

1 Title: The impact of boldness on demographic rates and life-history

2 outcomes in the wandering albatross

3 Joanie Van de Walle^{1,2}, Ruijiao Sun^{1,3,4}, Rémi Fay^{5,6}, Samantha C. Patrick⁷,
4 Christophe Barbraud⁸, Karine Delord⁸, Henri Weimerkirch⁸, and Stephanie
5 Jenouvrier¹

⁶ ¹Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

²Department of Fisheries and Oceans Canada, Maurice-Lamontagne Institute, Mont-Joli, QC, Canada

⁸ ³Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology,
⁹ Cambridge, MA, USA

¹⁰⁴Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA

11 ⁵Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and
12 Technology, Trondheim, Norway

13 ⁶Laboratoire de Biometrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Villeurbanne,
14 France

¹⁵ ⁷School of Environmental Sciences, University of Liverpool, Nicholson Building, Brownlow Street,
¹⁶ Liverpool, UK

¹⁷ ¹⁸Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle University UMR7372, 79360 Villiers en Bois, France

¹⁹ Corresponding author: Joanie Van de Walle, jvandewalle@whoi.edu

20 **Abstract**

21 1. Differences among individuals within a population are ubiquitous. Those differences are
22 known to affect the entire life cycle with important consequences for all demographic rates
23 and outcomes. One source of among-individual phenotypic variation that has received little
24 attention from a demographic perspective is animal personality, which is defined as con-
25 sistent and heritable behavioral differences between individuals. While many studies have
26 shown that individual variation in individual personality can generate individual differences
27 in survival and reproductive rates, the impact of personality on all demographic rates and
28 outcomes remains to be assessed empirically.

29 2. Here, we used a unique, long-term, dataset coupling demography and personality of wander-
30 ing albatross (*Diomedea exulans*) in the Crozet Archipelago and a comprehensive analysis
31 based on a suite of approaches (capture-mark-recapture statistical models, Markov chains
32 models and structured matrix population models). We assessed the effect of boldness on
33 annual demographic rates (survival, breeding probability, breeding success), life-history out-
34 comes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative
35 demographic outcome (population growth rate).

36 3. We found that boldness had little impact on female demographic rates, but was very likely
37 associated with lower breeding probabilities in males. By integrating the effects of boldness
38 over the entire life cycle, we found that bolder males had slightly lower lifetime reproduc-
39 tive success compared to shyer males. Indeed, bolder males spent a greater proportion of
40 their lifetime as non-breeders, which suggests longer inter-breeding intervals due to higher
41 reproductive allocation.

42 4. Our results reveal that the link between boldness and demography is more complex than
43 anticipated by the pace-of-life literature and highlight the importance of considering the
44 entire life cycle with a comprehensive approach when assessing the role of personality on

45 individual performance and demography.

46 *Keywords:* demography, fitness, life history, pace-of-life, personality, population growth rate

47 **Introduction**

48 Demographic rates are not equal between individuals and this variation is typically brought about
49 by phenotypic differences (Hamel et al., 2018). The recognition that different individuals con-
50 tribute differently to population growth motivated the development of, for example, age- (Leslie,
51 1945; Lotka, 1939), stage- (Caswell, 2001; Lefkovich, 1965) and size- (Easterling et al., 2018)
52 structured population models. One source of among-individual phenotypic variation that has re-
53 ceived little attention from a demographic perspective is animal personality, which is defined as
54 consistent and heritable behavioral differences between individuals (Sih et al., 2004). Some indi-
55 viduals are, for example, consistently more aggressive, more explorative, and bolder than others.
56 Those personality differences, because they may dictate how individuals respond towards risks
57 and allocate resources, are expected to correlate with survival rates, reproductive performance,
58 and life-history strategies (Stamps, 2007; Wolf et al., 2007). Many empirical studies have shown
59 behaviourally or personality-associated differential survival and reproductive performance (Ellis
60 et al., 2017; Niemelä et al., 2015; Réale et al., 2009; Santicchia et al., 2018; Smith & Blumstein,
61 2008).

62 Comprehensive assessments of the effect of among-individual differences over the entire life cycle
63 (i.e., over survival and reproductive parameters simultaneously) and on multiple facets of indi-
64 vidual performance are critical to understand the role of personality in shaping demography, but
65 also to assess the selective pressures at play (Santicchia et al., 2018). This is because individual
66 fitness is multidimensional, integrating both performance in survival and reproduction (Mcgraw &
67 Caswell, 1996). Consequently, antagonistic effects (or trade-offs) between demographic rates can
68 arise (Jenouvrier et al., 2018; Sebens et al., 2018), and the expression of a given phenotype can
69 increase one aspect of individual performance while decreasing another (e.g. Van de Walle et al.,
70 2018). In the case of personality, its consistent nature across contexts and situations may lead to
71 trade-offs, for example between survival and reproduction, making the cumulative effect hard to
72 predict. This is because expressing one behaviour can be rewarding in one context or situation, but

73 costly in another (Sih et al., 2004). Those trade-offs are thought to play an important role in the
74 maintenance of among-individual variation in personality at the population level (Sih et al., 2004;
75 Stamps, 2007; Wolf et al., 2007).

76 The shy-bold continuum (Wilson et al., 1994) is among the most studied axes of animal person-
77 alities and is expected to have implications for individual life histories. Those expectations are
78 theoretically grounded in the pace-of-life syndrome framework, which stipulates that the shy-bold
79 axis of individual variation should correlate with a slow-fast continuum of life-history strategies,
80 with bolder individuals showing faster life cycles (e.g. shorter lifespan, higher reproductive rates)
81 compared to shyer individuals (Dammhahn et al., 2018; Réale et al., 2010). This is because the
82 risk-proneness of bolder individuals is thought to facilitate resource acquisition and, consequently,
83 body condition and reproductive success at the cost of higher vulnerability to mortality factors
84 (Biro & Stamps, 2008; Réale et al., 2010; Stamps, 2007). In a meta-analysis of published empirical
85 studies, Smith and Blumstein (2008) reported clear evidence of relationships between personality
86 and fitness and concluded that, in general, bolder individuals, and especially bolder males, have
87 higher reproductive success, but suffer a higher survival cost. However, these relationships only
88 held in captive populations and not in wild populations. More recently, a meta-analysis by Mo-
89 iron et al. (2020) focusing on the correlation between among-individual variation in personality
90 and survival found that across species, risky behavioural types, including boldness, did not lead
91 to lower survival rates. In fact, in wild populations, individuals expressing riskier behaviours had
92 higher survival rates, with no sex-specific differences. Therefore, the link between personality and
93 survival may be more complex than we would expect and vary across species, contexts and systems
94 (Dhellemmes et al., 2021; Dingemanse, 2021; Laskowski et al., 2021). More empirical studies are
95 needed to better understand the relationship between personality and individual performance in
96 wild populations.

97 The wandering albatross (*Diomedea exulans*) is a long-lived seabird species in which personality
98 has been linked to many aspects of its biology. In this species, boldness has been shown to be re-

99 peatable and heritable (Patrick et al., 2013), and to correlate with pair-bond maintenance (Sun, Van
100 de Walle, et al., 2022), parental care behaviours (McCully et al., 2022), and foraging behaviours
101 (Patrick et al., 2017; Weimerskirch et al., 2023). Foraging behaviours, by reflecting an individual's
102 ability to acquire resources, should have cascading effects on reproduction and survival. As for
103 pair-bond dynamics and parental care, they play a central role in reproduction in monogamous
104 species, such as the wandering albatross (Sun, Barbraud, et al., 2022). A link between boldness
105 and reproductive success has been established in the wandering albatross, with bolder males having
106 greater reproductive success compared to shyer males in late life (Patrick & Weimerskirch, 2015).
107 However, whether boldness also affects other demographic rates remains unknown and antagonis-
108 tic effects can be expected. For instance, fishery bycatch is an important source of mortality in
109 albatrosses (Barbraud et al., 2012) and boldness may increase the vulnerability of birds to this type
110 of mortality. We know that passive harvest can unintentionally claim more deaths of individuals
111 of a certain personality type, with bolder individuals being typically more vulnerable compared to
112 shyer individuals (reviewed in Leclerc et al., 2017). Assessing the demographic role of personal-
113 ity and whether it is under selection thus requires the simultaneous incorporation of the multiple
114 pathways through which boldness can influence demographic rates, individual performance and
115 population dynamics.

116 Here, based on a unique long-term demographic and personality dataset, we investigated the demo-
117 graphic impact of boldness in the wandering albatross. We used a comprehensive approach, investi-
118 gating the effect of boldness over different time scales and levels of organization. At the individual
119 level, we explored 1) short-term consequences with annual demographic rates: survival, breed-
120 ing probability, and breeding success probability. We also explored 2) long-term consequences
121 over the lifetime of individuals through life expectancy and lifetime reproductive outcomes and 3)
122 the relative proportion of lifetime spent in the different reproductive states and the time between
123 breeding events. Finally, at the population level, we computed the effect of boldness on an integra-
124 tive demographic outcome, namely the population growth rate. We relied on several demographic
125 approaches, including multi-event capture-mark-recapture models, absorbing Markov chains, and

126 structured matrix population models. Following predictions from the pace-of-life syndrome lit-
127 erature, the previously established links between boldness and reproductive success (Patrick &
128 Weimerskirch, 2015), and expected higher vulnerability to bycatch for bolder individuals, we pre-
129 dicted that bolder wandering albatrosses would have lower survival rates, but higher breeding prob-
130 abilities and breeding success. However, it is difficult to make general predictions as to the role of
131 personality on more integrative measures of fitness, (e.g. lifetime reproductive success, population
132 growth rate), as antagonistic effects between parameters over the life cycle (e.g. a trade-off be-
133 tween survival and reproduction) could arise and generate unexpected consequences (Jenouvrier,
134 2013).

135 **Materials and Methods**

136 We investigated the demographic role of boldness in four steps. First, we estimated the effect
137 of boldness on three annual adult demographic rates (survival, breeding probability, and breed-
138 ing success probability) using Bayesian multi-event capture-mark-recapture models (MECMR).
139 Second, relying on absorbing Markov chains (AMC) and boldness-specific demographic rates cal-
140 culated from the MECMR, we assessed the role of personality on life-history outcomes (expected
141 life expectancy and lifetime reproductive success). Third, to further understand how boldness af-
142 fects individual life histories, we explored transient state transitions (i.e., how individuals transit
143 between the different breeding states within the life cycle during their lifetime) of bold vs shy in-
144 dividuals again within an AMC framework. Specifically, for shy vs bold individuals, we estimated
145 the relative proportion of their lifetime spent in the different reproductive states (e.g. breeder vs
146 non-breeder), as well as their average interval of time between breeding events. Fourth, as an-
147 other integrative demographic outcome, we assessed the overall performance of different boldness
148 scores by calculating the population growth rate (λ) for theoretical populations composed of only
149 individuals of a given boldness value.

150 **Study system and species monitoring**

151 We studied the entire breeding population of wandering albatrosses from Possession Island (46°24'S,
152 52°46'E), in the Crozet Archipelago, south-western Indian Ocean. The breeding season, from egg
153 laying to chick fledging, lasts almost a year (Weimerskirch, 2018) and most breeders take a sab-
154 batical year at sea after a successful breeding event (Tickell, 1968). However, a small proportion
155 of successful breeders can breed the next year, and thus the wandering albatross is considered a
156 quasi-biennial breeder (Barbraud & Weimerskirch, 2012).

157 At Possession Island, a capture-mark-recapture program has been undertaken since 1966 (Weimer-
158 skirch, 2018). Fledglings and adults are banded annually using individually-coded stainless-steel
159 leg rings. Birds are monitored, and their reproductive status determined, during the breeding sea-
160 son. Between January and February, i.e., right after egg-laying, nests are visited three to four times
161 to determine the identities of breeding birds. Chicks are ringed in September and October prior
162 to fledging in November-December. Breeding success is determined based on chick survival until
163 fledging. Each year, unmarked individuals found at the colony are also ringed. Sex is based on
164 morphology and genetic assessment (Weimerskirch et al., 2005). We relied on data collected from
165 1966 to 2020 on 11,591 individuals (8,697 males and 2,894 females). Licences and permissions for
166 capture and handling of animals were granted by the Ethic Committee of Institut Polaire Francais
167 (IPEV) and by the Préfet of Terres australes et antarctiques francaises (TAAF) after advice from
168 the Comité de l'Environnement Polaire (CEP).

169 **Personality assessment**

170 Since 2008, boldness of breeding wandering albatrosses has been assessed for 1,746 individuals
171 (931 males and 815 females) through personality tests. During incubation, breeding individuals
172 were approached on foot and their reaction towards human approaches was evaluated on a scale
173 from 0 to 4 (0 = no response, 1 = lifts the head, 2 = stands on tarsus, 3 = vocalizes, and 4 =
174 stands up). The higher the score, the bolder the individual (Patrick et al., 2013). Those scores

175 were then adjusted to control for differences between observers and observation number, and were
176 standardized (mean = 0, sd = 1) prior to analyses. For adult wandering albatrosses, boldness in
177 reaction to human approaches is correlated to that in reaction to a novel object. Boldness is also
178 highly repeatable (Patrick et al., 2013) and assumed as fixed over an individual's life as a previous
179 study did not find evidence of change in boldness with age (Patrick & Weimerskirch, 2015). More
180 information on personality assessment can be found in Patrick et al. (2013).

181 **Life cycle of the wandering albatross**

182 All the demographic analyses were based on the wandering albatross life cycle (Fig. 1). In a
183 species life cycle, individuals move between a specific set of stages over the course of a time step
184 (here a year), conditional on transition probabilities. The wandering albatross life cycle includes
185 age classes and breeding states. Annual transitions are from year t to $t + 1$ and depend on survival
186 (α) and changes in individual breeding status, which are determined by breeding probability (β),
187 and breeding success probability (γ). Breeding probability is the probability that an individual at
188 time t returns to the colony to breed at time $t + 1$, whereas breeding success probability represents
189 the probability that an individual breeding at time $t + 1$ raises successfully a chick until fledging.
190 In each year t , individuals of any age a were classified into six breeding states s :

- 191 1. **Pre-breeder (PB):** individuals that have not yet started to breed. Pre-breeders are of age
192 classes one and over.
- 193 2. **Successful breeder (SB):** adults that have bred and successfully fledged a chick in year t . As
194 wandering albatrosses can start to breed (i.e., lay an egg for the first time) at six years-old
195 (Fay et al., 2016), individuals can only reach this state upon age six years-old and older
- 196 3. **Failed breeder (FB):** adults that have bred, but failed to successfully fledge a chick in year t .
197 As for **SB**, individuals can only reach this state at the age of six years old and older.
- 198 4. **Post-successful breeder (PSB):** adults during their sabbatical year after having successfully

199 fledged a chick at year $t - 1$. Individuals can only reach this state at the age of seven years
200 old and older.

201 5. Post-failed breeder (**PFB**): adults during their sabbatical year after having failed to success-
202 fully fledge a chick at year $t - 1$. As for **PSB**, individuals can only reach this state at the age
203 of seven years old and older.

204 6. Non-breeder (**NB**): adults that are still not breeding after a sabbatical year, i.e., after states
205 **PSB** or **PFB**. Individuals in this state are adults of age eight years-old and older.

206 **A capture-mark-recapture model to estimate demographic rates**

207 Demographic rates, i.e., survival (α), breeding probability (β) and breeding success probability
208 (γ) were estimated using Bayesian multi-event capture-mark-recapture models (MECMR). Sur-
209 vival and breeding probabilities vary with age in the wandering albatross, but the pattern of age
210 variation differs between survival and breeding probabilities (Fay et al., 2015, 2016; Patrick &
211 Weimerskirch, 2015). Therefore, we estimated survival, breeding probabilities, and breeding suc-
212 cess probabilities for different age classes based on those previous studies. For pre-breeders, we
213 used the same age classes as in Fay et al. (2015): four age classes for survival (age classes 1-2, 3-8,
214 9-13, and 14+), and five age classes for breeding parameters (age classes 6, 7, 8, 9 and 10+). For
215 pre-breeders of age classes 1 through 5 (i.e., juveniles) we set breeding probabilities and breeding
216 success probabilities at 0 due to immaturity (Fay et al., 2016). For adults, we considered three age
217 classes. Wandering albatrosses show signs of survival senescence after age 30 (Pardo et al., 2013).
218 Thus, for survival, we followed (Fay et al., 2015; Pardo et al., 2013) and used the following age
219 classes: 7-8, 9-30 and 31+, with the age class 31+ consisting of senescent individuals. Breeding
220 senescence occurs at age 22 (Patrick & Weimerskirch, 2015), thus for breeding probability and
221 breeding success probability we considered age classes 7-10, 11-21, and 22+.

222 Survival and breeding probabilities can vary depending on the breeding states of the birds. There-

223 fore, we estimated survival, breeding probabilities, and breeding success for each of the five adult
 224 breeding states separately. Due to the computational demands and extended runtime of Bayesian
 225 models, we performed an initial model selection using a frequentist approach in E-Surge Version
 226 2.0 (Choquet et al., 2009) to identify constraints in demographic rates between the different breed-
 227 ing states (Figure 1). A step-down model selection was performed using quasi-Akaike Information
 228 Criterion (QAIC) as a criterion for model selection. Results from model selection are shown in
 229 Supplementary Materials S1. From the best-supported model (i.e., lowest QAIC value), survival
 230 rates were found to be similar between breeding states SB and FB, and between PSB and PFB,
 231 whereas they were different for PB and NB individuals. Breeding probabilities were different for
 232 each breeding state. Breeding success probabilities were similar between PSB and PFB, but were
 233 different for all other reproductive states (PB, SB, FB and NB). For each demographic rate, the
 234 respective constraints identified from the model selection were then used in the Bayesian MECMR
 235 framework in a second step. For example, survival rate for SB and FB were constrained to be equal
 236 in the Bayesian model.

237 All demographic rates were modeled following Bernoulli distributions. Survival was modeled as:

$$(\text{Alive}_{k,t} \mid \text{Alive}_{k,t-1} = 1) \sim \text{Bernoulli}(\text{logit}^{-1}(\mu_{\alpha,a,s})) \quad (1)$$

238 where $\text{Alive}_{k,t}$ indicates whether an individual k survived (1) or died (0) from year $t - 1$ to year
 239 t conditional on its previous survival ($\text{Alive}_{k,t-1} = 1$) and $\mu_{\alpha,a,s}$ is the logit transform mean sur-
 240 vival rate of individuals of age a and state s . Conditional on being alive, individual k may breed
 241 following an additional Bernoulli process:

$$(\text{Breed}_{k,t} \mid \text{Alive}_{k,t} = 1) \sim \text{Bernoulli}(\text{logit}^{-1}(\mu_{\beta,a,s})) \quad (2)$$

242 where $\text{Breed}_{k,t}$ indicates whether an individual k has breed (1) or not (0) in year t and $\mu_{\beta,a,s}$ is the

243 logit transform mean breeding probability of individuals of age a and state s . Following the same
 244 logic, conditional on breeding, individual i may be successful at fledging a chick following a third
 245 Bernoulli process:

$$(\text{Success}_{k,t} \mid \text{Breed}_{k,t} = 1) \sim \text{Bernoulli}(\text{logit}^{-1}(\mu_{\gamma,a,s})) \quad (3)$$

246 where $\text{Success}_{k,t}$ indicates whether an individual k has successfully fledged a chick (1) or not (0)
 247 in year t and $\mu_{\gamma,a,s}$ is the logit transform mean breeding success probability of individuals of age a
 248 and state s .

249 For recruited individuals, we investigated the linear effect of boldness on each demographic rate
 250 (θ), i.e., α , β or γ , by including boldness (B) as an additive individual covariate:

$$\theta_{k,t} \sim \text{Bernoulli}(\text{logit}^{-1}(\mu_{\theta,a,s} + \rho_\theta \times B_k)) \quad (4)$$

251 where $\mu_{\theta,a,s}$ is the mean demographic rate of individuals of age a and state s , ρ_θ is the linear ef-
 252 fect of boldness on the vital rate, and B_k is the boldness score of individual k . The parameter ρ_θ
 253 was assumed constant across breeding states and age classes. We verified whether the effect of
 254 boldness on demographic rates differed among age classes by adding an interaction term between
 255 boldness and age in the models and found little statistical support for the inclusion of such inter-
 256 action (Supplementary Materials S2). Therefore, to limit model complexity, we kept a constant
 257 impact of boldness across all age classes.

258 Along with the vital rates, we also estimated detection probability, p_k , which is the probability of
 259 observing an individual depending on its reproductive state s . For pre-breeders, we considered
 260 6 age classes (1-5, 6, 7, 8, 9, 10+) for detection probability. For recruited individuals, detection
 261 probability was assumed fixed for all age classes. We also assumed detection to be equal between
 262 SB and FB (set to 1), and between PSB and PFB (set to 0).

263 To maintain the statistical independence among female and male life histories, we built and sepa-
264 rately ran one model per sex. Because personality has only been measured on breeding adults since
265 2008, our analysis focused on testing the impact of personality on demographic rates exclusively
266 in the adult phase of the life cycle. Therefore, we split the juvenile and adult components of the
267 population and estimated their respective demographic rates into separate models. This allowed us
268 to consider the whole life-history dataset during the entire study period (1965-2020) to estimate
269 juvenile demographic rates. Individuals born after 2016 were not considered for the estimation
270 of juvenile demographic rates because their low detection rates between age classes 1 through 5
271 can lead to underestimated survival rates. For adults, we restricted the analyses to the 2008-2020
272 period using the life histories of individuals with a personality score. To further simplify model
273 complexity and reduce runtime, we examined the influence of personality on each demographic
274 adult rates separately. Thus, a total of eight models were built: three models to test the effect of
275 boldness on survival, breeding probability, and breeding success probability for adults of each sex,
276 and two models for juveniles (one for each sex).

277 MECMR analyses were conducted in JAGS (Plummer, 2003) from R (R Core Team, 2021) using
278 the R package “jagsUI” (Kellner, 2021). MECMR models assume a closed population, i.e., there
279 is no emigration or immigration. This is a reasonable assumption in the wandering albatross from
280 Crozet as a previous study have found high philopatry in adults at this colony (Gauthier et al.,
281 2010). By computing male and female models separately, we also assumed that their demographic
282 rates are independent of each other. Further, with such models, survival estimates represent appar-
283 ent survival due to imperfect detection. We used Markov chain Monte Carlo (MCMC) methods for
284 posterior sampling. For each model, we ran 3 parallel chains with 20,000 iterations, a burn-in phase
285 of 4,000, and a thinning interval of 2 for a total of 24,000 iterations. Convergence was confirmed
286 by visual examination of the posterior distributions and the Gelman-Rubin statistic, with a R-hat
287 lower than 1.1 indicating that convergence was reached (Brooks & Gelman, 1998). Evidence for
288 covariate effects was gauged by the proportion of the posterior distribution that had the same sign
289 as the posterior mean (referred to as the F-statistics). We followed the Intergovernmental Panel

290 on Climate Change (IPCC) terminology (IPCC, 2021) to determine the likelihood of an effect and
291 considered 66-100% as likely, 90-100% as very likely, 95–100% as extremely likely, and 99- 100%
292 as virtually certain.

293 **Predictions of boldness-specific demographic rates**

294 Further investigation of the role of personality in demographic outcomes relied on a set of boldness-
295 specific demographic rates. We used the parameters estimated from the MECMR model to predict
296 adult demographic rates over a range of boldness scores. We randomly drew values from the
297 posterior distributions for intercept and boldness effect (on the logit scale) in adults. Then, for
298 each age- (a) and state- (s) we predicted demographic rates for each boldness score B as follows:

$$\alpha_{a,s,B} = \text{logit}^{-1}(\mu_{\alpha,s,b} + \rho_\alpha \times B) \quad (5)$$

299

$$\beta_{a,s,B} = \text{logit}^{-1}(\mu_{\beta,s,b} + \rho_\beta \times B) \quad (6)$$

300

$$\gamma_{a,s,B} = \text{logit}^{-1}(\mu_{\gamma,s,b} + \rho_\gamma \times B) \quad (7)$$

301 For life-history outcomes (life expectancy and lifetime reproductive success) and population growth
302 rate, we predicted 1,000 boldness-specific demographic rates for each of 100 values of boldness
303 ranging from -3 to 3. For state transitions analyses, we contrasted extreme shy ($B = -3$) and ex-
304 treme bold ($B = 3$) individuals and results were averaged across 1,000 model-based predictions.

305 **An absorbing Markov Chain to estimate life-history outcomes**

306 To assess the impact of boldness on life-history outcomes and state occupancy times, we used
307 an Absorbing Markov chain framework, following Caswell (2009) and Roth and Caswell (2018).
308 Specifically, we calculated life expectancy, mean lifetime reproductive success, expected propor-
309 tion of time spent in each reproductive state in an individual's lifetime and breeding return times
310 (i.e., expected time required for a breeder to return to breeding) for individuals expressing different

311 boldness scores B .

312 The life cycle can be formulated as a Markov chain to extract life-history outcomes (Caswell,
313 2009). A Markov chain model tracks the trajectory of a particle (here, an individual) as it transits
314 among a predefined set of states. In this stochastic process, future movements are solely determined
315 by the current state and are independent from past movements. The transient matrix \mathbf{U} contains
316 live annual transitions between the states and can be extracted directly from the life cycle. In
317 an absorbing Markov chain, an absorbing state (here a death state) is added to the life cycle and
318 individuals reaching such state remain there indefinitely (they become “absorbed”). We built a
319 separate Markov chain models for each boldness score, assuming that all individuals within a
320 given boldness score share the same vital rates. Let \mathbf{U}_B be the transient matrix for individuals of
321 boldness score B . The transient matrix includes all the demographic rates predicted for the given
322 boldness score B (see Section *Predictions of boldness-specific demographic rates*), except for pre-
323 breeders who were assigned average parameter values estimated in the juvenile models given the
324 absence of boldness measurements for this category of individuals. The transition matrix for the
325 absorbing Markov chain can be calculated from \mathbf{U}_B as follows:

$$\mathbf{P}_B = \left(\begin{array}{c|c} \mathbf{U}_B & 0 \\ \hline \mathbf{m}_B & 1 \end{array} \right) \quad (8)$$

326

327

328 where \mathbf{m}_B is a mortality vector whose entries are the probabilities of mortality for individuals of
329 personality B within each stage.

330 Based on the concept of absorbing Markov chains, we can examine several meaningful life-history
331 characteristics. For instance, using the personality-specific demographic rates estimated above, we
332 can examine for individuals of different personalities B how long it takes before death and the

333 dynamics of transitions between the different states prior to death. As individuals progress in time
334 (e.g. age), they randomly move between the different stages following the probability distributions
335 associated with each stage transition. Individuals can "visit" some stages multiple times over their
336 lifetime. The fundamental matrix \mathbf{N}_B gives occupancy times, i.e., the average number of occasions
337 (years) an individual of personality B is expected to visit one (or several) stages over its lifetime
338 given it starts at a specific initial stage. The matrix \mathbf{N}_B can be obtained from the matrix \mathbf{U}_B as
339 follows:

$$\mathbf{N}_B = (\mathbf{I} - \mathbf{U}_B^{-1}) \quad (9)$$

340 Summing over all i for any given initial stage j in the matrix \mathbf{N}_B gives the number of years
341 individuals of personality B are expected to live from the moment they reach stage j . Here, we
342 estimated life expectancy by summing occupancy times over all stages starting from the stage
343 PB1 (fledglings). The wandering albatross life cycle explicitly includes a successful breeding state
344 (SB), which means that the fundamental matrix \mathbf{N}_B also gives information about the total number
345 of years individuals are expected to successfully produce fledglings (Jenouvrier et al., 2018). Since
346 wandering albatrosses only produce one chick per year, expected lifetime reproductive success can
347 be calculated by summing occupancy times across all SB stages (SB of age classes 7 through 31+).

348 To better understand individual lifetime allocation to reproduction and how this is affected by
349 boldness, we contrasted for extreme bold *vs* shy individuals the proportion of their adult lifetime
350 spent in each reproductive state. Starting from each of successful or failed breeder stages (i.e., SB7
351 to SB31+ and FB7 to FB31+), we divided the total time spent in each adult state (SB, FB, PSB,
352 PFB and NB) by the adult life expectancy (sum of time spent in all adult stages). Then, those
353 proportions were averaged across the initial stages to produce an average occupancy time in each
354 reproductive state for extreme bold and shy individuals.

355 Also, to further understand the role of boldness in breeding, we calculated the time it takes for
356 extreme shy *vs* bold individuals to breed again after either failing or succeeding at fledging a chick.

357 This calculation relied on the estimation of return times, i.e., the time between two visits in a target
358 set of stages, which is described in detail in Roth and Caswell (2018). Briefly, within the absorbing
359 Markov chain framework, we defined a new set of stages as absorbing, i.e., once an individual
360 reached one of those stages, the iterative process stopped and the individual could no longer move
361 between stages in the next time step (it was “absorbed”, as for the death state). Individuals can
362 reach those stages through many different paths. For example, some individuals can reach an
363 absorbing stage after one year, and others after multiple years, depending on the stage transition
364 probabilities. Here, we set breeding stages (SB7 to SB 31+ and FB7 to FB31+) as absorbing and
365 estimated the average time it took before reaching any of those absorbing stages along all possible
366 paths for extreme bold and shy individuals starting as either 1) successful breeders or 2) failed
367 breeders.

368 **A matrix population model to estimate population growth rate**

369 To assess the role of boldness on the overall performance of individuals expressing different bold-
370 ness scores, we used structured matrix population models. For each of 100 simulated boldness
371 scores (B) within the interval -3 and 3, we built one population matrix model \mathbf{A}_B . The population
372 matrix \mathbf{A}_B projects the vector of population size \mathbf{n}_B from year t to year $t + 1$ and is a function of
373 the vector of parameters θ_B , so that:

$$\mathbf{n}_{B,t+1} = \mathbf{A}_B \mathbf{n}_{B,t} \quad (10)$$

374 where

$$\mathbf{A}_B = \mathbf{U}_B + \mathbf{F}_B \quad (11)$$

375 with the matrices \mathbf{U}_B representing the annual transitions of live individuals and \mathbf{F}_B representing
376 fertilities (i.e., the production of new individuals) for boldness score B . The full population matrix

377 can be found in Supplementary Materials S3. In each population matrix \mathbf{A}_B , we included 16 age
378 classes for the PB stage, leaving the 16th age class open-ended to account for late recruitment. For
379 adults, we included 25 age classes for each of SB, FB, PSB, PFB and NB stages, starting at age
380 class 7 (pre-breeders can only become breeders between age class 6 at time t and age class 7 at time
381 $t + 1$), and leaving the last age class 31+ open-ended. This resulted in 125 age/stage combinations
382 for adults and a \mathbf{A}_B age and stage matrix of total dimension 141 by 141. Population growth rate
383 was calculated at equilibrium as the dominant eigenvalue of the matrix \mathbf{A}_B . We used Matlab (The
384 MathWorks Inc, 2022) for demographic analyses and relied on occupancy time codes provided in
385 Roth and Caswell (2018). Figures were made in R (R Core Team, 2021).

386 **Results**

387 **Demographic rates estimation**

388 Estimates of average vital rates are provided in Supplementary Materials S4, Table S5 for juveniles
389 and Table S6 for adults. In females, boldness was not likely to affect survival or breeding proba-
390 bility (Fig. 2a,c) as the posterior distribution of ρ was largely centered on zero for both parameters
391 (all $F < 60\%$). Boldness in females was likely associated with lower breeding success ($F = 66.0\%$;
392 Fig. 2e), however the effect was weak. The mean effect of boldness (ρ) on female breeding success
393 was (on the logit scale) -0.019 (95% Credible Interval = [-0.108, 0.072]), which corresponds to a
394 1.8% reduction in the odds of breeding with success for every unit of increase in boldness score.
395 In males, boldness was not likely to affect survival ($F = 49.3\%$; Fig. 2b) or breeding success (F
396 = 52.2%; Fig. 2f). Boldness in males was extremely likely ($F = 98.8\%$) associated with lower
397 breeding probabilities (Fig. 2d). The mean effect of boldness (ρ) on breeding probability was (on
398 the logit scale) -0.078 (95% Credible Interval = [-0.147, -0.009]), which corresponds to a 7.5% re-
399 duction in the odds of breeding for every unit of increase in boldness score. Posterior distributions
400 of ρ for each vital rate and sex can be found in Supplementary Materials S4 Fig. S2.

401 **Life history outcomes, population growth rate and occupancy times**

402 Boldness had no discernible effect on life expectancy in males and females (Fig. 3a). Lifetime re-
403 productive success was unaffected by boldness score in females (Fig. 3b). In males, lifetime repro-
404 ductive success decreased from a median of 5.8 (95% Confidence Interval = [4.1, 7.9]) fledglings
405 in shy males to a median of 4.9 (95% Confidence Interval = [3.6, 7.5]) fledglings in bold males. In
406 females, there was no detectable decline in population growth rate with increasing boldness score.
407 In males, population growth rates declined with increasing boldness score, from a median of 1.038
408 (95% Confidence Interval = [1.028, 1.045]) for shy to a median of 1.031 (95% Confidence Interval
409 = [1.021, 1.041] for bold individuals (Fig. 3c).

410 For males, time spent in the different reproductive states varied between extreme shy and bold
411 individuals (Fig. 4a). Bold males spent 5.8% and 1.8% less time as successful and failed breeders,
412 respectively, compared to shy males. Bold males also spent 11.8% more time in the non-breeder
413 state. Overall, shy males spent 47.4% of their adult life breeding (52.6% non-breeding) and bold
414 males spent 39.8% of their adult life breeding (60.1% non-breeding). In contrast, for females the
415 time spent in the different reproductive states was similar between shy and bold individuals (Fig.
416 4b).

417 We found that return times to breeding varied according to the age of the individuals at their
418 previous reproductive state (Fig. 5). Overall, return times were longer after a breeding success.
419 Return times to breeding states were on average greater in males compared to females (Fig. 5).
420 In males, return times to breeding states were longer in older compared to younger individuals
421 regardless of previous reproductive state. Further, in males, return times were longer for bold vs
422 shy individuals, and this difference increased over adult life (Fig. 5a,b). Specifically, it took 0.59
423 years more to return to breeding for a bold male of age class 31+ compared to a bold male of age
424 class 7 after a reproductive failure. This difference was 0.24 years when previous reproductive
425 outcome was success. For shy males, the difference in return time to breeding between age class
426 31+ and age class 7 was 0.11 and 0.31 years when previous reproductive outcome was success or

failure, respectively. This means that bolder males take disproportionately longer to breed again as they get older compared to shy males. After age 21, breeding probabilities for males decreased (Supplementary Materials S4; Table S6). This caused return times to increase abruptly up to 21 years old as more and more of the state transitions included in the calculation of return times implied breeding probabilities after age 21. For females, the time taken to breed again after a successful reproductive event declined over adult life, which means that older, but successful, females returned to breeding quicker compared to younger females (Fig. 5a). Such a decline with age was not observed for females having failed their previous reproduction (Fig. 5b). A similar pattern was observed in both bold and shy females.

Discussion

Using a unique long-term series of coupled data on individual life histories and personality in wandering albatrosses, we conducted a comprehensive analysis of the role of boldness on demographic rates, life-history outcomes, and population growth rate. We showed that the impact of boldness was sex-specific. Contrary to our expectations, boldness did not affect survival rates in either sex. However, our results showed differential impact of personality on reproductive rates in females and males, with an influence of personality on breeding probabilities in males and little effects in females. Bolder males bred less frequently and spent a relatively greater proportion of their adult lifetime not breeding, compared to shyer males because they took longer to breed again after a reproductive attempt. As a result, bolder males had slightly lower lifetime reproductive outcomes and overall population growth rates compared to shyer males, whereas female life history outcomes seemed invariable across the shy-bold spectrum.

Traditionally, the impact of personality is assessed by measuring the impact of a personality trait on one or (sometimes) multiple fitness-related traits (reviewed in Smith and Blumstein, 2008). However, there is a limited focus on assessing its impact throughout the life cycle, including survival, breeding, and success probabilities. This could explain why inconsistent results about the role of

452 personality in individual performance are found across studies, especially in the pace-of-life liter-
453 ature (Moiron et al., 2020; Royauté et al., 2018). Here, our holistic approach, combining multiple
454 statistical and mathematical tools and considering all aspects of the life cycle simultaneously, of-
455 fers great potential to unveil the actual pattern of personality-mediated impacts in wild populations.
456 Our approach provides many advantages. First, capture-mark-recapture (CMR) models account for
457 detection issues, which often hinder the proper estimation of survival and breeding probabilities
458 in natural systems. In using CMR models, we were able to directly measure the impact of bold-
459 ness on all demographic rates of the wandering albatross adult life cycle. Secondly, Markov chain
460 modeling and matrix models enable the integration of the complex, sometimes opposing, effects
461 of personality on demographic rates to calculate its impact on life history outcomes (e.g. lifetime
462 reproductive success and life expectancy), occupancy times (time spent as non-breeder during life-
463 time and return time to breeding), and population growth rates.

464 We found that boldness had no discernible impact on survival and breeding success, but led to
465 reduced reproductive probabilities in male wandering albatrosses. Overall, our results suggest
466 slightly lower lifetime reproductive success and population growth rates for bolder males, due
467 to reduced breeding probabilities. Most studies assessing the role of personality on reproductive
468 rates focus on breeding success, ignoring reproductive probability. Many species breed every year,
469 with little inter-individual differences in breeding frequencies. Also, tracking individuals between
470 reproductive events poses an important logistical challenge. This may explain why personality
471 impacts on breeding probabilities are less commonly investigated. Yet, long-lived species typically
472 have a conservative strategy characterised by a prioritization of maintenance over reproduction
473 (Gaillard et al., 1998), and breeding can be skipped if it may impair future reproductive prospects
474 (Hamel et al., 2010). In those species, breeding probability can represent an important life-history
475 trait affecting individual fitness and population dynamics (Jenouvrier et al., 2005; Van de Walle
476 et al., 2021).

477 Our results deviate from the pace-of-life syndrome (POLS) hypothesis (Réale et al., 2010), which

478 suggests that the trade-off between survival and reproduction (Stearns, 1989) should be mediated
479 by individual differences in boldness. The POLS hypothesis suggests that due to their expected
480 shorter lifespan, bolder individuals should invest more heavily in reproduction (Réale et al., 2010;
481 Wolf et al., 2007). Instead, we observed no influence of boldness on survival, indicating the ab-
482 sence of antagonistic effects of boldness on survival and reproduction in wandering albatrosses.
483 Expectations from the POLS hypothesis are grounded in the assumption that a slow-fast contin-
484 uum of life histories exists at the individual level. However, the existence of such a continuum is
485 currently being questioned (Royauté et al., 2018), with poor evidence within bird and mammal pop-
486 ulations, including the wandering albatross (Van de Walle et al., 2023). Our study thus aligns with
487 Moiron et al. (2020)'s statement that boldness in the wild is generally not associated with lower
488 survival rates and that the shy-bold axis of variation does not correlate with a slow-fast continuum.
489 Laskowski et al. (2021) suggested that the theory on POLS could nevertheless be reconciled if
490 we considered the possibility that boldness can mediate resource acquisition by individuals, and
491 in turn, resource allocation to survival and reproduction. For example, if bolder individuals could
492 acquire more resources, they would be able to allocate more resources to their current reproduc-
493 tion and their maintenance, which would mask the expression of the trade-off. In the wandering
494 albatross, bolder individuals are at the explorative end of the exploitation-exploration continuum,
495 making shorter foraging trips within smaller, but more, foraging patches (Patrick et al., 2017), but
496 it remains unknown whether bold vs shy individuals differ in their foraging success. Answering
497 how boldness affects foraging effort and success would improve our understanding of the mecha-
498 nistic linkages between personality, resource acquisition and allocation, and ultimately individual
499 fitness.

500 An alternative possibility is that high resource allocation in reproduction by bold males may come
501 at a cost in terms of future reproduction, rather than in survival. Reproduction is costly in the
502 wandering albatross. After a successful breeding attempt, most individuals will take a sabbatical
503 year to replenish body reserves, whereas unsuccessful individuals are more likely to breed again
504 the following year (Barbraud & Weimerskirch, 2012; Tickell, 1968). Therefore, there is an im-

505 plicit trade-off between breeding success and breeding frequency in this species and bolder males
506 may face a stronger trade-off. In addition, boldness being linked with risk-proneness (Réale et al.,
507 2010), it should also dictate the amount of risk individuals are willing to support with regard to
508 reproduction, such as protecting and continuing their reproductive allocation. For example, in a
509 wild population of great tits, shyer individuals were more likely to abandon their nest under risky
510 situations (Cole & Quinn, 2014). Bolder wandering albatross males are also expected to have a
511 higher threshold for nest abandonment (Patrick & Weimerskirch, 2015). Bolder birds in late adult-
512 hood also make longer foraging trips and gain more mass per foraging trip during the breeding
513 season compared to shyer birds (Patrick & Weimerskirch, 2015). Furthermore, breeding success
514 of bolder males declines less rapidly with age than that of shyer males (Patrick & Weimerskirch,
515 2015), suggesting they continue to allocate more to reproduction throughout their life. For those
516 bold males, higher allocation to current reproduction may mean that the sabbatical year is insuf-
517 ficient to replenish body condition, forcing them to spend longer periods of time away from the
518 colony not breeding. Our results support this view as bolder males take more time to come back
519 to breeding after a breeding event and have a stronger increase in inter-breeding intervals with age
520 (i.e., reproductive senescence) compared to shyer males.

521 With the rationale that boldness should correlate with vulnerability to fishery bycatch and higher
522 mortality rates, we expected to find a negative impact of boldness on survival. However, starting in
523 the late 1990s, several mitigation measures were implemented in the French Exclusive Economic
524 Zones (EEZ) of Crozet and Kerguelen Islands to reduce fishery bycatch, such as night settings
525 (albatrosses are diurnal foragers; Bentley et al., 2021), closing period, and the use of scaring
526 line spreading. This probably contributed to lessening the fishery-induced mortality pressure on
527 the population, which could have led to an absence of differential mortality along the shy-bold
528 continuum for male and female wandering albatrosses. This is also coherent with model-based
529 predictions from Barbraud et al. (2012) and Tuck et al. (2015) suggesting that the most vulnerable
530 birds to fishery bycatch were removed from the population around 1990.

531 It is possible that boldness affects juvenile survival and the probability of returning to the pop-
532 ulation, but this is something our study system does not allow to evaluate. Personality tests are
533 designed to be performed on incubating birds only. Pre-breeders are not tied to a nest and thus
534 wander off if approached, preventing personality to be tested. Overall, about 60% of individuals
535 die before recruitment (Fay et al., 2015), constituting an invisible fraction for this study. Juve-
536 niles are more vulnerable to mortality risks, including bycatch (Gianuca et al., 2017) and density
537 dependence (Fay et al., 2015), and boldness may modulate these risks. Boldness in pre-breeders
538 could affect their competitive ability, and thus influence their sensitivity to density dependence and
539 exposure to bycatch (bolder individuals could be more exposed to bycatch). Boldness could also
540 affect pre-breeders capacity to acquire resources and gain mass. Since body mass determines age
541 at first reproduction in this species (Weimerskirch, 2018), it could have implications for lifetime
542 reproductive success of both males and females. Measurements of personality on this invisible
543 fraction combined with a better understanding of pre-breeders mortality causes would be useful
544 to assess whether differential selective pressures act on juveniles and adults and what maintains
545 boldness variation in wild populations.

546 Our results showed that adult personality has relatively little impact on individual performance
547 (life expectancy, lifetime reproductive outcomes) and population growth rate, suggesting either no
548 or only slight selection against boldness in males. The mechanisms that would maintain boldness
549 variation in males despite lower associated reproductive performance are not clear in the wander-
550 ing albatross. Fluctuating selection on personality according to annual variations in environmental
551 pressure is expected in avian populations and can represent a mechanism maintaining genetic varia-
552 tion in personalities (Dingemanse et al., 2004). It is also possible that personality is under selection
553 with opposite selective pressure on adults and juveniles. Indeed, measuring selective pressures at
554 different stages can lead to different conclusions about selective pressures (Grafen, 1988), and fu-
555 ture research priorities include developing methods to measure personality in juveniles. We also
556 acknowledge that boldness represents one dimension of animal personality. Thus, continued ef-
557 forts to monitor boldness, and the consideration of other personality traits, such as e.g. foraging

558 tactics, would help clarify the role of personality in shaping individual fitness in the wild.

559 Drawing definitive conclusions about the selective pressures at play is challenging due to method-
560 ological limitations that may have constrained our ability to detect ongoing selective pressures.

561 Here, we were limited to the period of personality measurements from 2008 to 2020 to assess the
562 role of boldness on adult demographic rates. Despite this representing a very long-term study on
563 personality, it is still relatively short (12 years) in comparison to the wandering albatross lifespan
564 (> 60 years; Weimerskirch, 2018). This has likely limited our statistical power to detect impacts
565 on survival as relatively few individuals have died during the period 2008-2020. As a result, un-
566 certainties around demographic rates were large, which resulted in even larger uncertainties when
567 used in combination to compute life-history outcomes. Further, it is possible that cohort effects
568 might have masked the impact of boldness on individual performance. However, whereas earlier
569 studies have shown an impact of early life condition on juvenile survival (reviewed in Weimer-
570 skirch, 2018) and cohort differences in age at first breeding (Weimerskirch & Jouventin, 1987),
571 so far cohort effects on adult performance has not been reported for this population making such
572 interference effects unlikely.

573 Our comprehensive approach, combining an evaluation of the effect of boldness at different tem-
574 poral scales (annual demographic rates and lifetime outcomes) and on all adult demographic rates,
575 revealed that the link between boldness and demography is not as straightforward as would be ex-
576 pected from the pace-of-life literature. It may be sex-specific and play a more important role in one
577 sex compared to the other. The wandering albatross population at Crozet has a male-biased adult
578 sex ratio (Weimerskirch et al., 2005), which might affect the relative impact of boldness for males
579 and females there (Sun, Barbraud, et al., 2022; Sun, Van de Walle, et al., 2022). Further investi-
580 gations could address the role of the operational sex ratio in mediating the demographic impact of
581 personality in wild populations. Finally, despite the underlying cause, prolonged selection could
582 lead to a shift in the relative frequency of personality types at the population level, with further
583 population-level consequences, such as shifts in generation time.

584 **Acknowledgments**

585 We acknowledge all the field workers involved in long-term demographic studies since 1960 on
586 Possession Island for their invaluable help with data collection. We also thank Dominique Jou-
587 bert for help with data management, as part of Program 109, “Seabirds and marine mammals
588 as sentinels of global changes in the Southern Ocean,” supported by the French Polar Institute
589 Paul-Émile Victor (IPEV; PIs H. Weimerskirch, C. Barbraud, P. Jouventin, J.L. Mougin). We ac-
590 knowledge Terres Australes et Antarctiques Françaises, and Zone Atelier Antarctique et Terres
591 Australes for logistical and financial support. We give special thanks to Jack Thorley, Silke van
592 Daalen, Bilgecan Sen and Francesco Ventura for their help with model analyses and/or thoughtful
593 discussions. This work was supported by the National Science Foundation (GEO-NERC 1951500
594 and OPP 1840058).

595 **Conflict of interest**

596 Authors declare no conflicts of interest.

597 **Data availability**

598 Data and codes used to conduct the analyses will be publicly available on USAP-DC repository
599 upon acceptance of the manuscript.

600 **Authors contribution**

601 SJ, SP, CB, HW, and JV conceived the idea and JV, SJ, RS, CB, and SP designed the study. RS
602 and SJ designed the CMR model and RS conducted the CMR analyses with the help of RF. JV
603 conducted the other demographic analyses, with the help from SJ. JV performed results visualiza-
604 tion and presentation, and wrote the first draft of the manuscript. HW, CB, SP and KD led the

605 curation of the data, prepared the data, and helped interpret the data. SJ and SP secured funding.

606 All authors contributed to manuscript revision.

607 **References**

608 Barbraud, C., Rolland, V., J., S., Nevoux, M., Delord, K., & Weimerskirch, H. (2012). Effects
609 of climate change and fisheries bycatch on Southern Ocean seabirds: a review. *Marine
610 Ecology Progress Series*, 454, 285–307. <https://doi.org/10.3354/meps09616>

611 Barbraud, C., & Weimerskirch, H. (2012). Estimating survival and reproduction in a quasi-biennially
612 breeding seabird with uncertain and unobservable states. *Journal of Ornithology*, 152,
613 S605–S615. <https://doi.org/10.1007/s10336-011-0686-1>

614 Bentley, L. K., Kato, A., Ropert-Coudert, Y., Manica, A., & Phillips, R. A. (2021). Diving be-
615 haviour of albatrosses: implications for foraging ecology and bycatch susceptibility. *Ma-
616 rine Biology*, 168, 36. <https://doi.org/10.1007/s00227-021-03841-y>

617 Biro, P. A., & Stamps, J. A. (2008). Are animal personality traits linked to life-history productivity?
618 *Trends in Ecology and Evolution*, 23, 361–368. <https://doi.org/10.1016/j.tree.2008.04.003>

619 Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative
620 simulations. *Journal of Computational and Graphical Statistics*, 7, 434–455. <https://doi.org/10.1080/10618600.1998.10474787>

622 Caswell, H. (2001). *Matrix population models: construction, analysis, and interpretation* (2nd
623 edition). Sinauer Associates. [https://doi.org/10.1016/S0304-3800\(02\)00002-9](https://doi.org/10.1016/S0304-3800(02)00002-9)

624 Caswell, H. (2009). Stage, age and individual stochasticity in demography. *Oikos*, 118, 1763–1782.
625 <https://doi.org/10.1111/j.1600-0706.2009.17620.x>

626 Choquet, R., Rouan, L., & Pradel, R. (2009). Program E-Surge: a software application for fitting
627 multievent models. In D. L. Thomson, E. G. Cooch, & M. J. Conroy (Eds.), *Modeling
628 demographic processes in marked populations* (pp. 845–865). Springer. https://doi.org/10.1007/978-0-387-78151-8_39

630 Cole, E. F., & Quinn, J. L. (2014). Shy birds play it safe: personality in captivity predicts risk
631 responsiveness during reproduction in the wild. *Biology Letters*, 10, 20140178. <https://doi.org/10.1098/rsbl.2014.0178>

633 Dammhahn, M., Dingemanse, N. J., Niemelä, P. T., & Réale, D. (2018). Pace-of-life syndromes:
634 a framework for the adaptive integration of behaviour, physiology and life history. *Behavioral
635 Ecology and Sociobiology*, 72, 1–8. <https://doi.org/10.1007/s00265-018-2473-y>

636 Dhellemmes, F., Finger, J.-S., Smukall, M. J., Gruber, S. H., Guttridge, T. L., Laskowski, K. L., &
637 Krause, J. (2021). Personality-driven life history trade-offs differ in two subpopulations of
638 free-ranging predators. *Journal of Animal Ecology*, 90, 260–272. [https://doi.org/10.1111/1365-2656.13283](https://doi.org/10.1111/1365-
639 1365-2656.13283)

640 Dingemanse, N. J. (2021). Personality and pace-of-life: Ecological lessons learnt from free-ranging
641 lemon sharks. *Journal of Animal Ecology*, 90, 314–316. [https://doi.org/10.1111/1365-2656.13401](https://doi.org/10.1111/1365-
642 2656.13401)

643 Dingemanse, N. J., Both, C., Drent, P. J., & Tinbergen, J. M. (2004). Fitness consequences of avian
644 personalities in a fluctuating environment. *Proceedings of the Royal Society B.*, 271, 847–
645 852. <https://doi.org/10.1098/rspb.2004.2680>

646 Easterling, M. R., Ellner, S. P., & Dixon, P. M. (2018). Size-specific sensitivity: applying a new
647 structured population model. *Ecology*, 81, 694–708. [https://doi.org/10.1890/0012-9658\(2000\)081\[0694:SSSAAN\]2.0.CO;2](https://doi.org/10.1890/0012-
648 9658(2000)081[0694:SSSAAN]2.0.CO;2)

649 Ellis, S., Franks, D. W., Natrass, S., Cant, M. A., Weiss, M. N., Giles, D., Balcomb, K. C., &
650 Croft, D. P. (2017). Mortality risk and social network position in resident killer whales: sex
651 differences and the importance of resource abundance. *Proceedings of the Royal Society B*,
652 284(1865), 20171313. <https://doi.org/10.1098/rspb.2017.1313>

653 Fay, R., Barbraud, C., Delord, K., & Weimerskirch, H. (2016). Variation in the age of first repro-
654 duction: different strategies or individual quality? *Ecology*, 97, 1842–1851. <https://doi.org/10.1890/15-1485.1>

655

656 Fay, R., Weimerskirch, H., Delord, K., & Barbraud, C. (2015). Population density and climate
657 shape early-life survival and recruitment in a long-lived pelagic seabird. *Journal of Animal
658 Ecology*, 84, 1423–1433. <https://doi.org/10.1111/1365-2656.12390>

659 Gaillard, J.-M., Festa-Bianchet, M., & Yoccoz, N. G. (1998). Population dynamics of large herbi-
660 vores: variable recruitment with constant adult survival. *Trends in Ecology and Evolution*,
661 13, 58–63. [https://doi.org/10.1016/S0169-5347\(97\)01237-8](https://doi.org/10.1016/S0169-5347(97)01237-8)

662 Gauthier, G., Milot, E., & Weimerskirch, H. (2010). Small-scale dispersal and survival in a long-
663 lived seabird, the wandering albatross. *Journal of Animal Ecology*, 79(4), 879–887. <https://doi.org/10.1111/j.1365-2656.2010.01683.x>

664 Gianuca, D., Phillips, R. A., Townley, S., & Votier, S. C. (2017). Global patterns of sex- and age-
665 specific variation in seabird bycatch. *Biological Conservation*, 205, 60–76. <https://doi.org/10.1016/j.biocon.2016.11.028>

666 Grafen, A. (1988). On the uses of data on lifetime reproductive success. In T. H. Clutton-Brock
667 (Ed.), *Reproductive success* (pp. 454–471). The University of Chicago Press.

668 Hamel, S., Gaillard, J.-M., & Yoccoz, N. G. (2018). Introduction to: Individual heterogeneity –
669 the causes and consequences of a fundamental biological process. *Oikos*, 127, 643–647.
670 <https://doi.org/10.1111/oik.05222>

671 Hamel, S., Gaillard, J.-M., Yoccoz, N. G., Loison, A., Bonenfant, C., & Descamps, S. (2010).
672 Fitness costs of reproduction depend on life speed: empirical evidence from mammalian
673 populations. *Ecology Letters*, 13, 915–935. <https://doi.org/10.1111/j.1461-0248.2010.01478.x>

674 Hooten, M. B., & Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists. *Con-
675 cepts and Synthesis*, 85(1), 3–28. <https://doi.org/https://doi.org/10.1890/14-0661.1>

676 IPCC. (2021). Summary for policymakers. In V. Masson-Delmotte *et al.* (Ed.), *Climate change
677 2021: The physical science basis. contribution of working group i to the sixth assessment
678 report of the intergovernmental panel on climate change*. Cambridge University Press.

679 Jenouvrier, S. (2013). Impacts of climate change on avian populations. *Global Change Biology*,
680 19, 2036–2057. <https://doi.org/10.1111/gcb.12128>

681 Jenouvrier, S., Aubry, L. M., Barbraud, C., Weimerskirch, H., & Caswell, H. (2018). Interacting
682 effects of unobserved heterogeneity and individual stochasticity in the life history of the

686 southern fulmar. *Journal of Animal Ecology*, 87, 212–222. <https://doi.org/10.1111/1365->

687 2656.12752

688 Jenouvrier, S., Barbraud, C., Cazelles, B., & Weimerskirch, H. (2005). Modelling population dy-
689 namics of seabirds: Importance of the effects of climate fluctuations on breeding propor-
690 tions. *Oikos*, 108, 511–522. <https://doi.org/10.1111/j.0030-1299.2005.13351.x>

691 Kellner, K. (2021). jagsUI: A wrapper around 'rjags' to streamline 'JAGS' analyses.

692 Laskowski, K. L., Moiron, M., & Niemelä, P. T. (2021). Integrating behavior in life-history theory:
693 allocation versus acquisition? *Trends in Ecology and Evolution*, 36, 132–138. <https://doi.org/10.1016/j.tree.2020.10.017>

694

695 Leclerc, M., Zedrosser, A., & Pelletier, F. (2017). Harvesting as a potential selective pressure on
696 behavioural traits. *Journal of Applied Ecology*, 54, 1941–1945. <https://doi.org/10.1111/1365-2664.12893>

697

698 Lefkovitch, L. P. (1965). The study of population growth in organisms grouped by stages. *Biomet-*
699 *rics*, 21, 1–18. <https://doi.org/910.2307/2528348>

700 Leslie, P. H. (1945). On the use of matrices in certain population mathematics. *Biometrika*, 33,
701 183–212. <https://doi.org/10.2307/2332297>

702

703 Lotka, A. J. (1939). Théorie analytique des associations biologiques: analyse démographique avec
704 application particulière à l'espèce humaine. In *Actualités scientifiques et industrielles*. Her-
705 mann et Cie.

706

707 McCully, F. R., Weimerskirch, H., Cornell, S. J., Hatchwell, B. J., Cairo, M., & Patrick, S. C.
708 (2022). Partner intrinsic characteristics influence foraging trip duration, but not coordina-
709 tion of care in wandering albatrosses *Diomedea exulans*. *Ecology and Evolution*, 12:e9621.
710 <https://doi.org/10.1002/ece3.9621>

711

712 McGraw, J. B., & Caswell, H. (1996). Estimation of individual fitness from life-history data. *Amer-*
713 *ican Naturalist*, 147, 47–64. <https://doi.org/10.1086/285839>

714

711 Moiron, M., Laskowski, K. L., & Niemelä, P. T. (2020). Individual differences in behaviour explain
712 variation in survival: a meta-analysis. *Ecology Letters*, 23, 399–408. <https://doi.org/10.1111/ele.13438>

713

714 Niemelä, P. T., Lattenkamp, E. Z., & Dingemanse, N. J. (2015). Personality-related survival and
715 sampling bias in wild cricket nymphs. *Behavioral Ecology*, 26, 936–946. <https://doi.org/10.1093/beheco/arv036>

716

717 Pardo, D., Barbraud, C., & Weimerskirch, H. (2013). Females better face senescence in the wander-
718 ing albatross. *Oecologia*, 173(4), 1283–1294. <https://doi.org/10.1007/s00442-013-2704-x>

719 Patrick, S. C., Charmantier, A., & Weimerskirch, H. (2013). Differences in boldness are repeatable
720 and heritable in a long-lived marine predator. *Ecology and Evolution*, 3, 4291–4299. <https://doi.org/10.1002/ece3.748>

721

722 Patrick, S. C., Pinaud, D., & Weimerskirch, H. (2017). Boldness predicts an individual's position
723 along an exploration–exploitation foraging trade-off. *Journal of Animal Ecology*, 86, 1257–
724 1268. <https://doi.org/10.1111/1365-2656.12724>

725 Patrick, S. C., & Weimerskirch, H. (2015). Senescence rates and late adulthood reproductive suc-
726 cess are strongly influenced by personality in a long-lived seabird. *Proceedings of the Royal
727 Society B*, 282, 20141649. <https://doi.org/10.1098/rspb.2014.1649>

728 Plummer, M. (2003). JAGS: a program for analysis of Bayesian graphical models using Gibbs sam-
729 pling. *Proceedings of the 3rd International Workshop on Distributed Statistical Computing*,
730 1–10.

731 R Core Team. (2021). R: A language and environment for statistical computing.

732 Réale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & Montiglio, P.-O. (2010).
733 Personality and the emergence of the pace-of-life syndrome concept at the population level.
734 *Philosophical Transactions of the Royal Society B*, 365, 4051–4063. <https://doi.org/10.1098/rstb.2010.0208>

735

736 Réale, D., Martin, J., Coltman, D. W., Poissant, J., & Festa-Bianchet, M. (2009). Male personal-
737 ity, life-history strategies and reproductive success in a promiscuous mammal. *Journal of*
738 *Evolutionary Biology*, 22, 1599–1607. <https://doi.org/10.1111/j.1420-9101.2009.01781.x>

739 Roth, G., & Caswell, H. (2018). Occupancy time in sets of states for demographic models. *Theo-*
740 *retical Population Biology*, 120, 62–77. <https://doi.org/10.1016/j.tpb.2017.12.007>

741 Royauté, R., Berdal, M. A., Garrison, C. R., & Dochtermann, N. A. (2018). Paceless life? A meta-
742 analysis of the pace-of-life syndrome hypothesis. *Behavioral Ecology and Sociobiology*,
743 72, 64. <https://doi.org/10.1007/s00265-018-2472-z>

744 Santicchia, F., Gagnaison, C., Bisi, F., Martinoli, A., Matthysen, E., Bertolino, S., & Wauters,
745 L. A. (2018). Habitat-dependent effects of personality on survival and reproduction in red
746 squirrels. *Behavioral Ecology and Sociobiology*, 72, 134. <https://doi.org/10.1007/s00265-018-2546-y>

747

748 Sebens, K. P., Sarà, G., & Carrington, E. (2018). Estimation of fitness from energetics and life-
749 history data: an example using mussels. *Ecology and Evolution*, 8, 5279–5290. <https://doi.org/10.1002/ece3.4004>

750

751 Sih, A., Bell, A., & Johnson, J. C. (2004). Behavioral syndromes: an ecological and evolutionary
752 overview. *Trends in Ecology and Evolution*, 19, 372–378. <https://doi.org/10.1016/j.tree.2004.04.009>

753

754 Smith, B. R., & Blumstein, D. T. (2008). Fitness consequences of personality: a meta-analysis.
755 *Behavioral Ecology*, 19, 448–455. <https://doi.org/10.1093/beheco/arm144>

756 Stamps, J. A. (2007). Growth-mortality tradeoffs and 'personality traits' in animals. *Ecology Letters*,
757 10, 355–363. <https://doi.org/10.1111/j.1461-0248.2007.01034.x>

758 Stearns, S. C. (1989). Trade-offs in life-history evolution. *Functional Ecology*, 3, 259–268. <https://doi.org/10.2307/2389364>

759

760 Sun, R., Barbraud, C., Weimerskirch, H., Delord, K., Patrick, S. C., Caswell, H., & Jenouvrier, S.
761 (2022). Causes and consequences of pair-bond disruption in a sex-skewed population of a

762 long-lived monogamous seabird. *Ecological Monographs*, e1522. <https://doi.org/10.1002/ecm.1522>

763

764 Sun, R., Van de Walle, J., Patrick, S. C., Barbraud, C., Weimerskirch, H., Delord, K., & Jenouvrier, S. (2022). Boldness predicts divorce rates in wandering albatrosses (*Diomedea exulans*). *Biology Letters*, 18, 3–8. <https://doi.org/10.1098/rsbl.2022.0301>

765

766

767 The MathWorks Inc. (2022). MATLAB version: 9:13.0 (R2022b).

768 Tickell, W. L. N. (1968). The biology of the great albatrosses, *Diomedea exulans* and *Diomedea epomophora*. *Antarctic Research Series*, 12, 1–65. <https://doi.org/10.1029/AR012p0001>

769

770 Tuck, G. N., Thomson, R. B., Barbraud, C., Delord, K., Louzao, M., Herrera, M., & Weimerskirch, H. (2015). An integrated assessment model of seabird population dynamics: Can individual heterogeneity in susceptibility to fishing explain abundance trends in Crozet wandering albatross? *Journal of Applied Ecology*, 52, 950–959. <https://doi.org/10.1111/1365-2664.12462>

771

772

773

774

775 Van de Walle, J., Fay, R., Gaillard, J.-M., Pelletier, F., Hamel, S., Gamelon, M., Barbraud, C., Blanchet, F. G., Blumstein, D. T., Charmantier, A., Delord, K., Larue, B., Martin, J., Mills, J. A., Milot, E., Mayer, F. M., Rotella, J., Saether, B.-E., Teplitsky, C., ... Jenouvrier, S. (2023). Individual life histories: neither slow nor fast, just diverse. *Proceedings of the Royal Society B: Biological Sciences*, 290(2002), 20230511. <https://doi.org/10.1098/rspb.2023.0511>

776

777

778

779

780

781 Van de Walle, J., Pelletier, F., Zedrosser, A., Swenson, J. E., Jenouvrier, S., & Bischof, R. (2021). The interplay between hunting rate, hunting selectivity, and reproductive strategies shapes population dynamics of a large carnivore. *Evolutionary Applications*, 14, 2414–2432. <https://doi.org/10.1111/eva.13253>

782

783

784

785 Van de Walle, J., Pigeon, G., Zedrosser, A., Swenson, J. E., & Pelletier, F. (2018). Hunting regulation favors slow life histories in a large carnivore. *Nature Communications*, 9, 1100. <https://doi.org/10.1038/s41467-018-03506-3>

786

787

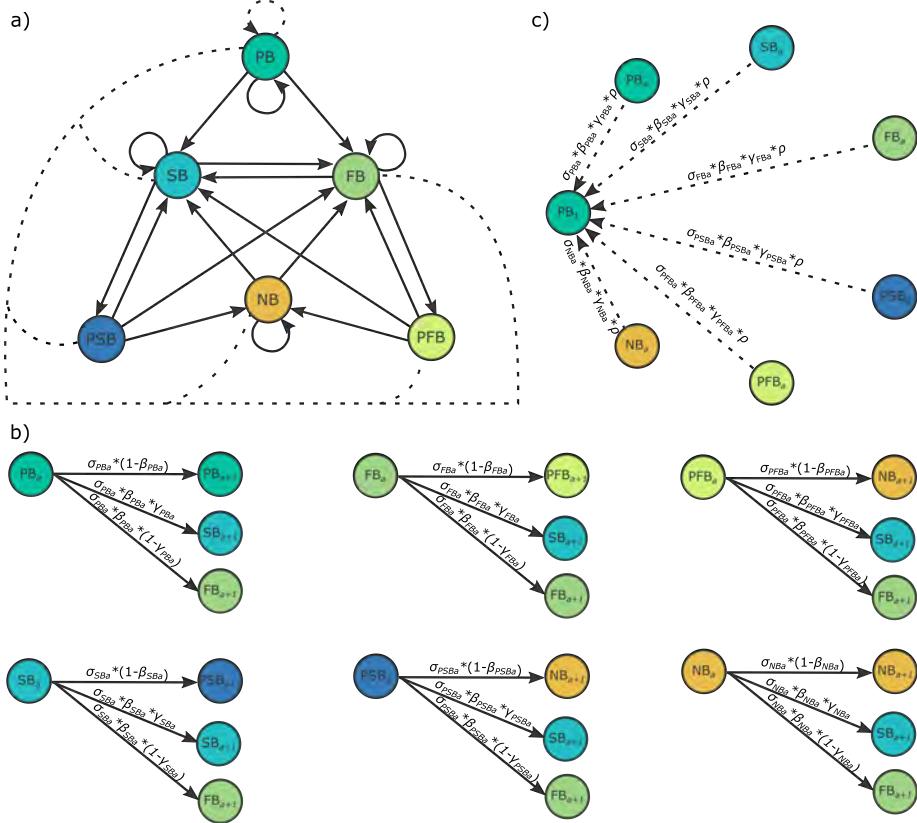
788 Weimerskirch, H. (2018). Linking demographic processes and foraging ecology in wandering al-
789 batross—Conservation implications. *Journal of Animal Ecology*, 87, 945–955. <https://doi.org/10.1111/1365-2656.12817>

790

791 Weimerskirch, H., Corbeau, A., Pajot, A., Patrick, S. C., & Collet, J. (2023). Albatrosses develop
792 attraction to fishing vessels during immaturity but avoid them at old age. *Proceedings of
793 the Royal Society B*, 290, 20222252. <https://doi.org/10.1098/rspb.2022.2252>

794 Weimerskirch, H., & Jouventin, P. (1987). Population dynamics of the wandering albatross, *Diomedea
795 exulans*, of the Crozet Islands: causes and consequences of the population decline. *Oikos*,
796 49(3), 315–322. [https://doi.org/https://doi.org/10.2307/3565767](https://doi.org/10.2307/3565767)

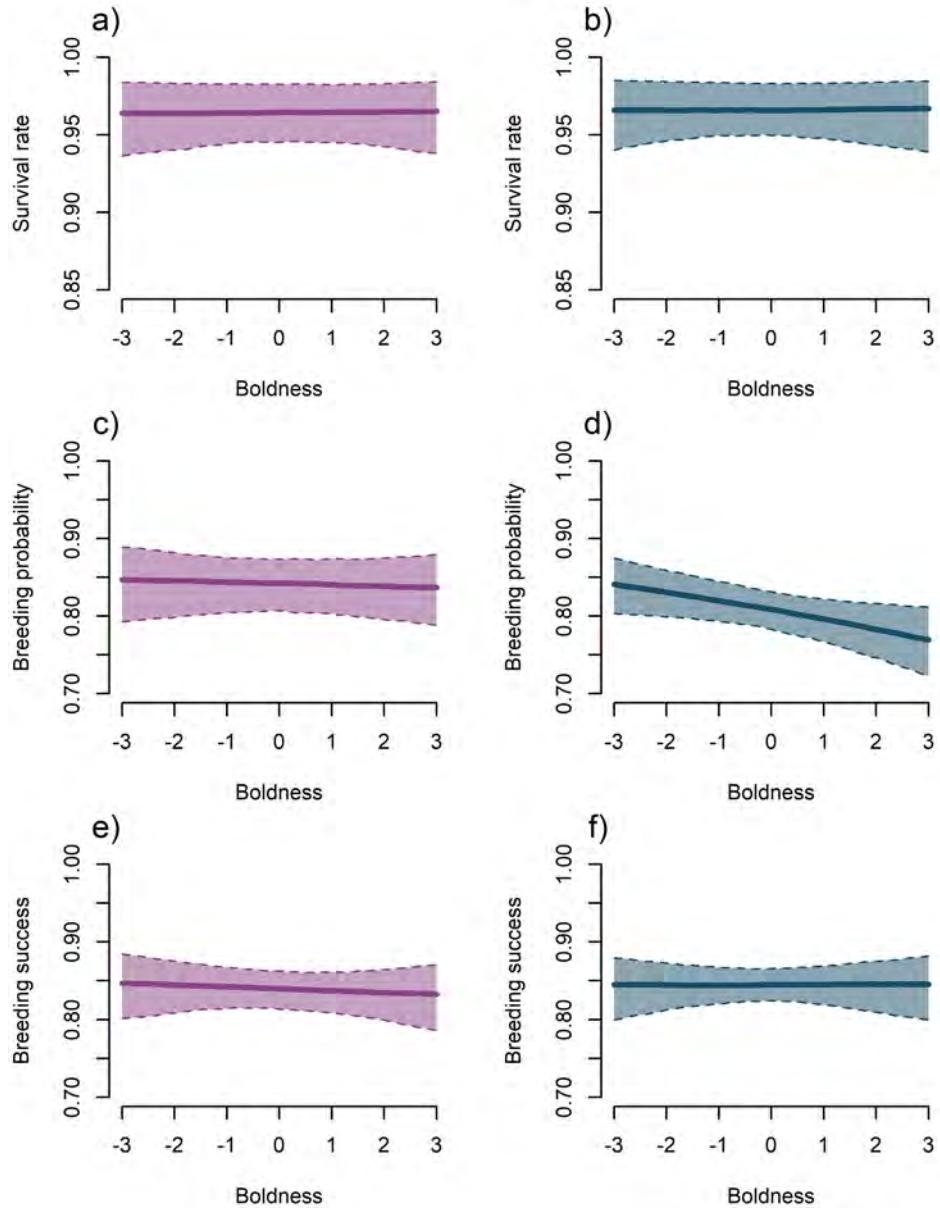
797 Weimerskirch, H., Lallemand, J., & Martin, J. (2005). Population sex ratio variation in a monog-
798 amous long-lived bird, the wandering albatross. *Journal of Animal Ecology*, 74, 285–291.
799 <https://doi.org/10.1111/j.1365-2656.2005.00922.x>


800 Wilson, D. S., Clark, A. B., Coleman, K., & Dearstyne, T. (1994). Shyness and boldness in humans
801 and other animals. *Trends in Ecology and Evolution*, 9, 442–446. [https://doi.org/10.1016/0169-5347\(94\)90134-1](https://doi.org/10.1016/0169-5347(94)90134-1)

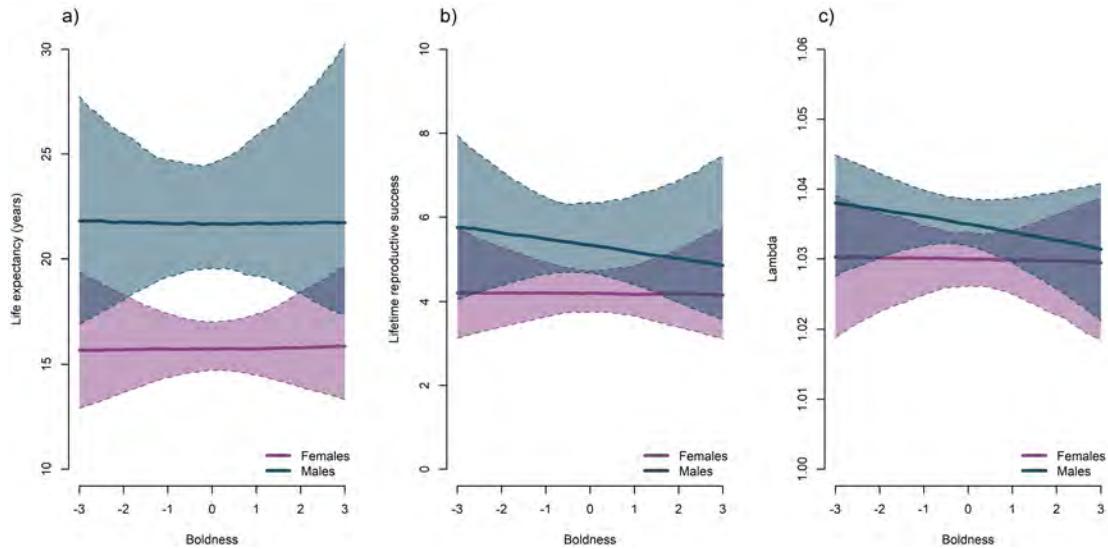
802

803 Wolf, M., Van Doorn, G. S., Leimar, O., & Weissing, F. J. (2007). Life-history trade-offs favour
804 the evolution of animal personalities. *Nature*, 447, 581–584. <https://doi.org/10.1038/nature05835>

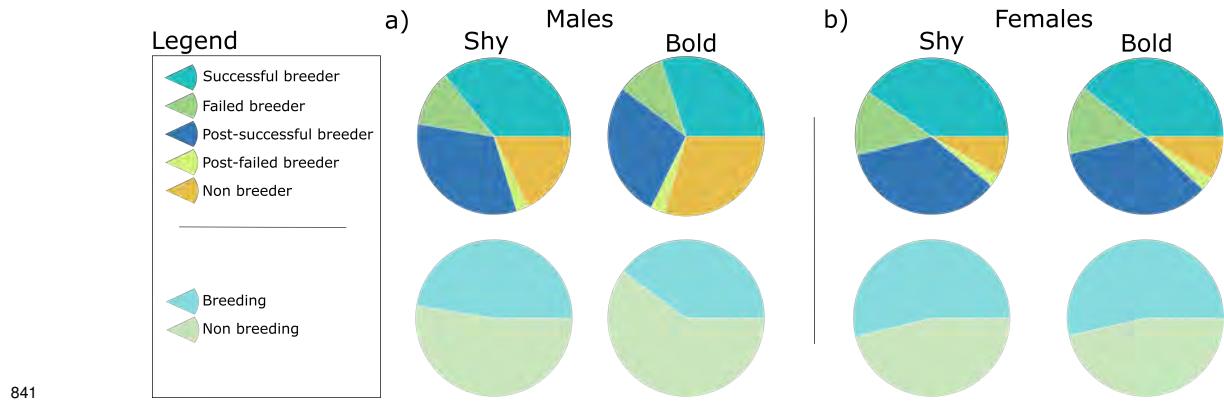
805

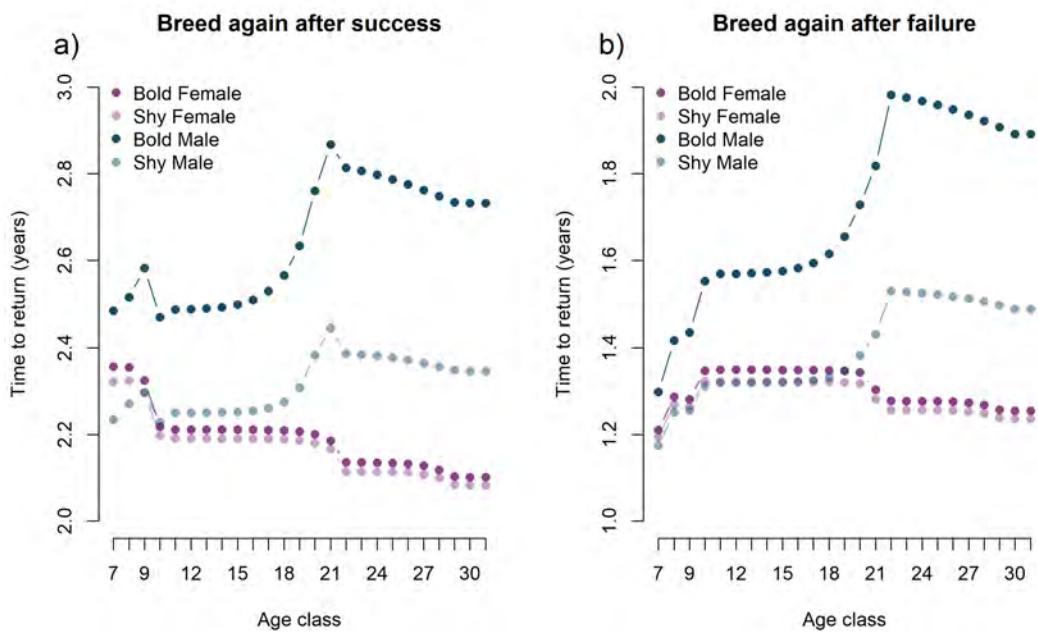

806 **Figures**

807


808 **Figure 1:** Life cycle graph (a) along with state (b) and fertility (c) transitions for the wandering
 809 albatross. In a) are shown annual reproductive state transitions between pre-breeders (PB), suc-
 810 cessful breeders (SB), failed breeders (FB), post-successful breeders (PSB), post-failed breeders
 811 (PFB) and non-breeders (NB). Solid arrows show state transitions, whereas dashed arrows repre-
 812 sent fertilities (i.e., the contribution of each state to the pre-breeder state). The life cycle presented
 813 is a simplified version; the true life cycle further includes an additive age structure. This means
 814 that each annual transition is conditional on age-specific (a) vital rates (α = survival, β = breeding
 815 probability, γ = breeding success probability), which are shown in b). From each reproductive
 816 state, an individual can transit from year t to year $t + 1$ (or from age a to age $a + 1$) to a non-
 817 breeding state (PB, PSB, PFB or NB) or a breeding state (SB or FB) depending on survival and
 818 breeding probabilities associated with its state and age a at year t . If the individual breeds, then
 819 the individual can transit the next year to either a successful breeder or a failed breeder, depending

820 on its age and reproductive state-specific breeding success probability. In c) are fertility transitions
821 and represent the contribution of individuals of age a to the first age-class of pre-breeders, PB1,
822 which are fledged chicks. Fledgling production is conditional on the following suite of events: 1)
823 survival, 2) breeding and 3) breeding successfully. The parameter p stands for offspring sex ratio,
824 which here was assumed as 0.5.


825


826 **Figure 2:** Effect of boldness on adult demographic rates (females: a, c, e; males: b, d, f) wandering
 827 albatrosses at Crozet Island from 2008 to 2020. We used the estimate of the impact of boldness
 828 on demographic rates from the Capture-Mark-Recapture model to obtain the median prediction
 829 line over boldness scores ranging between -3 and 3. The shaded polygons represent the 95%
 830 Confidence Intervals over the entire set of posteriors. Predictions for survival are for Successful
 831 Breeders (SB) of age 11 and for breeding probability and breeding success probability are for
 832 Post-Successful Breeders (PSB) of age 11.

833

834 **Figure 3:** Effect of boldness on life-history outcomes: (a) life expectancy and (b) lifetime repro-
 835 ductive success) and (c) population growth rate (lambda; λ) in wandering albatrosses at Crozet
 836 Island. For each simulated boldness score, we randomly sampled 100 values for the intercept and
 837 slope of boldness effect and predicted a new value for each demographic rate. Those demographic
 838 rates were then inserted into the matrix population models to generate the life-history outcomes.
 839 Solid lines represent median effects, whereas the shaded area represent the 95% confidence inter-
 840 vals.

845

846 **Figure 5:** Time to return to a breeding state (i.e. successful breeder, SB, or failed breeder, FB)
 847 after a successful (a) or failed (b) breeding attempt in adult wandering albatrosses from Crozet
 848 across age classes. Results are shown for males (blue) and females (purple) and for shyer (lighter
 849 colors) and bolder (darker colors) individuals.

Supplementary materials S1:

E-Surge model selection

We conducted a preliminary model selection in E-Surge to determine the best breeding state structure to use in the Bayesian MECMR models. We performed a step-down procedure. We started from the most general model (which we termed the "umbrella" model), which assumed that survival rates, breeding probabilities and breeding success probabilities all differed in each reproductive state. Then, we varied the constraints on the breeding state structure for survival while maintaining the umbrella model structure for breeding probability and breeding success probability.

In this preliminary analysis, we also explored the possibility of contrasting demographic parameters between non-breeders depending on their previous breeding success (NSB = Non-breeder after a successful breeding event, NFB = Non-breeder after a failed breeding event). Therefore, we tested 6 adult breeding states. After the model selection, all best performing models had equal demographic rates between NSB and NFB. Thus, we grouped NSB and NFB into a single breeding state (NB) in the Bayesian model to simplify the model structure and improve computational efficiency.

Across models with different breeding state structures for survival, we selected the best model using AIC corrected by overdispersion (quasi-AIC, QAIC) as a criterion, where lower QAIC values indicate better model fit. We then varied the constraints on breeding probability while maintaining the best structure for survival and the umbrella structure for breeding success probability. We kept only the best model based on QAIC from this second round. Finally, we varied the constraints on breeding success probability while maintaining the best structures for survival and breeding probability and selected the best model based on QAIC. When multiple models performed similarly (i.e., differed by two QAIC points or less), we selected the model with fewer parameters.

We performed model selection on females (Table S1) and males (Table S2) separately. The best-

supported model structures from E-Surge differed between females and males. For females, survival rates were different between post-breeders (PSB and PFB) and non-breeders (NSB and NFB), whereas survival rates were the same between PB and NB in males. As for breeding probability, the best supported model for females included an additional group separation between FB and PSB for breeding probability. The best model structure was the same in males and females otherwise. We decided to keep only one model structure for both sexes to ensure analytical consistency between sexes. We retained the best supported model structure for females as it included fewer constraints with a more general formulation.

Table S1: E-Surge MECMR model selection results for females to estimate the demographic parameters survival, breeding probability, and breeding success probabilities. $a_{\theta, \text{stage}}$ indicates the age structure for the corresponding demographic parameter described in Section in the main text. The subscript θ indicates the estimated demographic parameter (α for survival, β for breeding probability, and γ for breeding success probability) and stage indicates juveniles (J) or adults (A). “/” indicates group separation and means that the parameters are constrained to be equal within this group. “+” indicates additive effects and “*” indicates interactive effects. “-” indicates that the model structure is the same as the umbrella model. The selected model structure appears in bold.

Model rank	Survival	Breeding probability	Breeding success probability	Deviance	QAIC
Umbrella	PB*a _{α,J} +SB/FB/PFB/PFB/NFB/NFB*a _{α,A}	PB*a _{β,J} +SB/FB/PFB/PFB/NFB/NFB*a _{β,A}	PB*a _{γ,J} +SB/FB/PFB/PFB/NFB/NFB*a _{γ,A}	28048.070	45612.850
1	PB*a _{α,J} +SB FB/PFB/PFB/NFB/NFB*a _{α,A}	-	-	28048.683	28214.683
2	PB*a _{α,J} +SB FB/PFB/NFB/NFB*a _{α,A}	-	-	28050.786	28208.786
3	PB*a_{α,J}+SB FB/PFB/PFB/NFB/NFB*a_{α,A}	-	-	28052.739	28202.739
4	PB*a _{α,J} +SB FB/PFB/PFB/NFB/NFB*a _{α,A}	-	-	28066.092	28208.092
5	PB*a_{α,J}+SB FB/PFB/PFB/NFB/NFB*a_{β,A}	-	-	28054.073	28200.073
6	PB*a _{α,J} +SB FB/PFB/PFB/NFB/NFB*a _{α,A}	-	-	30018.822	30164.822
7	PB*a _{α,J} +SB FB/PFB/PFB/NFB/NFB*a _{γ,A}	-	-	28059.200	28205.200
8	PB*a _{α,J} +SB FB/PFB/PFB/NFB/NFB*a _{α,A}	PB*a _{β,J} +SB FB/PFB/PFB/NFB/NFB*a _{β,A}	-	28056.239	28202.239
9	PB*a_{α,J}+SB FB/PFB/PFB/NFB/NFB*a_{α,A}	PB*a_{β,J}+SB FB/PFB/PFB/NFB/NFB*a_{β,A}	PB*a _{γ,J} +SB/FB/PFB/PFB/NFB/NFB*a _{γ,A}	28054.701	28196.701
10	PB*a _{α,J} +SB FB/PFB/PFB/NFB/NFB*a _{α,A}	PB*a _{β,J} +SB FB/PFB/PFB/NFB/NFB*a _{β,A}	PB*a _{γ,J} +SB/FB/PFB/PFB/NFB/NFB*a _{γ,A}	28055.850	28197.850
11	PB*a _{α,J} +SB FB/PFB/PFB/NFB/NFB*a _{α,A}	PB*a _{β,J} +SB FB/PFB/PFB/NFB/NFB*a _{β,A}	PB*a_{γ,J}+SB/FB/PFB/PFB/NFB/NFB*a_{γ,A}	28056.497	28194.497

Table S2: E-Surge MECMR model selection results for females to estimate the demographic parameters survival, breeding probability, and breeding success probabilities. $a_{\theta, \text{stage}}$ indicates the age structure for the corresponding demographic parameter described in Section in the main text. The subscript θ indicates the estimated demographic parameter (α for survival, β for breeding probability, and γ for breeding success probability) and stage indicates juveniles (J) or adults (A). “ $/$ ” indicates group separation and means that the parameters are constrained to be equal within this group. “ $+$ ” indicates additive effects and “ $*$ ” indicates interactive effects. “ $-$ ” indicates that the model structure is the same as the umbrella model. The selected model structure appears in bold.

Model rank	Survival	Breed probability	Breeding success probability	Deviance	QAIC
Umbrella	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	$\text{PB}^* \mathbf{a}_{\beta, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\beta, A}$	$\text{PB}^* \mathbf{a}_{\gamma, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\gamma, A}$	32104.722	32276.722
1	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	-	-	32104.839	32266.839
2	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	-	-	32108.431	32262.431
3	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	-	-	32108.775	32254.775
4	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PFB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	$\text{PB}^* \mathbf{a}_{\beta, J} + \text{SB}/\text{FB}/\text{PFB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\beta, A}$	$\text{PB}^* \mathbf{a}_{\gamma, J} + \text{SB}/\text{FB}/\text{PFB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\gamma, A}$	32111.920	32249.920
5	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	-	-	32113.586	32247.586
6	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	-	-	34084.327	34218.327
7	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	-	-	32148.653	32282.653
8	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	-	-	32116.704	32250.704
9	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	$\text{PB}^* \mathbf{a}_{\beta, J} + \text{SB}/\text{FB}/\text{PFB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\beta, A}$	-	32118.206	32248.206
10	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	$\text{PB}^* \mathbf{a}_{\beta, J} + \text{SB}/\text{FB}/\text{PFB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\beta, A}$	$\text{PB}^* \mathbf{a}_{\gamma, J} + \text{SB}/\text{FB}/\text{PFB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\gamma, A}$	32122.504	32248.504
11	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	$\text{PB}^* \mathbf{a}_{\beta, J} + \text{SB}/\text{FB}/\text{PFB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\beta, A}$	-	32126.606	32252.606
12	$\text{PB}^* \mathbf{a}_{\alpha, J} + \text{SB}/\text{FB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\alpha, A}$	$\text{PB}^* \mathbf{a}_{\beta, J} + \text{SB}/\text{FB}/\text{PFB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\beta, A}$	$\text{PB}^* \mathbf{a}_{\gamma, J} + \text{SB}/\text{FB}/\text{PFB}/\text{PSB}/\text{PFB}/\text{NSB}/\text{NFB}^* \mathbf{a}_{\gamma, A}$	32126.911	32248.911

Supplementary materials S2 :

Preliminary analysis of non-linear effects of boldness on demographic parameters with respect to age

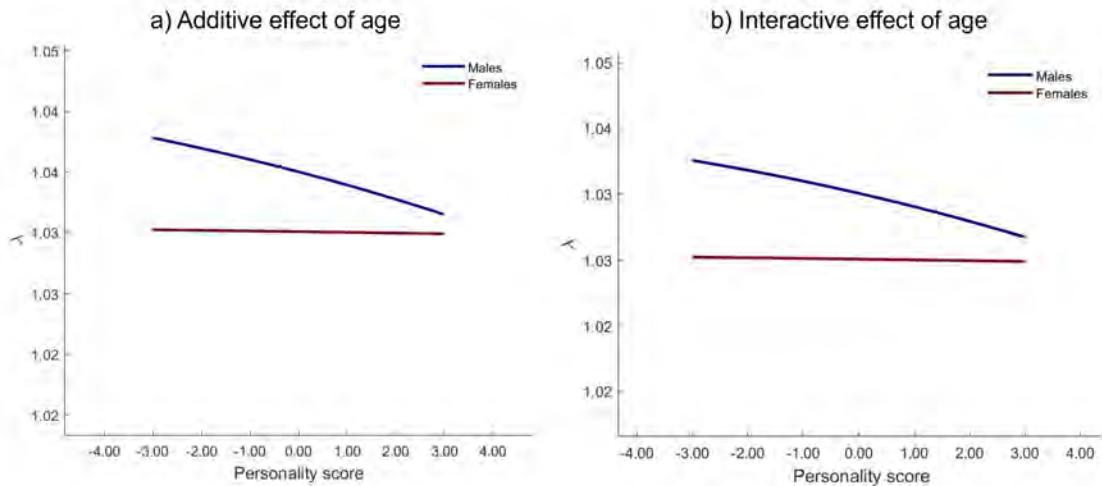

We conducted a preliminary analysis to evaluate the potential non-linear impact of boldness on demographic parameters across age classes. In each of the six adult models (one model per demographic rate per sex), rather than considering the effect of boldness on demographic rates as additive, we added an interaction term between boldness and age. Then, we compared the performance of models considering age as additive or interactive using the Watanabe Akaike Information Criterion (Hooten & Hobbs, 2015). Lower WAIC values suggest better model performance. Based on WAIC values, adding an interactive effect of age did not improve model fit for five out of six models (Table S3). Model for male breeding success performed better when including an interaction with age. The model suggests that boldness leads to higher breeding success for younger and older age classes, and lower breeding success for males of intermediate age class. Although this result is consistent with findings by Patrick and Weimerskirch (2015), the F-statistics, which is the percentage of the posterior distribution that diverges from zero, was low for all age classes (Table S4), providing little support for a differential impact of boldness with age. Further, we tested how including differential impact of boldness with age on male breeding success would change our results by comparing the slope of the relationship between boldness and population growth rate (lambda, Figure 3c in the main text). We found that the relationship was quasi-identical (Figure S1). Overall, our preliminary analyses provide little support for the inclusion of an age interaction in our models. For parsimony reasons and to limit model complexity, we opted for additive linear effects of age and boldness on demography rates in our analyses.

Table S3: Comparison of model performance based on Watanabe Information Criterion (WAIC). In bold are models with lowest WAIC values

	Female survival	Female breeding probability	Female breeding success	Male survival	Male breeding probability	Male breeding success
Model	WAIC	WAIC	WAIC	WAIC	WAIC	WAIC
Interactive effect of age	8835.9	8875.0	8823.7	12003.8	12013.2	11995.2
Additive effect of age	8834.5	8849.1	8815.5	11995.2	12006.3	12015.8

Table S4: Effect size of boldness on male breeding probability for the three age classes when considering an interaction term between boldness and age in the model

Age class	Effect size (F-statistics)
7-8	0.255 (88.3%)
9-30	-0.053 (79.4%)
31+	0.039 (72.5%)

Figure S1: Effect of boldness on population growth rate (λ) when considering either (a) an additive of (b) interactive effect of age and boldness on male breeding success.

Supplementary materials S3 :

Matrix model

The matrix model can be visualized in the Excel file Population_Matrix_WA.xlsx

Supplementary materials S4 :

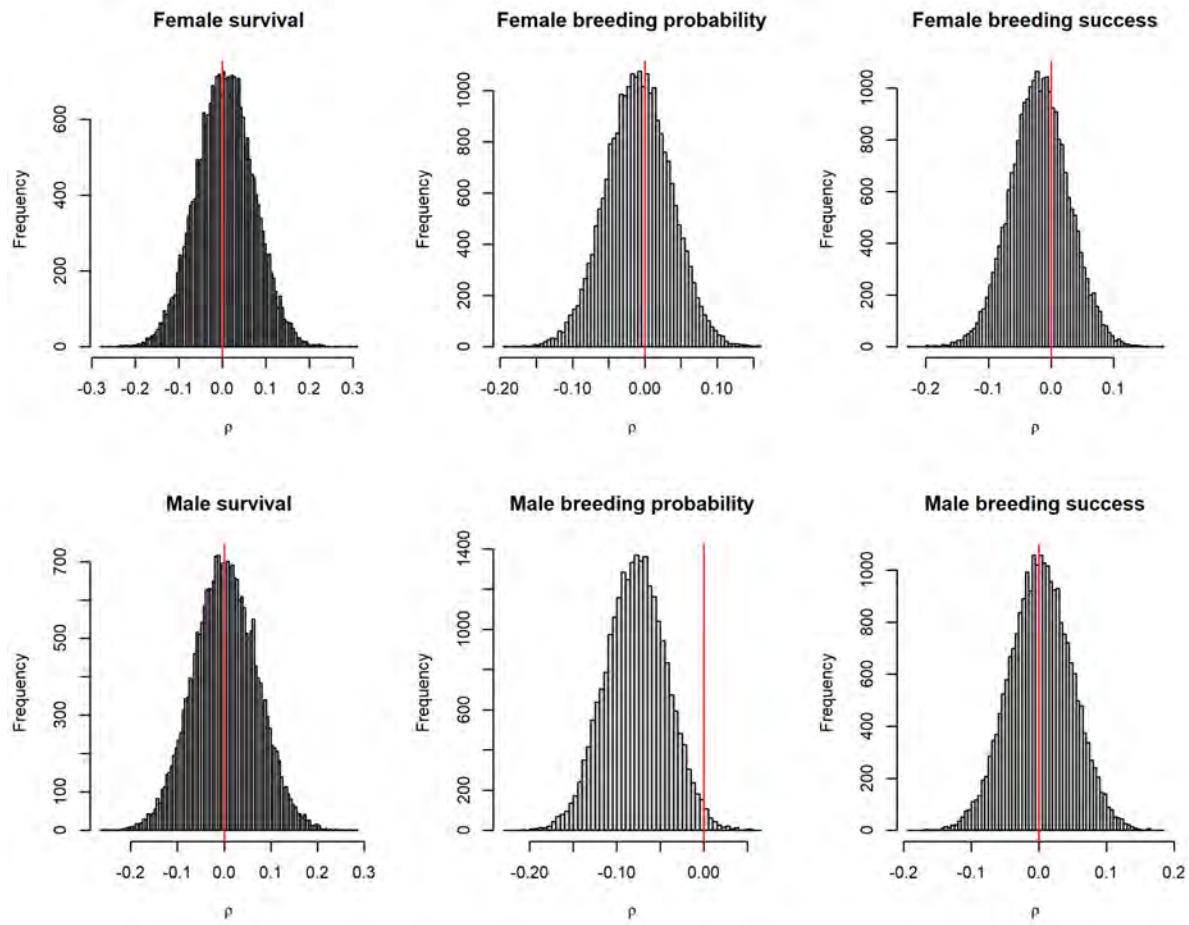

Supplementary Tables and Figures

Table S5: Estimation of average demographic rates for juvenile (pre-breeders) wandering albatrosses at Crozet Island from 1966 to 2020. Demographic rates were estimated for males and females independently using Bayesian multi-event capture-mark-recapture (MECMR) models. In the models, demographic rates were estimated for each age-class. We assumed equal survival rates for age classes 1-2, age classes 3-8, age classes 9-13 and age classes 14+. We assumed null breeding probabilities and breeding success probabilities for juveniles of age classes 1 through 5 and different breeding probabilities and breeding success probabilities for age classes 6, 7, 8, and 9. For age classes 10+ we assumed equal breeding probabilities and breeding success probabilities. In brackets are the 95% Credible Intervals

Age classes	Vital rate estimate	
	Female	Male
Survival (α)		
1-2	0.74 [0.72, 0.76]	0.78 [0.76, 0.81]
3-8	0.96 [0.95, 0.97]	0.94 [0.93, 0.95]
9-13	0.92 [0.90, 0.94]	0.97 [0.96, 0.98]
14+	0.92 [0.90, 0.95]	0.93 [0.91, 0.95]
Breeding probability (β)		
1-5	0.00	0.00
6	0.02 [0.01, 0.02]	0.01 [0.00, 0.01]
7	0.10 [0.09, 0.12]	0.04 [0.03, 0.05]
8	0.28 [0.26, 0.30]	0.15 [0.13, 0.16]
9	0.37 [0.34, 0.40]	0.25 [0.23, 0.27]
10+	0.23 [0.22, 0.26]	0.27 [0.26, 0.29]
Breeding success probability (γ)		
1-5	0.00	0.00
6	0.56 [0.41, 0.72]	0.41 [0.20, 0.70]
7	0.65 [0.60, 0.71]	0.69 [0.60, 0.79]
8	0.69 [0.65, 0.73]	0.70 [0.66, 0.76]
9	0.74 [0.71, 0.78]	0.67 [0.63, 0.72]
10+	0.74 [0.71, 0.78]	0.71 [0.69, 0.74]

Table S6: Estimation of median demographic rates for adult wandering albatrosses at Crozet Island from 2008 to 2020. demographic rates were estimated for males and females independently using Bayesian multi-event capture-mark-recapture (MECMR) models. In the models, demographic rates were estimated for each combination of reproductive state and age class. For survival, we assumed equal probabilities for age classes 7-8, 9-30 and 30+. For breeding probabilities and breeding success probabilities, we assumed equal probabilities for age classes 7-10, 11-21 and 22+. Definitions: SB = successful breeder, FB = failed breeder, PSB = post-successful breeder, PFB = post-failed breeder and NB = non-breeder. In brackets are the 95% Credible Intervals

Vital rate	Female					Male				
	SB	FB	PSB	PFB	NB	SB	FB	PSB	PFB	NB
Survival (α)										
Age classes										
7-8	0.96 [0.90, 0.99]	0.96 [0.90, 0.99]	0.68 [0.31, 0.94]	0.68 [0.31, 0.94]	NA	0.91 [0.72, 0.98]	0.91 [0.72, 0.98]	0.68 [0.15, 0.97]	0.68 [0.15, 0.97]	NA
9-30	0.96 [0.95, 0.98]	0.96 [0.95, 0.98]	0.97 [0.94, 0.99]	0.97 [0.94, 0.99]	0.95 [0.91, 0.98]	0.97 [0.95, 0.98]	0.97 [0.95, 0.98]	0.97 [0.95, 0.99]	0.97 [0.95, 0.99]	0.97 [0.95, 0.98]
31+	0.90 [0.86, 0.94]	0.90 [0.86, 0.94]	0.95 [0.90, 0.99]	0.95 [0.90, 0.99]	0.86 [0.74, 0.95]	0.94 [0.90, 0.98]	0.94 [0.90, 0.98]	0.95 [0.90, 0.98]	0.95 [0.90, 0.98]	0.94 [0.91, 0.97]
Breeding probability (β)										
Age classes										
7-10	0.02 [0.01, 0.04]	0.79 [0.70, 0.86]	0.77 [0.69, 0.85]	0.81 [0.57, 0.96]	0.53 [0.24, 0.81]	0.03 [0.01, 0.06]	0.77 [0.66, 0.87]	0.77 [0.62, 0.88]	0.75 [0.44, 0.93]	0.60 [0.09, 0.96]
11-21	0.03 [0.02, 0.04]	0.79 [0.73, 0.84]	0.84 [0.81, 0.87]	0.59 [0.43, 0.74]	0.63 [0.54, 0.73]	0.02 [0.01, 0.03]	0.77 [0.72, 0.81]	0.81 [0.78, 0.83]	0.55 [0.42, 0.68]	0.48 [0.42, 0.53]
22+	0.07 [0.05, 0.08]	0.81 [0.74, 0.86]	0.85 [0.82, 0.88]	0.72 [0.53, 0.89]	0.66 [0.57, 0.75]	0.05 [0.04, 0.06]	0.72 [0.66, 0.77]	0.78 [0.75, 0.81]	0.44 [0.32, 0.56]	0.29 [0.25, 0.32]
Breeding success probability (γ)										
Age classes										
7-10	0.50 [0.15, 0.85]	0.87 [0.79, 0.92]	0.75 [0.67, 0.82]	0.75 [0.67, 0.82]	0.75 [0.36, 0.94]	0.61 [0.20, 0.92]	0.86 [0.75, 0.94]	0.81 [0.68, 0.91]	0.81 [0.68, 0.91]	0.65 [0.11, 0.96]
11-21	0.65 [0.47, 0.80]	0.78 [0.72, 0.83]	0.84 [0.82, 0.86]	0.84 [0.82, 0.86]	0.74 [0.66, 0.81]	0.73 [0.53, 0.87]	0.77 [0.72, 0.82]	0.84 [0.82, 0.87]	0.84 [0.82, 0.87]	0.79 [0.73, 0.85]
22+	0.43 [0.30, 0.55]	0.68 [0.61, 0.74]	0.82 [0.79, 0.84]	0.82 [0.79, 0.84]	0.81 [0.73, 0.88]	0.52 [0.38, 0.66]	0.71 [0.65, 0.77]	0.82 [0.80, 0.85]	0.82 [0.80, 0.85]	0.76 [0.69, 0.82]

Figure S2: Posterior distributions for the effect of boldness on demographic rates in wandering albatrosses from Crozet obtained through MECMR models.