can lead to large scale service
disruption.

While there has been a plethora of research done in the area
of preventing and/or detecting node compromises over the last
30+ years, compromised node detection in an IoT environment
presents some unique challenges. First, typically only weak
security measures are taken to protect IoT nodes, which can
be attributed to the focus on keeping the node cost low and
ensuring a plug-and-play operation, so that they can be deployed
in large numbers. Second, these nodes are often placed remotely
in the wild with little or no monitoring with many IoT vendors
failing to provide proper measures or automated-tools for timely
security updates [13]. Third, the sheer number and variety of IoT
devices in an IoT infrastructure typically running into hundreds
and even thousands means an increased attack surface available
to the attackers and for the system administrators to monitor and
maintain. Finally, complex interplay among thousands of nodes
makes it difficult to identify faulty or anomalous behavior often
confined to a small number of nodes under a variety of different
scenarios.

To address these challenges, we propose a fog-based architec-
ture that utilizes the concept of a DT in which a virtual replica
of the IoT infrastructure is created in the fog to momentarily
replicate IoT node state changes where threat detection and
mitigation can take place. Our proposed architecture uses DT
to employ detection techniques for both data anomaly and net-
work intrusion attacks for enhanced IoT network security while
benefiting from two conceptual features of DTs [14]. First, by
definition, the DT concept proposes to only mirror properties and
characteristics that are of importance to the application context.
Consequently, we only reflect status information represented
by sensor values and network activity summary information in
the DT. Clearly, by focusing only on important information our
solution can save device energy, fog server space, and network
resources. Second, creating DTs for all IoT nodes paves the way
for understanding the aggregate behavior of those nodes thereby
leading to better governance and control of the complex IoT
system. In summary, adopting the DT model brings the following
benefits when compared to traditional approaches.

1) Efficient monitoring by mirroring only needed data and
sharing of sensor data across various machine learning
(ML) models thereby avoiding possible redundant data
collection, storage, and processing.

2) Design flexibility since new solutions can be easily inte-
grated to the architecture by calling Ditto’s standard web
APIs.

3) Enhanced IoT environment control by gathering necessary
data from various IoT nodes leading to smarter actions that
consider the environment as a whole rather than focusing
on individual nodes.

The methodology followed in designing and building the
DT-IoT architecture is based on several factors. First, open-
source components were utilized, such as Eclipse Ditto [15]

and Docker [16]. This in turn puts other researchers in a better
position to read and interpret our results. Second, although most
similar research focused on industrial IoT (IIoT), we design the
framework to be applicable to all IoT applications at large, such
as smart cities, smart buildings, and smart healthcare. Third,
we used compromised node detection scenario as a motivating
application to demonstrate the effectiveness of the work. Last,
we report the performance results of the architecture when
different combinations of models and datasets are used to reflect
on the impact of such design choices on the usability of the
solution. In summary, the contributions of this work are three
fold.

1) We provide a detailed design of a fog-based architecture
utilizing the concept of DTs for compromised node detec-
tion in an IoT environment.

2) We show how this architecture can utilize various mod-
els for compromised IoT node detection based on data
anomaly and network intrusion detection. We also report
the accuracy and performance of those models.

3) We provide a prototype implementation and extensive
performance evaluation of the architecture by utilizing
open-source solutions, such as Ditto and Docker.

The rest of this article is organized as follows. Section II
presents related works. In Section III, we present the design
of the architecture and introduce the details of the datasets
utilized to build the data anomaly and network intrusion models.
Section IV provides technical details of the prototype imple-
mentation for the architecture and the models. In Section V, we
present system performance measurements for the prototype.
We discuss the benefits and possible improvements of the work
in Section VI. Finally, Section VII concludes this article.

II. RELATED WORK

This work investigates integrating DTs in IoT systems. The
application served by the resultant architecture is compromised
node detection in IoT. We summarize in this section the recent
works in each of these areas. In addition, summarization and
classification for the literature focusing on the use of DTs for
anomaly detection in IIoT is presented to reflect on the novelty
of our architecture.

A. DTs in IoT

DTs, a concept popular in manufacturing, have been proposed
mainly for use in IIoT. With the aid of DT concept, an IIoT
controller collects massive data from devices to take smart
environment-wide decisions [17], [18]. To serve this purpose, a
reference model of DTs in IIoT is proposed [19], which involves
mirroring the internal structure, runtime environment, APIs of
the physical objects as well as features, such as scalability,
interoperability, security, and privacy. Also, the concept of DTs
has been recently proposed in the IoT context for staff safety
management in cold warehouses’ hazardous environments [20].
Here, a DT is created to synchronize the time/space information
of the staff with the controller. Consequently, the controller will
run algorithms to detect staff motionless status so as to alert first
aid workers in a timely manner. In addition to safety, the concept

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

1226 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

of DTs is utilized in IoT context for elderly health [21] where
DTs are used to mirror medical data obtained from wearable
devices to monitor and diagnose health issues. Furthermore, the
concept of DTs is utilized to enable smart buildings and smart
cities. For the former, DTs replicate static and dynamic building
data for enhanced building monitoring and management [22].
Whereas for the latter, DUET [8] is proposed as a DT frame-
work built for smart city applications. DUET creates a cloud
of integrated DT models that can be queried to perform smart
city planning (i.e., traffic, air pollution, or noise pollution) at the
city level. DTs are also proposed in IoT for smart agriculture
systems [23] where the goal is to monitor farm information
remotely thereby reducing manual efforts and to simulate the
effect of intervention techniques on farm productivity. Also,
battery energy storage systems (BESS) [24] are also shown to
benefit from the DT concept so as to prevent possible failures and
cyberattacks. When implemented with mobile edge computing,
DTs can suffer from congestion and the lack of incentives. The
work by Lin et al. [25] addresses these issues. Another solution
utilizing DTs is proposed by Revetria et al. [26] in which DTs
were integrated with the IIoT, augmented reality technology and
compensated with simulations to build a solution for monitoring
stress on metal shelves. Lastly, a survey paper by Minerva
et al. [14] discussed DTs features and architectures in the context
of IoT.

B. Compromised Node Detection in IoT

IoT applications involve data collection to provide controlled
services to users. Consequently, an attacker can impact the
accuracy of the controller by creating anomalies in sensory
data [27]. There are several works aimed at detection of data
anomaly in IoT each focusing on a specific methodology or goal.
AnoML-IoT [28] presents a pipeline for data anomaly detection
with the goal of masking heterogeneity in IoT systems. The
presented pipelines simplify the process of deploying anomaly
detection solutions by integrating various communication pro-
tocols and detection algorithms and providing the ability for
deployment on the edge. Cauteruccio et al. [29] focused on
detecting data anomalies for multiple IoT (MIoT) scenarios. In
an MIoT scenario, scattered IoT deployments are linked together
via bridging nodes, which is typical since IoT deployments
does not work in isolation. The presented approach depends
on the fact that anomaly detection must consider the size of
the IoT network, the distances between nodes, and the centrality
features of a node. Malicious node behavior other than producing
data anomaly could manifest in performing anomalous network
activity. Researchers created datasets (e.g., [30]) containing the
network traffic of benign and malicious nodes in order to build
models that can automatically detect malicious traffic. Based
on such datasets various techniques and architectures to detect
malicious network behavior are proposed. Early detection of IoT
malware activity (EDIMA) [12] is a full architecture geared to-
ward detection of network intrusion activity during the scanning
phase instead of the attack phase. The presented architecture runs
ML algorithms on gateway devices in large scale IoT networks
of enterprises or internet service providers. Diro et al. [31]

proposed the use of deep learning models over traditional ML in
order to cope with newly surfacing small mutations of malware.
Their work also favors the use of distributed attack detection
scheme based on fog resources. The work by Raza et al. [32]
deviates from other works by focusing on intrusion detection
of IoT devices connected using IPv6. The presented solution
demonstrated the capability of detecting intrusion attacks on
networks of resource-constrained devices connected using lossy
links. The work by Shafiq et al. [33] presents a novel feature
selection method for building accurate models for IoT network
traffic analysis. Their efforts are orthogonal to our work as such
techniques can be employed in our architecture for building more
accurate network intrusion classifiers.

C. DTs for Anomaly Detection in IIoT

In its most basic form, a DT can be thought of as a virtual
replica for a physical object. However, there is a wide range
of characteristics imposed by this software dematerialization
on the DT that an IoT ecosystem can leverage [14]. First,
representativeness where a DT must cover all features intended
for analysis and reflection, which necessitates replicating the fea-
tures in a timely manner. Second, more advanced characteristics
include augmentation where a DT can be augmented by smart
functionality from running ML algorithms on known datasets
relevant to the physical object and predictability, which is the
ability to simulate the behavior of the DT in the environment to
predict its performance. Most of the works we list in Table I and
compare our work against utilize the two latter more advanced
characteristics of DTs. However, they vary in terms of the type
of application and targeted behavior as discussed next. Salim
et al. [34] utilized data from DTs to run deep learning models
for detection of botnets. The implemented solution employs
blockchain technology to protect DT data from tampering. Also,
the paper by Gupta et al. [41] focused on securing patients’ DT
data by using federated learning. The ideas presented in these
works can be employed by our framework to protect sensor and
network data from tampering by malicious entities. Collabo-
ration between DTs is utilized by Calvo et al. [35] and Sahal
et al. [44] to accommodate for contextual data while performing
anomaly detection. In the same manner, we propose to combine
DT knowledge based on data anomaly and network intrusion to
enhance the chances of detecting malicious nodes. Continuous
feedback between DTs and the physical environment is proposed
by Piltan et al. [36] and Xu et al. [37] to build an intelligent signal
estimator and cater for outdated ML models, respectively. The
sensor behavior and network behavior monitoring components
described in Section III-A utilize the same concept so as to en-
sure continuous improvements for the data and network anomaly
ML models. Other sources for compensating for DT data include
simulations [38] and artificial intelligence [42].

Another focus of the DT literature is on building application-
dependent models such as models for detecting anomalies in
building automation systems as proposed by Lu et al. [40] or in
nuclear reactors (Adebena et al. [43]). We proposed a generic
DT architecture but used behavior anomaly as an application
to reflect on the validity of our work. Finally, the work by

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

ALANEZI AND MISHRA: IOT ARCHITECTURE LEVERAGING DIGITAL TWINS: COMPROMISED NODE DETECTION SCENARIO 1227

TABLE I
SUMMARY AND CLASSIFICATION OF RELATED WORKS

Fig. 1. Solution architecture.

Huang [39] proposed to host DTs on the edge of the network,
which brings the benefits of reduced latency and faster detection
of anomalies. We also propose to push the models trained on the
cloud to the edge for similar reasons.

III. DESIGN

A. Architecture

As shown in Fig. 1, the proposed architecture spans the
edge-fog-cloud continuum. The edge layer typically consists
of battery-powered IoT devices with limited resources. Those
devices are meant to perform sensing and actuation in the
environment. At the other extreme end of the architecture sets the
cloud layer, which typically has abundant storage and computing
resources. The architecture utilizes a cloud server to perform
compute-intensive training of malicious node detection models.
In the middle of the architecture is the fog layer providing
low-latency access for IoT devices to the fog server. We propose
to utilize an edge server [4] installed in the fog to provide
low-latency access to trained malicious node detection models.

The edge server is a powerful compute box installed on the edge
of the network to be utilized by edge nodes for computation of-
floading. Models deployed on the edge server will be harnessed
to monitor nodes activity at the edge of the network to detect
malicious behavior on spot. Each of the abovementioned com-
ponents provide an important functionality in the architecture.
First, the edge layer provides the perception needed to detect
malicious behavior. Second, the fog layer provides low-latency
access to malicious behavior detection models. Third, the cloud
layer offers the required resources and power for costly model
training. We now turn into describing the functionality of each
component in the architecture. Starting from the edge layer, IoT
devices have the sensing and actuation capabilities to aid various
IoT applications. Those devices are connected to the network
using an IoT gateway. IoT deployments typically follow the star
network topology where all devices utilize this gateway to access
the rest of the network and the Internet. Due to this central role,
an IoT gateway can be used as the basis for detecting anomalous
network behavior exhibited by IoT devices as we will describe
later. Devices at the edge layer have one-network-hop access to a

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

1228 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

fog server running Ditto [15]. Ditto is an open-source framework
for managing DTs. It follows the device-as-a-service model to
mask the complexity of IoT devices stemming from different
device manufacturers and communication protocols. Instead of
dealing with device specific features, Ditto exposes callable web
APIs that can be used to interact with DTs and update their
internal status whenever a change in the physical twin takes
place. Through APIs exposed by Ditto, device DTs receive status
updates from IoT devices reflecting corresponding device status
change (i.e., sensor data changes). Also, DTs receive status
update from the IoT gateway that are related to the network
behavior of the device (details of DT design are discussed in
Section III-C).

DT status updates received from the IoT environment are used
in two ways. First, the sensory status and the network status are
used as input for the data anomaly model and network intrusion
model, respectively, to discover any anomalies in node behavior.
When building these models, we follow one of the typical usage
scenarios envisioned for a DT, which is to accompany it with ML
models [37] to detect events of particular interest in the environ-
ment, such as data anomaly and network intrusion in our archi-
tecture. Selecting the proper training dataset and ML algorithms
used to build the models is a design choice that must be made
carefully by system designers as it can have impact on the perfor-
mance of the architecture as will be shown in Section V-C. The
classification result from the models is sent to the corresponding
DT, and only if the result shows that there is a possible anomaly,
a message is sent from the DT to the corresponding device to
take the needed action. Note that the actions themselves are
defined by the system administrators, e.g., quarantine the device
or shut it down to avoid infecting other nodes in the environment.
Notice that combining results from both classifiers will lead to
decreased false negatives thereby increasing confidence in the
overall system. The second usage of reported status updates is
to forward them via the sensor/network behavior monitoring
components to the sensor/network databases in the cloud. The
latter will act as the ground truth for the data anomaly and the
network intrusion training done periodically. Note that behavior
monitoring should involve system administrators utilizing mal-
ware analysis techniques for detecting IoT malware [45]. Once
a model is updated in the cloud by retraining, new parameters of
the model are pushed to the fog server to be used. The periodic
updates ensure that the architecture is adaptive to changing
norms in the environment. Our approach follows the on-device
inference and cloud training paradigm for EdgeAI [46]. The
benefits of this paradigm are low latency access to ML models
as well saving energy by performing compute intensive train-
ing on the cloud. We discuss the design of the data anomaly
model and network intrusion models in details in Sections III-D
and III-E, respectively.

B. Role of DTs in the Architecture

In this section, we describe the role of DTs in the archi-
tecture and the advantages they bring compared to traditional
approaches. First, since a DT replicates the state of the physical
world in near real time, it can be leveraged for multitude of

Fig. 2. DT deployment status.

important tasks concurrently. For example, as demonstrated in
this article, a DT is useful for detecting compromised nodes
in the physical world. At the same time, the same instance of
DT can be leveraged to actuate appropriate actuators by ana-
lyzing the current state. Furthermore, the same instance can be
leveraged to perform predictive maintenance. The key advantage
here is that there is no need for separate, customized end-to-end
designs for each of these tasks. Second, a DT controls the rate
and nature of the data being sent from the physical world based
on the current state. For example, if the communication network
gets congested, a DT can direct the physical world to either
slow down the rate at which sensor data is being transmitted, or
perform some data preprocessing (e.g., averaging sensor values)
before transmission. This enables various tasks being performed
at the edge to continue despite network congestion. Third, a
DT can be used for continuous feedback and retraining of ML
models. As discussed in [37], an ML model can be trained on
labeled historical data and unlabeled real-time data with the DT
model’s ground truth label. Fourth, as mentioned in [39], a DT
at the edge allows for reducing latency by reducing delays while
accessing the cloud. Finally, a DT can be used as a staging
step for selective replication of data to the cloud to protect
the privacy and security of the monitored entity [41] while
detecting anomalies. In this work, the DT played a central role
in monitoring the environment and in building and retraining of
ML models. We also plan to extend the usage of the DT to cover
more from the aforementioned roles as part of our future work.

C. DT Design

The concept of DTs has been around for almost two decades
now. However, a standard design and implementation guidelines
for the concept is still lacking [47]. Consequently, the design
approach for the DT in this project will follow the 5-steps guided
approach for DT evolution [5] of mirroring, monitoring, simu-
lation, federation, and autonomous. We begin by covering the
first two steps of mirroring and monitoring. The remaining three
steps represent later design stages that build on the understanding
of the first two stages, which we leave as a future work as
described in Section VII. As can be seen in Fig. 2, there are
two types of information mirrored about an IoT device in the
DT. First, the attributes of the device cover static metadata such
as the unique identifier of the device, the manufacturer and the
location coordinates if any. Second, the features contain dynamic
information that changes over time and are replicated to the DT
momentarily. For data anomaly monitoring, we mirror changing
sensors’ values as captured by the IoT node microcontroller and

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

ALANEZI AND MISHRA: IOT ARCHITECTURE LEVERAGING DIGITAL TWINS: COMPROMISED NODE DETECTION SCENARIO 1229

TABLE II
UTILIZED DATASETS FOR DATA ANOMALY AND NETWORK INTRUSION MODELS

the calls that the IoT node make to other nodes or services. On
the other hand, for network monitoring, we mirror summary
information related to the exchanged network packets by the
device. The exact sensor values and network summary status that
must be replicated to the DT depends on the input parameters
of the utilized data anomaly and network intrusion models.
Sections III-D and III-E describe three ML models that we will
evaluate for use in the architecture. Whenever any of the models
is actually deployed on the fog server, its corresponding features
must be replicated to the DT in order to be used by the ML model
for device behavior classification. We evaluate the performance
of the models when integrated with the DT in Section IV.

D. Data Anomaly Models

Monitoring data anomaly involves inspecting data generated
from sensors to be consumed by an application or a service.
Table II lists three example datasets, we used for the com-
promised node detection along with summary information for
each dataset. First, the AnoML-IoT dataset contains sensor read-
ings captured over two days for temperature, humidity, light,
loudness, and air quality sensors. The authors of this dataset
created data anomalies by subjecting the sensors to an air dryer
for some periods of time. Data coming during this time is
marked as an anomaly. Otherwise, sensor readings are marked
as benign. Second, DS2OS is a synthetic dataset created by
the distributed smart space orchestration system. The data are
generated from a simulated setup including four IoT sites each
containing various services that can call each other. Example
services include thermostat and door lock controllers. A service
can read or write a value to or from another service depending
on the required action. Beside the normal traffic, the authors
simulated communications for various attacks including data
probing, denial-of-service (DoS), malicious control, malicious
operation, scan, spying, and wrong setup. In summary, we will
use the first two datasets as an example for an IoT deployment
generating malicious behavior at the perception layer (i.e., data
anomalies).

E. Network Intrusion Models

In addition to false data injection attacks to confuse an appli-
cation, a compromised node could be exploited by an attacker
to launch network attacks, such as port scans, distributed denial
of service (DDoS) attacks, or spoofing. These attacks often lead
to data theft, data corruption, or system failures. In this part of
the architecture, we focus on discovering and stopping network

intrusion attacks. In order to achieve this goal, we utilized the
IoTID20 dataset also described in Table II. This dataset is built
using an actual IoT network consisting of two smart home
devices (AI speaker and security camera) and multiple laptops
and smartphones connected to an isolated local area network
(LAN). Various attacks are then deployed or simulated using this
setup, such as Mirai, DoS, scan, and man-in-the-middle address
resolution protocol (MITM ARP) spoofing attacks. Network
packet captures (*.pcaps) are then extracted and network packets
containing summary features of communication sessions are
labeled as benign or malicious accordingly.

IV. EXPERIMENTAL WORK AND IMPLEMENTATION

We propose a dynamic architecture to detect malicious IoT
nodes. This requires real-time monitoring of node behaviors
and flagging of observed anomalies as they occur. To achieve
this objective, the architecture must support two requirements.
First, the ability to capture relevant node behavior. Second,
the availability of dynamically trained ML models for online
behavior classification. We begin this section by describing
the hardware and software components involved in building the
architecture and how these components are integrated. These
details are described in Section IV-A. After that, we describe
the classification models and their accuracy based on various
ML classifiers when applied to the chosen datasets. As stated in
Section III, we propose that the architecture must train two types
of models namely the data anomaly model and the network in-
trusion model. We report in this section the design and accuracy
for the two models when trained with various classifiers. Note
that the models along with the codes to build them are available
on OSF.1

A. Architecture Implementation

We built a prototype for the architecture presented in
Section III. The prototype is a distributed solution spanning the
edge of the network and the fog layer as described earlier. The
components utilized to build this prototype are listed in Table III.
Note that the code for this prototype is also shared under the
same OSF project below the Online Experiment component. We
utilized a MacBook Air laptop to resemble a fog server. The
fog server is typically a tethered (powered) machine with good
computing capabilities that is one-network-hop away from edge
nodes. On the other hand, an Arduino Uno R3 board was used
to resemble the IoT node. We stacked a WiFi shield with the

1https://osf.io/mh6es/?view_only=f7dce520b1b64ce198ab039563c29e5f

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

https://osf.io/mh6es/%7B?%7Dview_only$=$f7dce520b1b64ce198ab039563c29e5f

1230 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

TABLE III
HARDWARE AND SOFTWARE COMPONENTS USED TO BUILD THE ARCHITECTURE PROTOTYPE

Arduino Uno to provide it with WiFi capability and connected
it along with the edge server to the same LAN using a Huawei
wireless router. The prototype relied on Eclipse Ditto [15] for
implementing the needed DT functionality. This functionality
includes configuring DTs, online replication of DT state from
the physical IoT node to the virtualized replica and observing
DT state changes. To run Ditto, we deployed the prebuilt ditto
docker images on the edge server. We also used Docker [16]
to dockerize and deploy python scripts for loading the ML
models used for performing online classification. Each script
will load a pretrained model that is stored on disk in a pickle
file [53] and listen to a transmission control protocol (TCP)
socket to receive requests for record classification. We evaluated
the performance of the overall architecture using the built pro-
totype in Section V-C. DTs must be configured on Ditto before
the mirroring and monitoring processes take place. Listing 1
demonstrates an example JavaScript Object Notation (JSON)
configuration for creating a new DT in Ditto. This configuration
pertains to the case of monitoring data anomalies based on the
knowledge gained from the AnoML-IoT dataset as described in
Section III-D. Note that we only cover the AnoML-IoT scenario
in our online implementation, which is sufficient to measure the
system performance of the architecture. Ditto requires to identify
a definition clause, which should contain a unique identifier for
the DT. This identifier will be used for later communication
with the DT to update/observe its state features values as they
change. The attributes section of the JSON document contains
static information for the DT, such as its logical location, manu-
facturer, model, and so on. Finally, the features section tracks the
online status of the DT. In the case of the AnoML-IoT scenario
shown, it lists the readings of the four sensors as captured by
the IoT node that will be monitored to detect anomalies in the
environment. Section V-C evaluates the systems performance of
the architecture while utilizing various datasets/ML classifiers
combinations.

TABLE IV
ACCURACY FOR DATA ANOMALY CLASSIFIERS BASED ON RF, SVM, AND MLP

B. Data Anomaly Models Implementation

We utilized two datasets for data anomaly detection. First, the
AnoML-IoT dataset represents a scenario where the attacker is
deliberately producing erroneous sensor values or data anoma-
lies. Second, the DS2OS also included an attacker controlling the
application as it contains data traces produced at the application
level. However, instead of producing erroneous sensor values,
in this dataset, the application is producing malicious calls for
other application level services in the same environment. For
each dataset, we ran three types of classifiers namely random
forest (RF), support vector machines (SVM), and multilayer
perceptron (MLP). The accuracy results are shown in Table IV.
RF was chosen due to its ability of visualizing and studying the
classification results. We kept the number of estimators to 100,
the default number in Scikit Learn [54]. We also used SVM due
to its efficiency with numerical as well as categorical features
since the datasets contained both types of features. Finally, we
used MLP as we wanted to also include a deep learning classifier
in the experimental design. MLP is known to perform well with
tabular data similar to the datasets we use. We have chosen to
implement MLP with 3 hidden layers and 11 neurons at each
layer as a starting point. We noticed that we were able to train
the datasets efficiently with this choice. Optimizing MLP is an
iterative process that is out of the scope of our work since our
focus is to measure the system performance of the architecture.

We now turn into comparing the accuracy results for the
three classifiers within each dataset as seen in Table IV. For
the AnoML-IoT dataset, a relatively small dataset, we noticed
that RF produced the best results in terms of the four metrics
(i.e., accuracy, precision, recall, and F1-Score). However, the
difference margin is small since, for example, the largest gap
is between RF and SVM at the recall metric. Recall reflects
the ability of the classifier to correctly flag all cases positive
and negative. Note that this measure was the most difficult for
all the three classifiers. For the DS2OS dataset, still Table IV, a
dataset that is larger than the AnoML-IoT (refer to Section III-D
for datasets description), all the three classifiers produced the

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

ALANEZI AND MISHRA: IOT ARCHITECTURE LEVERAGING DIGITAL TWINS: COMPROMISED NODE DETECTION SCENARIO 1231

TABLE V
ACCURACY FOR NETWORK INTRUSION CLASSIFIERS BASED ON RF, SVM, AND

MLP

same accuracy of 99.3%. The accuracy is a common metric that
reflects the ability of the classifier to correctly flag positive and
negative instances. Also in this dataset, recall achieved the worst
performance with RF producing the lowest result. Conversely,
RF achieved the best result when it comes to precision.

C. Network Intrusion Models Implementation

For the network intrusion, we utilized the IoTID20 dataset,
which consists of features extracted from *.pcap files containing
*.pcaps for attack scenarios as well as benign scenarios. This
dataset is a typical dataset to be used in intrusion detection
solutions. Detecting malicious network behavior for an IoT node
requires capturing the network packets produced by this IoT
node and extracting features from those packets to be used by
the classifier.

Table V reports the accuracy for the same three classifiers
used with the data anomaly models when applied to the network
intrusion dataset. Notice that MLP produced the best results
across all the metrics, proving our design choice of using it with
tabular data that is large in size. When we compare this result
with data anomaly we see that RF produced the best results
mostly in all cases. This result can be attributed to the size of the
IoTID20 dataset, which is larger than the other two datasets. We
note that the choice of which ML classifier not only impacts
the accuracy but also affects important measures relevant to
system efficiency such as model size, model loading time, and
classification time. These measures are particularly important
due to the distributed nature of our system architecture. Hence,
we provide a complete system evaluation for the three datasets
when utilizing the three classifiers in Section IV-D.

D. IoT Node Implementation

IoT nodes contain sensors and actuators to interact with the
IoT environment. In addition, a networking module must be
present through which the node can send and receive data and
commands. We describe in this section an IoT node that we
built to cover these requirements. The node represents the data
anomaly in the AnoML-IoT scenario described in Section III.
In this scenario, data from four sensors must be captured and
mirrored to the DT namely temperature, humidity, loudness (i.e.,
microphone), and light sensors. Note that we did not implement
the air quality sensor since we noticed that the values of air
quality in the dataset are not changing. By looking at Fig. 3,
we see that to add WiFi capability to the Arduino board, we
stacked in WiFi shield (model: ESP13) on top of it. Afterwards,
5v, 3.3v, ground, and analog connections of the sensors were

Fig. 3. IoT node implementation.

Fig. 4. Schematic diagram.

Fig. 5. Software.

connected to the ESP13 shield by means of jumper wires and a
small breadboard. The schematic diagram for these connections
is shown in Fig. 4. Notice from the figure that the light sensor
(model: Photoresistor LDR Light Sensor Module) and temper-
ature and humidity sensors (model: DHT11) needed to pull 5v
current from the board. Whereas, the audio sensor pulled 3.3v
current from the board to minimize the noise. The three sensor
boards produced an analog output that was connected to the
Arduino to be read over WiFi. As shown in Fig. 5, we adapted
the python software and implementation from hackster.io [55]
and changed it to display our four sensor values. Once the
python software is connected to the node it can poll the sensor
values periodically and push them to the DT via Ditto APIs.
Note that the construction of the DT model occurs offline before

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

1232 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

TABLE VI
TIME PERFORMANCE FOR DATA ANOMALY CLASSIFIERS BASED ON RF, SVM, AND MLP

TABLE VII
TIME PERFORMANCE FOR NETWORK INTRUSION CLASSIFIERS BASED ON RF,

SVM, AND MLP

posting sensors data by calling Ditto’s API and posting the DT
configuration JSON shown in Listing 1.

V. PERFORMANCE EVALUATION

We begin in Sections V-A and V-B by gauging the perfor-
mance of the individual ML models. After that, in Section V-C,
we measure the performance of the overall architecture when
all the components are put together. Lastly, we compare the
performance of our architecture with a reference implementation
from the literature based on DT.

A. Data Anomaly Performance Evaluation

The choice of the dataset in terms of its size as well as the
type of ML classifier utilized will have a significant impact on the
performance of the architecture. The impact of these choices on
the performance of the data anomaly model is shown in Table VI.
We see from the table that the AnoML-IoT produced smaller
model sizes compared to the DS2OS for all classifiers. This is
normal since it is smaller in size with 6 K records compared
to 350 K in the case of the DS2OS dataset. Consequently, the
bigger size of the DS2OS models resulted a higher loading times
compared to AnomML-IoT. Model loading time is an important
metric as we cannot assume that the model will always be readily
available in memory when needed. Therefore, we cover the
performance of both loaded models and unloaded models for all
scenarios when we measure the overall architecture performance
in Section V-C. Beside the loading time, we report the fitting
time for the two datasets across the three ML models. We see
that the fitting time is very high for the larger DS2OS dataset.
We also see that the ML model producing the highest fitting time
for AnoML-IoT is MLP whereas the highest fitting time for the
DS2OS is produced by SVM. This unpredictable performance
for the fitting time is insignificant as the fitting process will take
place offline. Finally, we see that time results were consistent
for the classification time across the three ML classifiers with
RF having the highest classification time and MLP having the
lowest. Classification time is very low (<1 ms) in the case
of MLP making it the most suitable for use in the distributed
architecture.

B. Network Intrusion Performance Evaluation

We report the model size and time performance for the net-
work intrusion model that is based on the IoTID20 dataset in
Table V. Notice that both RF and SVM created large model
sizes in the order of MBs leading to higher loading times. Hence,
these models must be carefully introduced to the architecture to
ensure that models are preloaded so as to avoid impacting the
performance. In terms of fitting time, the results were in harmony
with the results achieved with the DS2OS dataset. The lowest
fitting time was achieved by RF and the highest by SVM. Also,
for classification time, MLP produced the lowest results making
it the most suitable for use in a distributed setting.

C. Architectures Performance Evaluation

Finally, we conducted an experiment to measure the perfor-
mance of the architecture when different possibilities of individ-
ual components (i.e., datasets and classifiers) are utilized. Fig. 6
reports the total time for detecting an anomaly when a change in
the state of a DT is observed. Notice that we measure the total
time at the fog server level since it has the administrative role
in the environment in detecting malicious nodes and blocking
them. More specifically, the time reported in the figure is the
time elapsed between receiving a change in the state from the
DT until the classification result is received from data anomaly or
network intrusion container to the controller. Experiments cover
both scenarios of a preloaded models in memory waiting for clas-
sification queries (Loaded) versus only loading a model when
the request is received (unloaded). We report the average time
from 5 runs for each experiment with standard error bars. Notice
from the figure that in most of the cases, a loaded model achieved
better time performance when compared to the corresponding
case of an unloaded model. However, there are few exceptions
(e.g., DS2OS/SVM and DS2OS/MLP scenarios) where the time
is comparable. We attribute such performance variability to two
reasons. First, Ditto’ unstable performance leading to variability
form one run to another. Second, Docker’s [16] cashing behavior
as docker preloads layers from previously loaded images to
optimize the performance. Overall, we noticed from Fig. 6 that
when models are loaded the total time to detect an anomaly
after observing a state changes is 500–600 ms. This reasonable
additional time is justified by the added security layer to detect
and block malicious nodes.

D. Comparing to a Baseline Solution

Plenty of works exist in the literature investigating anomaly
detection in IoT, however, only a few examined systems per-
formance under different design choices. The work by Morgan
et al. [56] has the same objective as our work in evaluating

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

ALANEZI AND MISHRA: IOT ARCHITECTURE LEVERAGING DIGITAL TWINS: COMPROMISED NODE DETECTION SCENARIO 1233

Fig. 6. Time elapsed between DT state change and receiving the classification result for combinations of datasets/ML classifiers/memory loading status.

Fig. 7. Comparing the performance of DT architecture for anomaly detection
using RF with baseline visualization scenario from [56].

the performance of a DT solution but for supporting data visu-
alization application. They provide an alternative DT solution
resembling a pipeline architecture. In addition to Ditto [15],
their solution utilizes Hono [57] to integrate with IoT devices
and Apache Kafka [58] for real-time streaming of IoT data
before storing it into Influx database [59]. In Fig. 7, we plot the
average time performance of their architecture, which we label
as baseline, against the time performance of our architecture
when RF with AnoML-IoT dataset is used with both loaded
and unloaded scenarios. Notice from the figure that the Ditto’s
performance was almost the same when comparing their experi-
ment (i.e., baseline) with our unloaded scenario. However, Ditto
had arbitrary performance differences that caused the loaded
scenario to perform worse than the loaded scenario. Posting
sensor updates by means of Ditto incurs an additional cost
of 400 ms on average compared to directly calling the ML
models. However, this additional cost brings the various benefits
of adopting the DT model discussed in Section I. Since our
architecture employs docker, additional cost in our scenario
comes from container communication with the cost of almost
100 ms for both loaded and unloaded scenarios. This cost can
be compared to the cost of saving data to Influx at 140 ms.
Finally, our application involved classification with minimal cost
of 30–40 ms but their application involved visualization using
Grafana costing 240 ms. It is clear that the choice of involved

components, which is governed by the particular application,
must be studied carefully as it has significant impact on the
system performance.

VI. DISCUSSION

This article discussed many benefits a DT-based node com-
promise detection brings, however, these benefits come at a cost.
It is important to note that the proposed DT infrastructure does
incur some performance overhead over a customized solution
for node compromise detection, e.g., in general, all sensor data
is transmitted in DT irrespective of whether it is relevant for
node compromise detection or not, while only the data that is
relevant for node compromise detection would be transmitted in
a customized solution. On a related note, we have not addressed
the scalability issue in this article. If the network gets congested,
it would become increasingly difficult to keep the state of the DT
in sync with the physical world. We note that we have addressed
the scalability issues in DTs in [60], where we proposed a context
aware communication control component running at the edge
server that can dynamically control data transmission software
in the sensing devices in the physical environment to cope up
with current context such as a congested network. This technique
can be used in the architecture proposed in this article. In addition
to the scalability issue, we have not addressed the issue of DT
framework security in this article, e.g., a brute force attack on
the framework would compromise our solution. This can be
addressed by using appropriate security mechanisms, such as
blockchains to secure the framework [34]. We have used two
models, data anomaly and network intrusion detection models
to detect node compromises. It is important to note that both
of these models are combined into one DT model, which is
a significant benefit of the proposed DT-based node compro-
mise detection. Furthermore, as discussed in [35], a DT-based
architecture can be used to detect collaborative anomalies where
individual data points could represent normality while as a
group these points could represent an anomaly. In summary,
to complete the coverage of this work, it is better to diversify
the intrusion detection models used and study the impact on the
performance versus the accuracy gain each model brings which
we leave as a future work. Also, more experimental work is
needed to study the impact of the communication overhead that
can occur between the edge server and the cloud server.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

1234 IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

VII. CONCLUSION

This article demonstrated the design, implementation, and
evaluation of an architecture for compromised IoT node detec-
tion with three important features. First, the concept of DT is
utilized to only replicate relevant information needed for mali-
cious behavior detection. Second, classification is performed in
the fog layer to enable low latency access. Third, the architecture
combines data anomaly and network intrusion methods for better
coverage of malicious behavior detection. Evaluation of the
architecture shows good accuracy and negligible overhead. In
the future, we plan to vary system components related to the
communication/application and study the impact on the perfor-
mance. For example, connectivity using bluetooth low energy
(BLE) or long range communication (LoRa) can be explored
to serve different applications. Also, we plan to explore system
scalability under different scenarios.

REFERENCES

[1] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in Internet
of Things: Taxonomies and open challenges,” Mobile Netw. Appl., vol. 24,
pp. 796–809, 2019.

[2] M. Blackstock and R. Lea, “IoT interoperability: A hub-based approach,”
in Proc. Int. Conf. Internet Things, 2014, pp. 79–84.

[3] P. Desai, A. Sheth, and P. Anantharam, “Semantic gateway as a service
architecture for IoT interoperability,” in Proc. IEEE Int. Conf. Mobile
Serv., 2015, pp. 313–319.

[4] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[5] D.-Y. Jeong et al., “Digital twin: Technology evolution stages and im-
plementation layers with technology elements,” IEEE Access, vol. 10,
pp. 52609–52620, 2022.

[6] M. Singh, E. Fuenmayor, E. P. Hinchy, Y. Qiao, N. Murray, and D. Devine,
“Digital twin: Origin to future,” Appl. Syst. Innov., vol. 4, no. 2, 2021,
Art. no. 36.

[7] S. A. Varghese, A. D. Ghadim, A. Balador, Z. Alimadadi, and P. Pa-
padimitratos, “Digital twin-based intrusion detection for industrial control
systems,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops
Other Affiliated Events, 2022, pp. 611–617.

[8] L. Raes et al., “Duet: A framework for building interoperable and trusted
digital twins of smart cities,” IEEE Internet Comput., vol. 26, no. 3,
pp. 43–50, May/Jun. 2022.

[9] M. Wu, Z. Song, and Y. B. Moon, “Detecting cyber-physical attacks in
cybermanufacturing systems with machine learning methods,” J. Intell.
Manuf., vol. 30, pp. 1111–1123, 2019.

[10] “Stuxnet.” Accessed: Jun. 2024. [Online]. Available: https://www.
malwarebytes.com/stuxnet

[11] K. Zetter, “A cyberattack has caused confirmed physical damage for the
second time ever,” 2015. [Online]. Available: https://www.wired.com/
2015/01/german-steel-mill-hack-destruction/

[12] A. Kumar and T. J. Lim, “Early detection of mirai-like IoT bots in large-
scale networks through sub-sampled packet traffic analysis,” in Proc. Int.
Conf. Adv. Inf. Commun., 2020, pp. 847–867.

[13] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani,
“Demystifying IoT security: An exhaustive survey on IoT vulnerabilities
and a first empirical look on internet-scale IoT exploitations,” IEEE
Commun. Surv. Tut., vol. 21, no. 3, pp. 2702–2733, Third Quarter 2019.

[14] R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the IoT context: A
survey on technical features, scenarios, and architectural models,” Proc.
IEEE, vol. 108, no. 10, pp. 1785–1824, Oct. 2020.

[15] “Eclipse ditto.” Accessed: Jun. 2024. [Online]. Available: https://eclipse.
org/ditto/

[16] “Docker.” Accessed: Jun. 2024. [Online]. Available: https://www.docker.
com/

[17] Z. Jiang, Y. Guo, and Z. Wang, “Digital twin to improve the virtual-real
integration of Industrial IoT,” J. Ind. Inf. Integration, vol. 22, 2021,
Art. no. 100196.

[18] A. Canedo, “Industrial IoT lifecycle via digital twins,” in Proc. 11th
IEEE/ACM/IFIP Int. Conf. Hardware/Softw. Codesign Syst. Synth., 2016,
pp. 1–1.

[19] L. R. Delfino, A. S. Garcia, and R. L. de Moura, “Industrial Internet
of Things: Digital twins,” in Proc. SBMO/IEEE MTT-S Int. Microw.
Optoelectron. Conf., 2019, pp. 1–3.

[20] Z. Zhao, L. Shen, C. Yang, W. Wu, M. Zhang, and G. Q. Huang, “IoT
and digital twin enabled smart tracking for safety management,” Comput.
Operations Res., vol. 128, 2021, Art. no. 105183.

[21] Y. Liu et al., “A novel cloud-based framework for the elderly healthcare
services using digital twin,” IEEE Access, vol. 7, pp. 49088–49101, 2019.

[22] D. D. Eneyew, M. A. Capretz, and G. T. Bitsuamlak, “Toward smart-
building digital twins: BIM and IoT data integration,” IEEE Access, vol. 10,
pp. 130487–130506, 2022.

[23] C. Verdouw, B. Tekinerdogan, A. Beulens, and S. Wolfert, “Digital twins
in smart farming,” Agricultural Syst., vol. 189, 2021, Art. no. 103046.

[24] N. Kharlamova and S. Hashemi, “Evaluating machine-learning-based
methods for modeling a digital twin of battery systems providing fre-
quency regulation,” IEEE Syst. J., vol. 17, no. 2, pp. 2698–2708,
Jun. 2023.

[25] X. Lin, J. Wu, J. Li, W. Yang, and M. Guizani, “Stochastic digital-twin
service demand with edge response: An incentive-based congestion control
approach,” IEEE Trans. Mobile Comput., vol. 22, no. 4, pp. 2402–2416,
Apr. 2023.

[26] R. Revetria, F. Tonelli, L. Damiani, M. Demartini, F. Bisio, and N. Peruzzo,
“A real-time mechanical structures monitoring system based on digital
twin, IoT and augmented reality,” in Proc. Spring Simul. Conf., 2019,
pp. 1–10.

[27] A. Y. Khan, R. Latif, S. Latif, S. Tahir, G. Batool, and T. Saba, “Malicious
insider attack detection in IoTs using data analytics,” IEEE Access, vol. 8,
pp. 11743–11753, 2019.

[28] H. Kayan, Y. Majib, W. Alsafery, M. Barhamgi, and C. Perera, “Anoml-
IoT: An end to end re-configurable multi-protocol anomaly detec-
tion pipeline for Internet of Things,” Internet Things, vol. 16, 2021,
Art. no. 100437.

[29] F. Cauteruccio et al., “A framework for anomaly detection and classifi-
cation in multiple IoT scenarios,” Future Gener. Comput. Syst., vol. 114,
pp. 322–335, 2021.

[30] G. Sebastian, P. Agustin, and E. M Jose, “IoT-23: A labeled dataset
with malicious and benign IoT network traffic (version 1.0.0) [data
set]. zenodo.” Accessed: Jun. 2024. [Online]. Available: https://www.
stratosphereips.org/datasets-iot23

[31] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme using
deep learning approach for Internet of Things,” Future Gener. Comput.
Syst., vol. 82, pp. 761–768, 2018.

[32] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection
in the Internet of Things,” Ad Hoc Netw., vol. 11, no. 8, pp. 2661–2674,
2013.

[33] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “CorrAUC: A
malicious Bot-IoT traffic detection method in IoT network using machine-
learning techniques,” IEEE Internet Things J., vol. 8, no. 5, pp. 3242–3254,
Mar. 2021.

[34] M. M. Salim, A. K. Comivi, T. Nurbek, H. Park, and J. H. Park,
“A blockchain-enabled secure digital twin framework for early Bot-
net detection in IIoT environment,” Sensors, vol. 22, no. 16, 2022,
Art. no. 6133.

[35] P. Bascones, A. Voisin, P. Do, and M. A. Sanz-Bobi, “A collaborative
network of digital twins for anomaly detection applications of complex
systems. snitch digital twin concept,” Comput. Ind., vol. 144, 2023,
Art. no. 103767.

[36] F. Piltan and J.-M. Kim, “Bearing anomaly recognition using an intelligent
digital twin integrated with machine learning,” Appl. Sci., vol. 11, no. 10,
2021, Art. no. 4602.

[37] Q. Xu, S. Ali, and T. Yue, “Digital twin-based anomaly detection in cyber-
physical systems,” in Proc. 14th IEEE Conf. Softw. Testing, Verification
Validation, 2021, pp. 205–216.

[38] C. Yang et al., “Digital twin-driven fault diagnosis method for composite
faults by combining virtual and real data,” J. Ind. Inf. Integration, vol. 33,
2023, Art. no. 100469.

[39] H. Huang, L. Yang, Y. Wang, X. Xu, and Y. Lu, “Digital twin-driven online
anomaly detection for an automation system based on edge intelligence,”
J. Manuf. Syst., vol. 59, pp. 138–150, 2021.

[40] Q. Lu, X. Xie, A. K. Parlikad, and J. M. Schooling, “Digital twin-enabled
anomaly detection for built asset monitoring in operation and mainte-
nance,” Autom. Construction, vol. 118, 2020, Art. no. 103277.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

https://www.malwarebytes.com/stuxnet
https://www.malwarebytes.com/stuxnet
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://eclipse.org/ditto/
https://eclipse.org/ditto/
https://www.docker.com/
https://www.docker.com/
https://www.stratosphereips.org/datasets-iot23
https://www.stratosphereips.org/datasets-iot23

ALANEZI AND MISHRA: IOT ARCHITECTURE LEVERAGING DIGITAL TWINS: COMPROMISED NODE DETECTION SCENARIO 1235

[41] D. Gupta, O. Kayode, S. Bhatt, M. Gupta, and A. S. Tosun, “Hierarchical
federated learning based anomaly detection using digital twins for smart
healthcare,” in Proc. IEEE 7th Int. Conf. Collaboration Internet Comput.,
2021, pp. 16–25.

[42] H.-J. Cha, H.-K. Yang, Y.-J. Song, and A. R. Kang, “Intelligent anomaly
detection system through Malware image augmentation in IIoT environ-
ment based on digital twin,” Appl. Sci., vol. 13, no. 18, 2023, Art. no. 10196.

[43] A. Oluwasegun and J.-C. Jung, “The application of machine learning for
the prognostics and health management of control element drive system,”
Nucl. Eng. Technol., vol. 52, no. 10, pp. 2262–2273, 2020.

[44] R. Sahal, S. H. Alsamhi, J. G. Breslin, K. N. Brown, and M. I. Ali, “Digital
twins collaboration for automatic erratic operational data detection in
industry 4.0,” Appl. Sci., vol. 11, no. 7, 2021, Art. no. 3186.

[45] Z. Liu et al., “An integrated architecture for IoT Malware analysis and
detection,” in Proc. 4th EAI Int. Conf. IoT Serv., 2019, pp. 127–137.

[46] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,” Proc.
IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[47] G. N. Schroeder, C. Steinmetz, R. N. Rodrigues, R. V. B. Henriques, A.
Rettberg, and C. E. Pereira, “A methodology for digital twin modeling and
deployment for Industry 4.0,” Proc. IEEE, vol. 109, no. 4, pp. 556–567,
Apr. 2021.

[48] F. Aubet and M. Pahl, “DS2OS traffic traces: IoT traffic traces gathered in
a the DS2OS IoT environment.” Accessed: Jun. 2024. [Online]. Available:
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces

[49] I. Ullah and Q. H. Mahmoud, “A scheme for generating a dataset for
anomalous activity detection in IoT networks,” in Proc. Can. Conf. Artif.
Intell., 2020, pp. 508–520.

[50] “Arduino,” [Online]. Available: https://docs.arduino.cc/hardware/uno-
rev3

[51] “Wifi shield.” Accessed: Jun. 2024. [Online]. Available: https://docs.
arduino.cc/retired/shields/arduino-wifi-shield

[52] “Postman api platform.” Accessed: Jun. 2024. [Online]. Available: https:
//www.postman.com/

[53] “Pickle.” Accessed: Jun. 2024. [Online]. Available: https://docs.python.
org/3/library/pickle.html

[54] “Scikit.” Accessed: Jun. 2024. [Online]. Available: http://scikit-learn.org
[55] kpower at hackster.io, “IoT with arduino and esp13 Wi-Fi shield.” Ac-

cessed: Jun. 2024. [Online]. Available: https://www.hackster.io/umpheki/
iot-with-arduino-and-esp13-wifi-shield-c93b08

[56] V. Kamath, J. Morgan, and M. I. Ali, “Industrial IoT and digital twins
for a smart factory: An open source toolkit for application design and
benchmarking,” in Proc. Glob. Internet Things Summit, 2020, pp. 1–6.

[57] “Hono.” Accessed: Jun. 2024. [Online]. Available: https://projects.eclipse.
org/projects/iot.hono

[58] “Apache kafka.” Accessed: Jun. 2024. [Online]. Available: https://kafka.
apache.org/

[59] “Influxdb.” Accessed: Jun. 2024. [Online]. Available: https://www.
influxdata.com/

[60] K. Alanezi and S. Mishra, “Towards a scalable architecture for building
digital twins at the edge,” in Proc. 1st ACM/IEEE Workshop Digit. Twins,
2023, pp. 325–329.

Khaled Alanezi received the B.Sc. degree in com-
puter engineering from Kuwait University, Kuwait
City, Kuwait, in 2003 and the M.Sc. and Ph.D. de-
grees in computer science from the Department of
Computer Science, University of Colorado, Boulder,
Boulder, CO, USA, in 2012 and 2016, respectively.

He is currently an Assistant Professor with the
College of Computing and Systems, Abdullah Al
Salem University, Safat, Kuwait. His current research
interests include edge computing, Internet of Things,
and digital twins.

Shivakant Mishra received the Ph.D. degree in com-
puter science from the University of Arizona, Tucson,
USA, in 1992.

He is currently a Professor with the Department
of Computer Science, The University of Colorado
at Boulder, Boulder, CO, USA. His research inter-
ests include edge computing, cybersafety, mobile
and pervasive computing, and large scale distributed
computing.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on November 04,2024 at 20:32:54 UTC from IEEE Xplore. Restrictions apply.

https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces
https://docs.arduino.cc/hardware/uno-rev3
https://docs.arduino.cc/hardware/uno-rev3
https://docs.arduino.cc/retired/shields/arduino-wifi-shield
https://docs.arduino.cc/retired/shields/arduino-wifi-shield
https://www.postman.com/
https://www.postman.com/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
http://scikit-learn.org
https://www.hackster.io/umpheki/iot-with-arduino-and-esp13-wifi-shield-c93b08
https://www.hackster.io/umpheki/iot-with-arduino-and-esp13-wifi-shield-c93b08
https://projects.eclipse.org/projects/iot.hono
https://projects.eclipse.org/projects/iot.hono
https://kafka.apache.org/
https://kafka.apache.org/
https://www.influxdata.com/
https://www.influxdata.com/

