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Abstract

Thiswork offers a newprospective on asymptotic pertur-

bation theory for varying self-adjoint extensions of sym-

metric operators. Employing symplectic formulation of

self-adjointness, we use a version of resolvent difference

identity for two arbitrary self-adjoint extensions that

facilitates asymptotic analysis of resolvent operators via

first-order expansion for the family of Lagrangian planes

associated with perturbed operators. Specifically, we

derive a Riccati-type differential equation and the first-

order asymptotic expansion for resolvents of self-adjoint

extensions determined by smooth one-parameter fami-

lies of Lagrangian planes. This asymptotic perturbation

theory yields a symplectic version of the abstract Kato

selection theorem and Hadamard–Rellich-type varia-

tional formula for slopes of multiple eigenvalue curves

bifurcating from an eigenvalue of the unperturbed oper-

ator. The latter, in turn, gives a general infinitesimal

version of the celebrated formula equating the spectral

flow of a path of self-adjoint extensions and the Maslov

index of the corresponding path of Lagrangian planes.

Applications are given to quantum graphs, periodic

Kronig–Penney model, elliptic second-order partial dif-

ferential operators with Robin boundary conditions, and

physically relevant heat equations with thermal conduc-

tivity.
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1 INTRODUCTION

1.1 Overview

This work concerns first-order asymptotic expansions for resolvents and eigenvalues of self-
adjoint extensions of symmetric operators subject to small perturbations of their operator
theoretic domains. In the context of elliptic partial differential operators, for instance, the
perturbations that we discuss model small variations of the boundary conditions, the spatial
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domains, and the lower order terms of differential expressions. Our main motivations stem from
the Arnold–Keller–Maslov index theory, cf. [8, 9, 29, 35, 84, 103, 114], for self-adjoint elliptic
differential operators and from the classical Hadamard–Rayleigh–Rellich [76, 109, 113] variation
formulas for their eigenvalues. Our main new technical tool is a strikingly simple formula for the
difference of resolvents of two arbitrary self-adjoint extensions of a symmetric operator derived
in the context of abstract boundary triplets [13, 15, 50–57, 120] and inspired in part by a recent
progress in description of all self-adjoint extensions of the Laplacian [66, 67, 69, 73, 75, 100]. This
approach gives a powerful addition to the perturbation theory via quadratic forms as it allows
one to control the resolvents and spectral projections of operators with varying domains.
In this paper, we study one-parameter families of self-adjoint extensions of densely defined

symmetric operators. The main results of this work are twofold. First, we obtain new and quite
general asymptotic expansion formulas for resolvents of self-adjoint operators determined by
one-parameter differentiable families of Lagrangian planes, and derive a Riccati-type differen-
tial equation for the resolvents. From this, we derive a new abstract variational Hadamard-type
formula for the slopes of eigenvalue curves bifurcating from a multiple discrete isolated eigen-
value of the unperturbed operator. Motivated by closely related Hadamard variation formulas for
partial differential operators on varying domains, we use the term Hadamard-type for formulas
giving 𝑡-derivatives of the eigenvalues of abstract and differential 𝑡-dependent operators treated
in this paper. Our second major set of results uses the Hadamard-type formulas to bridge the cel-
ebrated Atiyah–Patodi–Singer theory and the Maslov index theory as they relate the spectral flow
of a family of self-adjoint extensions to the Maslov index of the corresponding path of Lagrangian
planes. We give a proof of an infinitesimal version of this relation in a very general abstract set-
ting where all three objects may vary: the domains of the self-adjoint extensions, the boundary
traces, and the operators per se. On a more technical level, we systematically use a version of the
formula for the difference of resolvent operators of two arbitrary self-adjoint extensions of a given
symmetric operator. Specifically, we express this difference in terms of orthogonal projections
onto Lagrangian planes uniquely associated with the self-adjoint extensions in question and thus
offer a novel point of view on the resolvent difference formulas through the prism of symplectic
functional analysis.
The asymptotic perturbation theory is a gem of classical mathematical physics [83, Chapter

VIII]. Given a family of, generally, unbounded operators 𝐻𝑡 = 𝐻𝑡0
+𝐻(1)

𝑡0
(𝑡 − 𝑡0) + … depend-

ing on a parameter 𝑡 ∈ [0, 1] and considered as perturbations of a fixed operator 𝐻𝑡0
, the theory

provides, for 𝑡 near 𝑡0, formulas for the resolvent operators of 𝐻𝑡, for the Riesz projections on
a group of isolated eigenvalues of 𝐻𝑡, as well as the asymptotic expansions of the type 𝜆𝑗(𝑡) =

𝜆 + 𝜆(1)
𝑗
(𝑡 − 𝑡0) + … for the semisimple eigenvalues 𝜆𝑗(𝑡), 1 ⩽ 𝑗 ⩽ 𝑚, of 𝐻𝑡 bifurcating from an

eigenvalue 𝜆 = 𝜆(𝑡0) of 𝐻𝑡0
of multiplicity 𝑚. Of course, it is not always the case that 𝐻𝑡 is an

additive perturbation of 𝐻𝑡0
; a simple example being the Neumann Laplacian considered as a

perturbation of the Dirichlet Laplacian posted on the same open setΩ ⊂ ℝ𝑛. Operator-theoretical
domains of the two operators are given by the Neumann and Dirichlet boundary traces. The dif-
ference of the two operators on the intersection of their domains is zero, and thus, neither of them
is an additive perturbation of the other. When the operators are posted on a 𝑡-dependent family of
open sets Ω𝑡 and, in addition, are subject to perturbations by a family of 𝑡-dependent potentials,
we are facing the situation when all three objects (the boundary traces, the boundary conditions
prescribing the domains of the operators, and the operators per se) are being perturbed. And yet
the fundamental questions remain of how to relate their resolvent operators, eigenvalues, and
so on.
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To answer the questions, we employ the extension theory for symmetric operators that goes
back to M. Birman [25], M. Krein [87, 88], and M. Vishik [124], see also [5, 57, 71, 120], and that
has been an exceptionally active area of research [1, 7, 14, 18, 20, 30, 55, 71, 102, 106] culminating
in the comprehensive monograph [13]. Unlike the classical sesquilinear forms-based approach
utilized in analytic perturbation theory, see, for example, [83, Section VII.6.5], the foundational
for the current paper result is a very simple formula for the difference of the resolvents of any two
self-adjoint extensions of a symmetric operator. The classical Krein’s formula going back to [87,
88] expresses the difference of the resolvents of a special, “Dirichlet-type,” self-adjoint extension
and yet another, arbitrary, self-adjoint extension of a symmetric operator via the 𝛾-field and the
abstract Weyl 𝑀-function. Given any two arbitrary self-adjoint extensions, the classical Krein’s
formula is a powerful tool that has been used to prove, for example, that the difference of the
resolvents of the two extensions belongs to the appropriate Schatten-von Neumann class, cf. for
example, [55, Theorem 2 and Corollary 4].
In the current paper, we give a very elementary and direct proof (without using the Krein’s

formula) of the resolvent difference formula of any two arbitrary self-adjoint extensions that we
were not able to find in the literature. Unlike Krein’s resolvent formula, the resolvent difference
formula that we offer does not contain the 𝛾-fields nor the Weyl function, and thus is of much
lower level than the celebrated Krein’s resolvent formula. However, it appears to be a perfect tool
for studying families of self-adjoint extensions constructed by means of families of Lagrangian
planes and families of trace operators, which is the main objective of our work. Indeed, variation
formulas for eigenvalues of differential operators posted on a one-parameter family of domains
are typically obtained for differential operators defined via Dirichlet forms, see, for example, [83,
Section VII. 6.5], [64], which essentially restricts the set of admissible boundary conditions to
Dirichlet, Neumann, and Robin.We drop this restriction by avoiding the quadratic form approach
and, instead, dealing with perturbations of self-adjoint extensions through our new symplectic
version of the resolvent difference formula thus deriving the Hadamard-type eigenvalue formulas
in a quite general setting.
The Hadamard-type formulas are instrumental in applications of spectral theory to differential

operators. For example, they recently played a pivotal role in the works of G. Berkolaiko, P. Kuch-
ment, and U. Smilansky [23] and G. Cox, C. Jones, and J. Marzuola [45, 46] on nodal count for
eigenfunctions of Schrödinger operators and in the work of A. Hassell [78] on ergodic billiard sys-
tems that are not quantumuniquely ergodic. The formulas are also central to the applications that
we give, in particular, to our treatment, discussed in more details below, of the periodic Kronig–
Penney model, spectral flow formulas for one-parameter families of Robin Laplacians leading to
a unified approach to Friedlander’s and Rohleder’s inequalities, of the heat equation posted on
bounded domains, and of one-parameter families of quantum graphs.

1.2 Description of abstract results

We consider self-adjoint extensions of a closed densely defined symmetric operator 𝐴 acting in
a Hilbert space . The extensions in question are defined by Lagrangian planes in an auxil-
iary (boundary) Hilbert space ℌ×ℌ by means of a two component trace map T = [Γ0, Γ1]

⊤ ∶

dom(T) ⊂  → ℌ×ℌ with dense range and satisfying the abstract Green identity

⟨𝐴∗𝑢, 𝑣⟩ − ⟨𝑢,𝐴∗𝑣⟩ = ⟨𝐽T𝑢, T𝑣⟩ℌ×ℌ, 𝑢, 𝑣 ∈ dom(T), 𝐽 ∶=

[
0 𝐼ℌ

−𝐼ℌ 0

]
. (1.1)
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The trace operatorT, geared to facilitate abstract integration by parts arguments, is a central object
in our setting.
A typical realization of this setup is given by the Laplace operator 𝐴 ∶= −Δ with domain

dom(𝐴) = 𝐻2
0
(Ω) acting in ∶= 𝐿2(Ω) and the trace map T𝑢 = (𝑢 ↾𝜕Ω, −Φ𝜕𝜈𝑢 ↾𝜕Ω)

† defined on
dom(T) = {𝑢 ∈ 𝐻1(Ω) ∶ Δ𝑢 ∈ 𝐿2(Ω)}. In this case, 𝐴∗ = −Δ with the domain dom(𝐴∗) = {𝑢 ∈

𝐿2(Ω) ∶ Δ𝑢 ∈ 𝐿2(Ω)}, the boundary space ℌ = 𝐻1∕2(𝜕Ω), and (1.1) is the standard Green iden-
tity. Equipping + ∶= dom(𝐴∗) with the graph norm of the Laplacian and  ∶= dom(𝑇) with

the norm (‖𝑢‖2
𝐻1(Ω)

+ ‖Δ𝑢‖2
𝐿2(Ω)

)
1∕2
, we get a crucial dense embedding  ↪ +. This embed-

ding becomes equality in the one-dimensional setting when Ω = [𝑎, 𝑏] ⊂ ℝ; in fact, one has
+ =  = 𝐻2([𝑎, 𝑏]).
Motivated by this example and returning to the abstract setting, we equip  = dom(T) with

an abstract Banach norm ‖ ⋅ ‖, the space + = dom(𝐴∗) with the graph norm of 𝐴∗, and
assume that the embedding  ↪ + is dense and bounded. Drawing further parallels between
the abstract and the PDE/ODE settings, throughout this work, we distinguish between the strict
inclusion ⊊ + and the equality = +. The casewhen is strictly contained in+ is closely
related to the setting considered in the pioneering paper by V. Derkach and M. Malamud [56],
where the concept of generalized (in fact, 𝐵–generalized) triplet was originally introduced and
applied to the inverse problem of realization of Nevanlinna functions. This case is also closely
related to the notion of quasi-boundary triplets extensively studied in the work of J. Behrndt and
M. Langer [14, 15], J. Behrndt and T. Micheler [18], and V. Derkach, S. Hassi, M. Malamud, and
H. de Snoo [50–54]. In case when  = +, the triplet (ℌ, Γ0, Γ1) is called the ordinary boundary
triplet. This case is understoodmuch better and was developed, in particular, in the classical work
by V. Gorbachuk and M. Gorbachuk [71] and A. Kochubej, by V. Derkach and M. Malamud [55],
and many others, see, for example, [13, 15, 54, 57, 120] and the extensive bibliography therein. The
main reasonwhywe consider a nonsurjective embedding ↪ + is that, when applied to elliptic
operators, it allows one to use the standardDirichlet andNeumann trace operators as components
of T and therefore discuss physically relevant boundary value problems (e.g., heat equation on
bounded domains). The disadvantage of the condition  ⊊ +, however, is that it restricts the
class of admissible self-adjoint extensions of 𝐴 to those with domains containing in . We refer
to [34, 50–54, 79, 126] for an in-depth study of unbounded traces and stress that abstract results
of this type are not the main focus of the current work. On the other hand, the case of ordinary
boundary triplets = + covers all possible self-adjoint extensions at the expense of dealingwith
the trace map Twhich, when considered in the context of second-order elliptic partial differential
operators, is a nonlocal first-order operator on the boundary of the spatial domain. The tracemaps
of this type have been studied, in particular, by G. Grubb [73], H. Abels, G. Grubb, and I. Wood
[1], and F. Gesztesy and M. Mitrea [67–69].
The ordinary boundary triplets are particularly well suited for ordinary differential operators

and quantum graphs; we will exploit this in Section 4. Our approach allows one to obtain some
new results that are not reachable or very hard to obtain using othermethods such as the quadratic
forms. This includes our arguably new Riccati-type differential equations for the resolvents, our
ability to handle quite general boundary conditions for quantum graphs where the form method
results are not known, our new and convenient formulas for the slopes of the eigenvalue curves
for both quantum graphs with general boundary conditions and the PDE operators, as well as our

†where Φ denotes natural Riesz isomorphism Φ ∈ (𝐻−1∕2(𝜕Ω),𝐻1∕2(𝜕Ω)) as defined in (4.21).
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ability to handle nonlocal boundary conditions (even of generalized Robbin type but also such as
those that appear in describing Krein’s self-adjoint extensions of PDE operators).
Having introduced the notion of an abstract trace map and Green identity (1.1), we switch to a

symplectic version of the resolvent difference formula.We note that the right-hand side of (1.1) can
be written as 𝜔(T𝑢, T𝑤), where 𝜔(⋅, ⋅) = ⟨𝐽⋅, ⋅⟩ℌ is the natural symplectic form. It is well known
that self-adjoint extensions of 𝐴 in  can be described by Lagrangian planes in various sym-
plectic Hilbert boundary spaces. W. N. Everitt and W. N. Markus [59] and B. Booss-Bavnbek and
K. Furutani [26], for example, relate self-adjoint extensions to Lagrangian subspaces of the sym-
plectic quotient space dom(𝐴∗)∕ dom(𝐴), while J. Behrndt and M. Langer [18], K. Pankrashkin
[106], and K. Schmüdgen [120, Chapter 14] and [13], on the other hand, discuss self-adjointness in
terms of linear relations. Closely following these works, we utilize the abstract Green identity (1.1)
assuming (possibly, nonsurjective) embedding  ↪ +, and associate self-adjoint extensions 
of 𝐴 to Lagrangian planes  ⊂ ℌ ×ℌ via the mapping dom() ↦  ∶= T(dom()), see Theo-
rems A.1 and A.2 and Corollary A.5 for more details on this correspondence. This observation
brings us one step closer to the perturbation theory for self-adjoint extensions with continuously
varying domains of self-adjointness as it allows us to recast this nonadditive perturbation problem
in terms of the perturbation of Lagrangian planes, or more specifically, in terms of perturbation
of the orthogonal projections onto the planes.
A major issue in perturbation theory for unbounded operators with varying domains is that

their difference could be defined on a potentially very small subspace, for example, on the zero
subspace. This issue is not as severe when one talks about self-adjoint extensions 1,2 of the
same operator 𝐴, since dom(𝐴) ⊂ dom(1) ∩ dom(2) but there is still a caveat: the difference1 −2 could be the zero operator; hence,1,2 could be trivial additive perturbations of one
another (again, think about the Dirichlet and Neumann realizations of the second derivative on a
segment). To deal with this issue, one considers instead of1 −2 the difference of the resolvents
(1 − 𝜁)−1 − (2 − 𝜁)−1 and, classically, expresses it in terms of the abstractWeyl𝑀-function, see
Appendix B and, in particular, Proposition B.1 for a brief reminder of this topic. Such an expression
is called the Krein (or Krein–Naimark) resolvent formula; we refer to [87, 88] and [89, 90].
This foundational result in spectral theory has been studied and derived in various settings by

many authors; we refer to the texts [2, 13, 120] where one can find a detailed historical account and
further bibliography.Without even attempting to give a review of the vast literature on this subject,
we mention here the work by H. Abels, G. Grubb, and I. Wood [1], W.O Amrein and D.B. Pearson
[6], S. Albeverio and K. Pankrashkin [4], J. Behrndt and M. Langer [14], S. Clark, F. Gesztesy, R.
Nichols, andM. Zinchenko [41], V. Derkcach andM.Malamud [55, 57], F. Gesztesy andM.Mitrea
[67–69], G. Grubb [74], A. Posilicano [107], and A. Posilicano and L. Raimondi [108]. We specifi-
cally mention important contribution for the case of quasi-boundary triplets in [14, Theorem 5.1]
and in more complete form in Theorem 6.16 and Corollary 6.17 of [15]; for generalized boundary
triplets of bounded type in Theorem 7.26 and Proposition 7.27 of the paper [54] by V. Derkach, S.
Hassi and M. Malamud; for so-called AB-generalized boundary triplets (which covers the previ-
ous two cases) in Theorem 4.12, Remark 4.13, and Corollary 4.14 of [51]. In addition, in a recent
paper [52] by V. Derkach, S. Hassi, andM. Malamud (see also [50]), the authors studied boundary
triplets and gave an analytic characterization of their Weyl functions as form domain invariant
Nevanlinna functions. These papers contain applications of boundary triplets techniques closely
related to the results in Sections 4.2 and 5.1 of the present paper. Most closely related to our work
is the Krein formula for two arbitrary self-adjoint extensions of the Laplace operator expressing
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the resolvent difference in terms of an operator-valued Herglotz function that has been obtained
in [69], see also [66, 67, 100, 105].
However, all above-mentioned Krein-type formulas are not quite suited for the purposes of

the current paper as they do not capture quantitatively the perturbations of operator-theoretic
domains of the self-adjoint extensions in the form that we need. One of the main objectives of
the current work is to address this issue. Specifically, we propose to use a very elementary new
resolvent difference formula expressing the difference of the resolvents of two arbitrary self-adjoint
extensions of a given symmetric operator in terms of the projections onto the Lagrangian planes
determining the domains of the extensions. As far as we can see this simple but extremely handy
version of the formula was not widely used in the literature in the generality that we offer, see,
however, already mentioned [55, Theorem 2 and Corollary 4].
Indeed, for arbitrary self-adjoint extensions 1,2 of a symmetric operator 𝐴, we obtain the

following symplectic version of the formula for the difference of resolvents 𝑅1(𝜁) = (1 − 𝜁)−1

and 𝑅2(𝜁) = (2 − 𝜁)−1,

𝑅1(𝜁) − 𝑅2(𝜁) = (T𝑅2(𝜁))
∗
𝑄2𝐽𝑄1(T𝑅1(𝜁)), (1.2)

where 𝜁 ∉ Spec(1) ∪ Spec(2), 𝐽 is the symplectic matrix from (1.1), 𝑄1, 𝑄1 ∈ (ℌ × ℌ) are
the orthogonal projections onto the Lagrangian planes 1,2 ⊂ ℌ ×ℌ defining the self-adjoint

extensions 1,2 via 1 = T(dom(1)), 2 = T(dom(2)). In particular, using the property
𝑄1𝐽𝑄1 = 0, a key property of projections onto Lagrangian planes, formula (1.2) yields

𝑅2(𝜁) − 𝑅1(𝜁) = (T𝑅2(𝜁))
∗
(𝑄2 − 𝑄1)𝐽𝑄1(T𝑅1(𝜁)), (1.3)

which indicates that ‖𝑅2(𝜁) − 𝑅1(𝜁)‖() → 0whenever ‖𝑄2 − 𝑄1‖(ℌ×ℌ) → 0, see Theorem 2.6.
Also, we rewrite the resolvent difference formula (1.3) in terms of bounded operators 𝑋𝑘, 𝑌𝑘 ∈

(ℌ) chosen such that 𝑘 = ker[𝑋𝑘, 𝑌𝑘], 𝑘 = 1, 2, see (2.15).
Relying on the resolvent difference formula (1.3), we investigate differentiability properties

and obtain asymptotic expansion for resolvent operators as functions of a scalar parameter 𝑡 ∈
[0, 1] parametrizing sufficiently smooth paths of Lagrangian planes 𝑡 ↦ 𝑡, additive bounded
self-adjoint perturbations 𝑡 ↦ 𝑉𝑡 ∈ (), and trace maps 𝑡 ↦ T𝑡 satisfying Green identity (1.1).
That is, we develop a full-scale first-order asymptotic theory for a one-parameter family of self-
adjoint operators 𝐻𝑡 ∶= 𝑡 + 𝑉𝑡, with𝑡 being a self-adjoint extension of 𝐴 associated with the

Lagrangian plane 𝑡 via the relation T𝑡(dom(𝑡)) = 𝑡. First, we prove that, respectively, conti-
nuity, Lipschitz continuity, and differentiability at 𝑡0 ∈ [0, 1] of the paths of Lagrangian planes,
bounded perturbations, and trace maps, yield continuity, Lipschitz continuity, and differentiabil-
ity, respectively, of the path of resolvent operators 𝑡 ↦ 𝑅𝑡(𝜁) ∶= (𝐻𝑡 − 𝜁)−1, 𝜁 ∉ Spec(𝐻𝑡0

). At the
first glance, such results should seemingly follow from the resolvent difference formula (1.3) as
it suggests that 𝑅𝑡(𝜁) − 𝑅𝑡0

(𝜁) and 𝑄𝑡 − 𝑄𝑡0
are of the same order. It turns out, however, that the

boundedness of the appropriate norm of 𝑇𝑅𝑡(𝜁) for 𝑡 near 𝑡0 could be a subtle issue depending on
whether we are dealing with the strict inclusion ⊊ + or the equality = +.
Let us elaborate on this in more detail. First, the operator 𝑇𝑅𝑡(𝜁) is bounded as a linear map-

ping from  to ℌ×ℌ, that is, 𝑇𝑅𝑡(𝜁) ∈ (, ℌ × ℌ) even without assuming that  = dom(T)

is equipped with its own Banach norm, see Lemma 2.4. When it is, however, we claim more:
T ∈ (, ℌ × ℌ) and 𝑅𝑡(𝜁) ∈ (,), see Proposition 3.2. The main issue is that in the abstract
setting, one does not have a good quantitative control of the norm ‖𝑅𝑡(𝜁)‖(,) as a function of
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𝑡. We therefore impose the assumption

‖𝑅𝑡(𝜁)‖(,) =
𝑡→𝑡0

(1). (1.4)

That being said, condition (1.4) is automatically satisfied when the strict inclusion  ⊊ + is
replaced by the equality  = +, in which case we show not only boundedness (1.4) but also
continuity of the reslovent operators

‖𝑅𝑡(𝜁) − 𝑅𝑡0
(𝜁)‖(,) =

𝑡→𝑡0
𝑜(1), (1.5)

see Proposition 4.4. We stress that (1.4) is a natural assumption for the case when  ⊊ +. This
assumption is satisfied, although not trivially, in many PDE contexts of interest as its proof essen-
tially boils down to controlling 𝐿2(Ω) to 𝐻1(Ω) norm of the resolvent of a second-order elliptic
operator for 𝑡 near 𝑡0, see Section 5.2 where we check it for elliptic operators subject to Robin
boundary conditions. To sum up, the resolvent difference formula (1.3) together with hypothesis
(1.4) yields continuity of the resolvent operators 𝑡 ↦ 𝑅𝑡(𝜁). The differentiability requires not only
(1.4) but actually (1.5) that we impose as an assumption when  ⊂ +. As we already pointed
out (1.5) holds automatically if = + and it holds in most standard PDE realizations of a more
general situation ⊊ +.
Having discussed differentiability of the mapping 𝑡 ↦ 𝑅𝑡(𝜁), we now switch to first-order

asymptotic expansions of the resolvents. The main goal of this part of the paper is to derive an
Hadamard-type formula† for derivatives of the eigenvalues curves of𝐻𝑡. As a first step, we derive
in Theorem 3.18 the following asymptotic expansion for the resolvent:

𝑅𝑡(𝜁) =
𝑡→𝑡0

𝑅𝑡0
(𝜁) +

(
−𝑅𝑡0

(𝜁)𝑉̇𝑡0
𝑅𝑡0

(𝜁) + (T𝑡0
𝑅𝑡0

(𝜁))∗𝑄̇𝑡0
𝐽T𝑡0

𝑅𝑡0
(𝜁)

+ (T𝑡0
𝑅𝑡0

(𝜁))∗𝐽Ṫ𝑡0
𝑅𝑡0

(𝜁)
)
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0), in ();

(1.6)

here and throughout the paper, 𝑑

𝑑𝑡
is abbreviated by the dot, for example, 𝑉̇𝑡0

= 𝑑𝑉

𝑑𝑡
|𝑡=𝑡0 . In

particular, we deduce a new Riccati-type differential equation for the resolvents,

𝑅̇𝑡0
(𝜁) = −𝑅𝑡0

(𝜁)𝑉̇𝑡0
𝑅𝑡0

(𝜁) + (T𝑡0
𝑅𝑡0

(𝜁))∗𝑄̇𝑡0
𝐽T𝑡0

𝑅𝑡0
(𝜁)

+ (T𝑡0
𝑅𝑡0

(𝜁))∗𝐽Ṫ𝑡0
𝑅𝑡0

(𝜁).

Next, we compute the slopes of eigenvalue curves {𝜆𝑗(𝑡)}
𝑚
𝑗=1

bifurcating from an isolated

eigenvalue 𝜆 ∈ Spec(𝐻𝑡0
) of multiplicity 𝑚 ⩾ 1. Our strategy is to integrate (1.6) over a contour

𝛾 ⊂ ℂ enclosing the eigenvalues {𝜆𝑗(𝑡)}
𝑚
𝑗=1

for 𝑡 near 𝑡0, obtain an asymptotic expansion for

the 𝑚-dimensional operator 𝑃(𝑡)𝐻𝑡𝑃(𝑡), where 𝑃(𝑡) is the Riesz projector onto the spectral
subspace ran(𝑃(𝑡)) =

⨁𝑚
𝑗=1 ker(𝐻𝑡 − 𝜆𝑗(𝑡)), and reduce matters to asymptotic perturbation

techniques for finite-dimensional self-adjoint operators. Specifically, we employ the body of
finite-dimensional results from Theorem II.5.4 and Theorem II.6.8 of [83]. In the literature

†As we have already noted above, we borrow the term Hadamard-type formula from the PDE literature on geometric

perturbations of spatial domains and use it for general formulas for derivatives of eigenvalues.
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on Maslov index and spectral flow, these results are called the Kato selection theorem, cf. [114,
Theorem 4.28], as they allow one to properly choose the 𝑚 branches of the eigenvalue curves
for 𝑃(𝑡)𝐻𝑡𝑃(𝑡) and compute their slopes. A subtle issue in this scheme, though, is that the
finite-dimensional operators 𝑃(𝑡)𝐻𝑡𝑃(𝑡) are defined on varying 𝑡-dependent spaces ran(𝑃(𝑡)).
As in [96], we remedy this by introducing a differentiable family of unitary operators 𝑡 ↦ 𝑈𝑡, cf.
(3.26), (3.27), mapping ran(𝑃(𝑡0)) onto ran(𝑃(𝑡)) and obtain the first-order expansion for unitarily
equivalent to 𝑃(𝑡)𝐻𝑡𝑃(𝑡) operators acting in a fixed finite-dimensional space ran(𝑃(𝑡0)), see
Lemma 3.24. Finally, utilizing this expansion and the Kato selection theorem, we show that there
is a proper labeling of the eigenvalues {𝜆𝑗(𝑡)}

𝑚
𝑗=1

of 𝐻𝑡 for 𝑡 near 𝑡0 and an orthonormal basis

{𝑢𝑗}
𝑚
𝑗=1

⊂ ker(𝐻𝑡0
− 𝜆) such that the following Hadamard-type formula holds,

𝜆̇𝑗(𝑡0) = ⟨𝑉̇𝑡0
𝑢𝑗 , 𝑢𝑗⟩ + 𝜔(𝑄̇𝑡0

T𝑡0
𝑢𝑗 , T𝑡0

𝑢𝑗) + 𝜔(T𝑡0
𝑢𝑗 , Ṫ𝑡0

𝑢𝑗), 1 ⩽ 𝑗 ⩽ 𝑚, (1.7)

where 𝜔(𝑓, g) = ⟨𝐽𝑓, g⟩ℌ×ℌ, 𝑓, g ∈ ℌ ×ℌ is the symplectic form. This quite general result is one
of the major points of the paper; we apply it in several particular situations.
Also, we use this computation to give an infinitesimal version of a general abstract analog of the

classical formula, cf. [26, 29, 35], relating the following two quantities: (1) the Maslov index of the
path 𝑡 ↦ 𝑡 ⊕ T

(
ker

(
𝐴∗ + 𝑉𝑡 − 𝜆

))
relative to the diagonal plane inℌ×ℌ, and (2) the spectral

flow of the family 𝑡 ↦ 𝐻𝑡 through 𝜆 for 𝑡 near 𝑡0. Heuristically, the latter quantity is given by the
difference between the number of monotonically increasing and decreasing eigenvalue curves of
𝐻𝑡 bifurcating from 𝜆. The former quantity is equal to the signature of the Maslov form that is
a certain bilinear form defined on T

(
ker(𝐻𝑡0

− 𝜆)
)
, see Sections 4.5 and 5.5. In order to relate

the two, we prove by computation that, in fact, the value of the Maslov crossing form coincides
with the right-hand side of (1.7), cf. Theorem 4.22 and Proposition 5.8. Similar relations have been
established, in particular, by G. Cox, C.K.R.T. Jones, and J. Marzuola in [45, 46], B. Booß-Bavnbek,
C. Zhu [29], B. Booß-Bavnbek, K. Furutani [26], and P. Howard and A. Sukhtayev [81, 82]. The
computational and applied aspects of the Maslov index theory have recently been considered by
F. Chardard, F. Dias, and T. J. Bridges [36–39]
In a later part of the paper, we also give a generalization of the resolvent difference formula to

the case of adjoint pair of operators, see, for example, [1, 30, 32] and the literature cited therein.
Important contributions to the theory of adjoint pairs can be found in [7, 31, 102]. It allows one to
describe nonselfadjoint extensions for an adjoint pair of densely defined closed (but not necessar-
ily symmetric) operators. A typical example of the adjoint pair is given by a nonsymmetric elliptic
second-order partial differential operator and its formal adjoint; this example is also discussed in
the paper.

1.3 Summary of applications

Our applications are given in Sections 4 and 5. In Section 4, we collected all results pertaining
the ordinary boundary triplets (covering the case of metric graphs, and “rough” PDE traces). This
section also providesmore applications of the asymptotic expansions of resolvents in the context of
ordinary boundary triplets obtained by the authors in [94]. In Section 5, we deal withmore general
case of densely defined not surjective traces (which covers the “weak” PDE traces). Our main
applications are to spectral count for Robin Laplacians on bounded domains, periodic Kronig–
Penney models, Hadamard-type formulas for Schrödinger operators on metric graphs, and heat
equation posted on bounded Lipschitz domains. Let us succinctly describe relevant results.
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∙We prove that for Baire almost every periodic sequence of coupling constants 𝛼 = {𝛼𝑘}
∞
𝑘=1

∈

𝓁∞(ℤ,ℝ), the spectrum of the Schrödinger operator 𝐻𝛼 acting in 𝐿2(ℝ) and given by

𝐻𝛼 ∶= −
d2

d𝑥2
+

∑
𝑘∈ℤ

𝛼𝑘𝛿(𝑥 − 𝑘),

has no closed gaps, see Section 4.4. The analogous assertion for Schrödinger operators 𝐻𝑉 =

− 𝑑2

𝑑𝑥2
+ 𝑉 for periodic 𝑉 ∈ 𝐶∞(ℝ) (due to B. Simon [121]) and their discrete versions have been

instrumental in the works of D. Damanik, J. Fillman, and M. Lukic [48] and A. Avila [11], cor-
respondingly, on Cantor spectra for generic limit-periodic Schrödinger operators. As in [121], we
prove this statement by perturbation arguments applied to the Hill equation on a finite inter-
val associated with 𝐻𝛼 (an alternative approach covering a wide class second-order differential
operators is proposed in the work of D. Damanik, J. Fillman, and the second author).

∙ For a general elliptic second-order operator  ∶= −div(𝙰∇) + 𝚊 ⋅∇ −∇ ⋅ 𝚊 + 𝚚 posted on a
boundedLipschitz domainΩ ⊂ ℝ𝑑, 𝑑 ⩾ 2, see Section 5.1, and subject to a one-parameter family of
Robin conditions 𝜕𝜈𝑢 = Θ𝑡𝑢 on 𝜕Ω, we derive Hadamard- and resolvent difference formulas, see
Theorem 5.2, and use these results to discuss in Section 5.2 a unified approach to L. Friedlander’s
and J. Rohleder’s inequalities via a spectral flow argument, see [62, 116] and [46].

∙ For an arbitrary compactmetric graph  and the Schrödinger operator𝐻𝑡 = − 𝑑2

𝑑𝑥2
+ 𝑉 subject

to parameter-dependent vertex conditions 𝑋𝑡𝑢 + 𝑌𝑡𝜕𝑛𝑢 = 0 (here 𝜕𝑛𝑢 is the derivative of 𝑢 taken
in the inward direction along each edge), we derive the following Hadamard-type formula for the
slopes of eigenvalue curves {𝜆𝑗(𝑡)}

𝑚
𝑗=1

bifurcating from an eigenvalue of𝐻𝑡0
of multiplicity𝑚 ⩾ 1,

𝜆̇𝑗(𝑡0) = ⟨𝑉̇𝑡0
𝑢𝑗 , 𝑢𝑗⟩𝐿2() +

⟨
(𝑋𝑡0

𝑌̇∗
𝑡0
− 𝑌𝑡0

𝑋̇∗
𝑡0
)𝜙𝑗 , 𝜙𝑗

⟩
𝐿2(𝜕), (1.8)

where {𝑢𝑗}
𝑚
𝑗=1

is a certain orthonormal basis of ker(𝐻𝑡0
− 𝜆(𝑡0)), 𝜙𝑗 is a unique vector in 𝐿2(𝜕)

satisfying 𝑢𝑗 = −𝑌∗
𝑡0
𝜙𝑗 and 𝜕𝑛𝑢𝑗 = 𝑋∗

𝑡0
𝜙𝑗 , 1 ⩽ 𝑗 ⩽ 𝑚, see Section 4.3. In the theory of quantum

graphs, Hadamard-type formulas are often derived on a case-by-case basis for simple eigenvalue
curves, see, for example, a classical monograph by G. Berkolaiko and P. Kuchment [21, Sec-
tion 3.1.4.]; (1.8) closes this gap in the literature. In addition, we derive a resolvent difference
formula expressing the difference of two arbitrary self-adjoint realizations of the Schrödinger
operator in terms of the vertex matrices 𝑋𝑗 , 𝑌𝑗 , 𝑗 = 1, 2.

∙ For the heat equation

{
𝑢𝚝(𝚝, 𝑥) = 𝜅𝜌(𝑥)Δ𝑥𝑢(𝚝, 𝑥), 𝑥 ∈ Ω, 𝚝 ⩾ 0,

−𝜅 𝜕𝑢

𝜕𝑛
= 𝑢, on 𝜕Ω,

describing the temperature 𝑢 of a material in the region Ω ⊂ ℝ3 with thermal conductivity 𝜅

immersed in a surrounding medium of zero temperature (here 1∕𝜌(𝑥) is the product of the den-
sity of the material times its heat capacity), we give a new proof of continuous dependence of 𝑢
on 𝜅 with respect to 𝐿2(Ω) norm, see Section 5.3.
The symplectic (Lagrangian) point of view on self-adjoint extensions and boundary triplets sys-

tematically used in this paper (and a more general approach via Krein spaces, cf. [53]) is a quite
powerful tool that, of course, brings up many new and unresolved issues. Among the open ques-
tions we mention: finding a symplectic interpretation of the abstract Weyl’s function; describing
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exit-space extensions using symplectic approach; studying (in the context of self-adjoint exten-
sions) so-called lateral perturbations introduced in [22]; and relating Hadamard-type formulas to
the secular equations [21] for quantum graphs.
Organization of the paper. In Section 2, we begin with basic setup and discuss properties

of the trace operators and their composition with the resolvents for the general case when the
embedding  ↪ + is not surjective. The most general symplectic resolvent difference formula
for the difference of resolvents of any two self-adjoint extensions is proven in Theorem 2.6. In
Section 3.1, we discuss our main setup and assumptions on one-parameter families of traces,
self-adjoint extensions, and bounded perturbations, and provide typical examples when our
assumptions are satisfied. The examples include: Schrödinger operators with Robin-type bound-
ary conditions on families of star-shaped domains, second-order operators on infinite cylinders
with variablemultidimensional cross-sections, operators arising as Floquet–Bloch decomposition
of periodic Hamiltonians, and first-order elliptic operators of Cauchy–Riemann type on cylinders.
In Section 3.2, we obtain general resolvent expansions and derive the Riccati equations for the
resolvent operators. The variational Hadamard-type formula for the eigenvalue curves is proven
in Section 3.3. This section also contains resolvent difference formulas for families of self-adjoint
extensions given by either families of projections in the boundary space ℌ×ℌ or as kernels of
the bounded row operators [𝑋𝑡, 𝑌𝑡]. In Section 4.1, we formulate our major results for the case = +, that is, for the ordinary boundary triplets. As an example, we treat the ODE case of
Robin boundary conditions on a segment. In Section 4.2, we study Robin Laplacian on multidi-
mensional domains in the framework of the boundary triplets that requires the use of the “rough”
traces. Section 4.3 is devoted to applications to quantum graphs, here, in particular, we derive
Hadamard-type formula (1.8). The periodic Kronig–Penney model is considered in Section 4.4. In
Section 4.5, we begin discussion on connections to the Maslov index and prove a general result
relating the value of the Maslov crossing form and the slope of the eigenvalue curves for ordinary
boundary triplets. In Section 5.1, we switch to the second-order elliptic operators, return back to
the case  ⊊ +, and use weak boundary traces. Hadamard-type and resolvent difference for-
mulas for Robin realizations, Friedlander’s, and Rohleder’s theorems are discussed in Section 5.2.
Applications to the heat equation are given in Section 5.3. In Section 5.4, we derive from our
general results the classical Hadamard–Rellich formula for the eigenvalues of the Schrödinger
operator posted on a family of star-shaped domains. The Maslov crossing form for elliptic oper-
ators defined by means of the weak solutions is studied in Section 5.5. In Section 6, we provide
generalizations of the resolvent difference formula to the case of an adjoin pair of operators. The
results are applied to the example of an elliptic second-order partial differential operator and its
formal adjoint. In Appendix A, we give a detailed discussion of the correspondence between the
Lagrangian planes in the boundary space ℌ×ℌ and the domains of the self-adjoint extensions.
We introduce and study the notion of aligned subspaces and show that for these the correspon-
dence is a bijection. Appendix B shows how to derive the classical Krein’s formulas involving the
𝑀-function from the new symplectic version of the resolvent difference formula that we offered
in the paper.
Notation.We denote the space of bounded linear operators acting between two Banach spaces

 and  by ( ,) and let () ∶= ( ,). The closure of an operator 𝑇 ∶  →  is denoted
by 𝑇. We denote by Spec(𝑇) the spectrum, by Specdisc(𝑇) the set of isolated eigenvalues of finite
algebraic multiplicity, and by Specess(𝑇) = Spec(𝑇) ⧵ Specdisc(𝑇) the essential spectrum of 𝑇. The
scalar product (linear with respect to the first argument) and the norm on a Hilbert space 
are denoted by ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ , respectively. When  is a Hilbert space, we denote the space
of bounded linear functionals on  by ∗ and define a conjugate-linear Riesz isomorphism by
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Φ ∶ ∗ ↦ , ∗ ∋ 𝜓 ↦ Φ𝜓 ∈  so that ⟨𝑓, 𝜓⟩∗ ∶= 𝜓(𝑓) = ⟨𝑓,Φ𝜓⟩ , 𝑓 ∈ . In the special

case of Sobolev spaces  = 𝐻1∕2(𝜕Ω), we set ∗ = 𝐻−1∕2(𝜕Ω) and denote ⟨𝑓, 𝜓⟩−1∕2 ∶=𝐻1∕2(𝜕Ω)

⟨𝑓, 𝜓⟩𝐻−1∕2(𝜕Ω) for𝑓 ∈ 𝐻1∕2(𝜕Ω),𝜓 ∈ 𝐻−1∕2(𝜕Ω). The closure of a subspace 𝑆 ⊂  with respect to

‖ ⋅ ‖ is denoted by 𝑆

, while its orthogonal complement by 𝑆⟂ . For operators 𝐴, 𝐵 ∈ ( ,),

we let [𝐴, 𝐵] ∈ ( ×  ,), [𝐴, 𝐵](ℎ1, ℎ2)
⊤ ∶= 𝐴ℎ1 + 𝐵ℎ2, ℎ1, ℎ2 ∈  and [𝐴, 𝐵]⊤ ∈ ( , ×

), [𝐴, 𝐵]⊤(ℎ) ∶= (𝐴ℎ, 𝐵ℎ)⊤, ℎ ∈  , where ⊤ stands for transposition. We denote by Λ( × )

the set of Lagrangian subspaces in  ×  equipped with the symplectic form 𝜔 induced by the

operator 𝐽 =
[

0 𝐼
−𝐼 0

]
∈ ( × ). Given an operator valued function 𝑓 ∶ ℝ → (), we write

𝑓(𝑡) = 𝑜((𝑡 − 𝑡0)
𝑛) as 𝑡 → 𝑡0 if ‖𝑓(𝑡)‖()|𝑡 − 𝑡0|−𝑛 → 0 as 𝑡 → 𝑡0. Similarly, 𝑓(𝑡) = ((𝑡 − 𝑡0)

𝑛) as
𝑡 → 𝑡0 whenever ‖𝑓(𝑡)‖()|𝑡 − 𝑡0|−𝑛 ⩽ 𝑐 for some 𝑐 > 0 and all 𝑡 ≠ 𝑡0 in some open interval con-
taining 𝑡0. We denote by 𝔹𝑟(𝜁) the disc in ℂ of radius 𝑟 centered at 𝜁 and by 𝔹𝑛

𝑟 the ball in ℝ𝑛 of
radius 𝑟 centered at zero.

2 A SYMPLECTIC RESOLVENT DIFFERENCE FORMULA

Let , ℌ be complex, separable Hilbert spaces. Let 𝐴 be a densely defined, closed, symmetric
operator acting in and having equal (possibly infinite) deficiency indices, that is,

dimker(𝐴∗ − 𝐢) = dimker(𝐴∗ + 𝐢).

We denote+ = dom(𝐴∗) and equip this Hilbert space with the graph scalar product

⟨𝑢, 𝑣⟩+
∶= ⟨𝑢, 𝑣⟩ + ⟨𝐴∗𝑢,𝐴∗𝑢⟩ , 𝑢, 𝑣 ∈ dom(𝐴∗).

Let− = (+)
∗ denote the space adjoint to+ with

+ ↪  ↪ −, (2.1)

where the first embedding is given by + ∋ 𝑢 ↦ 𝑢 ∈ , and the second embedding is given by
 ∋ 𝑣 ↦ ⟨⋅, 𝑣⟩ . Let Φ−1 ∶ + → − be the Riesz isomorphism such that

+
⟨𝑢,Φ−1𝑤⟩−

= ⟨𝑢,𝑤⟩+
= ⟨𝑢,𝑤⟩ + ⟨𝐴∗𝑢,𝐴∗𝑤⟩ , 𝑢, 𝑤 ∈ +.

The following hypothesis will be assumed throughout the rest of the paper.

Hypothesis 2.1. We assume that 𝐴 is a densely defined, closed, symmetric operator acting in
and having equal (possibly infinite) deficiency indices. Suppose that is a core for 𝐴∗, that is,
is a dense subspace of + with respect to the graph norm of 𝐴∗, and assume that dom(𝐴) ⊂ .
Consider a linear operator

T ∶= [Γ0, Γ1]
⊤ ∶ + → ℌ×ℌ such that dom(T) = , ran(T) = ℌ ×ℌ (2.2)

called the trace operator. Assume that T satisfies the following abstract Green identity:

⟨𝐴∗𝑢, 𝑣⟩ − ⟨𝑢,𝐴∗𝑣⟩ = ⟨Γ1𝑢, Γ0𝑣⟩ℌ − ⟨Γ0𝑢, Γ1𝑣⟩ℌ for all 𝑢, 𝑣 ∈ . (2.3)



FIRST-ORDER ASYMPTOTIC PERTURBATION THEORY 13 of 83

A simple but very important setting satisfying Hypothesis 2.1 is given by ordinary boundary
triplets, cf. for example, [13, 56], in which case one lets  = dom(𝐴∗) = + and one can always
define a Hilbert spaceℌ and a trace operator T satisfying (2.3). This scenario is discussed in Sec-
tion 4 below. Yet, more elaborate setting, which ismore suitable for PDEs, is discussed in Section 5
where Hypothesis 2.1 holds with ⊊ dom(𝐴∗) being a proper subset of+.

Remark 2.2. Thenotion of ordinary boundary triplets has beenmodified and generalized in several
(similar but not equivalent) directions and applied to elliptic differential operators by multiple
authors. The pioneering paper [56] offered the first such generalization where Γ0 was assumed to
be surjective and the operator 𝐴∗|ker Γ0 self-adjoint, see also [14, 15, 18, 50–55].

In the following propositions, we collect some properties of the operator T and its composition
with the resolvent 𝑅(𝜁,) = ( − 𝜁)−1 of a self-adjoint extension of 𝐴.

Lemma 2.3. Under Hypothesis 2.1, the following assertions hold.

(1) dom(𝐴) = ker(T).
(2) The operator T ∶  ⊂ + → ℌ×ℌ defined in (2.2) is closable.

Lemma 2.4. AssumeHypothesis 2.1 and assume that there exists a self-adjoint extension of𝐴 sat-
isfying dom() ⊂ . Then, the resolvent operator𝑅(𝜁,) ∶= ( − 𝜁)−1 ∈ (), 𝜁 ∈ ℂ ⧵ Spec(),
can be viewed as a bounded operator from to+. Furthermore,

T𝑅(𝜁,) ∈ (, ℌ × ℌ). (2.4)

The elementary proofs of Lemmas 2.3 and 2.4 are provided in the electronic version of this paper
available on ArXiv [92].

Remark 2.5. In Lemma 2.4 (and everywhere when needed below), in addition to Hypothesis 2.1,
we assume the existence of a self-adjoint extension  of 𝐴 with dom() ⊂ . The question of
the existence of such a self-adjoint extension under merely Hypothesis 2.1 is a subtle one. The
nontrivial issue of whether or not, and under which additional minimal assumptions, this indeed
happens is beyond the scope of this paper. (We refer interested readers to [13, 50, 53, 54] where
closely related questions are discussed and relevant bibliography is provided. In this regard, we
highlight an ingenious relevant work [34] that was rediscovered and further developed in [79,
126].) That said, the condition dom() ⊂  is indeed prevalent in the settings related to elliptic
partial differential operators, ordinary differential operators, and quantum graphs covering our
principal applications, see Sections 4.2, 4.3, and 5.1–5.4 where relevant PDE models satisfying all
abstract assumptions are discussed in detail.
We stress that the main objective of our work is to develop first-order asymptotic perturba-

tion theory for given one parametric families of self-adjoint extensions 𝑡 ↦ 𝑡 of the operator 𝐴
with the additional property dom(𝑡) ⊂ . In the current paper, the operator-theoretic setting
described by Hypothesis 2.1 and the condition dom(𝑡) ⊂ mainly serves as the vehicle for uni-
fying several important classes of partial differential elliptic operators and ordinary differential
operators on metric graphs.

As it is well known, the domains of self-adjoint extensions of𝐴 are closely related to Lagrangian
planes inℌ×ℌ, see, for example, [71, Theorem 3.1.6], [77, 106, 120, Proposition 14.7], and Theo-
rems A.1 and A.2 below. Themain results of this section are a resolvent difference formula for two
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given extensions corresponding to two arbitrary Lagrangian planes, see Theorem 2.6. To proceed,
we will need to recall some basic definitions from symplectic functional analysis. First, we note
that the abstract Green identity (2.3) gives rise to a symplectic form 𝜔 defined by

𝜔
(
(𝑓1, 𝑓2)

⊤, (g1, g2)
⊤
)
∶ = ⟨𝑓2, g1⟩ℌ − ⟨𝑓1, g2⟩ℌ

=
⟨
𝐽(𝑓1, 𝑓2)

⊤, (g1, g2)
⊤
⟩
ℌ×ℌ

, 𝐽 ∶=

[
0 𝐼ℌ

−𝐼ℌ 0

]
,

(2.5)

𝑓𝑘, g𝑘 ∈ ℌ, 𝑘 = 1, 2. Indeed, using this notation (2.3) can be rewritten as follows:

⟨𝐴∗𝑢, 𝑣⟩ − ⟨𝑢,𝐴∗𝑣⟩ = 𝜔(T𝑢, T𝑣) for all 𝑢, 𝑣 ∈ .

We denote the annihilator of a subspace  ⊂ ℌ ×ℌ by

◦ ∶= {(𝑓1, 𝑓2)
⊤ ∈ ℌ ×ℌ ∶ 𝜔

(
(𝑓1, 𝑓2)

⊤, (g1, g2)
⊤
)
= 0 for all (g1, g2)

⊤ ∈  }, (2.6)

and recall that the subspace  is called Lagrangian if  = ◦. We denote byΛ(ℌ ×ℌ) the metric
space of Lagrangian subspaces ofℌ×ℌ equipped with the metric

𝑑(1,2) ∶= ‖𝑄1 − 𝑄2‖(ℌ×ℌ), 1,2 ∈ Λ(ℌ ×ℌ),

where 𝑄𝑗 is the orthogonal projection onto 𝑗 acting inℌ×ℌ, 𝑗 = 1, 2.
Next, we recall a well-known fact (originally due to Rofe–Beketov, see [57, Chapter 7], [106,

Proposition 4(b)]†, [115, 120, Chapter 14]) that any Lagrangian plane ∈ Λ(ℌ ×ℌ) can bewritten
as follows:

 = {(𝑓1, 𝑓2)
⊤ ∈ ℌ ×ℌ ∶ 𝑋𝑓1 + 𝑌𝑓2 = 0} = ker([𝑋, 𝑌]), (2.7)

where [𝑋, 𝑌] is a (1 × 2) block operator matrix with 𝑋,𝑌 satisfying

𝑋𝑌∗ = 𝑌𝑋∗, 𝑋, 𝑌 ∈ (ℌ), (2.8)

0 ∉ Spec(𝑀𝑋,𝑌) for the operator block-matrix𝑀𝑋,𝑌 ∶=
[
𝑋 𝑌
−𝑌 𝑋

]
. (2.9)

We note that

𝑀𝑋,𝑌(𝑀𝑋,𝑌)∗ = (𝑋𝑋∗ + 𝑌𝑌∗) ⊕ (𝑋𝑋∗ + 𝑌𝑌∗).

In particular, 0 ∉ Spec(𝑀𝑋,𝑌) if and only if 0 ∉ Spec(𝑋𝑋∗ + 𝑌𝑌∗). Using this observation, we
write the orthogonal projection 𝑄 onto  from (2.7) as follows:

𝑄 =

[
−𝑌∗

𝑋∗

]
(𝑋𝑋∗ + 𝑌𝑌∗)

−1[−𝑌,𝑋] = [−𝑌∗, 𝑋∗]⊤𝑊(𝑋,𝑌). (2.10)

† Pankrashkin [106] refers to Lagrangian planes as self-adjoint linear relations (s.a.l.r.), see [106, Remark 1], and describes

 by means of the equation 𝑋𝑓1 = 𝑌𝑓2 rather than 𝑋𝑓1 + 𝑌𝑓2 = 0 used in (2.7). We choose the latter to be consistent

with [21, Theorem 1.4.4 A].
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Here and below, for brevity, for any 𝑋,𝑌,𝑋𝑗 , 𝑌𝑗 ∈ (ℌ), 𝑗 = 1, 2, we use notation𝑊 and 𝑍1,2 for
the operators

𝑊(𝑋,𝑌) ∶= (𝑋𝑋∗ + 𝑌𝑌∗)−1[−𝑌,𝑋], 𝑊(𝑋,𝑌) ∈ (ℌ × ℌ,ℌ),

𝑍2,1 ∶= (𝑊(𝑋2, 𝑌2))
∗(𝑋2𝑌

∗
1 − 𝑌2𝑋

∗
1 )𝑊(𝑋1, 𝑌1), 𝑍2,1 ∈ (ℌ × ℌ).

(2.11)

We are ready to formulate the principal result of this section—a symplectic resolvent difference
formula for any two arbitrary self-adjoint extensions of𝐴. We refer to Appendix A for connections
of the self-adjoint properties of the extensions and Lagrangian properties of the traces of their
domains. Also, we refer to Appendix B and, in particular, to Proposition B.1 for the classical Krein–
Naimark formula, cf. [2, 13, Theorem 2.6.1], [57, Chapter 7], [55, 120, Theorem 14.18]. Finally, a
more general version of the symplectic resolvent difference formula that holds for adjoint pairs of
operators is given in Theorem 6.2 below.
In the next theorem, we assume the existence of two self-adjoint extensions of𝐴 with domains

in. As we have pointed out in Remark 2.5, this assumption is nontrivial in the abstract setting of
Hypothesis 2.1 but holds formany PDE and quantum graph scenarios, as discussed in Sections 4.2,
4.3, 5.1, 5.2, 5.3, and 5.4 below.

Theorem 2.6. Assume Hypothesis 2.1 and suppose that there exist two self-adjoint extensions 1

and2 of 𝐴 with domains containing in. Then, for any 𝜁 ∉ (Spec(1) ∪ Spec(2)), we have

𝑅2(𝜁) − 𝑅1(𝜁) =
(
Γ0𝑅2(𝜁)

)∗
Γ1𝑅1(𝜁) −

(
Γ1𝑅2(𝜁)

)∗
Γ0𝑅1(𝜁), (2.12)

𝑅2(𝜁) − 𝑅1(𝜁) = (T𝑅2(𝜁))
∗
𝐽T𝑅1(𝜁), (2.13)

where 𝑅𝑗(𝜁) ∶= (𝑗 − 𝜁)−1 and T𝑅𝑗(𝜁) =
(
Γ0𝑅𝑗(𝜁), Γ1𝑅𝑗(𝜁)

)
is considered as an operator in

(, ℌ × ℌ), 𝑗 = 1, 2.
Assume, further, that T(dom𝑗) is a Lagrangian plane inℌ×ℌ and

T(dom𝑗) = ker([𝑋𝑗 , 𝑌𝑗])

with 𝑋𝑗 , 𝑌𝑗 satisfying (2.8) and (2.9), and let 𝑄𝑗 denote the orthogonal projection onto T(dom𝑗)

for 𝑗 = 1, 2. Then

𝑅2(𝜁) − 𝑅1(𝜁) = (T𝑅2(𝜁))
∗
𝑄2𝐽𝑄1T𝑅1(𝜁), (2.14)

𝑅2(𝜁) − 𝑅1(𝜁) = (T𝑅2(𝜁))
∗
𝑍2,1T𝑅1(𝜁), (2.15)

where the operators 𝑍2,1 = (𝑊(𝑋2, 𝑌2))
∗(𝑋2𝑌

∗
1
− 𝑌2𝑋

∗
1
)𝑊(𝑋1, 𝑌1) and 𝑊(𝑋𝑗 , 𝑌𝑗) are defined in

(2.11).

Proof. By Lemma 2.4, we have Γ0𝑅2(𝜁), Γ1𝑅2(𝜁) ∈ (, ℌ). In particular, the adjoint operators
appearing in (2.12) are also bounded. Next, using (𝑗 − 𝜁)𝑅𝑗(𝜁) = (𝐴∗ − 𝜁)𝑅𝑗(𝜁), 2 = ∗

2
, and
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the Green identity (2.3), for arbitrary 𝑢, 𝑣 ∈ , we infer

⟨𝑅2(𝜁)𝑢 − 𝑅1(𝜁)𝑢, 𝑣⟩ = ⟨𝑅2(𝜁)𝑢 − 𝑅1(𝜁)𝑢, (2 − 𝜁)𝑅2(𝜁)𝑣⟩
= ⟨(2 − 𝜁)𝑅2(𝜁)𝑢, 𝑅2(𝜁)𝑣⟩ − ⟨𝑅1(𝜁)𝑢, (𝐴

∗ − 𝜁)𝑅2(𝜁)𝑣⟩
= ⟨𝑢, 𝑅2(𝜁)𝑣⟩ − ⟨(𝐴∗ − 𝜁)𝑅1(𝜁)𝑢, 𝑅2(𝜁)𝑣⟩
+ ⟨Γ1𝑅1(𝜁)𝑢, Γ0𝑅2(𝜁)𝑣⟩ℌ − ⟨Γ0𝑅1(𝜁)𝑢, Γ1𝑅2(𝜁)𝑣⟩ℌ

= ⟨Γ1𝑅1(𝜁)𝑢, Γ0𝑅2(𝜁)𝑣⟩ℌ − ⟨Γ0𝑅1(𝜁)𝑢, Γ1𝑅2(𝜁)𝑣⟩ℌ
=

⟨(
(Γ0𝑅2(𝜁))

∗Γ1𝑅1(𝜁) − (Γ1𝑅2(𝜁))
∗Γ0𝑅1(𝜁)

)
𝑢, 𝑣

⟩
 .

This yields (2.12). Rewriting (2.12) using 𝐽 introduced in (2.5) yields (2.13). For all 𝑢 ∈ , we have
T𝑅𝑗(𝜁)𝑢 ∈ T(dom𝑗) and thus 𝑄𝑗T𝑅𝑗(𝜁) = T𝑅𝑗(𝜁); so, Equation (2.13) implies (2.14) since 𝑄

∗
2
=

𝑄2. Equation (2.15) follows from (2.10), (2.11), and (2.14). □

Remark 2.7. As it is easy to see from the proof of Theorem 2.6, the symplectic resolvent difference
formulas (2.13) and (2.14) hold even if 1 is a nonself-adjoint restriction of 𝐴

∗; the only asser-
tion used was dom(𝑗) ⊂ dom(T), 𝑗 = 1, 2. We further recall that the classical Krein’s resolvent
formula, see, for example, [13, 120] and Appendix B, gives an expression of the difference of the
resolvents of an arbitrary self-adjoint extension  of 𝐴 and a special, “Dirichlet”-type extension
0 whose domain is ker(Γ0). The difference of the resolvents of the two extensions is expressed
in terms of the 𝛾-field and the abstract Weyl’s function; we recall this in Proposition B.1. The sym-
plectic resolvent difference formula offered in Theorem 2.6 does not contain of course that much
information as Krein’s resolvent formula as it does not involve, for example, the Weyl function.
We stress, however, that Theorem 2.6 works for any two arbitrary self-adjoint extensions1 and2; the domains of neither of them should be the kernels of Γ0 or Γ1. Also, as we will see below in
Section 3, the symplectic resolvent difference formula in Theorem 2.6 appears to be very useful,
for instance, in establishing continuity and differentiability properties of the resolvents of families
of self-adjoint extensions. Clearly, the resolvent difference formula in Theorem 2.6 can be easily
obtained by applying the classical Krein’s formula, first, to 1 and 0 and, next, to 2 and 0

and then by subtracting the two formulas, cf. Remark B.2. This way of computing the difference
of resolvents of two arbitrary extensions was often used since very classical work to show, for
instance, that the difference belongs to the Schatten-von Neumann ideal, see, for example, [55,
Theorem 2 and Corollary 4]. Finally, as we demonstrate in the proof of Proposition B.1, the resol-
vent difference formula can also be used as the first step in proving the classical Krein’s formula
(of course, several more steps are required for the proof to dig out the wealth of information that
the classical formula contains).

Remark 2.8. We note that (2.13) in Theorem 2.6 yields a new streamlined proof† of the classical
Krein’s resolvent formula, see [2, SectionVIII.106], [41, AppendixA, eq. (A.36)] in the case of finite
deficiency indices. It can also be used to derive the classical Krein–Naimark resolvent formula in
the case of infinite deficiency indices as demonstrated in Appendix B below.

† Provided in the electronic version of this manuscript [92, Proposition B.3].
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We conclude this section with a series of auxiliary assertions aiming to place the above results
in the vast literature on the theory of boundary relations in Krein spaces and discuss further
the adjoint operators (T𝑅𝑗(𝜁))

∗ appearing in (2.14) and (2.15). Although the assertions could of
independent interests, they are not being used in the remainder of the paper.

Remark 2.9. We now briefly mention how to recast Hypothesis 2.1 using Krein’s spaces in the
context of boundary triplets as discussed in the inspirational paper [53] whose authors are dealing
with very general but still closely related to our setting. Let 𝐽ℌ = 𝐢𝐽, cf. (2.5), and define inℌ×ℌ

an indefinite scalar product

⟨⟨(𝑓1, 𝑓2)⊤, (g1, g2)⊤⟩⟩ℌ×ℌ ∶ = ⟨𝐽ℌ(𝑓1, 𝑓2)
⊤, (g1, g2)

⊤⟩ℌ×ℌ

= 𝐢𝜔((𝑓1, 𝑓2)
⊤, (g1, g2)

⊤), 𝑓1, 𝑓2, g1, g2 ∈ ℌ.

Let 𝐽 be an analogous operator in  × yielding the corresponding indefinite scalar product
⟨⟨(𝑢1, 𝑢2)⊤, (𝑣1, 𝑣2)⊤⟩⟩ . Then ( ×, ⟨⟨⋅, ⋅⟩⟩×) and (ℌ × ℌ, ⟨⟨⋅, ⋅⟩⟩ℌ×ℌ) are Krein spaces and
the operator T induces an isometry between them. To define the latter in precise terms, let 𝐺(𝐴∗)

denote the graph of 𝐴∗ in × and introduce an operator

 ∶  × → ℌ×ℌ, dom( ) = {(𝑢, 𝐴∗𝑢)⊤ ∶ 𝑢 ∈ } ⊂ 𝐺(𝐴∗),  (𝑢, 𝐴∗𝑢)⊤ ∶= (Γ0𝑢, Γ1𝑢)
⊤.

Then Green’s identity (2.3) yields

⟨⟨(𝑢, 𝐴∗𝑢)⊤, (𝑣, 𝐴∗𝑣)⊤⟩⟩ = ⟨⟨ (𝑢, 𝐴∗𝑢)⊤,  (𝑣, 𝐴∗𝑣)⊤⟩⟩ℌ for all 𝑢, 𝑣 ∈ ,

and so,  is an isometry between theKrein spaces ( ×, ⟨⟨⋅, ⋅⟩⟩) and (ℌ × ℌ, ⟨⟨⋅, ⋅⟩⟩ℌ). Follow-
ing [53], we will identify the graph of  with  and treat it as a linear relation in × ×ℌ ×ℌ,
see [13] for a comprehensive introduction into spectral theory of linear relations. In particular,
 −1 ⊂  [∗], where the inverse is understood in the sense of relations and  [∗] denotes the adjoint
relation with respect to the Krein inner products. An important question is whether  is unitary,
that is,  −1 =  [∗]. [53, Proposition 2.5] gives sufficient conditions for an isometric map  to be
unitary. The conditions are: (i) 𝐺(𝐴∗)[⟂] ⊂ 𝐺(𝐴∗), (ii) (ran )[⟂] ⊂ mul( ) (here [⟂] denotes the
orthogonal complement in the Krein space, and mul is the multivalued part of the relation), and
(iii) dom  [∗] ⊂ ran( ). We note that (i) and (ii) follow from Hypothesis 2.1, while (iii) does not
(in general), even in the more restrictive setting of quasi-boundary triples studied in [14]. A deep
characterization of the equality  −1 =  [∗] in terms of the Nevanlinna property of theWeyl func-
tion is given in [53, Theorem 3.9], see also [54, Theorem 7.57 and Corollary 7.58]. We stress that
Hypothesis 2.1 alone is not sufficient for  being unitary! To further compare the setting of [53]
with that given by Hypothesis 2.1, we note that the latter deals with densely defined symmetric
operator 𝐴 and the linear relation  with dense range. These density assumptions model elliptic
differential operators on bounded domains and ordinary differential operators on metric graphs,
and, at the same time, yield natural relations between self-adjoint extensions of𝐴 and Lagrangian
planes inℌ×ℌ as described in Theorems A.1 and A.2. In the more general setting of [53], these
relations do not always take place, cf. Remark A.3.

Remark 2.10. We choose to use Lagrangian (symplectic) language throughout the paper. Alter-
natively, Lagrangian plains are called self-adjoint linear relations, and we refer to [13, 120] for a
detailed account of the topic, see also [106]. Another way to describe the same object is to involve
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the Krein spaces introduced in Remark 2.9. We notice that ◦ defined in (2.6) is just  [⊥], the
⟨⟨⋅ , ⋅⟩⟩

ℌ
-orthogonal to  subspace ofℌ×ℌ, and  is Lagrangian if and only if  =  [⊥].

Next, we discuss the operator (T𝑅2(𝜁))
∗ appearing in Theorem 2.6. Let us first record the

following useful fact about T∗.

Proposition 2.11. The domain of the adjoint operator T∗ ∶ dom(T∗) ⊂ ℌ ×ℌ → −, cf. (2.1),
satisfies 𝐽(T()) ⊆ dom(T∗).

Proof. By the general definition of adjoint operator, dom((T)∗) is the set of ℎ ∈ ℌ ×ℌ such that
there exists a 𝑤 ∈ + so that for all 𝑢 ∈  = dom(T), one has

⟨T𝑢, ℎ⟩
ℌ×ℌ

= +
⟨𝑢,Φ−1𝑤⟩−

= ⟨𝑢,𝑤⟩+
= ⟨𝑢,𝑤⟩ + ⟨𝐴∗𝑢,𝐴∗𝑤⟩ ; (2.16)

if this is the case, then (T)∗ℎ ∶= Φ−1𝑤. We recall the orthogonal direct sum decomposition+ =

dom(𝐴)+̇(dom(𝐴))⟂+ where, by [26, Lemma 3.1(a)],

(dom(𝐴))⟂+ =
{
𝑣 ∈ + ∶ 𝐴∗𝑣 ∈ + and 𝑣 = −𝐴∗(𝐴∗𝑣)

}
. (2.17)

Since dom(𝐴) ⊂  and ker(T) = dom(𝐴) by part (1) of the proposition, we have

T() = T
(
(dom(𝐴))⟂+ ∩)

.

If ℎ ∶= (ℎ1, ℎ2)
⊤ = 𝐽T𝑣 for some 𝑣 ∈ (dom(𝐴))⟂+ ∩, then
⟨T𝑢, ℎ⟩

ℌ×ℌ
= ⟨Γ0𝑢, ℎ1⟩ℌ + ⟨Γ1𝑢, ℎ2⟩ℌ = ⟨Γ0𝑢, Γ1𝑣⟩ℌ − ⟨Γ1𝑢, Γ0𝑣⟩ℌ
= ⟨𝑢,𝐴∗𝑣⟩ − ⟨𝐴∗𝑢, 𝑣⟩

by the Green identity (2.3). Letting 𝑤 = 𝐴∗𝑣, we derive (2.16) from (2.17) and thus 𝐽(T()) ⊆

dom((T)∗). □

It is tempting to rewrite the prefactor (T𝑅2(𝜁))
∗ in the right-hand side of (2.13) in terms of the

product of the operators adjoint to𝑇 and𝑅2(𝜁). To that end, we first prove an auxiliary result about
the product of the adjoints.

Proposition 2.12. Assume Hypothesis 2.1 and recall (2.1). Assume that there exists a self-
adjoint extension  of 𝐴 satisfying dom() ⊂  and denote 𝑅(𝜁,) ∶= ( − 𝜁)−1 ∈ () for

all 𝜁 ∈ ℂ ⧵ Spec(). The operator 𝑅(𝜁,) ∈ () can be uniquely extended to a bounded linear

operator in (−,) that we will denote by (𝜁,). This extension is given by the opera-
tor (𝑅(𝜁,))∗ ∈ (−,) adjoint to 𝑅(𝜁,) ∈ (,+). With this notational conventions, the
operator

(
T𝑅(𝜁,)

)∗
∈ (ℌ × ℌ,) can be written as

(T𝑅(𝜁,))∗ℎ = (𝜁,)(T)∗ℎ for all ℎ ∈ 𝐽(T()). (2.18)

Proof. For the sake of the proof, we will denote by 𝑅(𝜁,) ∈ (,+) the resolvent operator
𝑅(𝜁,) viewed as an operator acting from  to +; thus, (𝑅(𝜁,))∗ ∈ (−,). We let 𝑖 ∈
(+,) denote the first embedding 𝑖 ∶ 𝑤 ↦ 𝑤 in (2.1) and let 𝑗 = (𝑖)∗ ∈ (,−) denote the
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second embedding in (2.1) so that ⟨𝑖𝑢, 𝑤⟩ = +
⟨𝑢, 𝑗𝑤⟩−

for all𝑢 ∈ + ↪  and𝑤 ∈  ↪ −.

In this notation, 𝑖𝑅(𝜁,) = 𝑅(𝜁,), and, in order to prove the first part of the proposition, we have
to show that

(𝑅(𝜁,))∗𝑗𝑤 = 𝑅(𝜁,)𝑤 for all 𝑤 ∈ , (2.19)

and so, (𝜁,) ∶= (𝑅(𝜁,))∗ ∈ (−,) is indeed a bounded extension to − of 𝑅(𝜁,) ∈

(). For any 𝑢 ∈ + and 𝑤 ∈ , we infer

⟨𝑖𝑢, (𝑅(𝜁,))∗𝑗𝑤⟩ = +
⟨𝑢, 𝑗(𝑅(𝜁,))∗𝑗𝑤⟩−

(because 𝑖∗ = 𝑗)

= ⟨(𝑗(𝑅(𝜁,))∗𝑗
)∗
𝑢,𝑤⟩ (because 𝑗(𝑅(𝜁,))∗𝑗 ∈ (,−))

= ⟨𝑖𝑅(𝜁,)𝑖𝑢, 𝑤⟩ (because 𝑖∗ = 𝑗)

= ⟨𝑅(𝜁,)𝑖𝑢, 𝑤⟩ (because 𝑖𝑅(𝜁,) = 𝑅(𝜁,))

= ⟨𝑖𝑢, 𝑅(𝜁,)𝑤⟩ (because = ∗ in).

Since ran(𝑖) is dense in, we have (2.19).
It remains to prove (2.18), that is, in the notation of the current proof, that

(T𝑅(𝜁,))∗ℎ = (𝑅(𝜁,))∗(T)∗ℎ for all ℎ ∈ 𝐽(T()). (2.20)

By [83, Problem III.5.26], we have (𝑅(𝜁,))∗(T)∗ ⊆ (T𝑅(𝜁,))∗, where the domain of the product
(𝑅(𝜁,))∗(T)∗ is set to be equal to dom(T∗). Since 𝐽(T()) ⊆ dom(T∗) by Proposition 2.11, we infer
(2.20). □

Corollary 2.13. Resolvent difference formula formulas (2.12) and (2.13) can be also rewritten as

𝑅2(𝜁) − 𝑅1(𝜁) = 2(𝜁)T
∗𝐽T𝑅1(𝜁), (2.21)

where the operator 2(𝜁) in the right-hand side is viewed as a unique extension of the resolvent

𝑅2(𝜁) ∈ () to an element of (−,) as in Proposition 2.12 and, in fact, is given by (𝑅2(𝜁))
∗ ∈

(−,). Indeed, (2.21) follows from (2.13), (2.18), and the fact that ran
(
𝐽T𝑅1(𝜁)

)
⊆ 𝐽(T()) ⊆

dom(T∗), by Proposition 2.11 (3).

Remark 2.14. We conclude this preliminary section with a slight generalization,† see (2.23) below,
of the resolvent difference formula in Theorem 2.6. To formulate it, we will freely use elemen-
tary facts on (linear) relations as nicely described in [13, Chapter 1]. In particular, we will identify
the operators on a Hilbert space  with their graphs in  ×. In this remark (and only in this
remark) instead of Hypothesis 2.1, we will impose the following assumptions. Let 𝐴 ⊂ 𝐴∗ be a
symmetric relation in  × (not necessarily densely defined), and T = [Γ0, Γ1]

⊤ ∶ dom(T) ⊆

𝐴∗ → ℌ×ℌ be a linear operator (possibly unbounded) with a dense in 𝐴∗ domain and such
that the following abstract Green’s identity holds:

⟨𝑢2, 𝑣1⟩ − ⟨𝑢1, 𝑣2⟩ = ⟨Γ1𝑢, Γ0𝑣⟩ℌ − ⟨Γ0𝑢, Γ1𝑣⟩ℌ for all 𝑢 = (𝑢1, 𝑢2), 𝑣 = (𝑣1, 𝑣2) ∈ dom(T).

†We thank the referee of an earlier version of the paper for suggesting this generalization.
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(Clearly, if 𝐴∗ is an operator, then 𝑢2 = 𝐴∗𝑢1, 𝑣2 = 𝐴∗𝑣1 and so this becomes (2.3) upon setting
Γ0𝑢1 = Γ0𝑢 and Γ1𝑢1 = Γ1𝑢, cf. [13, Section 2.1]). Furthermore, let 1 and 2 be two relations
such that𝐴 ⊂ 𝑗 ⊂ 𝐴∗ and𝜌(𝑗) ≠ ∅, 𝑗 = 1, 2, and assume that1 ⊂ dom(T) and∗

2
⊂ dom(T).

Let us fix 𝜁 ∈ 𝜌(1) ∩ 𝜌(2) and use the resolvents 𝑅1(𝜁) and 𝑅2(𝜁)
∗ = (∗

2
− 𝜁)−1 of1 and∗

2
to write the relations1 and∗

2
as follows:

1 =
{
𝑢 ∶=

(
𝑅1(𝜁)𝑢, (𝐼 + 𝜁𝑅1(𝜁))𝑢

)
∶ 𝑢 ∈ }

,

∗
2 =

{
𝑣 ∶= (𝑅2(𝜁)

∗𝑣, (𝐼 + 𝜁𝑅2(𝜁)
∗)𝑣) ∶ 𝑣 ∈ }

.
(2.22)

Using Green’s identity then yields

⟨Γ1𝑢, Γ0𝑣⟩ℌ − ⟨Γ0𝑢, Γ1𝑣⟩ℌ = ⟨(𝐼 + 𝜁𝑅1(𝜁))𝑢, 𝑅2(𝜁)
∗𝑣⟩ − ⟨𝑅1(𝜁)𝑢, (𝐼 + 𝜁𝑅2(𝜁)

∗)𝑣⟩ ,

and so, rearranging the right-hand side of the last formula gives the desired generalization of the
resolvent difference formula,

⟨(𝑅2(𝜁) − 𝑅1(𝜁))𝑢, 𝑣⟩ = ⟨Γ1𝑢, Γ0𝑣⟩ℌ − ⟨Γ0𝑢, Γ1𝑣⟩ℌ for all 𝑢, 𝑣 ∈  (2.23)

and 𝑢, 𝑣 as defined in (2.22). (Clearly, when 𝐴, 1, 2 are operators, the resolvent difference
Equation (2.23) becomes (2.12)).

3 RICCATI EQUATION FOR RESOLVENTS ANDHADAMARD-TYPE
FORMULAS FOR EIGENVALUES

In this section, we consider a one-parameter family of self-adjoint extensions of a given symmetric
operator perturbed by a family of bounded operators. In turn, the extensions are constructed using
families of Lagrangian subspaces in a boundary space and boundary traces that also depend on the
parameter. Our final objective is to derive a differential (Riccati-type) equation for the resolvents of
the perturbed operators and formulas for the derivatives of their isolated eigenvalues with respect
to the parameter. The latter abstract formulas generalize, on the one side, the classical perturba-
tion results from the case of additive perturbations, see, for example, [83, Section II.5], and, on
another, the Rayleigh–Hadamard-type variational formulas for eigenvalues of partial differential
operators depending on a parameter, see, for example, [72, 80].

3.1 Parametric families of operators

We continue to assume that𝐴 is a densely defined closed symmetric operator with equal (possibly
infinite) deficiency indices, that+ = dom(𝐴∗) is equipped with graph norm of 𝐴∗, and that ,
the domain of the trace operator, is a dense subspace of +. The following hypothesis will be
assumed throughout this section.

Hypothesis 3.1. We assume that Hypothesis 2.1 holds for the trace operator T and a subspace
 ⊂ + with dom(T) = , and, in addition, we assume that the subspace  of + is equipped
with a Banach norm ‖ ⋅ ‖ such that the (injective) embedding 𝚥 of into+ is continuous with
respect to this norm, that is, 𝚥 ∈ (,+).
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A typical example that we have in mind is the Laplacian 𝐴 = −Δ on 𝐿2(Ω) with dom(𝐴) =

𝐻2
0
(Ω) for an open bounded Ω ⊂ ℝ𝑛 with smooth boundary. In this case, we have

𝐴∗ = −Δ, + = dom(𝐴∗) ∶= {𝑢 ∈ 𝐿2(Ω) ∶ Δ𝑢 ∈ 𝐿2(Ω)},

 ∶= 1(Ω), where the space

1(Ω) ∶= {𝑢 ∈ 𝐻1(Ω) ∶ Δ𝑢 ∈ 𝐿2(Ω)}

is equipped with the norm ‖𝑢‖ ∶= (‖𝑢‖2
𝐻1(Ω)

+ ‖Δ𝑢‖2
𝐿2(Ω)

)
1∕2
.

For 𝑢 ∈ , the trace operator is given by
T𝑢 = [𝛾

𝐷
𝑢,−Φ𝛾

𝑁
𝑢]⊤ ∈ ℌ ×ℌ withℌ ∶= 𝐻1∕2(𝜕Ω),

here 𝛾
𝐷
is the Dirichlet and 𝛾

𝑁
= 𝜈 ⋅ 𝛾

𝐷
∇𝑢 is the (weak) Neumann trace maps, and Φ is the Riesz

isomorphism between𝐻−1∕2(𝜕Ω) = (𝐻1∕2(𝜕Ω))∗ and𝐻1∕2(𝜕Ω), cf. (4.21) below.

Proposition 3.2. Under Hypothesis 3.1, one has T ∈ (, ℌ × ℌ). In addition, if is a self-adjoint
extension of 𝐴 with dom() ⊂ , then there exist 𝑐, 𝐶 > 0 such that

𝑐‖𝑢‖+
⩽ ‖𝑢‖ ⩽ 𝐶‖𝑢‖+

for all 𝑢 ∈ dom(). (3.1)

In other words, the norms in+ and are equivalent on dom() for any self-adjoint extension
of 𝐴 with dom() ⊂ . Furthermore, if 𝑉 = 𝑉∗ ∈ () and 𝜁 ∉ Spec( + 𝑉), then

( + 𝑉 − 𝜁)−1 ∈ (,). (3.2)

Proof. The operator T is bounded as an everywhere defined on the Banach space closable oper-
ator (see Lemma 2.4). We claim that dom() is a ‖ ⋅ ‖-closed subspace of the Banach space .
Indeed, suppose that 𝑢𝑛 → 𝑢 in for some 𝑢𝑛 ∈ dom(). Since is continuously embedded into
+, the sequence {𝑢𝑛}𝑛∈ℕ is Cauchy in+, that is, it is Cauchy with respect to the graph norm of
𝐴∗. Hence, {𝑢𝑛} is convergent to 𝑢 in and the sequence of vectors𝐴∗𝑢𝑛 = 𝑢𝑛 converges in.
Since  is a closed operator, we conclude that 𝑢 ∈ dom(), as claimed. Now, we will consider 𝚥
as a mapping from the Banach space (dom(), ‖ ⋅ ‖) into the Banach space (dom(), ‖ ⋅ ‖+

).
This mapping is bounded and bijective; hence, its inverse is also bounded yielding (3.1). Assertion
(3.2) follows from Lemma 2.4 and (3.1). □

Remark 3.3. It is worth comparing Lemma 2.4 and 3.2: indeed, (2.4) says that the productT𝑅(𝜁,)

is a bounded operator, while Proposition 3.2 gives that each factor in this product is bounded. The
latter fact will be used in the proof of Theorem 3.18 below (specifically, see (3.21)) and it comes at
the expense of assuming Hypothesis 3.1.

Hypothesis 3.4. We assume that

T ∶ [0, 1] → (, ℌ × ℌ) ∶ 𝑡 ↦ T𝑡

is a one-parameter family of trace operators and  ⊂ + is a 𝑡-independent subspace such that
T𝑡 and  = dom(T𝑡) satisfy Hypothesis 3.1 (and thus, in particular, Hypothesis 2.1) for each 𝑡 ∈

[0, 1]. Let 𝑄 ∶ [0, 1] → (ℌ × ℌ), 𝑡 ↦ 𝑄𝑡, be a one-parameter family of orthogonal projections.
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We assume that ran(𝑄𝑡) ∈ Λ(ℌ ×ℌ) is a Lagrangian plane for each 𝑡 ∈ [0, 1]. We further assume
that there exists a family𝑡, 𝑡 ∈ [0, 1], of self-adjoint extensions of 𝐴 satisfying

dom(𝑡) ⊂ , (3.3)

T𝑡(dom(𝑡)) = ran(𝑄𝑡).

Let 𝑉 ∶ [0, 1] → (), 𝑡 ↦ 𝑉𝑡 be a one-parameter family of self-adjoint bounded operators. We
denote𝐻𝑡 ∶= 𝑡 + 𝑉𝑡 and 𝑅𝑡(𝜁) ∶= (𝐻𝑡 − 𝜁)−1 ∈ () for 𝜁 ∉ Spec(𝐻𝑡) and 𝑡 ∈ [0, 1].

Hypothesis 3.4 gives a rather general setup for boundary value problems parameterized by a
one-dimensional variable. We briefly list several families of operators for which the operators per
se, their domains, and respective traces depend on a given parameter. Our immediate objective
is just to give a glimpse of the typical situations of the setup described in Hypothesis 3.4. More
examples with detailed analysis are given below, see Subsections 4.2, 4.3, 4.4, 5.2, 5.3, and 5.4.

Example 3.5. Awell-studiedmodel that fits Hypothesis 3.4 is the family of Schrödinger operators
equipped with Robin-type boundary conditions considered on a family of subdomains Ω𝑡 ⊂ Ω

obtained by linear shrinking of a bounded star-shaped domain Ω ⊂ ℝ𝑛 to its center. The linear
rescaling ofΩ𝑡 back toΩ leads to a one-parameter family of Schrödinger operators𝐻𝑡 ∶= −Δ𝑡 + 𝑉

in 𝐿2(Ω) subject to Robin boundary conditions (𝜃𝑡𝑢 − 𝑡−1 𝜕𝑢
𝜕𝜈
) ↾𝜕Ω= 0, where 𝜃𝑡 ∈ 𝐿∞(𝜕Ω,ℝ) is the

rescaled boundary function. In this case, the minimal symmetric operator is given by the Lapla-
cian considered on 𝐻2

0
(Ω), and its self-adjoint extensions −Δ𝑡 are determined by the boundary

condition (𝜃𝑡𝑢 − 𝑡−1 𝜕𝑢
𝜕𝜈
) ↾𝜕Ω= 0 that, in turn, corresponds to the Lagrangian planes {(𝑓, g)⊤ ∈

𝐻1∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω) ∶ 𝜃𝑡𝑓 = g} in𝐻1∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω). That is, we have

 ∶= 𝐿2(Ω),ℌ ∶= 𝐻1∕2(𝜕Ω), T𝑡 ∶= [𝛾
𝐷
, −𝑡−1Φ𝛾

𝑁
]⊤,

𝐴 ∶= −Δ, dom(𝐴) = 𝐻2
0(Ω), = 1(Ω) ∶= {𝑢 ∈ 𝐻1(Ω) ∶ Δ𝑢 ∈ 𝐿2(Ω)},

dom(𝑡) ∶= {𝑢 ∈ 1(Ω) ∶ 𝜃𝑡𝛾𝐷
𝑢 = 𝑡−1𝛾

𝑁
𝑢},

ran(𝑄𝑡) ∶= {(𝑓, g)⊤ ∈ 𝐻1∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω) ∶ 𝜃𝑡𝑓 = g},

here 𝛾
𝐷
and 𝛾

𝑁
denote the Dirichlet and (weak) Neumann traces andΦ ∶ 𝐻−1∕2(𝜕Ω) → 𝐻1∕2(𝜕Ω)

denotes the Riesz isomorphism, see (4.21). Similar models are systematically studied in [44, 45,
49] and discussed in some details in a more general setting in Section 5.4 below.

Example 3.6. Our next example is a matrix second-order operator posted on amultidimensional
infinite cylinder with variable cross sections.We denote by 𝑡 ∈ ℝ the axial and by 𝑥 the transversal
variables, that is, we set

Ω ∶=
{
(𝑡, 𝑥) ∈ ℝ𝑛+1 ∶ 𝑡 ∈ ℝ, 𝑥 ∈ 𝔹𝑛

𝑟(𝑡)

}
⊂ ℝ𝑛+1,

where, for instance, 𝑟(𝑡) = 1 + 𝑡∕(1 + 𝑡2), and 𝔹𝑛
𝑟 is the ball in ℝ𝑛 of radius 𝑟 centered at zero.

Denoting Δ(𝑡,𝑥) = 𝜕2𝑡 + Δ𝑥 and Δ𝑥 =
∑𝑛

𝑗=1 𝜕
2
𝑥𝑗
, we will consider in 𝐿2(Ω;ℂ𝑁) the Schrödinger

operator

−Δ(𝑡,𝑥) + 𝑉 = −𝜕2𝑡 + 𝐵𝑡, where 𝐵𝑡 = −Δ𝑥(𝑡) + 𝑉 and 𝑉 = 𝑉(𝑡, 𝑥)
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is a smooth-bounded (𝑁 × 𝑁)-matrix-valued potential taking symmetric values, while the
𝑥-Laplace operator −Δ𝑥(𝑡) is acting in 𝐿2(𝔹𝑛

𝑟(𝑡)
;ℂ𝑁) and equipped with the following domain:

dom(−Δ𝑥(𝑡)) ∶=
{
𝑢 ∈ 1(𝔹𝑛

𝑟(𝑡)
) ∶ T𝑢 ∶= (𝛾

𝐷,𝜕𝔹𝑛
𝑟(𝑡)

𝑢,−Φ𝛾
𝑁,𝜕𝔹𝑛

𝑟(𝑡)

𝑢) ∈ 𝑡

}
,

where  ∶ 𝑡 ↦ 𝑡 is a given smooth family of Lagrangian subspaces in the boundary space
𝐻1∕2(𝜕𝔹𝑛

𝑟(𝑡)
) × 𝐻1∕2(𝜕𝔹𝑛

𝑟(𝑡)
). We note parenthetically that the spectral flow of the family {𝐵𝑡}

∞
𝑡=−∞

of the self-adjoint operators 𝐵𝑡 is of interest as it is related to the spectrum of the Schrödinger
operator −Δ(𝑡,𝑥) + 𝑉 in 𝐿2(Ω;ℂ𝑁); this relation could be established using spatial dynamics, cf.
[91, 118, 119], via a connection to a first-order differential operator, cf. [97] and [65]. Rescaling
𝑥 ↦ 𝑧 = 𝑥∕𝑟(𝑡) of 𝔹𝑛

𝑟(𝑡)
onto 𝔹𝑛

1
gives rise to a family of operators𝐻𝑡 defined analogously to 𝐵𝑡 by

𝐻𝑡 = −(𝑟(𝑡))−2Δ𝑧(𝑡) + 𝑉𝑡, where 𝑧 ∈ 𝔹𝑛
1
, 𝑉𝑡(𝑧) = 𝑉(𝑡, 𝑟(𝑡)𝑧), (3.4)

the Lagrangian subspace ̂𝑡 is obtained from 𝑡 by rescaling as well, and the 𝑧-Laplacian −Δ𝑧(𝑡)

acting in 𝐿2(𝔹𝑛
1
;ℂ𝑁) is equipped with the domain

dom(−Δ𝑧(𝑡)) ∶=
{
𝑤 ∈ 1(𝔹𝑛

1 ) ∶ T𝑡𝑤 ∶= (𝛾
𝐷,𝜕𝔹𝑛

1

𝑤,−(𝑟(𝑡))−1Φ𝛾
𝑁,𝜕𝔹𝑛

1

𝑤) ∈ ̂𝑡

}
. (3.5)

The family of operators 𝐻𝑡 can be considered within the setting of Hypothesis 3.4 with T𝑡 given
in (3.5), 𝑉𝑡 given in (3.4), and 𝑄𝑡 being the projection onto ̂𝑡.

Example 3.7. The next example is given by a one-parameter family of operators arising in
Floquet–Bloch decomposition of periodic Hamiltonians on ℝ, see [111, Theorem XII.88] and

Example 4.18 below. We consider the Schrödinger operator 𝐴 ∶= − d2

d𝑥2
+ 𝑉 on (0,1) with domain

𝐻2
0
(0, 1) and its sefl-adjoint extensions determined by the following boundary conditions 𝑢(1) =

𝑒𝐢𝑡𝑢(0), 𝑢′(1) = 𝑒𝐢𝑡𝑢′(0), 𝑡 ∈ [0, 2𝜋). In this case, the setup described in Hypothesis 3.4 is as
follows:

 ∶= 𝐿2(0, 1),ℌ ∶= ℂ2, Γ0𝑢 = (𝑢(0), 𝑢(1)), Γ1𝑢 = (𝑢′(0), −𝑢′(1)),

𝐴 ∶= −
d2

d𝑥2
, dom(𝐴) = 𝐻2

0(0, 1), = 𝐻2(0, 1);

dom(𝑡) ∶= {𝑢 ∈ 𝐻2(Ω) ∶ 𝑢(1) = 𝑒𝐢𝑡𝑢(0), 𝑢′(1) = 𝑒𝐢𝑡𝑢′(0)},

ran(𝑄𝑡) ∶= {(𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ ℂ4 ∶ 𝑧2 = 𝑒𝐢𝑡𝑧1, 𝑧3 = −𝑒𝐢𝑡𝑧4}.

Example 3.8. This example concerns a first-order operator related to the perturbed Cauchy–
Riemann operator on a two-dimensional infinite cylinder, cf. [114, Section 7]. Let 𝑎, 𝑏 ∶ ℝ → ℝ

be smooth functions having limits 𝑎± < 𝑏± at ±∞ and such that 𝑎(𝑡) < 𝑏(𝑡) for all 𝑡 ∈ ℝ, and
consider the two-dimensional cylinder

Ω = {(𝑡, 𝑥) ∈ ℝ2 ∶ 𝑎(𝑡) < 𝑥 < 𝑏(𝑡), 𝑡 ∈ ℝ}.
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For 𝑁 ⩾ 1, we consider the perturbed Cauchy–Riemann operator 𝜕̄𝑆, = 𝜕𝑡 + 𝐵𝑡 acting in the
space 𝐿2(Ω;ℝ2𝑁) of real vector-valued functions, where

𝐵𝑡 = −𝐽𝑁𝜕𝑥(𝑡) + 𝑆, 𝑡 ∈ ℝ, 𝐽𝑁 =

[
0 𝐼ℝ𝑁

−𝐼ℝ𝑁 0

]
,

and 𝑆 = 𝑆(𝑡, 𝑥) ∈ ℝ2𝑁×2𝑁 is a given smooth-bounded matrix-valued function taking symmetric
values and having limits 𝑆±(𝑥) as 𝑡 → ±∞. Here and below for each 𝑡 ∈ ℝ, we denote by 𝜕𝑥(𝑡) the
operator of 𝑥-differentiation in 𝐿2

(
(𝑎(𝑡), 𝑏(𝑡));ℝ2𝑁

)
with the domain

dom(𝜕𝑥(𝑡)) =
{
𝑢 ∈ 𝐻1

(
(𝑎(𝑡), 𝑏(𝑡));ℝ2𝑁

)
∶ T𝑡𝑢 ∶= (𝑢(𝑎(𝑡)), 𝑢(𝑏(𝑡))) ∈ 𝑡

}
, (3.6)

where ∶ 𝑡 ↦ 𝑡 ∈ Λ(2𝑁) is a given smooth family of Lagrangian subspaces inℝ4𝑁 having limits
± as 𝑡 → ±∞. Again, we note that the spectral flow of the family {𝐵𝑡}

+∞
𝑡=−∞ of the self-adjoint

operators 𝐵𝑡 is of interest since, in particular, it is equal (see, e.g., [65, 97]) to the Fredholm index
of the Cauchy–Riemann operator 𝜕̄𝑆, , see a detailed discussion and various implications of this
fact in [114, Section 7]. Rescaling 𝑢(𝑡, 𝑥) ↦ 𝑤(𝑡, 𝑧) ∶= 𝑢(𝑡, 𝑧(𝑏(𝑡) − 𝑎(𝑡)) + 𝑎(𝑡)), 𝑧 ∈ (0, 1), gives
rise to an analogous to 𝐵𝑡 operator 𝐻𝑡 acting in 𝐿2([0, 1];ℝ2𝑁) as

𝐻𝑡 = −𝐽𝑁𝜕𝑧(𝑡) + 𝑉𝑡, 𝑡 ∈ ℝ, 𝑧 ∈ (0, 1),where 𝑉𝑡(𝑧) = 𝑆(𝑡, (𝑏(𝑡) − 𝑎(𝑡))𝑧 + 𝑎(𝑡)), (3.7)

and 𝜕𝑧(𝑡) = (𝑏(𝑡) − 𝑎(𝑡)) 𝜕

𝜕𝑧
is the operator in 𝐿2([0, 1];ℝ2𝑁) with the domain

dom(𝜕𝑧(𝑡)) =
{
𝑤 ∈ 𝐻1([0, 1];ℝ2𝑁)) ∶ T𝑤 ∶= (𝑤(0), 𝑤(1)) ∈ 𝑡

}
.

The family of operators 𝐻𝑡 can be considered within the setting of Hypothesis 3.4 with the trace
given in (3.6), with 𝑄𝑡 being the projection onto 𝑡, and 𝑉𝑡 given in (3.7).

Example 3.9. Parameter-depended Hamiltonians satisfying Hypothesis 3.4 play an important
role in the theory of quantum graphs. For example, the well-known eigenvalue bracketing, see
[21, Section 3.1.6], is established by studying the dependence of eigenvalues of the 𝛿-type graph
Laplacian on the coupling constant. We refer the reader to Section 4.3 for an in-depth discussion
of parameter-depended quantum graphs satisfying Hypothesis 3.4.

Remark 3.10. Hypothesis 3.4 is satisfied, for example,when ran(𝑄𝑡) ∈ Λ(ℌ ×ℌ) is (, T𝑡) aligned,
cf. Definition A.4, and 𝑡 is the operator associated with ran(𝑄𝑡) and dom(𝑡) ⊂ , 𝑡 ∈ [0, 1],
see Theorem A.1. Conversely, if 𝑡 is a self-adjoint extension of 𝐴 with dom(𝐴𝑡) ⊂ , 𝑡 ∈ [0, 1],
which is (, T𝑡) aligned and ran(𝑄𝑡) is a subspace associated with𝑡 then ran(𝑄𝑡) ∈ Λ(ℌ ×ℌ),
𝑡 ∈ [0, 1], see Theorem A.2.

3.2 Resolvent expansion

Our first major result in the setting of Hypothesis 3.4 is a symplectic formula for the difference of
the resolvents 𝑅𝑡(𝜁) = (𝐻𝑡 − 𝜁)−1 of the operators𝐻𝑡 at different values of 𝑡.

Theorem 3.11. Assume Hypothesis 3.4 and let 𝑡, 𝑠, 𝜏 ∈ [0, 1], 𝜁 ∉ Spec(𝐻𝑡) ∪ Spec(𝐻𝑠). Then for
𝑅𝑡(𝜁) ∶= (𝐻𝑡 − 𝜁)−1 and𝐻𝑡 = 𝑡 + 𝑉𝑡 , one has
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𝑅𝑡(𝜁) − 𝑅𝑠(𝜁) = 𝑅𝑡(𝜁)(𝑉𝑠 − 𝑉𝑡)𝑅𝑠(𝜁) + (T𝜏𝑅𝑡(𝜁))
∗𝐽T𝜏𝑅𝑠(𝜁) (3.8)

= 𝑅𝑡(𝜁)(𝑉𝑠 − 𝑉𝑡)𝑅𝑠(𝜁) + (T𝑡𝑅𝑡(𝜁))
∗(𝑄𝑡 − 𝑄𝑠)𝐽T𝑠𝑅𝑠(𝜁)

+ (T𝑡𝑅𝑡(𝜁))
∗𝐽(T𝑡 − T𝑠)𝑅𝑠(𝜁). (3.9)

The operators whose adjoints enter (3.8), (3.9) are being considered as elements of(, ℌ × ℌ)

(cf. Proposition 3.2), and thus, their adjoints are elements of (ℌ × ℌ,).

Proof. As in the proof of Theorem 2.6 for arbitrary 𝑢, 𝑣 ∈  and T𝜏 = [Γ0, Γ1]
⊤, one has

⟨𝑅𝑡(𝜁)𝑢 − 𝑅𝑠(𝜁)𝑢, 𝑣⟩ = ⟨𝑅𝑡(𝜁)𝑢 − 𝑅𝑠(𝜁)𝑢, (𝐻𝑡 − 𝜁)𝑅𝑡(𝜁)𝑣⟩
= ⟨(𝐻𝑡 − 𝜁)𝑅𝑡(𝜁)𝑢, 𝑅𝑡(𝜁)𝑣⟩ − ⟨𝑅𝑠(𝜁)𝑢, (𝐴

∗ + 𝑉𝑡 − 𝜁)𝑅𝑡(𝜁)𝑣⟩
= ⟨𝑢, 𝑅𝑡(𝜁)𝑣⟩ + ⟨𝑅𝑠(𝜁)𝑢, (𝑉𝑠 − 𝑉𝑡)𝑅𝑡(𝜁)𝑣⟩ − ⟨(𝐴∗ + 𝑉𝑠 − 𝜁)𝑅𝑠(𝜁)𝑢, 𝑅𝑡(𝜁)𝑣⟩

+ ⟨Γ1𝑅𝑠(𝜁)𝑢, Γ0𝑅𝑡(𝜁)𝑣⟩ℌ − ⟨Γ0𝑅𝑠(𝜁)𝑢, Γ1𝑅𝑡(𝜁)𝑣⟩ℌ
= ⟨𝑅𝑠(𝜁)𝑢, (𝑉𝑠 − 𝑉𝑡)𝑅𝑡(𝜁)𝑣⟩ + ⟨Γ1𝑅𝑠(𝜁)𝑢, Γ0𝑅𝑡(𝜁)𝑣⟩ℌ − ⟨Γ0𝑅𝑠(𝜁)𝑢, Γ1𝑅𝑡(𝜁)𝑣⟩ℌ
=

⟨(
𝑅𝑡(𝜁)(𝑉𝑠 − 𝑉𝑡)𝑅𝑠(𝜁) + (Γ0𝑅𝑡(𝜁))

∗Γ1𝑅𝑠 − (Γ1𝑅𝑡(𝜁))
∗Γ0𝑅𝑠

)
𝑢, 𝑣

⟩
 .

Thus,

𝑅𝑡(𝜁) − 𝑅𝑠(𝜁) = 𝑅𝑡(𝜁)(𝑉𝑠 − 𝑉𝑡)𝑅𝑠(𝜁) + (Γ0𝑅𝑡(𝜁))
∗Γ1𝑅𝑠(𝜁) − (Γ1𝑅𝑡(𝜁))

∗Γ0𝑅𝑠(𝜁),

yielding (3.8). In order to prove (3.9), we note that

T𝑠𝑅𝑠(𝜁) = 𝑄𝑠T𝑠𝑅𝑠(𝜁) and T𝑡𝑅𝑡(𝜁) = 𝑄𝑡T𝑡𝑅𝑡(𝜁).

In addition, we have 𝑄𝑠𝐽𝑄𝑠 = 0 since ran(𝑄𝑠) is Lagrangian. This implies

(T𝑡𝑅𝑡(𝜁))
∗
𝐽T𝑡𝑅𝑠(𝜁) = (T𝑡𝑅𝑡(𝜁))

∗𝐽T𝑠𝑅𝑠(𝜁) + (T𝑡𝑅𝑡(𝜁))
∗𝐽(T𝑡 − T𝑠)𝑅𝑠(𝜁)

= (T𝑡𝑅𝑡(𝜁))
∗𝑄𝑡𝐽𝑄𝑠T𝑠𝑅𝑠(𝜁) + (T𝑡𝑅𝑡(𝜁))

∗𝐽(T𝑡 − T𝑠)𝑅𝑠(𝜁)

= (T𝑡𝑅𝑡(𝜁))
∗(𝑄𝑡 − 𝑄𝑠)𝐽T𝑠𝑅𝑠(𝜁) + (T𝑡𝑅𝑡(𝜁))

∗𝐽(T𝑡 − T𝑠)𝑅𝑠(𝜁).

Utilizing this and letting 𝜏 = 𝑡 in (3.8) yields (3.9). □

Remark 3.12. We note that (3.8) holds even if𝑠 is a nonself-adjoint restriction of 𝐴.

Next, given the one-parameter families of self-adjoint extensions 𝑡, traces T𝑡 and operators
𝑉𝑡 described in Hypothesis 3.4, we will show that the resolvent operators for 𝐻𝑡 = 𝑡 + 𝑉𝑡 are
continuous (differentiable) at a given point 𝑡 = 𝑡0 whenever the mappings 𝑡 ↦ 𝑄𝑡, 𝑡 ↦ T𝑡, 𝑡 ↦ 𝑉𝑡

are continuous (differentiable) at 𝑡0.
To introduce appropriate assumptions, we recall from Proposition 3.2 (replacing dom() by

dom(𝑡)) that under Hypothesis 3.1, the norms in and+ are equivalent on dom(𝑡) for each
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𝑡 ∈ [0, 1], cf. (3.1), but with the constant 𝑐 that might depend of 𝑡. We will need a uniform for 𝑡
near 𝑡0 version of this assertion: In addition to Hypothesis 3.4, we will often assume that, for a
given 𝑡0 ∈ [0, 1], there are constants 𝐶, 𝑐 > 0 such that

𝑐‖𝑢‖+
⩽ ‖𝑢‖ ⩽ 𝐶‖𝑢‖+

for all 𝑢 ∈ dom(𝑡) and 𝑡 near 𝑡0. (3.10)

These inequalities are equivalent to uniform with respect to the parameter 𝑡 boundedness of the
norms of resolvents of 𝑡 as operators from  to , see Proposition 3.15 below. We stress that
(3.10) does not mean that the norms ‖ ⋅ ‖+

and ‖ ⋅ ‖ are equivalent on ; they are equivalent
only on the domains of the extensions𝑡 of 𝐴 but uniformly for 𝑡 near 𝑡0.

Hypothesis 3.13. In addition to Hypotheses 3.1 and 3.4, we assume, for a given 𝑡0 ∈ [0, 1], that

‖(𝑡 − 𝐢)−1‖(,) = (1) as 𝑡 → 𝑡0. (3.11)

Remark 3.14. Suppose that 𝑉𝑡 form Hypothesis 3.4 satisfies 𝑉𝑡 = (1), 𝑡 → 𝑡0 and that 𝜁 ∈ ℂ ⧵ ℝ.
Then (3.11) is equivalent to

‖(𝑡 + 𝑉𝑡 − 𝜁)−1‖(,) = (1) as 𝑡 → 𝑡0.

Indeed, we have

(𝑡 + 𝑉𝑡 − 𝜁)−1 = (𝑡 − 𝐢)−1 + (𝑡 − 𝐢)−1(𝐢 − 𝜁 + 𝑉𝑡)(𝑡 + 𝑉𝑡 − 𝜁)−1.

Considering (𝑡 − 𝐢)−1 as a mapping from to, (𝑡 + 𝑉𝑡 − 𝜁)−1 as a mapping from to itself,
and using the bound ‖(𝑡 + 𝑉𝑡 − 𝜁)−1‖() ⩽ (| Im 𝜁|)−1, we infer the claim.

The equivalence of Hypothesis 3.13 and assertion (3.10) is proven next.

Proposition 3.15. Assume Hypothesis 3.1. Then, (3.10) is equivalent to (3.11).

Proof. If (3.11) holds, then for any 𝑢 ∈ dom(𝑡) and 𝑡 near 𝑡0, one has

‖𝑢‖ = ‖(𝑡 − 𝐢)−1(𝑡 − 𝐢)𝑢‖ ⩽ 𝑐‖(𝑡 − 𝐢)𝑢‖
⩽ 𝑐(‖𝑡𝑢‖ + ‖𝑢‖) ⩽

√
2𝑐‖𝑢‖+

,

thus proving (3.10), as ‖𝑢‖+
⩽ 𝑐‖𝑢‖ by Hypothesis 3.1.

Conversely, using (3.10), for all 𝑡 near 𝑡0 and any 𝑣 ∈ , one has

‖(𝑡 − 𝐢)−1𝑣‖ ⩽ 𝐶‖(𝑡 − 𝐢)−1𝑣‖+

= 𝐶
(‖(𝑡 − 𝐢)−1𝑣‖2 + ‖𝑡(𝑡 − 𝐢)−1𝑣‖2

)1∕2

⩽ 𝐶
(‖(𝑡 − 𝐢)−1‖()‖𝑣‖2 + (‖𝑣‖ + ‖(𝑡 − 𝐢)−1𝑣‖)2

)1∕2

⩽
√
5𝐶‖𝑣‖ ,

since𝑡 is self-adjoint, thus proving (3.11). □
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Assuming that the families 𝑄𝑡, T𝑡 are continuous at 𝑡 = 𝑡0, under Hypothesis 3.13 the resolvent
difference formula (3.9) with 𝑉𝑡 = 0 shows (as in the proof of Theorem 3.18 (1) below) that

‖‖(𝑡 − 𝐢)−1 − (𝑡0
− 𝐢)−1‖‖() =

𝑡→𝑡0
𝑜(1),

‖‖(𝑡 − 𝐢)−1 − (𝑡0
− 𝐢)−1‖‖(,+)

=
𝑡→𝑡0

𝑜(1).

In the proof of differentiability of the resolvent of𝐻𝑡, we will need, however, a somewhat stronger
continuity assumption, given next, regarding the resolvents of 𝑡 considered as operators from to . As we will demonstrate in Sections 4 and 5 below, the stronger assumption does hold in
the case of boundary triplets and for Robin-type elliptic partial differential operators on bounded
domains.

Hypothesis 3.16. In addition to Hypotheses 3.1 and 3.4, we assume that for a given 𝑡0 ∈ [0, 1],
one has

‖‖(𝑡 − 𝐢)−1 − (𝑡0
− 𝐢)−1‖‖(,) = 𝑜(1), 𝑡 → 𝑡0. (3.12)

Remark 3.17. Suppose that 𝑉𝑡 from Hypothesis 3.4 satisfies (𝑉𝑡 − 𝑉𝑡0
) = 𝑜(1), 𝑡 → 𝑡0 and that

𝜁 ∈ ℂ ⧵ ℝ. Then (3.12) is equivalent to

‖(𝑡 + 𝑉𝑡 − 𝜁)−1 − (𝑡0
+ 𝑉𝑡0

− 𝜁)−1‖(,) = 𝑜(1) as 𝑡 → 𝑡0.

The proof is similar to the proof of Remark 3.14. We also note that (3.12) implies (3.11).

After these preliminaries, we are ready to present the main result of this subsection.

Theorem 3.18. We fix 𝑡0 ∈ [0, 1], 𝜁0 ∉ Spec(𝐻𝑡0
) and define

𝜖 = {(𝑡, 𝜁) ∈ [0, 1] × ℂ ∶ |𝑡 − 𝑡0| ⩽ 𝜖, |𝜁 − 𝜁0| ⩽ 𝜖} for 𝜖 > 0.

(1) Assume Hypothesis 3.13 and suppose that the mappings 𝑡 ↦ T𝑡 , 𝑡 ↦ 𝑉𝑡 , 𝑡 ↦ 𝑄𝑡 are continuous
at 𝑡0. Then there exists an 𝜀 > 0 such that if (𝑡, 𝜁) ∈ 𝜀, then 𝜁 ∉ Spec(𝐻𝑡) and the operator-
valued function 𝑡 ↦ 𝑅𝑡(𝜁) = (𝐻𝑡 − 𝜁)−1 is continuous at 𝑡0 uniformly for |𝜁 − 𝜁0| < 𝜀.

(2) Assume Hypothesis 3.13 and suppose that the mappings 𝑡 ↦ T𝑡 , 𝑡 ↦ 𝑉𝑡 , 𝑡 ↦ 𝑄𝑡 are Lipschitz
continuous at 𝑡0. Then, there exists a constant 𝑐 > 0 such that for all (𝑡, 𝜁) ∈ 𝜀, one has

‖𝑅𝑡(𝜁) − 𝑅𝑡0
(𝜁)‖() ⩽ 𝑐|𝑡 − 𝑡0|. (3.13)

(3) AssumeHypothesis 3.16 and suppose that themappings 𝑡 ↦ T𝑡 , 𝑡 ↦ 𝑉𝑡 , 𝑡 ↦ 𝑄𝑡 are differentiable
at 𝑡0. Then, for some 𝜀 > 0, the following asymptotic expansion holds uniformly for |𝜁 − 𝜁0| < 𝜀:

𝑅𝑡(𝜁) =
𝑡→𝑡0

𝑅𝑡0
(𝜁) +

(
−𝑅𝑡0

(𝜁)𝑉̇𝑡0
𝑅𝑡0

(𝜁) + (T𝑡0
𝑅𝑡0

(𝜁))∗𝑄̇𝑡0
𝐽T𝑡0

𝑅𝑡0
(𝜁)

+(T𝑡0
𝑅𝑡0

(𝜁))∗𝐽Ṫ𝑡0
𝑅𝑡0

(𝜁)
)
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0), in ().

(3.14)
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In particular, the function 𝑡 ↦ 𝑅𝑡(𝜁0) = (𝐻𝑡 − 𝜁0)
−1 is differentiable at 𝑡 = 𝑡0 and satisfies the

following Riccati equation:

𝑅̇𝑡0
(𝜁0) = −𝑅𝑡0

(𝜁0)𝑉̇𝑡0
𝑅𝑡0

(𝜁0) + (T𝑡0
𝑅𝑡0

(𝜁0))
∗𝑄̇𝑡0

𝐽T𝑡0
𝑅𝑡0

(𝜁0)

+ (T𝑡0
𝑅𝑡0

(𝜁0))
∗𝐽Ṫ𝑡0

𝑅𝑡0
(𝜁0).

(3.15)

The operators whose adjoints enter (3.14), (3.15) are considered as elements of (, ℌ × ℌ),
cf. Proposition 3.2, and their adjoints are elements of (ℌ × ℌ,), the dot denotes the deriva-
tive with respect to 𝑡 evaluated at 𝑡0. We emphasize the generality of formulas (3.14)–(3.15) where
all three objects may vary: the domain of the extension, the trace operator, and the “lower order
terms” of the operator itself. In Theorem 3.26, wewill give analogous results using a slightly differ-
ent description of the domains of the self-adjoint extensions. Also, see Theorem 4.16 for the case
when the trace operator is 𝑡-independent.We refer to Remark 3.19 below for somewhatmore sym-
metric versions of the RHS of (3.14) and (3.15) and to Remark 3.20 for a comment on the continuity
and differentiability conditions in the theorem.

Proof. First, we prove that the mapping 𝑡 ↦ 𝑅𝑡(𝐢) ∈ () is continuous at 𝑡0. Hypothesis 3.13 by
Remark 3.14 yields

‖𝑅𝑡(𝐢)‖(,) = (1), 𝑡 → 𝑡0. (3.16)

Using (3.9) with 𝜁 = 𝐢, 𝑠 = 𝑡0, and (3.16), we get

𝑅𝑡(𝐢) − 𝑅𝑡0
(𝐢) = 𝑅𝑡(𝐢)(𝑉𝑡0

− 𝑉𝑡)𝑅𝑡0
(𝐢)

+ (T𝑡𝑅𝑡(−𝐢))
∗(𝑄𝑡 − 𝑄𝑡0

)𝐽𝑄𝑡0
T𝑡0

𝑅𝑡0
(𝐢)

+ (T𝑡𝑅𝑡(−𝐢))
∗𝐽(T𝑡 − T𝑡0

)𝑅𝑡0
(𝐢) =

𝑡→𝑡0
𝑜(1).

(3.17)

Proof of (1),(2). Fix 𝜀0 > 0 such that 𝔹𝜀0
(𝜁0) ⊂ ℂ ⧵ Spec(𝐻𝑡0

). Then, by (3.17) and [110, Theorem
VIII.23], we have 𝔹𝜀0

(𝜁0) ∩ Spec(𝐻𝑡) = ∅ for 𝑡 sufficiently close to 𝑡0. Hence,

sup{‖𝑅𝑡(𝜁)‖() ∶ (𝑡, 𝜁) ∈ 𝜀} < ∞ (3.18)

for a sufficiently small 𝜀 > 0. We claim that yet a smaller choice of 𝜀 > 0 gives

sup{‖𝑅𝑡(𝜁)‖(,) ∶ (𝑡, 𝜁) ∈ 𝜀} < ∞. (3.19)

Indeed, by the resolvent identity, one has

𝑅𝑡(𝜁) = 𝑅𝑡(𝐢) − (𝐢 − 𝜁)𝑅𝑡(𝐢)𝑅𝑡(𝜁).
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Using this and (3.16), we see that (3.18) yields (3.19). Next, by (3.9) and (3.19), we infer

𝑅𝑡(𝜁) − 𝑅𝑡0
(𝜁) = 𝑅𝑡(𝜁)(𝑉𝑡0

− 𝑉𝑡)𝑅𝑡0
(𝜁)

+ (T𝑡𝑅𝑡(𝜁))
∗(𝑄𝑡 − 𝑄𝑡0

)𝐽𝑄𝑡0
T𝑡0

𝑅𝑡0
(𝜁)

+ (T𝑡𝑅𝑡(𝜁))
∗𝐽(T𝑡 − T𝑡0

)𝑅𝑡0
(𝜁)

⩽ 𝑐 max{‖𝑄𝑡 − 𝑄𝑡0
‖(ℌ×ℌ), ‖T𝑡 − T𝑡0

‖(+,ℌ×ℌ), ‖𝑉𝑡 − 𝑉𝑡0
‖()}

(3.20)

for some 𝑐 > 0 and all (𝑡, 𝜁) ∈ 𝜀; here, we used the inequality

‖T𝑡𝑅𝑡(𝜁)‖(,ℌ×ℌ) ⩽ ‖T𝑡‖(,ℌ×ℌ)‖𝑅𝑡(𝜁)‖(,), (3.21)

see Proposition 3.2 and Remark 3.3. Now both assertions (1),(2) follow from (3.20).
Proof of (3). First, we notice that (3.12) and the resolvent identity give

‖𝑅𝑡(𝜁) − 𝑅𝑡0
(𝜁)‖(,) → 0, 𝑡 → 0, (3.22)

uniformly for |𝜁 − 𝜁0| < 𝜀, with 𝜀 > 0 as above. Next, by assumptions, we have

𝑄𝑡 =
𝑡→𝑡0

𝑄𝑡0
+ 𝑄̇𝑡0

(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0),

𝑉𝑡 =
𝑡→𝑡0

𝑉𝑡0
+ 𝑉̇𝑡0

(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0),

T𝑡 =
𝑡→𝑡0

T𝑡0
+ Ṫ𝑡0

(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0).

Combining these expansions, (3.9), (3.13), and (3.22), we see that

𝑅𝑡(𝜁) − 𝑅𝑡0
(𝜁) =

𝑡→𝑡0
(𝑅𝑡0

(𝜁) + (𝑡 − 𝑡0))(−𝑉̇𝑡0
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0))𝑅𝑡0

(𝜁)

+
(
(T𝑡0

+ (𝑡 − 𝑡0))(𝑅𝑡0
(𝜁) + 𝑂‖⋅‖(,)

(1))
)∗

×

× (𝑄̇𝑡0
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0))𝐽𝑄𝑡0

T𝑡0
𝑅𝑡0

(𝜁)

+
(
(T𝑡0

+ (𝑡 − 𝑡0))(𝑅𝑡0
(𝜁) + 𝑂‖⋅‖(,)

(1))
)∗

×

× 𝐽(Ṫ𝑡0
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0))𝑅𝑡0

(𝜁)

=
𝑡→𝑡0

(
−𝑅𝑡0

(𝜁)𝑉̇𝑡0
𝑅𝑡0

(𝜁) + (T𝑡0
𝑅𝑡0

(𝜁))∗𝑄̇𝑡0
𝐽T𝑡0

𝑅𝑡0
(𝜁)

+(T𝑡0
𝑅𝑡0

)∗𝐽Ṫ𝑡0
𝑅𝑡0

(𝜁)
)
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0),

in () uniformly for |𝜁 − 𝜁0| < 𝜀. This shows (3.14) that implies (3.15). □

Remark 3.19. The operator 𝑄̇𝑡0
𝐽 ∈ (ℌ × ℌ) in (3.14), (3.15) is self-adjoint. Indeed, since ran(𝑄𝑡) is

Lagrangian, we have 𝐽 = 𝐽𝑄𝑡 + 𝑄𝑡𝐽 that implies the assertion upon differentiating with respect to
𝑡. Since 𝑄̇𝑡𝐽 = −𝐽𝑄̇, we can rewrite the term 𝑄̇𝑡0

𝐽 in (3.14) and (3.15) in a more symmetric fashion



30 of 83 LATUSHKIN and SUKHTAIEV

as

𝑄̇𝑡0
𝐽 =

1

2
(𝑄̇𝑡0

𝐽 − 𝐽𝑄̇𝑡0
).

Furthermore, the identity 𝑄𝑡𝐽𝑄𝑡 = 0 yields

(
T𝑡𝑅𝑡0

(𝜁)
)∗

𝐽T𝑡𝑅𝑡0
(𝜁) =

(
𝑄𝑡T𝑡𝑅𝑡0

(𝜁)
)∗

𝐽𝑄𝑡T𝑡𝑅𝑡0
(𝜁) = 0.

Differentiating this identity at 𝑡 = 𝑡0 shows that the respective terms in the RHS of (3.14) and (3.15)
could also be rewritten as

(T𝑡0
𝑅𝑡0

(𝜁0))
∗𝐽Ṫ𝑡0

𝑅𝑡0
(𝜁0) =

1

2

(
(T𝑡0

𝑅𝑡0
(𝜁0))

∗𝐽Ṫ𝑡0
𝑅𝑡0

(𝜁0)

− (Ṫ𝑡0
𝑅𝑡0

(𝜁0))
∗𝐽T𝑡0

𝑅𝑡0
(𝜁0)

)
.

Remark 3.20. The assumptions of continuity and differentiability of the families T,𝑉 and 𝑄 are
imposed at a fixed point 𝑡0 ∈ [0, 1]. For many interesting examples, these assumptions hold for all
𝑡0 ∈ [0, 1]; a typical situation of this type is described in Example 4.7. However, these assumptions
might fail for some points in [0,1]. A typical example of the latter situation is furnished by the
classical Hadamard formula setting for star-shaped domains described in Section 5.4 where the
trace operator is singular at 𝑡0 = 0 but is differentiable for each 𝑡0 ∈ (0, 1].

Remark 3.21. Discontinuities of the path 𝑡 ↦ 𝑄𝑡 in general result in discontinuities of the
eigenvalues curves. To give an example, let 𝑡 = −Δ be the realization of the Laplacian on a
bounded Lipschitz domain Ω ⊂ ℝ𝑛, 𝑛 ⩾ 2, subject to the boundary conditions 𝜒[0,1∕2](𝑡)𝛾𝐷

𝑢 +

𝜒(1∕2,1](𝑡)𝛾𝑁
𝑢 = 0; here 𝛾

𝐷
, 𝛾

𝑁
are Dirichlet and Neumann traces and 𝜒 is the characteristic

function. That is, 𝑡 is the Dirichlet Laplacian for 𝑡 ∈ [0, 1∕2] and the Neumann Laplacian for
𝑡 ∈ (1∕2, 1]. The corresponding path of Lagrangian planes is piece-wise constant with a jump at
𝑡 = 1∕2. At this point, the boundary conditions change from Dirichlet to Neumann and, due to
the celebrated inequality of L. Friedlander [62], this produces a nontrivial shift in the spectrum,
which, in turn, shows the discontinuities of the eigenvalues. We revisit Friedlander’s Inequality
in Example 5.5 below and provide a symplectic proof thereof, cf. [46].

3.3 Hadamard-type variational formulas

In this section, we derive the first-order expansion formula for the mapping 𝑡 ↦ 𝑃(𝑡)𝐻𝑡𝑃(𝑡)

near 𝑡 = 𝑡0. Here, the operator 𝐻𝑡 = 𝑡 + 𝑉𝑡 is as in Hypothesis 3.16 and 𝑃(𝑡) is a spectral pro-
jection of 𝐻𝑡 that corresponds to the 𝜆-group, cf. [83, Section II.5.1], consisting of 𝑚 isolated
eigenvalues of 𝐻𝑡 bifurcating from the eigenvalue 𝜆 = 𝜆𝑡0 of multiplicity 𝑚 of the operator 𝐻𝑡0

,
see Hypothesis 3.22 below. A subtlety is presented by the fact that the operators 𝑃(𝑡)𝐻𝑡𝑃(𝑡) act
in varying finite-dimensional spaces ran(𝑃(𝑡)); we rectify this by means of a unitary mapping
𝑈 ∶ ran(𝑃(𝑡0)) → ran(𝑃𝑡), as in, for example, [83, Section I.4.6]. After this, we use the first-order
perturbation theory for finite-dimensional operators, cf. [83, Section II.5.4], to deduce a formula
for the derivative of the eigenvalue curves which we call theHadamard-type variational formula,
see (3.38). This terminology stems from a classical Rayleigh–Hadamard–Rellich formulas for
derivatives of the eigenvalues of Laplacian posted on a parameter-dependent family of domains, cf.
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Section 5.4 below for details of this particular situation. We note that the approach adopted in this
section was originally carried out in [96] for a specific PDE situation of the one-parameter family
of Schrödinger operators with Robin boundary conditions on star-shaped domains mentioned in
Example 3.5.

Hypothesis 3.22. For a given 𝑡0 ∈ [0, 1], we assume that 𝜆 = 𝜆(𝑡0) is an isolated eigenvalue of
𝐻𝑡0

with finite multiplicity𝑚 ∈ ℕ. Let

𝛾 ∶= {𝑧 ∈ ℂ ∶ 2|𝑧 − 𝜆| = dist (𝜆, Spec(𝐻𝑡0
) ⧵ {𝜆})},

and let 𝐵 ⊂ ℂ denote the disc enclosed by 𝛾 such that Spec(𝐻𝑡0
) ∩ 𝐵 = {𝜆}.

Throughout this section, we assume Hypothesis 3.13, and that the maps 𝑡 ↦ T𝑡, 𝑉𝑡, 𝑄𝑡 are
continuous at a given 𝑡0 ∈ [0, 1]. By Theorem 3.18, there exists 𝜀 > 0 such that 𝛾 encloses𝑚 eigen-
values (not necessarily distinct) of the operator 𝐻𝑡 whenever |𝑡 − 𝑡0| < 𝜀 and 𝜀 > 0 is sufficiently
small. For such 𝑡, we let 𝑃(𝑡) denote the Riesz projection

𝑃(𝑡) ∶=
−1

2𝜋𝐢 ∫𝛾 𝑅𝑡(𝜁)𝑑𝜁, 𝑅𝑡(𝜁) = (𝐻𝑡 − 𝜁)−1 (3.23)

and recall the reduced resolvent given by

𝑆 ∶=
1

2𝜋𝐢 ∫𝛾(𝜁 − 𝜆)−1𝑅𝑡0
(𝜁)𝑑𝜁 (3.24)

and the identity 𝑃(𝑡0)𝑅𝑡0
(𝜁) = (𝜆 − 𝜁)−1𝑃(𝑡0).

Remark 3.23. The Riemann sums defining integrals in (3.23), (3.24) converge not only in ()

but also in (,). Consequently, 𝑃(𝑡), 𝑆 ∈ (,). In addition, one has

1

2𝜋𝐢 ∫𝛾 T𝑡

(
(𝜁 − 𝜆)−1𝑅𝑡(𝜁)

)
𝑑𝜁 = T𝑡

1

2𝜋𝐢 ∫𝛾
(
(𝜁 − 𝜆)−1𝑅𝑡(𝜁)

)
𝑑𝜁 = T𝑡𝑆, (3.25)

(T𝑡𝑃(𝑡)) ∈ (, ℌ × ℌ).

This follows fromcontinuity of themappingℂ ∋ 𝜁 ↦ 𝑅𝑡(𝜁) ∈ (,) for every 𝑡 ∈ [0, 1] that can
be inferred from 𝑅𝑡(𝜁) − 𝑅𝑡(𝜁0) = (𝜁 − 𝜁0)𝑅𝑡(𝜁)𝑅𝑡(𝜁0), (cf. (3.18), (3.19)), and T𝑡 ∈ (, ℌ × ℌ).

Next, we derive an asymptotic expansion of 𝑃(𝑡)𝐻𝑡𝑃(𝑡) for 𝑡 near 𝑡0. To that end, we introduce
the operator 𝐷(𝑡) ∶= 𝑃(𝑡) − 𝑃(𝑡0) satisfying ‖𝐷(𝑡)‖() =

𝑡→𝑡0
𝑜(1), which follows from (3.13) and

(3.23). In particular, for 𝑡 near 𝑡0, the following operators are well defined:

𝑈(𝑡) ∶= (𝐼 − 𝐷2(𝑡))−1∕2((𝐼 − 𝑃(𝑡))(𝐼 − 𝑃(𝑡0)) + 𝑃(𝑡)𝑃(𝑡0)),

𝑈(𝑡)−1 = ((𝐼 − 𝑃(𝑡0))(𝐼 − 𝑃(𝑡)) + 𝑃(𝑡0)𝑃(𝑡))(𝐼 − 𝐷2(𝑡))−1∕2,
(3.26)

moreover, as in [83, Section I.4.6], [63, Proposition 2.18], we note that

𝑈(𝑡)𝑃(𝑡0) = 𝑃(𝑡)𝑈(𝑡), (3.27)
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and that 𝑈(𝑡) maps ran(𝑃(𝑡0)) onto ran(𝑃(𝑡)) unitarily (for 𝑡 near 𝑡0). Given this auxiliary
operators, we are ready to expand 𝑃(𝑡)𝐻𝑡𝑃(𝑡), which is an 𝑚-dimensional operator, for 𝑡 near
𝑡0.

Lemma 3.24. For a given 𝑡0 ∈ [0, 1], we assume that the mappings 𝑡 ↦ T𝑡 , 𝑡 ↦ 𝑉𝑡 , 𝑡 ↦ 𝑄𝑡 are
differentiable at 𝑡0 and that Hypotheses 3.16 and 3.22 hold. Then, one has

𝑃(𝑡0)𝑈(𝑡)−1𝐻𝑡𝑃(𝑡)𝑈(𝑡)𝑃(𝑡0) =
𝑡→𝑡0

𝜆𝑃(𝑡0) +
(
𝑃(𝑡0)𝑉̇𝑡0

𝑃(𝑡0)

−(T𝑃(𝑡0))
∗𝑄̇𝑡0

𝐽T𝑃(𝑡0) − (T𝑡0
𝑃(𝑡0))

∗𝐽Ṫ𝑡0
𝑃(𝑡0)

)
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0).

(3.28)

Proof. Our strategy is to expand the left-hand side of (3.28) using (3.14). Multiplying (3.14) by 𝑃(𝑡0)
from the right and using identity

𝑅𝑡0
(𝜁)𝑃(𝑡0) = 𝑃(𝑡0)𝑅𝑡0

(𝜁) = (𝜆 − 𝜁)−1𝑃(𝑡0), (3.29)

where 𝑅𝑡(𝜁) = (𝐻𝑡 − 𝜁)−1, we get

𝑅𝑡(𝜁)𝑃(𝑡0) =
𝑡→𝑡0

(𝜆 − 𝜁)−1𝑃(𝑡0) + (𝜆 − 𝜁)−1
(
−𝑅𝑡0

(𝜁)𝑉̇𝑡0
𝑃(𝑡0)

+
(
T𝑡0

𝑅𝑡0
(𝜁)

)∗
𝑄̇𝑡0

𝐽T𝑡0
𝑃(𝑡0) +

(
T𝑡0

𝑅𝑡0
(𝜁)

)∗
𝐽Ṫ𝑡0

𝑃(𝑡0)
)
(𝑡 − 𝑡0)

+ 𝑜(𝑡 − 𝑡0).

(3.30)

The proof is split in several steps.
Step 1. One has

𝑃(𝑡0)𝑃(𝑡)𝑃(𝑡0) =
𝑡→𝑡0

𝑃(𝑡0) + 𝑜(𝑡 − 𝑡0). (3.31)

Proof. For any continuous 𝐹 ∶ 𝛾 → (ℌ × ℌ,), we have

(
∫𝛾 𝐹(𝜁) 𝑑𝜁

)∗

= −∫𝛾(𝐹(𝜁))
∗ 𝑑𝜁.

Applying this to 𝐹(𝜁) = 1

2𝜋𝐢
(𝜆 − 𝜁)−1T𝑡0

𝑅𝑡0
(𝜁) and using (3.24), (3.25) yields

∫𝛾
(

1

2𝜋𝐢
(𝜆 − 𝜁)−1T𝑡0

𝑅𝑡0
(𝜁)

)∗
𝑑𝜁 =

(
−∫𝛾

1

2𝜋𝐢
(𝜆 − 𝜁)−1T𝑡0

𝑅𝑡0
(𝜁) 𝑑𝜁

)∗

= (T𝑡0
𝑆)∗.

We use this, multiply both sides of (3.30) by − 1

2𝜋𝐢
and integrate over 𝛾 to obtain the following:

𝑃(𝑡)𝑃(𝑡0) =
𝑡→𝑡0

𝑃(𝑡0) +
(
−𝑆𝑉̇𝑡0

𝑃(𝑡0) +
(
T𝑡0

𝑆
)∗

𝑄̇𝑡0
𝐽T𝑡0

𝑃(𝑡0)

+
(
T𝑡0

𝑆
)∗

𝐽Ṫ𝑡0
𝑃(𝑡0)

)
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0).

(3.32)
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Taking adjoints, we get

𝑃(𝑡0)𝑃(𝑡) =
𝑡→𝑡0

𝑃(𝑡0) +
(
−𝑃(𝑡0)𝑉̇𝑡0

𝑆 + (T𝑡0
𝑃(𝑡0))

∗ 𝑄̇𝑡0
𝐽T𝑡0

𝑆

+
(
Ṫ𝑡0

𝑃(𝑡0)
)∗

𝐽T𝑡0
𝑆
)
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0).

Multiplying this by 𝑃(𝑡0) from the right and using 𝑆𝑃(𝑡0) = 0, we arrive at (3.31). □

Step 2. One has

𝑃(𝑡0)𝑈(𝑡)𝑃(𝑡0) = (𝑃(𝑡0)𝑈
−1(𝑡)𝑃(𝑡0))

∗ =
𝑡→𝑡0

𝑃(𝑡0) + 𝑜(𝑡 − 𝑡0), (3.33)

(𝐼 − 𝑃(𝑡0))𝑈(𝑡)𝑃(𝑡0) = (𝑃(𝑡0)𝑈(𝑡)−1(𝐼 − 𝑃(𝑡0)))
∗

=
𝑡→𝑡0

(𝐼 − 𝑃(𝑡0))
(
−𝑆𝑉̇𝑡0

𝑃(𝑡0) +
(
T𝑡0

𝑆
)∗

𝑄̇𝑡0
𝐽T𝑡0

𝑃(𝑡0)

+
(
T𝑡0

𝑆
)∗

𝐽Ṫ𝑡0
𝑃(𝑡0)

)
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0). (3.34)

Proof. First, we note an auxiliary expansion𝐷(𝑡) =
𝑡→𝑡0

(𝑡 − 𝑡0) that follows from (3.13), (3.23) and

formula 𝐷(𝑡) = 𝑃(𝑡) − 𝑃(𝑡0). Thus,

(𝐼 − 𝐷2(𝑡))−1∕2 =
𝑡→𝑡0

𝐼 + (|𝑡 − 𝑡0|2)

and then,

𝑈(𝑡) = (𝐼 − 𝐷2(𝑡))−1∕2((𝐼 − 𝑃(𝑡))(𝐼 − 𝑃(𝑡0)) + 𝑃(𝑡)𝑃(𝑡0))

=
𝑡→𝑡0

((𝐼 − 𝑃(𝑡))(𝐼 − 𝑃(𝑡0)) + 𝑃(𝑡)𝑃(𝑡0)) + 𝑜(𝑡 − 𝑡0).
(3.35)

Using this and (3.31), we obtain

𝑃(𝑡0)𝑈(𝑡)𝑃(𝑡0) =
𝑡→𝑡0

𝑃(𝑡0)𝑃(𝑡)𝑃(𝑡0) + 𝑜(𝑡 − 𝑡0) =
𝑡→𝑡0

𝑃(𝑡0) + 𝑜(𝑡 − 𝑡0).

Similarly, employing (3.35), one infers

(𝐼 − 𝑃(𝑡0))𝑈(𝑡)𝑃(𝑡0) =
𝑡→𝑡0

(𝐼 − 𝑃(𝑡0))𝑃(𝑡)𝑃(𝑡0) + 𝑜(𝑡 − 𝑡0),

and thus, (3.34) follows by multiplying (3.32) by 𝐼 − 𝑃(𝑡0) from the left. □

Step 3. One has

𝑃(𝑡0)𝑈
−1(𝑡)𝑅𝑡(𝜁)𝑈(𝑡)𝑃(𝑡0) =

𝑡→𝑡0
(𝜆 − 𝜁)−1𝑃(𝑡0)

+ (𝜆 − 𝜁)−2
(
−𝑃(𝑡0)𝑉̇𝑡0

𝑃(𝑡0) +
(
T𝑡0

𝑃(𝑡0)
)∗

𝑄̇𝑡0
𝐽T𝑡0

𝑃(𝑡0)

+
(
T𝑡0

𝑃(𝑡0)
)∗

𝐽Ṫ𝑡0
𝑃(𝑡0)

)
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0).

(3.36)
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Proof. First, we sandwich the middle term in the left-hand side, 𝑅𝑡(𝜁), by 𝑃(𝑡0) + (𝐼 − 𝑃(𝑡0)) and
write

𝑃(𝑡0)𝑈
−1(𝑡)𝑅𝑡(𝜁)𝑈(𝑡)𝑃(𝑡0) = 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉.

Let us treat each term individually, starting with

𝐼 ∶= 𝑃(𝑡0)𝑈
−1(𝑡)(𝐼 − 𝑃(𝑡0)) × (𝐼 − 𝑃(𝑡0))𝑅𝑡(𝜁)𝑃(𝑡0)

× 𝑃(𝑡0)𝑈(𝑡)𝑃(𝑡0) =
𝑡→𝑡0

𝑜(𝑡 − 𝑡0),

by (3.30), (3.33), and (3.34) as the main terms in the RHS of (3.30) and (3.34), both contain the
factor (𝑡 − 𝑡0). Similarly, we infer

𝐼𝐼 ∶= 𝑃(𝑡0)𝑈
−1(𝑡)𝑃(𝑡0) × 𝑃(𝑡0)𝑅𝑡(𝜁)(𝐼 − 𝑃(𝑡0))

× (𝐼 − 𝑃(𝑡0))𝑈(𝑡)𝑃(𝑡0) =
𝑡→𝑡0

𝑜(𝑡 − 𝑡0),

by (3.30), (3.33), and (3.34), and

𝐼𝐼𝐼 ∶=𝑃(𝑡0)𝑈
−1(𝑡)(𝐼 − 𝑃(𝑡0)) × 𝑅𝑡(𝜁)

× (𝐼 − 𝑃(𝑡0))𝑈(𝑡)𝑃(𝑡0) =
𝑡→𝑡0

𝑜(𝑡 − 𝑡0),

by (3.34). The last term admits the required in (3.36) expansion because

𝐼𝑉 ∶= 𝑃(𝑡0)𝑈
−1(𝑡)𝑃(𝑡0) × 𝑃(𝑡0)𝑅𝑡(𝜁)𝑃(𝑡0) × 𝑃(𝑡0)𝑈(𝑡)𝑃(𝑡0)

and we can use (3.30), identity (3.29), and (twice)(3.33). □

Step 4. Recalling the identities

𝐻𝑡𝑃(𝑡) ∶=
−1

2𝜋𝐢 ∫𝛾 𝜁𝑅𝑡(𝜁)𝑑𝜁,
1

2𝜋𝐢 ∫𝛾 𝜁(𝜆 − 𝜁)−2𝑑𝜁 = 1,

multiplying (3.36) by −𝜁∕2𝜋𝐢 and then integrating over 𝛾, we arrive at (3.28) □

We are ready to present the main result of this section that gives a formula for the slopes of
the appropriately chosen branches of the eigenvalues curves bifurcating from an isolated eigen-
value of finite multiplicity. We recall that our assumptions on differentiability of T,𝑉, and 𝑄 are
imposed at a particular point 𝑡0 where 𝜆 = 𝜆(𝑡0) is the isolated eigenvalue, cf. Remark 3.20. To
avoid confusions, we also refer to the classical Rellich’s example [83, Example V.4.14] recalled as
Example 4.8 below to emphasize that we are not claiming global differentiability of all eigenvalue
curves. Indeed, in this example, there is a point 𝑡0 where one eigenvalue curve has a singularity,
and so, our assumptions do not hold while all others curves are differentiable as claimed in the
theorem.
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Theorem 3.25. Assume Hypotheses 3.16 and 3.22 and suppose that the mappings 𝑡 ↦ T𝑡 , 𝑡 ↦ 𝑉𝑡 ,
𝑡 ↦ 𝑄𝑡 are differentiable at 𝑡0. We introduce the operator

𝑇(1) ∶= 𝑃(𝑡0)𝑉̇𝑡0
𝑃(𝑡0) − (T𝑡0

𝑃(𝑡0))
∗𝑄̇𝑡0

𝐽T𝑡0
𝑃(𝑡0) − (T𝑡0

𝑃(𝑡0))
∗𝐽Ṫ𝑡0

𝑃(𝑡0),

and denote the eigenvalues and the orthonormal eigenvectors of this 𝑚-dimensional operator by
{𝜆(1)

𝑗
}𝑚
𝑗=1

and {𝑢𝑗}
𝑚
𝑗=1

⊂ ran(𝑃(𝑡0)) = ker(𝐻𝑡0
− 𝜆) correspondingly.† Then there exists a labeling of

the eigenvalues {𝜆𝑗(𝑡)}
𝑚
𝑗=1

of𝐻𝑡 , for 𝑡 near 𝑡0, satisfying the asymptotic formula

𝜆𝑗(𝑡) =
𝑡→𝑡0

𝜆 + 𝜆(1)
𝑗
(𝑡 − 𝑡0) + 𝑜(𝑡 − 𝑡0), (3.37)

moreover, one has

𝜆̇𝑗(𝑡0) = ⟨𝑉̇𝑡0
𝑢𝑗 , 𝑢𝑗⟩ + 𝜔(𝑄̇𝑡0

T𝑡0
𝑢𝑗 , T𝑡0

𝑢𝑗) + 𝜔(T𝑡0
𝑢𝑗 , Ṫ𝑡0

𝑢𝑗), (3.38)

for each 1 ⩽ 𝑗 ⩽ 𝑚.

Proof. Recalling that𝑈(𝑡) is a unitarymap between ran(𝑃(𝑡0)) and ran(𝑃(𝑡)), see [83, Section I.4.6]
and [63, Proposition 2.18], we note that𝐻𝑡 ↾ran(𝑃(𝑡)) is similar to

𝑃(𝑡0)𝑈(𝑡)−1𝐻𝑡𝑃(𝑡)𝑈(𝑡)𝑃(𝑡0) ↾ran(𝑃(𝑡0))

for 𝑡 near 𝑡0. In particular, the eigenvalues of these operators coincide and it is sufficient to expand
the eigenvalues of the latter. To that end, we utilize the expansion (3.28) together with the finite-
dimensional first-order perturbation theory, specifically, [83, Theorem II.5.11], to deduce (3.37).
Next, we have

𝜆̇𝑗(𝑡0) = 𝜆(1)
𝑗

= ⟨𝑇(1)𝑢𝑗 , 𝑢𝑗⟩
= ⟨

(
𝑃(𝑡0)𝑉̇𝑡0

𝑃(𝑡0) − (T𝑡0
𝑃(𝑡0))

∗𝑄̇𝑡0
𝐽T𝑡0

𝑃(𝑡0) − (T𝑡0
𝑃(𝑡0))

∗𝐽Ṫ𝑡0
𝑃(𝑡0)

)
𝑢𝑗 , 𝑢𝑗⟩

= ⟨𝑉̇𝑡0
𝑢𝑗 , 𝑢𝑗⟩ − 𝜔(T𝑡0

𝑢𝑗 , 𝑄̇𝑡0
T𝑡0

𝑢𝑗) − 𝜔(Ṫ𝑡0
𝑢𝑗 , T𝑡0

𝑢𝑗)

= ⟨𝑉̇𝑡0
𝑢𝑗 , 𝑢𝑗⟩ + 𝜔(𝑄̇𝑡0

T𝑡0
𝑢𝑗 , T𝑡0

𝑢𝑗) + 𝜔(T𝑡0
𝑢𝑗 , Ṫ𝑡0

𝑢𝑗),

which gives (3.38). In the last step, we used the inclusions

𝜔(T𝑡0
𝑢𝑗 , 𝑄̇𝑡0

T𝑡0
𝑢𝑗) ∈ ℝ and 𝜔(T𝑡0

𝑢𝑗 , Ṫ𝑡0
𝑢𝑗) ∈ ℝ.

The latter inclusion follows from 𝜔(T𝑡𝑢𝑗 , T𝑡𝑢𝑗) = 0 after differentiating at 𝑡 = 𝑡0. To prove the

former inclusion, we use 𝐽𝑄𝑡 + 𝑄𝑡𝐽 = 𝐽 to get 𝐽𝑄̇𝑡0
= −𝑄̇𝑡0

𝐽 and write

𝜔(T𝑡0
𝑢𝑗 , 𝑄̇𝑡0

T𝑡0
𝑢𝑗) = ⟨𝐽T𝑡0

𝑢𝑗 , 𝑄̇𝑡0
T𝑡0

𝑢𝑗⟩ℌ×ℌ

= −⟨𝐽𝑄̇𝑡0
T𝑡0

𝑢𝑗 , T𝑡0
𝑢𝑗⟩ℌ×ℌ

= −𝜔(𝑄̇𝑡0
T𝑡0

𝑢𝑗 , T𝑡0
𝑢𝑗) = 𝜔(T𝑡0

𝑢𝑗 , 𝑄̇𝑡0
T𝑡0

𝑢𝑗),

(3.39)

as claimed. □

†We stress that 𝑢𝑗 are eigenvectors of𝐻𝑡0
corresponding to its eigenvalue 𝜆 = 𝜆(𝑡0).
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In PDE and quantum graph settings, the Lagrangian planes are often defined by operators
[𝑋, 𝑌] as in (2.7)–(2.9) rather than by orthogonal projections onto these planes. It is therefore nat-
ural to restate (3.14), (3.38) in these termswhichwe do next. Given families 𝑡 ↦ 𝑋𝑡, 𝑌𝑡 ∈ (ℌ), we
will now denote by 𝑡 the self-adjoint extension of 𝐴 with dom(𝑡) ∶= {𝑢 ∈  ∶ [𝑋𝑡, 𝑌𝑡]T𝑡𝑢 =

0}, that is, we augment (3.3) by requiring that

T𝑡(dom(𝑡)) = ran(𝑄𝑡) = ker([𝑋𝑡, 𝑌𝑡]),

𝑋𝑡, 𝑌𝑡 ∈ (ℌ); 𝑋𝑡𝑌
∗
𝑡 = 𝑌𝑡𝑋

∗
𝑡 , 0 ∉ Spec(𝑀𝑋𝑡 ,𝑌𝑡 ),

(3.40)

where𝑀𝑋𝑡 ,𝑌𝑡 is defined in (2.9). We recall formula (2.10) for the projection 𝑄𝑡 onto ker([𝑋𝑡.𝑌𝑡]).
A typical example of 𝑋𝑡, 𝑌𝑡 are given by 𝑋𝑡 = 𝐼 and 𝑌𝑡 = −Θ𝑡 whereΘ𝑡 is an operator (in general,
not local) entering the Robbin boundary condition.

Theorem 3.26. Under Hypothesis 3.4, if𝑡 satisfies (3.40), then the following symplectic resolvent
difference formula holds for the resolvent 𝑅𝑡(𝜁) = (𝐻𝑡 − 𝜁)−1 of the operator𝐻𝑡 = 𝑡 + 𝑉𝑡 ,

𝑅𝑡(𝜁) − 𝑅𝑠(𝜁) = 𝑅𝑡(𝜁)(𝑉𝑠 − 𝑉𝑡)𝑅𝑠(𝜁) + (T𝑡𝑅𝑡(𝜁))
∗ 𝑍𝑡,𝑠T𝑠 𝑅𝑠(𝜁)

+ (T𝑡𝑅𝑡(𝜁))
∗𝐽(T𝑡 − T𝑠)𝑅𝑠(𝜁),

(3.41)

where 𝜁 ∉ (Spec(𝐻𝑡) ∪ Spec(𝐻𝑠)), 𝑠, 𝑡 ∈ [0, 1], and the operator𝑍𝑡,𝑠 ∈ (ℌ × ℌ) is given by formula
(2.11),

𝑍𝑡,𝑠 ∶= (𝑊(𝑋𝑡, 𝑌𝑡))
∗(𝑋𝑡𝑌

∗
𝑠 − 𝑌𝑡𝑋

∗
𝑠 )(𝑊(𝑋𝑠, 𝑌𝑠)). (3.42)

Moreover, under Hypothesis 3.13, if the mappings 𝑡 ↦ T𝑡, 𝑉𝑡, 𝑋𝑡, 𝑌𝑡 are continuous at 𝑡0 ∈ [0, 1] in
the respective spaces of operators, then the function 𝑡 ↦ 𝑅𝑡(𝜁0) is continuous at 𝑡 = 𝑡0 for any 𝜁0 ∉
Spec(𝐻𝑡0

). Further, assume Hypothesis 3.16 and suppose that the mappings 𝑡 ↦ T𝑡, 𝑉𝑡, 𝑋𝑡, 𝑌𝑡 are
differentiable at 𝑡0 ∈ [0, 1]. Then, the function 𝑡 ↦ 𝑅𝑡(𝜁0) = (𝐻𝑡 − 𝜁0)

−1 is differentiable at 𝑡 = 𝑡0
and satisfies the following Riccati equation:

𝑅̇𝑡0
(𝜁0) = −𝑅𝑡0

(𝜁0)𝑉̇𝑡0
𝑅𝑡0

(𝜁0)

+ (T𝑡0
𝑅𝑡0

(𝜁0))
∗
(
𝑊(𝑋𝑡0

, 𝑌𝑡0
)
)∗

(𝑋̇𝑡0
𝑌∗
𝑡0
− 𝑌̇𝑡0

𝑋∗
𝑡0
)
(
𝑊(𝑋𝑡0

, 𝑌𝑡0
)
)
×

× T𝑡0
𝑅𝑡0

(𝜁0)

+ (T𝑡0
𝑅𝑡0

(𝜁0))
∗𝐽Ṫ𝑡0

𝑅𝑡0
(𝜁0), 𝜁0 ∉ Spec(𝐻𝑡0

).

(3.43)

Furthermore, if 𝜆(𝑡0) ∈ Spec(𝐻𝑡0
) is an isolated eigenvalue of multiplicity 𝑚 ⩾ 1, then there exists

a choice of orthonormal eigenfunctions {𝑢𝑗}
𝑚
𝑗=1

⊂ ker(𝐻𝑡0
− 𝜆(𝑡0)) and a labeling of the eigenvalues
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{𝜆𝑗(𝑡)}
𝑚
𝑗=1

of𝐻𝑡 , for 𝑡 near 𝑡0, such that the following Hadamard-type formula holds:

𝜆̇𝑗(𝑡0) = ⟨𝑉̇𝑡0
𝑢𝑗 , 𝑢𝑗⟩ +

⟨
(𝑋𝑡0

𝑌̇∗
𝑡0
− 𝑌𝑡0

𝑋̇∗
𝑡0
)𝜙𝑗 , 𝜙𝑗

⟩
ℌ
+ 𝜔(T𝑡0

𝑢𝑗 , Ṫ𝑡0
𝑢𝑗), (3.44)

where we denote 𝜙𝑗 = 𝑊(𝑋𝑡0
, 𝑌𝑡0

)T𝑡0
𝑢𝑗 , 1 ⩽ 𝑗 ⩽ 𝑚, with the operator 𝑊 defined in (2.11), or,

equivalently, 𝜙𝑗 is a unique vector inℌ satisfying

Γ0𝑢𝑗 = −𝑌∗
𝑡0
𝜙𝑗 and Γ1𝑢𝑗 = 𝑋∗

𝑡0
𝜙𝑗 . (3.45)

Proof. The resolvent difference formula (3.41) follows from (3.9) and the computation

(T𝑡𝑅𝑡(𝜁))
∗(𝑄𝑡 − 𝑄𝑠)𝐽T𝑠𝑅𝑠(𝜁) = (T𝑡𝑅𝑡(𝜁))

∗𝑄𝑡𝐽𝑄𝑠T𝑠𝑅𝑠(𝜁)

= (T𝑡𝑅𝑡(𝜁))
∗ 𝑍𝑡,𝑠T𝑠 𝑅𝑠(𝜁).

Hypothesis 3.13 and (3.41) imply continuity of 𝑡 ↦ 𝑅𝑡(𝜁) as in the proof of Theorem 3.18. To prove
(3.43), we remark that𝑋𝑡𝑌

∗
𝑠 − 𝑌𝑡𝑋

∗
𝑠 = (𝑋𝑡 − 𝑋𝑠)𝑌

∗
𝑠 − (𝑌𝑡 − 𝑌𝑠)𝑋

∗
𝑠 by (2.8). Plugging this in (3.42),

using (3.41) at 𝑠 = 𝑡0, dividing by (𝑡 − 𝑡0) and passing to the limit as 𝑡 → 𝑡0 yields (3.43). Next,
we turn to (3.44). We recall that 𝑢𝑗 in Theorem 3.25 are the eigenvectors in ran(𝑃(𝑡0)) such that

𝑇(1)𝑢𝑗 = 𝜆(1)
𝑗
𝑢𝑗 . But since ran(𝑃(𝑡0)) = ker(𝐻𝑡0

− 𝜆(𝑡0)), the vectors 𝑢𝑗 are also eigenvectors of𝐻𝑡0

such that𝐻𝑡0
𝑢𝑗 = 𝜆(𝑡0)𝑢𝑗 . By (3.38), we only need to show

𝜔(𝑄̇𝑡0
T𝑡0

𝑢𝑗 , T𝑡0
𝑢𝑗) =

⟨
(𝑋𝑡0

𝑌̇∗
𝑡0
− 𝑌𝑡0

𝑋̇∗
𝑡0
)𝜙𝑗 , 𝜙𝑗

⟩
ℌ
. (3.46)

Using (2.10) and differentiating 𝑄𝑡, we infer

𝜔(𝑄̇𝑡0
T𝑡0

𝑢𝑗 , T𝑡0
𝑢𝑗)

= 𝜔

(
[−𝑌∗

𝑡0
, 𝑋∗

𝑡0
]⊤

(
d

d𝑡
|||𝑡=𝑡0𝑊(𝑋𝑡, 𝑌𝑡)

)
T𝑡0

𝑢𝑗 , T𝑡0
𝑢𝑗

)

+ 𝜔

((
d

d𝑡
|||𝑡=𝑡0[−𝑌

∗
𝑡0
, 𝑋∗

𝑡0
]⊤

)
𝑊(𝑋𝑡0

, 𝑌𝑡0
)T𝑡0

𝑢𝑗 , T𝑡0
𝑢𝑗

)

=
⟨(

d

d𝑡
|||𝑡=𝑡0𝑊(𝑋𝑡, 𝑌𝑡)

)
T𝑡0

𝑢𝑗 , [𝑋𝑡0
, 𝑌𝑡0

]T𝑡0
𝑢𝑗

⟩
ℌ

+ 𝜔

((
d

d𝑡
|||𝑡=𝑡0[−𝑌

∗
𝑡0
, 𝑋∗

𝑡0
]⊤

)
𝑊(𝑋𝑡0

, 𝑌𝑡0
)T𝑡0

𝑢𝑗 , T𝑡0
𝑢𝑗

)

= 𝜔

((
d
d𝑡

|||𝑡=𝑡0[−𝑌
∗
𝑡0
, 𝑋∗

𝑡0
]⊤

)
𝑊(𝑋𝑡0

, 𝑌𝑡0
)T𝑡0

𝑢𝑗 , T𝑡0
𝑢𝑗

)
,

where we used [𝑋𝑡0
, 𝑌𝑡0

]T𝑡0
𝑢𝑗 = 0. Finally, employing (2.10) and

T𝑡0
𝑢𝑗 = 𝑄𝑡0

T𝑡0
𝑢𝑗 = [−𝑌∗

𝑡0
, 𝑋∗

𝑡0
]⊤𝜙𝑗 , 𝜙𝑗 ∶= 𝑊(𝑋𝑡0

, 𝑌𝑡0
)T𝑡0

𝑢𝑗 , (3.47)
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we obtain

𝜔(𝑄̇𝑡0
T𝑡0

𝑢𝑗 , T𝑡0
𝑢𝑗) =

⟨
[𝑋̇∗

𝑡0
, 𝑌̇∗

𝑡0
]⊤𝜙𝑗 , [−𝑌

∗
𝑡0
, 𝑋∗

𝑡0
]⊤𝜙𝑗

⟩
ℌ

=
⟨
(𝑋𝑡0

𝑌̇∗
𝑡0
− 𝑌𝑡0

𝑋̇∗
𝑡0
)𝜙𝑗 , 𝜙𝑗

⟩
ℌ
,

thus completing the proof of (3.44), while (3.45) follows from (3.47). □

Remark 3.27. We close with a remark that assertions proved in Theorem 3.26 allow one to make
conclusions regarding the behavior of the spectra of the operators 𝐻𝑡 as a function of 𝑡, see,
for example, [110, Theorem VIII.23]. Also, the results of this section can be used to study vari-
ous properties of strongly continuous semigroups generated by the operators −𝐻𝑡. For instance,
the Trotter–Kato Approximation Theorem, see, for example, [58, Theorem III.4.8], implies that
the semigroups are continuous with respect to the parameter 𝑡 as soon as the continuity of the
resolvent of𝐻𝑡 in Theorem 3.26 is established, see Section 5.3 for an example.

4 ORDINARY BOUNDARY TRIPLETS

Ordinary boundary triplets have been intensively studied since probably [34, 71], see the vast bib-
liography in [13, 55, 57, 120] and related papers [15, 33, 53, 54, 56, 79, 86, 126] and the bibliography
therein. In this section, we revisit main results of Sections 2 and 3 in the context of ordinary
boundary triplets and present several applications. The case of boundary triplets is the one that
is widely considered in the literature, and in this section, we will see that for this case, one may
impose fewer assumptions to prove the same set of general results. Also, we will demonstrate that
this case is sufficient to cover many interesting applications. In particular, we show that conclu-
sions of Theorems 3.18, 3.25, and 3.26 hold under a mere assumption that the mappings 𝑡 ↦ 𝑄𝑡,
𝑡 ↦ T𝑡, 𝑡 ↦ 𝑉𝑡 are continuous (differentiable) with respect to 𝑡 and that (ℌ, Γ0,𝑡, Γ1,𝑡) is an ordi-
nary boundary triplet. Utilizing this, we derive Hadamard-type formulas for quantum graphs,
Schrödinger operators with singular potentials, and Robin realizations of the Laplace operator on
bounded domains.
We recall the following widely used definition, cf. [13, Section 2.1], [57, 71], and [120,

Section 14.2].

Definition 4.1. Given a symmetric densely defined closed operator 𝐴 on a Hilbert space with
equal deficiency indices, we equip + = dom(𝐴∗) with the graph scalar product and consider
linear operators Γ0 and Γ1 acting from+ to a (boundary) Hilbert spaceℌ. We say that (ℌ, Γ0, Γ1)

is a ordinary boundary triplet if the operator T ∶= (Γ0, Γ1) ∶ + → ℌ×ℌ is surjective and the
following abstract Green identity holds:

⟨𝐴∗𝑢, 𝑣⟩ − ⟨𝑢,𝐴∗𝑣⟩ = ⟨Γ1𝑢, Γ0𝑣⟩ℌ − ⟨Γ0𝑢, Γ1𝑣⟩ℌ for all 𝑢, 𝑣 ∈ +. (4.1)

In other words, (ℌ, Γ0, Γ1) is an ordinary boundary triplet, provided that Hypothesis 2.1 holds
with = + and surjective T. In this case, we have T ∈ (+, ℌ × ℌ) by Lemma 2.3 (2).

Remark 4.2. The setting of ordinary boundary triplets gives a particularly simple illustration of
Corollary A.5. Specifically, if (ℌ, Γ0, Γ1) is a ordinary boundary triplet associated with𝐴, then ⊂

ℌ ×ℌ is Lagrangian if and only if ∶= 𝐴∗|T−1() is self-adjoint. In other words, the Lagrangian
plane  and the self-adjoint operator  ∶= 𝐴∗|T−1() are automatically aligned in the sense of
Definition A.4 as long as (ℌ, Γ0, Γ1) is a ordinary boundary triplet. In particular, if  is a self-
adjoint extension of 𝐴, then the subspace T(dom()) is closed, cf. [120, Lemma 14.6(iii)].
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4.1 Main results for the case of boundary triplets

In this section, we discuss our main results, Theorems 3.18, 3.26, in the context of boundary
triplets. In Proposition 4.5, we verify thatHypothesis 3.16 (and, hence,Hypothesis 3.13) holds auto-
matically for boundary triplets. This allows us to obtain the central result of the current section,
Theorem 4.5. The latter, in turn, gives a plethora of applications discussed in Sections 4.2–4.5.
In the setting of boundary triplets, Hypothesis 3.4 should be naturally replaced by the following

assumption.

Hypothesis 4.3. Let

T ∶ [0, 1] → (+, ℌ × ℌ) ∶ 𝑡 ↦ T𝑡 ∶= [Γ0𝑡, Γ1𝑡]
⊤

be a one-parameter family of trace operators. Suppose that (ℌ, Γ0𝑡, Γ1𝑡) is an ordinary boundary
triplet for each 𝑡 ∈ [0, 1]. Let𝑄 ∶ [0, 1] → (ℌ × ℌ), 𝑡 ↦ 𝑄𝑡 be a one-parameter family of orthog-
onal projections. Suppose that ran(𝑄𝑡) ∈ Λ(ℌ ×ℌ) is a Lagrangian plane for each 𝑡 ∈ [0, 1]. Let
𝑡 be a family of self-adjoint extensions of 𝐴 satisfying

T𝑡(dom(𝑡)) = ran(𝑄𝑡).

Let 𝑉 ∶ [0, 1] → () ∶ 𝑡 ↦ 𝑉𝑡 be a one-parameter family of self-adjoint bounded operators. We
denote𝐻𝑡 ∶= 𝑡 + 𝑉𝑡 and 𝑅𝑡(𝜁) ∶= (𝐻𝑡 − 𝜁)−1 ∈ () for 𝜁 ∉ Spec(𝐻𝑡) and 𝑡 ∈ [0, 1].

Proposition 4.4. Suppose that Hypothesis 4.3 holds for the ordinary boundary triplet
(ℌ, Γ0𝑡, Γ1𝑡). If 𝑄 and T are continuous at a given 𝑡0 ∈ [0, 1], then

‖‖(𝑡 − 𝐢)−1 − (𝑡0
− 𝐢)−1‖‖(,+)

= 𝑜(1), 𝑡 → 𝑡0. (4.2)

In other words, Hypothesis 3.16 is automatically satisfied for the boundary triplets.

Proof. We claim that

‖(𝑡 − 𝐢)−1 − (𝑡0
− 𝐢)−1‖(,+)

⩽
√
2‖(𝑡 − 𝐢)−1 − (𝑡0

− 𝐢)−1‖(). (4.3)

Indeed, using𝑡 ⊂ 𝐴∗,𝑡0
⊂ 𝐴∗, we get

‖(𝑡 − 𝐢)−1ℎ − (𝑡0
− 𝐢)−1ℎ‖2+

= ‖(𝑡 − 𝐢)−1ℎ − (𝑡0
− 𝐢)−1ℎ‖2

+ ‖𝐴∗(𝑡 − 𝐢)−1ℎ − 𝐴∗(𝑡0
− 𝐢)−1ℎ‖2 = 2‖(𝑡 − 𝐢)−1ℎ − (𝑡0

− 𝐢)−1ℎ‖2 .

Thus, it is enough to prove that the right-hand side of (4.3) is 𝑜(1) as 𝑡 → 𝑡0. To this end, we first
note that, given𝑡𝑢 + 𝐢𝑢 = 𝑓, 𝑢 ∈ dom(𝑡), we have

‖(𝑡 + 𝐢)−1𝑓‖2+
= ‖𝑢‖2+

= ‖𝐴∗𝑢‖2 + ‖𝑢‖2
= ‖𝑡𝑢‖2 + ‖𝑢‖2 = ‖𝑡𝑢 + 𝐢𝑢‖2 = ‖𝑓‖2 ;

hence,

‖(𝑡 + 𝐢)−1‖(,+)
⩽ 1. (4.4)
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By resolvent difference formula (2.14), we infer

‖(𝑡 − 𝐢)−1 − (𝑡0
− 𝐢)−1‖()

= ‖(T𝑡(𝑡 + 𝐢)−1)∗(𝑄𝑡 − 𝑄𝑡0
)𝐽T𝑡(𝑡0

+ 𝐢)−1‖()

⩽ ‖T𝑡‖(+,ℌ×ℌ)‖(𝑡 + 𝐢)−1‖(,+)
‖(𝑄𝑡 − 𝑄𝑡0

)‖(ℌ×ℌ)×

× ‖T𝑡‖(+,ℌ×ℌ)‖(𝑡0
+ 𝐢)−1‖(,+)

⩽ 𝑐‖𝑄𝑡 − 𝑄𝑡0
‖(ℌ×ℌ) =

𝑡→𝑡0
𝑜(1), 𝑐 > 0, (4.5)

where we used (4.4), and continuity of 𝑄 and T at 𝑡0. Then (4.3) and (4.5) yield (4.2) and so
Equation (3.12) in Hypothesis 3.16 holds. □

We summarize our main results for the case of boundary triplets as follows.

Theorem 4.5. Assume Hypothesis 4.3. If 𝑡 is defined as in (3.40) and 𝐻𝑡 = 𝑡 + 𝑉𝑡 , then for
𝑅𝑡(𝜁) = (𝐻𝑡 − 𝜁)−1, the following resolvent difference formula holds:

𝑅𝑡(𝜁) − 𝑅𝑠(𝜁) = 𝑅𝑡(𝜁)(𝑉𝑠 − 𝑉𝑡)𝑅𝑠(𝜁) + (T𝑡𝑅𝑡(𝜁))
∗ 𝑍𝑡,𝑠T𝑠 𝑅𝑠(𝜁)

+ (T𝑡𝑅𝑡(𝜁))
∗𝐽(T𝑡 − T𝑠)𝑅𝑠(𝜁),

(4.6)

where 𝜁 ∉ (Spec(𝐻𝑡) ∪ Spec(𝐻𝑠)), 𝑠, 𝑡 ∈ [0, 1] and

𝑍𝑡,𝑠 ∶= (𝑊(𝑋𝑡, 𝑌𝑡))
∗(𝑋𝑡𝑌

∗
𝑠 − 𝑌𝑡𝑋

∗
𝑠 )(𝑊(𝑋𝑠, 𝑌𝑠)),

with the operator𝑊 defined in (2.11). Moreover, if the mappings 𝑡 ↦ T𝑡, 𝑉𝑡, 𝑋𝑡, 𝑌𝑡 are continuous at
𝑡0 ∈ [0, 1] in the respective spaces of operators, then the function 𝑡 ↦ 𝑅𝑡(𝜁0) is continuous at 𝑡 = 𝑡0
for any 𝜁0 ∉ Spec(𝐻𝑡0

). Further, if the mappings 𝑡 ↦ T𝑡, 𝑉𝑡, 𝑋𝑡, 𝑌𝑡 are differentiable at 𝑡0 ∈ [0, 1],
then the function 𝑡 ↦ 𝑅𝑡(𝜁0) = (𝐻𝑡 − 𝜁0)

−1 is differentiable. In this case, the following two assertions
hold.

(1) The resolvent operators satisfy the following differential equation:

𝑅̇𝑡0
(𝜁0) = −𝑅𝑡0

(𝜁0)𝑉̇𝑡0
𝑅𝑡0

(𝜁0)

+ (T𝑡0
𝑅𝑡0

(𝜁0))
∗
(
𝑊(𝑋𝑡0

, 𝑌𝑡0
)
)∗

(𝑋̇𝑡0
𝑌∗
𝑡0
− 𝑌̇𝑡0

𝑋∗
𝑡0
)
(
𝑊(𝑋𝑡0

, 𝑌𝑡0
)
)
T𝑡0

𝑅𝑡0
(𝜁0)

+ (T𝑡0
𝑅𝑡0

(𝜁0))
∗𝐽Ṫ𝑡0

𝑅𝑡0
(𝜁0), 𝜁0 ∉ Spec(𝐻𝑡0

).

(4.7)

(2) If 𝜆(𝑡0) ∈ Spec(𝐻𝑡0
) is an isolated eigenvalue of multiplicity 𝑚 ⩾ 1, then there exists a choice

of orthonormal eigenfunctions {𝑢𝑗}
𝑚
𝑗=1

⊂ ker(𝐻𝑡0
− 𝜆(𝑡0)) and a labeling of the eigenvalues

{𝜆𝑗(𝑡)}
𝑚
𝑗=1

of𝐻𝑡 , for 𝑡 near 𝑡0, such that

𝜆̇𝑗(𝑡0) = ⟨𝑉̇𝑡0
𝑢𝑗 , 𝑢𝑗⟩ +

⟨
(𝑋𝑡0

𝑌̇∗
𝑡0
− 𝑌𝑡0

𝑋̇∗
𝑡0
)𝜙𝑗 , 𝜙𝑗

⟩
ℌ
+ 𝜔(T𝑡0

𝑢𝑗 , Ṫ𝑡0
𝑢𝑗), (4.8)
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where 𝜙𝑗 = 𝑊(𝑋𝑡0
, 𝑌𝑡0

)T𝑡0
𝑢𝑗 , 1 ⩽ 𝑗 ⩽ 𝑚, or, equivalently, 𝜙𝑗 is a unique vector inℌ satisfying

Γ0𝑢𝑗 = −𝑌∗
𝑡0
𝜙𝑗 and Γ1𝑢𝑗 = 𝑋∗

𝑡0
𝜙𝑗 . (4.9)

Proof. The resolvent difference formula (4.6) follows directly from (3.41). The continuity of 𝑡 ↦
𝑅𝑡(𝜁0) at 𝑡0 follows from Theorem 3.26 upon noticing that Hypothesis 3.13 holds in the setting of
boundary triplets by Proposition 4.4. Similarly, Proposition 4.4 combined with (3.43) and (3.44)
yields (4.7) and (4.8). □

Remark 4.6.

(1) In the setting of Theorem 4.5, the resolvent difference formula (4.6) can also be rewritten as

𝑅𝑡(𝜁) − 𝑅𝑠(𝜁) = 𝑡(𝜁)(𝑉𝑠 − 𝑉𝑡)𝑅𝑠(𝜁) +𝑡(𝜁)T
∗
𝑡 𝑍𝑡,𝑠T𝑠 𝑅𝑠(𝜁)

+𝑡(𝜁)T
∗
𝑡 𝐽(T𝑡 − T𝑠)𝑅𝑠(𝜁),

(4.10)

where in the RHS, we have 𝑡(𝜁) ∈ (−,), that is, as in Proposition 2.12 and Corol-
lary 2.13, we view 𝑡(𝜁) ∈ (−,) as a unique extension of 𝑅𝑡(𝜁) ∈ () to an element
of(−,), while T𝑡 ∈ (+, ℌ × ℌ), T∗

𝑡 ∈ (ℌ × ℌ,−). We note that, in a more general
setting of Theorem 3.26, the trace operator T𝑡 is unbounded and one only has the inclusion

(T𝑡𝑅𝑡(𝜁))
∗ ⊇ 𝑅𝑡(𝜁)(T𝑡)

∗. In this case, (4.10) holds provided ran(𝑍𝑡,𝑠T𝑠 𝑅𝑠(𝜁)) ⊆ 𝐽T().
(2) The resolvent difference formula derived in Theorem 4.5 yields continuity of the map-

ping (ℌ) × (ℌ) ∋ (𝑋, 𝑌) ↦ (𝑋,𝑌 − 𝐢)−1 ∈ (); here, for an ordinary boundary triplet
(ℌ, Γ0, Γ1), we denote by 𝑋,𝑌 the self-adjoint extension of 𝐴 such that T(dom(𝑋,𝑌)) =

ker([𝑋, 𝑌]), cf. (3.40).

In Sections 4.2–4.5 below, wewill give applications of Theorem 4.5 for several important classes
of problems that fit the framework of the boundary triplets. To give the simplest possible illustra-
tion of the setup described in Hypothesis 4.3 and of Theorem 4.5, we now consider the following
two ODE examples where the conclusions of the theorem are probably well known, see, for
example, [10, 40, 41, 83] and the vast bibliography therein.

Example 4.7. Let 𝐴𝑢 = −𝑢′′ be the minimal symmetric operator on  = 𝐿2(0, 1) with domain
dom(𝐴) = 𝐻2

0
(0, 1) so that𝐴∗𝑢 = −𝑢′′ with dom(𝐴∗) = + = 𝐻2(0, 1), setℌ = ℂ2 and introduce

the surjective trace operator T = (Γ0, Γ1) ∈ (+, ℌ × ℌ) using the Dirichlet and (inward) Neu-
mann traces Γ0𝑢 = [𝑢(0), 𝑢(1)]⊤ and Γ1𝑢 = [𝑢′(0), −𝑢′(1)]⊤. Integration by parts yields (4.1), and
thus, (ℌ, Γ0, Γ1) is an ordinary boundary triplet, cf. [120, Section 14.4]. For 𝑡 ∈ [0, 1], we let 𝑡

denote the self-adjoint extension of 𝐴 with the domain

dom(𝑡) = {𝑢 ∈ 𝐻2(0, 1) ∶ cos(𝜋𝑡∕2)Γ0𝑢 − sin(𝜋𝑡∕2)Γ1𝑢 = 0} = ker([𝑋𝑡, 𝑌𝑡]), (4.11)

where, cf. (3.40),

𝑋𝑡 = cos(𝜋𝑡∕2)𝐼2, 𝑌𝑡 = −sin(𝜋𝑡∕2)𝐼2, 𝑄𝑡 =

[
sin2(𝜋𝑡∕2) 1

2
sin(𝜋𝑡)

1

2
sin(𝜋𝑡) cos2(𝜋𝑡∕2)

]
.

Given a bounded real-valued potential 𝑉, we let 𝐻𝑡𝑢 = −𝑢′′ + 𝑉𝑢, 𝑡 ∈ [0, 1], be the family of
scalar Schrödinger operators on 𝐿2(0, 1) equipped with the boundary conditions specified in
(4.11) so that Hypothesis 4.3 holds. In particular, 𝐻0 is the Dirichlet and 𝐻1 is the Neumann
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Schrödinger operator. To apply Theorem 4.5, we first perform a standard calculation of the resol-
vent 𝑅𝑡(𝜁) = (𝐻𝑡 − 𝜁)−1, cf. for example, [123, Lemma 9.7]: For 𝑡 ∈ [0, 1] and 𝜁 ∈ ℂ, we let 𝑣𝑡(⋅ ; 𝜁),
𝑤𝑡(⋅ ; 𝜁) denote the solutions to the equation −𝑢′′ + 𝑉𝑢 = 𝜁𝑢 that satisfy the initial conditions

(𝑣𝑡(0; 𝜁), 𝑣
′
𝑡(0, 𝜁)) = (sin(𝜋𝑡∕2), cos(𝜋𝑡∕2)),

(𝑤𝑡(1; 𝜁), 𝑤
′
𝑡(1, 𝜁)) = (sin(𝜋𝑡∕2), − cos(𝜋𝑡∕2)),

and let 𝑡(𝜁) = 𝑣𝑡(𝑥; 𝜁)𝑤
′
𝑡(𝑥; 𝜁) − 𝑣′𝑡(𝑥; 𝜁)𝑤𝑡(𝑥; 𝜁) denote their Wronskian. Then, for each 𝑢 ∈

𝐿2(0, 1), the function 𝑅𝑡(𝜁)𝑢 is given by the formula

(𝑅𝑡(𝜁)𝑢)(𝑥) = (𝑡(𝜁))
−1

(
𝑤𝑡(𝑥; 𝜁)∫

𝑥

0
𝑣𝑡(𝑦; 𝜁)𝑢(𝑦)d𝑦 + 𝑣𝑡(𝑥; 𝜁)∫

1

𝑥
𝑤𝑡(𝑦; 𝜁)𝑢(𝑦)d𝑦

)
,

𝑥 ∈ [0, 1]. Using this, it is convenient to write T𝑅𝑡(𝜁) = 𝐾𝑡(𝜁)𝐿𝑡(𝜁) where we temporarily
introduced the (4 × 2)matrix 𝐾𝑡(𝜁) and the operator 𝐿𝑡(𝜁) by the formulas

𝐾𝑡(𝜁) = (𝑡(𝜁))
−1[sin(𝜋𝑡∕2)𝐼2, cos(𝜋𝑡∕2)𝐼2]

⊤,

𝐿𝑡(𝜁)𝑢 =
[⟨𝑤𝑡(⋅; 𝜁), 𝑢⟩𝐿2 , ⟨𝑣𝑡(⋅; 𝜁), 𝑢⟩𝐿2

]⊤
, 𝐿𝑡(𝜁) ∈ (𝐿2(0, 1),ℂ2)

so that (𝐿𝑡(𝜁))
∗ maps (𝑧1, 𝑧2) ∈ ℂ2 into 𝑤𝑡(⋅ ; 𝜁)𝑧1 + 𝑣𝑡(⋅ ; 𝜁)𝑧2 ∈ 𝐿2(0, 1). Theorem 4.5 and a short

calculation now yield

(𝑅𝑡(𝜁) − 𝑅𝑠(𝜁))𝑢 = (𝑡(𝜁)𝑠(𝜁))
−1 sin(𝜋(𝑡 − 𝑠)∕2)

×
(⟨𝑤𝑠(⋅; 𝜁), 𝑢⟩𝐿2𝑤𝑡(⋅; 𝜁) + ⟨𝑣𝑠(⋅; 𝜁), 𝑢⟩𝐿2𝑣𝑡(⋅; 𝜁)

)
, 𝜁 ∉ Spec(𝐻𝑡) ∪ Spec(𝐻𝑠),

𝑅̇𝑡(𝜁)𝑢 =
𝜋

2
(𝑡(𝜁))

−2
(⟨𝑤𝑡(⋅; 𝜁), 𝑢⟩𝐿2𝑤𝑡(⋅; 𝜁) + ⟨𝑣𝑡(⋅; 𝜁), 𝑢⟩𝐿2𝑣𝑡(⋅; 𝜁)

)
,

𝜁 ∉ Spec(𝐻𝑡),

𝜆̇(𝑡0) = −
𝜋

2
‖‖ sin(𝜋𝑡0∕2)Γ0𝑢0 + cos(𝜋𝑡0∕2)Γ1𝑢0‖‖2ℂ2 , 𝑡0 ∈ [0, 1],

where 𝑢0 is the normalized eigenfunction corresponding to the eigenvalue 𝜆(𝑡0) ∈ Spec(𝐻𝑡0
).

Example 4.8. As promised prior to Theorem 3.25, we now recall the classical Rellich’s exam-
ple, cf., for example, [83, Example V.4.14] which shows the singularity at 𝑡0 = 0 of the smallest
eigenvalue 𝜆(0)(𝑡) of the operator 𝑡 = −𝜕2𝑥𝑥 in 𝐿2(0, 1) equipped with the boundary conditions
𝑢(0) = 0, 𝑡𝑢′(1) = 𝑢(1) for real 𝑡; meanwhile, the resolvent 𝑡 ↦ (𝑡 − 𝐢)−1 is continuous and
all other eigenvalues 𝜆(𝑘)(𝑡), 𝑘 = 1, 2, … , are differentiable for each 𝑡 including 𝑡 = 0, see [83,
Fig. 1, p.292]. Indeed, letting Γ0𝑢 = (𝑢(0), 𝑢(1))⊤, Γ1𝑢 = (𝑢′(0), −𝑢′(1))⊤ for 𝑢 ∈ + ∶= 𝐻2(0, 1),
ℌ = ℂ2 and

𝑋𝑡 =

[
1 0

0 −1

]
, 𝑌𝑡 =

[
0 0

0 −𝑡

]
, 𝑄𝑡 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 𝑡2(1 + 𝑡2)−1 0 −𝑡(1 + 𝑡2)−1

0 0 1 0

0 −𝑡(1 + 𝑡2)−1 0 (1 + 𝑡2)−1

⎤
⎥⎥⎥⎥⎦
, (4.12)
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we notice that dom(𝑡) = ker([𝑋𝑡 𝑌𝑡]) = ran𝑄𝑡. The maps 𝑡 ↦ 𝑋𝑡, 𝑌𝑡, 𝑄𝑡 are all differentiable at
each 𝑡 ∈ ℝ, and so, Theorem 4.5 (or Theorem 3.26) applies. In particular, the resolvent operators
of𝑡 are differentiable at each 𝑡, and a short calculation using (4.8), (4.9), and (4.12) shows that if
𝑢 denotes the norm one eigenfunction with the eigenvalue 𝜆(𝑡) ∈ Spec(𝑡) then 𝜆̇(𝑡) = |𝑢′(1)|2,
provided thatwe know that 𝜆(𝑡) is an eigenvalue of𝑡 for a given 𝑡 ∈ ℝ. Thus, each of the branches
𝜆(𝑘)(⋅), 𝑘 ∈ {0} ∪ ℕ, of the eigenvalues is monotone for all 𝑡 where it is defined.
We proceed with finding the actual location of 𝜆 ∈ Spec(𝑡) and formulas for 𝑢 dealing with

the two possible cases: (i) 𝜆 = 𝜅2 > 0, respectively, and (ii) 𝜆 = −𝜅2 < 0 for 𝜅 = 𝜅(𝑡) ∈ ℝ. Solving
the equation 𝑢′′ = 0 with the boundary conditions, we note that 𝜆 = 0 ∈ Spec(1) with 𝑢 = 𝑥,
and that 0 ∉ Spec(𝑡) for all 𝑡 ≠ 1. Plugging a linear combination of (i) cos(𝜅𝑥) and sin(𝜅𝑥),
respectively, (ii) sinh(𝜅𝑥) and cosh(𝜅𝑥) into the boundary value problem −𝑢′′ = 𝜆𝑢, 𝑢(0) = 0,
𝑡𝑢′(1) = 𝑢(1) shows that nonzero 𝜅 = 𝜅(𝑡) are the solutions to the equation (i) 𝑡𝜅 = tan 𝜅 with
𝑢 = 𝑎 sin(𝜅𝑥), 𝑎−2 = (1 − 𝑡 cos2 𝜅)∕2, respectively, equation (ii) 𝑡𝜅 = tanh 𝜅 with 𝑢 = 𝑎 sinh(𝜅𝑥),
𝑎−2 = (𝑡 cosh2 𝜅 − 1)∕2. By inspection of the graphs in the equations, in case (i), for each 𝑡 ∈ ℝ

and 𝑛 ∈ ℤ ⧵ {0}, there is a unique solution 𝜅 ∈ (−𝜋∕2 + 𝜋𝑛, 𝜋∕2 + 𝜋𝑛), for each 𝑡 > 1, there is
a unique solution 𝜅 = 𝜅(𝑡) ∈ (−𝜋∕2, 𝜋∕2) with 𝜅(𝑡) → 0+ as 𝑡 → 1+, and for any 𝑡 < 1, there are
no solutions 𝜅 ∈ (−𝜋∕2, 𝜋∕2). In case (ii), for any 𝑡 ⩽ 0 or 𝑡 > 1, there are no solutions 𝜅 ∈ ℝ,
while for each 𝑡 ∈ (0, 1], there exists a unique solution 𝜅 = 𝜅(𝑡) ∈ ℝ such that 𝜅(𝑡) → 0 as 𝑡 →
1− and 𝜅(𝑡) → +∞ as 𝑡 → 0+. By squaring 𝜅, we obtain the branches 𝜆(0)(𝑡) < 𝜆(1)(𝑡) < … of the
eigenvalues of𝑡 such that 𝜆

(0)(𝑡) are defined for 𝑡 > 0 with 𝜆(0)(𝑡) → −∞ as 𝑡 → 0+, is negative
for 𝑡 ∈ (0, 1) and positive for 𝑡 > 1, while 𝜆(𝑘)(𝑡) for 𝑘 ∈ ℕ is defined and positive for all 𝑡 ∈ ℝ,
cf. [83, Fig. 1, p. 292]. Using 𝜆̇(𝑡) = |𝑢′(1)|2 and the expressions for 𝑢 just given, one obtains very
particular formulas for 𝜆̇(𝑘)(𝑡) for all 𝑡 and 𝑘 except when 𝑘 = 0 and 𝑡 ⩽ 0.

4.2 Laplace operator on bounded domains via boundary triplets

The main result of this section is Theorem 4.13 in which we derive the resolvent difference for-
mula, Riccati equation, and Hadamard-type formula for a family of Robin-type Laplacians. To
that end, we employ abstract results of Theorem 4.5 with an ordinary boundary triplet specifi-
cally defined for the Laplace operator. The construction of such triplet for second-order elliptic
operators goes back to the work of M.I. Višik [124, 125] who proposed the regularization of
the Neumann trace by means of the Dirichlet-to-Neumann map, G. Grubb [73] who investi-
gated the case of higher order operators building upon the trace theory of J. L. Lions and E.
Magenes [98]. We also note that the work of M. Malamud [100] provides boundary triplets with
dual parity in 𝐿2(𝜕Ω) × 𝐿2(𝜕Ω) as well as important relation between the Weyl function and the
Dirichlet-to-Neumann map. Another relevant construction of trace maps is offered in [17] where
a 𝐵-regularized boundary triplet was originally proposed.
Throughout this section, we assume the following.

Hypothesis 4.9. Let 𝑛 ∈ ℕ, 𝑛 ⩾ 2, and Ω ⊂ ℝ𝑛 be a bounded domain with 𝐶1,𝑟, 𝑟 > 1∕2, bound-
ary.

Remark 4.10. The construction of trace maps, which we briefly recall below, is of paramount
importance to this paper. We stress that the material discussed up to Theorem 4.13 is well known
and presented here only for the sake of a smoother exposition of the subsequent results. The full
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credit for original discoveries in this direction belongs to M.I. Višik, J. L. Lions, E. Magenes, and
G. Grubb, see [73, 75, 98, 100, 124, 125].

Let us briefly recall trace maps that will be used below. The Dirichlet trace operator

𝛾
𝐷
∶ 𝐻𝑠(Ω) → 𝐻𝑠−1∕2(𝜕Ω) ↪ 𝐿2(𝜕Ω), 1∕2 < 𝑠 < 3∕2. (4.13)

is a bounded and surjective extension of the mapping 𝛾0
𝐷
∶ 𝐶0(Ω) → 𝐶0(𝜕Ω), 𝛾0

𝐷
𝑢 = 𝑢|𝜕Ω, see

[122, Proposition 4.4.5]. The operator 𝛾
𝑁
∶ {𝑢 ∈ 𝐻1(Ω) |Δ𝑢 ∈ 𝐿2(Ω)} → 𝐻−1∕2(𝜕Ω) is the weak

extension of the usual Neumann trace operator, still denoted by 𝛾
𝑁
,

𝛾
𝑁
= 𝜈 ⋅ 𝛾

𝐷
∇∶ 𝐻𝑠+1(Ω) → 𝐿2(𝜕Ω), 1∕2 < 𝑠 < 3∕2. (4.14)

As shown in [69, Corollary 6.6, Corollary 6.11],† there exist unique linear bounded operators

𝛾
𝐷
∶ {𝑢 ∈ 𝐿2(Ω) |Δ𝑢 ∈ 𝐿2(Ω)} → 𝐻−1∕2(𝜕Ω),

𝛾
𝑁
∶ {𝑢 ∈ 𝐿2(Ω) |Δ𝑢 ∈ 𝐿2(Ω)} → 𝐻−3∕2(𝜕Ω),

(4.15)

which are compatible with the Dirichlet and Neumann trace introduced in (4.13) and (4.14),
respectively.Wenote that both 𝛾

𝐷
, 𝛾

𝑁
have dense ranges. These tracemaps give rise to theDirichet-

to-Neumann map 𝑀𝐷,𝑁 associated with −Δ on Ω via 𝑀𝐷,𝑁 ∶ 𝐻−1∕2(𝜕Ω) → 𝐻−3∕2(𝜕Ω) ∶ g ↦

−𝛾
𝑁
(𝑢𝐷), where 𝑢𝐷 is the unique solution of the boundary value problem

−Δ𝑢 = 0, 𝑢 ∈ 𝐿2(Ω), 𝛾
𝐷
𝑢 = g on 𝜕Ω. (4.16)

As was shown in [69, Theorem 12.1], the map

𝜏
𝑁
∶ {𝑢 ∈ 𝐿2(Ω)|Δ𝑢 ∈ 𝐿2(Ω)} → 𝐻1∕2(𝜕Ω), 𝜏

𝑁
𝑢 ∶= 𝛾

𝑁
𝑢 +𝑀𝐷,𝑁(𝛾𝐷

𝑢), (4.17)

is bounded when the space {𝑢 ∈ 𝐿2(Ω)|Δ𝑢 ∈ 𝐿2(Ω)} = dom(−Δmax) is equipped with the natural

graph norm (‖𝑢‖2
𝐿2(Ω)

+ ‖Δ𝑢‖2
𝐿2(Ω)

)
1∕2
. Moreover, this operator is onto. In fact,

𝜏
𝑁
(𝐻2(Ω) ∩ 𝐻1

0(Ω)) = 𝐻1∕2(𝜕Ω). (4.18)

Also, the null space of the map 𝜏
𝑁
is given by

ker(𝜏
𝑁
) = 𝐻2

0(Ω)+̇{𝑢 ∈ 𝐿2(Ω), −Δ𝑢 = 0}. (4.19)

Let us note that the following Green formula holds for every 𝑢, 𝑣 ∈ dom(−Δmax),

(−Δ𝑢, 𝑣)𝐿2(Ω) − (𝑢,−Δ𝑣)𝐿2(Ω)

= −𝐻1∕2(𝜕Ω)⟨𝜏𝑁𝑢, 𝛾𝐷
𝑣⟩𝐻−1∕2(𝜕Ω) + 𝐻1∕2(𝜕Ω)⟨𝜏𝑁𝑣, 𝛾𝐷

𝑢⟩𝐻−1∕2(𝜕Ω). (4.20)

† In the context of Remark 4.10, we note that the series of papers [67–69] provides an extension of the classical results to

the setting of domains with 𝐶1,𝑟 boundaries.
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In the sequel, we use the Reisz isomorphism given by

Φ ∶ 𝐻−1∕2(𝜕Ω) → 𝐻1∕2(𝜕Ω),

𝐻−1∕2(𝜕Ω) ∋ 𝜓 ↦ Φ𝜓 ∈ 𝐻1∕2(𝜕Ω),

⟨𝑓, 𝜓⟩−1∕2 ∶= 𝜓(𝑓) = ⟨𝑓,Φ𝜓⟩1∕2, 𝑓 ∈ 𝐻1∕2(𝜕Ω), 𝜓 ∈ 𝐻−1∕2(𝜕Ω),

(4.21)

in particular, for 𝑓, 𝜓 ∈ 𝐻1∕2(𝜕Ω) ↪ 𝐿2(𝜕Ω) ↪ 𝐻−1∕2(𝜕Ω), we have

⟨𝑓, 𝜓⟩−1∕2 = ⟨𝑓, 𝜓⟩𝐿2(𝜕Ω).

We also note that Φ is a conjugate linear mapping.
Having recalled the tracemaps above, we are ready to define themaximal andminimal Laplace

operators as follows:

−Δmax ∶ dom(−Δmax) ⊂ 𝐿2(Ω) → 𝐿2(Ω),

dom(−Δmax) =
{
𝑢 ∈ 𝐿2(Ω)|| Δ𝑢 ∈ 𝐿2(Ω)

}
,

−Δmax𝑢 = −Δ𝑢 (in the sense of distributions),

dom(−Δmin) = 𝐻2
0(Ω), −Δmin𝑢 = −Δ𝑢,

and remark that by [69, Theorem 8.14],† one has

dom(−Δmin) = 𝐻2
0(Ω) = {𝑢 ∈ 𝐿2(Ω)| Δ𝑢 ∈ 𝐿2(Ω), 𝛾

𝐷
(𝑢) = 0, 𝛾

𝑁
(𝑢) = 0},

−Δmin = (−Δmax)
∗, −Δmax = (−Δmin)

∗.
(4.22)

The next lemma is a well-known fact that goes back to [73, 124, 125].

Lemma 4.11. Assume that Ω ⊂ ℝ𝑛 is a bounded domain with 𝐶1,𝑟-boundary, 𝑟 > 1∕2, and the
boundary traces 𝛾

𝐷
, 𝜏

𝑁
are as in (4.15), (4.17). Then

(ℌ, Γ0, Γ1) ∶= (𝐻1∕2(𝜕Ω), 𝜏
𝑁
, Φ𝛾

𝐷
) (4.23)

is an ordinary boundary triplet for 𝐴 = −Δmin.

Proof. The trace operator T ∶= [𝜏
𝑁
, Φ𝛾

𝐷
]⊤ is defined on the space

+ ∶= {𝑢 ∈ 𝐿2(Ω) ∶ Δ𝑢 ∈ 𝐿2(Ω)}

with the norm

‖𝑢‖+
= (‖𝑢‖2

𝐿2(Ω)
+ ‖Δ𝑢‖2

𝐿2(Ω)
)
1∕2

.

Recalling the Green identity (4.20)

(−Δ𝑢, 𝑣)𝐿2(Ω) − (𝑢,−Δ𝑣)𝐿2(Ω)

† The description of the minimal domain in the case of 𝐶2 boundary 𝜕Ω is a classical result, cf. [75, 98].
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= −𝐻1∕2(𝜕Ω)⟨𝜏𝑁𝑢, 𝛾𝐷
𝑣⟩𝐻−1∕2(𝜕Ω) + 𝐻1∕2(𝜕Ω)⟨𝜏𝑁𝑣, 𝛾𝐷

𝑢⟩𝐻−1∕2(𝜕Ω),

we rewrite it as

⟨𝐴∗𝑢, 𝑣⟩ − ⟨𝑢,𝐴∗𝑣⟩ = −⟨Γ0𝑢, Γ1𝑣⟩ℌ + ⟨Γ0𝑣, Γ1𝑢⟩ℌ,
= ⟨Γ1𝑢, Γ0𝑣⟩ℌ − ⟨Γ0𝑢, Γ1𝑣⟩ℌ,

and thus check that (4.23) satisfies the abstract Green identity. It remains to show that themapT ∶

+ → 𝐻1∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω) is onto. We fix a vector (𝑓, g) ∈ 𝐻1∕2(𝜕Ω) × 𝐻−1∕2(𝜕Ω). By (4.18),
there exists 𝑢0 ∈ 𝐻2(Ω) ∩ 𝐻1

0
(Ω) such that 𝜏

𝑁
𝑢0 = 𝑓. By [69, Theorem 10.4], the boundary value

problem (4.16) has a unique solution that we denote by 𝑣0 (we note that zero is outside of the
spectrum of the Dirichlet Laplacian). Employing (4.19) and 𝑣0 ∈ ker(𝜏

𝑁
) yields

T(𝑢0 + 𝑣0) = (𝜏
𝑁
(𝑢0 + 𝑣0), Φ𝛾𝐷

(𝑢0 + 𝑣0)) = (𝜏
𝑁
𝑢0, Φ𝛾𝐷

𝑣0) = (𝑓, Φg)

since 𝛾
𝐷
𝑢0 = 𝛾

𝐷
𝑢0 = 0. □

Remark 4.12. In PDE literature, boundary value problems are often formulated in terms of the
Dirichlet and Neumann traces defined by

𝛾
𝐷
∶ {𝑢 ∈ 𝐻1(Ω) ∶ Δ𝑢 ∈ 𝐿2(Ω)} → 𝐻1∕2(𝜕Ω), 𝛾

𝐷
∶= 𝛾

𝐷
↾{𝑢∈𝐻1(Ω)∶Δ𝑢∈𝐿2(Ω)},

𝛾
𝑁
∶ {𝑢 ∈ 𝐻1(Ω) ∶ Δ𝑢 ∈ 𝐿2(Ω)} → 𝐻−1∕2(𝜕Ω), 𝛾

𝑁
∶= 𝛾

𝑁
↾{𝑢∈𝐻1(Ω)∶Δ𝑢∈𝐿2(Ω)} .

Wenote that (−Δmax , 𝛾𝐷
, 𝛾

𝑁
) is not an ordinary boundary triplet. First,T ∶= (𝛾

𝐷
, 𝛾

𝑁
) is not defined

on the entire space dom(−Δmax). Second, T is not onto, see [93, Proposition 2.11]. However,
Hypothesis 2.1 is still satisfied with ∶= {𝑢 ∈ 𝐻1(Ω) ∶ Δ𝑢 ∈ 𝐿2(Ω)} and equippedwith the norm

(‖𝑢‖2
𝐻1(Ω)

+ ‖Δ𝑢‖2
𝐿2(Ω)

)
1∕2
. In fact, Hypothesis 3.1 is also satisfied for this choice of T,. These

facts serve as our main motivation for introducing Hypotheses 2.1 and 3.1. We elaborate on this
further in Section 5.

Having constructed the ordinary boundary triplet for the Laplacian, we can now apply the
abstract results from Theorem 4.5.

Theorem 4.13. Let Ω ⊂ ℝ𝑛 be a bounded domain with 𝐶1,𝑟-boundary, 𝑟 > 1∕2, and let 𝑡 ↦ Ξ𝑡 ∈(𝐻1∕2(𝜕Ω)), 𝑡 ∈ [0, 1], be a differentiable family of self-adjoint operators. Then, for 𝑡 ∈ [0, 1], the
linear operator

− Δ𝑡 ∶ dom(−Δ𝑡) ⊂ 𝐿2(Ω) → 𝐿2(Ω), −Δ𝑡𝑢 = −Δ𝑢,

𝑢 ∈ dom(−Δ𝑡) ∶= {𝑢 ∈ dom(Δmax) ∶ Φ𝛾
𝐷
𝑢 + Ξ𝑡𝜏𝑁𝑢 = 0},

is self-adjoint. The following resolvent difference formula holds:

(−Δ𝑡 − 𝜁)−1 − (−Δ𝑠 − 𝜁)−1

=
(
𝜏
𝑁
(−Δ𝑡 − 𝜁)−1

)∗
(Ξ𝑡 − Ξ𝑠)

(
𝜏
𝑁
(−Δ𝑠 − 𝜁)−1

)
,

(4.24)
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for 𝑡, 𝑠 ∈ [0, 1], 𝜁 ∉ (Spec(−Δ𝑡) ∪ Spec(−Δ𝑠)). Moreover, for a fixed 𝑡0 ∈ [0, 1], the mapping

𝑡 ↦ (−Δ𝑡 − 𝜁)−1 ∈ (𝐿2(Ω)) (4.25)

is well defined for 𝑡 near 𝑡0 as long as 𝜁 ∉ Spec(−Δ𝑡0
). This mapping is differentiable at 𝑡0 and

satisfies the following Riccati equation:

d
d𝑡

||𝑡=𝑡0
(
(−Δ𝑡 − 𝜁)−1

)

=
(
𝜏
𝑁
(−Δ𝑡0

− 𝜁)−1
)∗

(
d
d𝑡

||𝑡=𝑡0Ξ𝑡

)(
𝜏
𝑁
(−Δ𝑡0

− 𝜁)−1
)
.

(4.26)

Finally, if 𝜆(𝑡0) is an eigenvalue of −Δ𝑡0
of multiplicity𝑚 ⩾ 1, then there exists a choice of orthonor-

mal eigenfunctions {𝑢𝑗}
𝑚
𝑗=1

⊂ ker(−Δ𝑡0
− 𝜆(𝑡0)) and a labeling of eigenvalues {𝜆𝑗(𝑡)}

𝑚
𝑗=1

of −Δ𝑡 , for
𝑡 near 𝑡0, such that

𝜆̇𝑗(𝑡0) = −⟨Ξ̇𝑡0
𝜏
𝑁
𝑢𝑗 , 𝜏𝑁𝑢𝑗⟩𝐿2(𝜕Ω), 1 ⩽ 𝑗 ⩽ 𝑚. (4.27)

Proof. By Lemma 4.11, (𝐻1∕2(𝜕Ω), 𝜏
𝑁
, Φ𝛾

𝐷
) is an ordinary boundary triplet. In order to check that

−Δ𝑡 is self-adjoint, it suffices to check conditions (2.8) and (2.9) with 𝑋 ∶= Ξ𝑡, 𝑌 ∶= 𝐼. Indeed,
(2.8) holds since Ξ𝑡 is self-adjoint, and (2.9) holds since the operator 𝑋𝑋

∗ + 𝑌𝑌∗ given by 𝐼 +

Ξ2
𝑡 > 0 is invertible. The fact that (4.25) is well defined for 𝑡 near 𝑡0 follows from continuity of Ξ𝑡

and Theorems 4.5 and 3.18 upon setting𝑡 ∶= −Δ𝑡, 𝑉𝑡 ∶= 0, T𝑡 ∶= [𝜏
𝑁
, Φ𝛾

𝐷
]⊤. In order to prove

(4.24), (4.26), and (4.27), we use (3.41), (3.43), and (3.44), respectively, with

(𝑊(Ξ𝑡, 𝐼))T𝑅𝑡(𝜁) = (𝐼 + Ξ2
𝑡 )

−1(−Γ0𝑅𝑡(𝜁) + Ξ𝑡Γ1𝑅𝑡(𝜁))

= (𝐼 + Ξ2
𝑡 )

−1(−Γ0𝑅𝑡(𝜁) − Ξ2
𝑡Γ0𝑅𝑡(𝜁)) = −Γ0𝑅𝑡(𝜁) = −𝜏𝑁𝑅𝑡(𝜁)

and 𝜙𝑗 = −𝜏
𝑁
𝑢𝑗 . □

Remark 4.14. The assumption 𝜕Ω being 𝐶1,𝑟, 𝑟 > 1∕2, imposed in this section could be replaced
by 𝜕Ω being Lipschitz andΩ quasi-convex, see [69, Section 8] for the definition. As proved in [69],
theseweaker assumptions are sufficient for the domains of theDirichlet andNeumannLaplacians
to belong to 𝐻2(Ω), which, in turn, is equivalent to (4.22) to hold. Also, for the case of Lips-
chitz domains Lemma 4.11 as well as the discussion of trace maps prior to Lemma 4.11 hold with
the Sobolev spaces 𝐻1∕2(𝜕Ω) and 𝐻−1∕2(𝜕Ω) replaced by 𝑁1∕2(𝜕Ω) and its adjoint

(
𝑁1∕2(𝜕Ω)

)∗
,

respectively, where the space𝑁1∕2(𝜕Ω) is defined as {𝑓 ∈ 𝐿2(𝜕Ω) ∶ 𝑓𝜈𝑗 ∈ 𝐻1∕2(𝜕Ω)}, 𝜈 = (𝜈𝑗)
𝑛
𝑗=1

,

and is equal to𝐻1∕2(𝜕Ω) provided 𝜕Ω is𝐶1,𝑟, 𝑟 > 1∕2, see [69]. In the context of Lipschitz domains,
we also mention an important paper [18].

Remark 4.15. Our motivation to consider the boundary condition in Theorem 4.13 stems from
[44, 67, 96]. More generally, the boundary condition described in Theorem 4.13 can be replaced
by 𝑋𝑡𝛾𝑁

𝑢 + 𝑌𝑡𝜏𝑁𝑢 = 0 for 𝑋𝑡, 𝑌𝑡 ∈ (𝐻1∕2(𝜕Ω)) satisfying (2.8) and (2.9). In this case, as in The-
orem 4.13, continuity of the mappings 𝑡 ↦ 𝑋𝑡, 𝑡 ↦ 𝑌𝑡 yields continuity of the resolvent operator
with respect to 𝑡. Moreover, differentiability of the mappings 𝑡 ↦ 𝑋𝑡, 𝑡 ↦ 𝑌𝑡 yields differentiabil-
ity of the resolvent operator with respect to 𝑡 as well as the Reccati equation and the formula for
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the slopes of the eigenvalue curves (both obtained by dropping the potential terms 𝑉𝑡 in (4.7) and
(4.8), respectively).

4.3 Quantum graphs

The main result of this section is Theorem 4.16 in which we derive the resolvent difference for-
mula, Riccati equation, and Hadamard-type formula for Schrödinger operators on metric graphs.
To that end, we employ the abstract results discussed in Theorem 4.5 with an ordinary boundary
triplet specifically defined for quantum graphs. Examples 4.17 and 4.18 give two applications of
Theorem4.16. Both examples concernmonotonicity of eigenvalue curves of Schrödinger operators
with respect to some natural parameter present in the boundary conditions.
We begin by discussing differential operators on metric graphs. To set the stage, let us fix a

discrete graph ( , )where  and  denote the set of vertices and edges, respectively. We assume
that ( , ) consists of a finite number of vertices, ||, and a finite number of edges, ||. We assign
to each edge 𝑒 ∈  a positive and finite length 𝓁𝑒 ∈ (0,∞). The corresponding metric graph is
denoted by . The boundary 𝜕 of the metric graph is defined by

𝜕 ∶= ∪𝑒∈ {𝑎𝑒, 𝑏𝑒},

where 𝑎𝑒, 𝑏𝑒 denote the end points of the edge 𝑒. It is convenient to treat 2||-dimensional vec-
tors as functions on the boundary 𝜕, in particular, 𝐿2(𝜕) ≅ ℂ2||, where the space 𝐿2(𝜕) =⨁

𝑒∈
(
𝐿2({𝑎𝑒}) × 𝐿2({𝑏𝑒})

)
corresponds to the discrete Dirac measure with support ∪𝑒∈ {𝑎𝑒, 𝑏𝑒}.

In addition to the space of functions on the boundary, we consider the Sobolev spaces of functions
on the graph ,

𝐿2() ∶= ⨁
𝑒∈

𝐿2(𝑒), 𝐻̂2() ∶= ⨁
𝑒∈

𝐻2(𝑒),

where 𝐻2(𝑒) is the standard 𝐿2 based Sobolev space. As in the setting of Laplace operators on
bounded domains, the spaces 𝐿2() and 𝐿2(𝜕) are related via the trace maps. We define the trace
operators (Γ0, Γ1) by the formulas

Γ0 ∶ 𝐻̂2() → 𝐿2(𝜕), Γ0𝑢 ∶= 𝑢|𝜕, 𝑢 ∈ 𝐻̂2(),
Γ1 ∶ 𝐻̂2() → 𝐿2(𝜕), Γ1𝑢 ∶= 𝜕𝑛𝑢|𝜕, 𝑢 ∈ 𝐻̂2(),

where 𝜕𝑛𝑢 denotes the derivative of 𝑢 taken in the inward direction. The trace operator is a
bounded, linear operator given by

T ∶= [Γ0, Γ1]
⊤, T ∶ 𝐻̂2() → 𝐿2(𝜕) × 𝐿2(𝜕) ≅ ℂ4||.

The Sobolev space of functions vanishing on the boundary 𝜕 together with their derivatives is
denoted by

𝐻2
0() ∶=

{
𝑢 ∈ 𝐻̂2() ∶ T𝑢 = 0

}
.
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Using our notation for the trace maps, the Green identity can be written as follows:

∫(−𝑢
′′)𝑣 − 𝑢(−𝑣′′) = ∫𝜕 𝜕𝑛𝑢𝑣 − 𝑢𝜕𝑛𝑣

= ⟨[𝐽 ⊗ 𝐼2||]T𝑢, T𝑣⟩ℂ4|| , 𝑢, 𝑣 ∈ 𝐻̂2().
The right-hand side of the Green identity defines a symplectic form

𝜔 ∶ 𝑑𝐿2(𝜕) × 𝑑𝐿2(𝜕) → ℂ,

𝜔((𝑓1, 𝑓2), (g1, g2)) ∶= ∫𝜕 𝑓2g1 − 𝑓1g2,

(𝑓1, 𝑓2), (g1, g2) ∈
𝑑𝐿2(𝜕),

where 𝑑𝐿2(𝜕) ∶= 𝐿2(𝜕) × 𝐿2(𝜕).
Next, we introduce the minimal Laplace operator 𝐴min and its adjoint 𝐴max. The operator

𝐴min ∶= −
d2

d𝑥2
, dom(𝐴min) = 𝐻̂2

0(),
is symmetric in 𝐿2(). Its adjoint 𝐴max ∶= 𝐴∗

min
is given by

𝐴max ∶= −
d2

d𝑥2
, dom(𝐴max) = 𝐻̂2().

The deficiency indices of 𝐴min are finite and equal, that is,

0 < dimker(𝐴max − 𝐢) = dimker(𝐴max + 𝐢) < ∞.

Theorem 4.16. Assume that

𝑡 ↦ 𝑉𝑡 is in 𝐶1([0, 1], 𝐿∞()),
𝑡 ↦ 𝑋𝑡, 𝑌𝑡 is in 𝐶1([0, 1],ℂ2||×2||), det(𝑋𝑡𝑋

∗
𝑡 + 𝑌𝑡𝑌

∗
𝑡 ) ≠ 0, 𝑋𝑡𝑌

∗
𝑡 = 𝑌∗

𝑡 𝑌𝑡.

Then, the operator

𝑡 ∶ 𝐿2() → 𝐿2(), dom(𝑡) ∶= {𝑢 ∈ 𝐻2() ∶ [𝑋𝑡, 𝑌𝑡]T𝑢 = 0},

𝑡𝑢 = −𝑢′′, 𝑢 ∈ dom(𝑡),

is a self-adjoint extension of 𝐴𝑚𝑖𝑛. The operator-valued function

𝑡 ↦ 𝑅𝑡(𝜁0) ∶= (𝑡 + 𝑉𝑡 − 𝜁0)
−1 for all 𝜁0 ∉ Spec(𝑡)

is in 𝐶1([0, 1],(𝐿2())) and for any 𝑡0 ∈ [0, 1] one has

𝑅̇𝑡0
(𝜁0) = −𝑅𝑡0

(𝜁0)𝑉̇𝑡0
𝑅𝑡0

(𝜁0)

+ (T𝑅𝑡0
(𝜁0))

∗
(
𝑊(𝑋𝑡0

, 𝑌𝑡0
)
)∗

(𝑋̇𝑡0
𝑌∗
𝑡0
− 𝑌̇𝑡0

𝑋∗
𝑡0
)
(
𝑊(𝑋𝑡0

, 𝑌𝑡0
)
)
T𝑅𝑡0

(𝜁0),
(4.28)
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where𝑊(𝑋𝑡0
, 𝑌𝑡0

) is as in (2.11). Furthermore, if 𝜆(𝑡0) is an eigenvalue of 𝑡0
+ 𝑉𝑡0

of multiplicity
𝑚 ⩾ 1, then there exist a choice of orthonormal eigenfunctions

{𝑢𝑗}
𝑚
𝑗=1 ⊂ ker(𝑡0

+ 𝑉𝑡0
− 𝜆(𝑡0))

and a labeling of eigenvalues {𝜆𝑗(𝑡)}
𝑚
𝑗=1

of𝑡 + 𝑉𝑡 , for 𝑡 near 𝑡0, such that

𝜆̇𝑗(𝑡0) = ⟨𝑉̇𝑡0
𝑢𝑗 , 𝑢𝑗⟩𝐿2() +

⟨
(𝑋𝑡0

𝑌̇∗
𝑡0
− 𝑌𝑡0

𝑋̇∗
𝑡0
)𝜙𝑗 , 𝜙𝑗

⟩
𝐿2(𝜕), (4.29)

where 𝜙𝑗 = 𝑊(𝑋𝑡0
, 𝑌𝑡0

)T𝑢𝑗 is a unique 2||-dimensional vector satisfying Γ0𝑢𝑗 = −𝑌∗
𝑡0
𝜙𝑗 and

Γ1𝑢𝑗 = 𝑋∗
𝑡0
𝜙𝑗 , 1 ⩽ 𝑗 ⩽ 𝑚.

Proof. Since (𝐿2(𝜕), Γ0, Γ1) is an ordinary boundary triplet, Equations (4.7) and (4.8) in
Theorem 4.5 give (4.28) and (4.29), respectively. □

Example 4.17. Consider the Schrödinger operator 𝐻𝑡 = − d2

d𝑥2
+ 𝑉 on a compact star graph  =

( ,)with a bounded real-valued potential𝑉 subject to arbitrary self-adjoint vertex conditions at
the vertices of degree one and the following 𝛿-type condition at the center vc ∈  ,

∑
𝑒∼vc

𝜕𝑛𝑢𝑒(vc) = 𝑡𝑢(vc), 𝑡 ∈ ℝ.

We recall that the spectrum of 𝐻𝑡 can be described via secular equations [21]. In this example,
we will derive an Hadamard-type formula (4.30) for the derivative of the eigenvalues of𝐻𝑡. Such
a formula is discussed in [21, Proposition 3.1.6] for simple eigenvalues. The general case can be
treated using (4.29) as follows. The boundary matrices describing the vertex conditions are given
by 𝑋 × 𝑋𝑡 and 𝑌 × 𝑌 where

𝑋𝑡 =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 ⋯ 0

0 1 −1 ⋯ 0

⋱

0 1 −1

−𝑡 0 ⋯ 0

⎤
⎥⎥⎥⎥⎥⎦

, 𝑌 =

⎡
⎢⎢⎢⎢⎢⎣

0 ⋯ 0

0 ⋯ 0

⋱

0 ⋯ 0

1 1 ⋯ 1

⎤
⎥⎥⎥⎥⎥⎦

,

and the matrices 𝑋 and 𝑌 correspond to the vertex conditions at  ⧵ {vc}. A direct computation
gives

𝑋∗
𝑡 𝑌 = 𝑌∗𝑋𝑡 =

⎡
⎢⎢⎢⎢⎣

0 0 ⋯ 0

0 0 ⋯ 0

⋱

0 0 ⋯ −𝑡

⎤
⎥⎥⎥⎥⎦
.

For the eigenvalue 𝜆(𝑡0) of𝐻𝑡0
of multiplicity𝑚 ∈ ℕ, we use (4.29) to get

𝜆̇𝑗(𝑡0) =
⟨
(𝑋𝑡0

𝑌̇∗
𝑡0
− 𝑌𝑡0

𝑋̇∗
𝑡0
)𝜙𝑗 , 𝜙𝑗

⟩
𝐿2(𝜕) = |𝜙𝑗(vc)|2,
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where 1 ⩽ 𝑗 ⩽ 𝑚, 𝜙𝑗 = 𝑊(𝑋𝑡0
, 𝑌𝑡0

)T𝑢𝑗 , and {𝑢𝑗}
𝑚
𝑗=1

are the eigenfunctions of 𝐻𝑡0
corresponding

to 𝜆(𝑡0). Furthermore, using (3.45), we obtain 𝜙𝑗(vc) = −𝑢𝑗(vc), and hence,

𝜆̇𝑗(𝑡0) = |𝑢𝑗(vc)|2, 1 ⩽ 𝑗 ⩽ 𝑚. (4.30)

Example 4.18. This example concerns monotonicity of eigenvalue curves of a class of
Schrödinger operators on a compact interval arising in the spectral theory of periodic Hamil-
tonians. Specifically, we consider the Schrödinger operators 𝐻𝜗 with a real-valued potential
𝑉 ∈ 𝐿∞(0, 1) which are parameterized by 𝜗 ∈ [0, 2𝜋) and defined as follows:

𝐻𝜗 = 𝜗 + 𝑉, 𝜗 ∶ 𝐿2(0, 1) → 𝐿2(0, 1),𝜗𝑢 = −𝑢′′, 𝑢 ∈ dom(𝜗),

dom(𝜗) ∶= {𝑢 ∈ 𝐻2(0, 1) ∶ 𝑒𝐢𝜗𝑢(0) = 𝑢(1), 𝑒𝐢𝜗𝑢′(0) = 𝑢′(1)}. (4.31)

Such operators are of interest, in particular, because their eigenvalues fill up the spectral bands
of the Schrödinger operator in 𝐿2(ℝ) with the potential given by the periodic extension of 𝑉, see
[111, Theorems XIII.89, XIII.90]. We claim that the eigenvalue curves satisfy

𝜆̇𝑗(𝜗0) = 2 Im(𝑢′𝑗(0)𝑢𝑗(0)) for all 𝜗0 ∈ (0, 2𝜋), (4.32)

where, as usual, 𝑢𝑗 ∈ ker(𝜗0
− 𝜆𝑗(𝜗0)), 𝑗 = 1, 2 (in fact, all but, possibly, periodic and antiperi-

odic operators have simple spectra). We derive this formula from (4.8) by defining trace operators
appropriately. It is well known that ordinary differential operators fit well into the scheme of
boundary triplets, cf. for example [71, Chapter 3]; however, for completeness, we recall the setting.
We set

 ∶= 𝐿2(0, 1),+ ∶= 𝐻2(0, 1), 𝐴 = −
d2

d𝑥2
, dom(𝐴) = 𝐻2

0(0, 1)

T ∶ 𝐻2(0, 1) → ℂ4, Γ0𝑢 ∶= (𝑢(0), 𝑢(1))⊤, Γ1𝑢 ∶= (𝑢′(0), −𝑢′(1))⊤.

Next, to utilize (4.8), we first rewrite the boundary conditions in (4.31) as follows:

𝑋𝜗Γ0𝑢 + 𝑌𝜗Γ1𝑢 = 0, where 𝑋𝜗 ∶=

[
−e𝐢𝜗 1

0 0

]
, 𝑌𝜗 ∶=

[
0 0

e𝐢𝜗 1

]
,

and compute

𝜙𝑗 = 𝑊(𝑋𝜗 , 𝑌𝜗)T𝑢𝑗 =
1

2
(−𝑌𝜗0

Γ0𝑢𝑗 + 𝑋𝜗0
Γ1𝑢𝑗) = −𝑒𝐢𝜗0(𝑢′𝑗(0), 𝑢𝑗(0))

⊤,

𝑋𝜗0
𝑌̇∗
𝜗0

− 𝑌𝜗0
𝑋∗
𝜗0

=

[
0 𝐢

−𝐢 0

]
.

Plugging this in (4.29) yields (4.32). Monotonicity of the eigenvalues follows from linear
independence of 𝑢𝑗 , 𝑢𝑗 and the formula

2| Im(𝑢′𝑗(0)𝑢𝑗(0))| = |(𝑢𝑗 , 𝑢𝑗)(0)| ≠ 0, 𝜗0 ∈ (0, 2𝜋).

involving the Wronskian.
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4.4 Periodic Kronig–Penney model

† In this section, we give yet another application of Theorem 4.5 proving a version of B.
Simon’s theorem [121] that states that a certain open gap property (described below) of periodic
Schrödinger operators is generic in the class of periodic 𝐶∞(ℝ) potentials. The main result of this
section, Theorem 4.19, states this assertion for singular 𝛿-type potentials. Its proof is based on a
perturbative argument inspired by [121] and technically made available by Theorem 4.5.
The spectrum of the Schrödinger operator with periodic potential on the line has a bandgap

structure, that is, in general, it consists of closed segments, called bands, such that two adjacent
bands can either have a common endpoint or be separated by an open interval, a gap, of the resol-
vent set; in the latter case, we say that the gap is open. We will now use Theorem 4.5 to prove that
all gaps of a generic periodic Kronig–Penney model are open. The operators in question are the
Schrödinger operators with 𝛿-type potentials that in physics literature are written as follows:

𝐻𝛼 ∶= −
d2

d𝑥2
+

∑
𝑘∈ℤ

𝛼𝑘𝛿(𝑥 − 𝑘),

and mathematically are defined by

𝐻𝛼𝑢 ∶= −𝑢′′, 𝑢 ∈ dom(𝐻𝛼), 𝐻𝛼 ∶ dom(𝐻𝛼) ⊂ 𝐿2(ℝ) → 𝐿2(ℝ),

dom(𝐻𝛼) = {𝑢 ∈ 𝐻̂2(ℝ ⧵ ℤ) ∶ 𝑢 satisfies (4.33) for all 𝑘 ∈ ℤ},

𝑢(𝑘+) = 𝑢(𝑘−), 𝑢′(𝑘+) − 𝑢′(𝑘−) = 𝛼𝑘𝑢(𝑘), (4.33)

where 𝛼 = {𝛼𝑘}𝑘∈ℤ ∈ 𝓁∞(ℤ;ℝ), 𝑢(𝑘±) are the one-sided limits, and 𝐻̂2 denotes the direct sum of
the Sobolev spaces on respective intervals. The spectrum of 𝐻𝛼 for the case of periodic sequence
𝛼 has a bandgap structure, see [3, Theorem 2.3.3]. This was originally proved for 1-periodic
sequences but can be directly extended to any 𝑝-periodic ones. Specifically, given a 𝑝-periodic
sequence 𝛼 = {𝛼𝑘}𝑘∈ℤ ∈ 𝓁∞(ℤ;ℝ), the operator𝐻𝛼 is unitary equivalent to the direct integral

∫
⊕

[0,2𝜋)
𝐻𝛼(𝑝),𝜗

d𝜗
2𝜋

, where we denote 𝛼(𝑝) ∶= {𝛼0, … , 𝛼𝑝−1} ∈ ℝ𝑝,

and𝐻𝛼(𝑝),𝜗 for 𝜗 ∈ [0, 2𝜋) is the operator defined in 𝐿2(𝐼𝑝) with 𝐼𝑝 ∶= (−1∕2, 𝑝 − 1∕2) by

𝐻𝛼(𝑝),𝜗𝑢 ∶= −𝑢′′, 𝐻𝛼(𝑝),𝜗 ∶ dom(𝐻𝛼(𝑝),𝜗) ⊂ 𝐿2(𝐼𝑝) → 𝐿2(𝐼𝑝),

dom(𝐻𝛼(𝑝),𝜗) =
{
𝑢 ∈ 𝐻̂2(𝐼𝑝 ⧵ ℤ) ∶ 𝑢 satisfies (4.33) for 𝑘 ∈ 𝐼𝑝 ∩ ℤ and (4.34)

}
,

𝑢(−1∕2+) = 𝑒𝐢𝜗𝑢((𝑝 − 1∕2)−), 𝑢′(−1∕2+) = 𝑒𝐢𝜗𝑢′((𝑝 − 1∕2)−), (4.34)

where

𝐻̂2(𝐼𝑝 ⧵ ℤ) ∶= 𝐻2(−1∕2, 0) ⊕ 𝐻2(0, 1) ⊕ …⊕𝐻2(𝑝 − 2, 𝑝 − 1) ⊕ 𝐻2(𝑝 − 1, 𝑝 − 1∕2).

†An alternative approach applicable to a very broad class of second-order operators is discussed in the upcoming work of

D. Damanik, J. Fillman, and the second author. See also [24].
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Denoting the eigenvalues of𝐻𝛼(𝑝),𝜗 (ordered in nondecreasing order) by

𝜆𝑗(𝛼
(𝑝), 𝜗), 𝑗 = 1, 2, … ,

we have

𝜆1(𝛼
(𝑝), 0) ⩽ 𝜆1(𝛼

(𝑝), 𝜗) ⩽ 𝜆1(𝛼
(𝑝), 𝜋) ⩽ 𝜆2(𝛼

(𝑝), 𝜋) ⩽ 𝜆2(𝛼
(𝑝), 𝜗) ⩽ 𝜆2(𝛼

(𝑝), 0)

⩽ 𝜆3(𝛼
(𝑝), 0) ⩽ 𝜆3(𝛼

(𝑝), 𝜗) ⩽ 𝜆3(𝛼
(𝑝), 𝜋) ⩽ … for 𝜗 ∈ [0, 𝜋].

Then, the spectrum of𝐻𝛼 is given by

Spec(𝐻𝛼) =
⋃

𝜗∈[0,𝜋]

Spec(𝐻𝛼(𝑝),𝜗)

= [𝜆1(𝛼
(𝑝), 0), 𝜆1(𝛼

(𝑝), 𝜋)] ∪ [𝜆2(𝛼
(𝑝), 𝜋), 𝜆2(𝛼

(𝑝), 0)] ∪ … .

The intervals [𝜆1(𝛼
(𝑝), 0), 𝜆1(𝛼

(𝑝), 𝜋)], [𝜆2(𝛼
(𝑝), 𝜋), 𝜆2(𝛼

(𝑝), 0)], … are called bands. The endpoints
of two adjacent bandsmay coincide. In this case, we say that the respective gap is closed; otherwise
the respective gap,

(
𝜆1(𝛼

(𝑝), 𝜋), 𝜆2(𝛼
(𝑝), 𝜋)

)
,
(
𝜆2(𝛼

(𝑝), 0), 𝜆3(𝛼
(𝑝), 0)

)
, … is said to be open. In the

following theorem, we show that all gaps are open for a generic periodic sequence 𝛼.

Theorem 4.19. There is a dense 𝐺𝛿-set  ⊂ 𝓁∞(ℤ;ℝ) of sequences 𝛼 such that for each 𝛼 ∈  , all
gaps in the spectrum of𝐻𝛼 are open.

Proof. We let

𝑛 ∶= {𝛼 ∈ 𝓁∞(ℤ;ℝ) ∶ 𝛼 is 𝑝-periodic and the 𝑛th gap of𝐻𝛼 is open}.

It is enough to prove that each𝑛 is open and dense (then
⋂

𝑛∈ℕ 𝑛 gives the required dense𝐺𝛿-set
of potentials). To begin, let us rewrite dom(𝐻𝛼(𝑝),𝜗) in terms of Lagrangian planes in Λ(ℂ4(𝑝+1)).

For 𝑢 ∈ 𝐻̂2(𝐼𝑝 ⧵ ℤ), we introduce the traces Γ0𝑢, Γ1𝑢 ∈ ℂ2(𝑝+1) by

Γ0𝑢 ∶= {𝑢(−1∕2+), 𝑢((𝑝 − 1∕2)−), 𝑢(0−), 𝑢(0+), … , 𝑢(𝑘−), 𝑢(𝑘+), … ,

𝑢((𝑝 − 1)−), 𝑢((𝑝 − 1)+)} ∈ ℂ2(𝑝+1),

Γ1𝑢 ∶= {𝑢′(−1∕2+), −𝑢′((𝑝 − 1∕2)−), −𝑢′(0−), 𝑢′(0+), … , −𝑢′(𝑘−), 𝑢′(𝑘+), … ,

− 𝑢′((𝑝 − 1)−), 𝑢′((𝑝 − 1)+)} ∈ ℂ2(𝑝+1).

Also, let us introduce 2(𝑝 + 1) × 2(𝑝 + 1)matrices

𝑋𝛼(𝑝),𝜗 ∶=

[
−𝑒𝐢𝜗 1

0 0

]
⊕

[
1 −1

−𝛼0 0

]
⊕…⊕

[
1 −1

−𝛼𝑝−1 0

]
,

𝑌𝛼(𝑝),𝜗 ∶=

[
0 0

𝑒𝐢𝜗 1

]
⊕

[
0 0

1 1

]
⊕…⊕

[
0 0

1 1

]
.

Then, one has

dom(𝐻𝛼(𝑝),𝜗) = {𝑢 ∈ 𝐻̂2(𝐼𝑝 ⧵ ℤ) ∶ 𝑋𝛼(𝑝),𝜗Γ0𝑢 + 𝑌𝛼(𝑝),𝜗Γ1𝑢 = 0}.
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That is, the Lagrangian plane corresponding to 𝐻𝛼(𝑝),𝜗 is given by

ker[𝑋𝛼(𝑝),𝜗 , 𝑌𝛼(𝑝),𝜗].

In order to prove that 𝑛 is open, let us recall that the edges of the spectral gaps are given by
consecutive eigenvalues of the periodic, 𝐻𝛼(𝑝),0, or antiperiodic, 𝐻𝛼(𝑝),𝜋, operators. Suppose that

𝛼 ∈ 𝑛 and that the edges of the 𝑛th gap satisfy 𝜆𝑛(𝛼
(𝑝), 𝜗) < 𝜆𝑛+1(𝛼

(𝑝), 𝜗) with either 𝜗 = 0 or
𝜗 = 𝜋. We claim that this strict inequality holds for all 𝛼̃(𝑝) ∈ ℝ𝑝 near 𝛼(𝑝), that is, that the gap is
open under small perturbations of 𝛼(𝑝). Indeed, since the mapping

ℝ𝑝 ∋ 𝛼(𝑝) ↦ [𝑋𝛼(𝑝),𝜗 , 𝑌𝛼(𝑝),𝜗] for 𝜗 = 0 or 𝜗 = 𝜋

is continuous, Theorem 4.5 yields continuity of the mapping

ℝ𝑝 ∋ 𝛼(𝑝) ↦ (𝐻𝛼(𝑝),𝜗 − 𝐢)−1 ∈ (𝐿2(𝐼𝑝)) for 𝜗 = 0 or 𝜗 = 𝜋;

hence, the mappings

𝛼(𝑝) ↦ 𝜆𝑗(𝛼
(𝑝), 𝜗), 𝛼(𝑝) ↦ 𝜆𝑗+1(𝛼

(𝑝), 𝜗), for 𝜗 = 0 or 𝜗 = 𝜋

are also continuous, which implies the asserted strict inequality

𝜆𝑛(𝛼̃
(𝑝), 𝜗) < 𝜆𝑛+1(𝛼̃

(𝑝), 𝜗)

for all 𝛼̃(𝑝) near 𝛼(𝑝).
In order to prove that 𝑛 is dense, we need to show that for both cases 𝜗 = 0 and 𝜗 = 𝜋, the

equality 𝜆𝑛(𝛼
(𝑝), 𝜗) = 𝜆𝑛+1(𝛼

(𝑝), 𝜗) will not hold if 𝛼(𝑝) is replaced by its small perturbation. We
will consider the case 𝜗 = 0, that is, wewill assume that 𝜆𝑛(𝛼

(𝑝), 0) = 𝜆𝑛+1(𝛼
(𝑝), 0); the case 𝜗 = 𝜋

is treated analogously. For 𝑡 ∈ ℝ, let us introduce the perturbation𝛼(𝑝)(𝑡) ∶= {𝑡 + 𝛼0, 𝛼1, … , 𝛼𝑝−1}.
We claim that for every 𝜀 > 0, there is a 𝑡0 ∈ (0, 𝜀) with

𝜆𝑛(𝛼
(𝑝)(𝑡0), 0) < 𝜆𝑛+1(𝛼

(𝑝)(𝑡0), 0). (4.35)

When proven, this inequality shows that there exist arbitrarily close to 𝛼(𝑝) perturbations that
open the closed gap. To prove the claim, we utilize the Hadamard-type formula (4.29) for the
boundary matrices 𝑋𝛼(𝑝)(𝑡),0, 𝑌𝛼(𝑝)(𝑡),0. We recall that 𝜆 ∶= 𝜆𝑛(𝛼

(𝑝), 0) = 𝜆𝑛+1(𝛼
(𝑝), 0) is an eigen-

value of 𝐻𝛼(𝑝),0 of multiplicity two. By Theorem 4.16, there is a basis {𝑢1, 𝑢2} in ker(𝐻𝛼(𝑝),0 − 𝜆)

such that

d

d𝑡
|||𝑡=0𝜆𝑛(𝛼

(𝑝)(𝑡), 0) = |𝑢1(0)|2, (4.36)

d

d𝑡
|||𝑡=0𝜆𝑛+1(𝛼

(𝑝)(𝑡), 0) = |𝑢2(0)|2. (4.37)

Next, we will prove that the values of the derivatives in (4.36) and (4.37) are not equal to each
other. This fact implies that the eigenvalue curves 𝑡 ↦ 𝜆𝑛(𝛼

(𝑝)(𝑡), 0) and 𝑡 ↦ 𝜆𝑛+1(𝛼
(𝑝)(𝑡), 0) do

not coincide for 𝑡 near 𝑡 = 0, which, in turn, yields (4.35) as needed. Starting the proof of the
fact, we first remark that the eigenfunctions 𝑢1 and 𝑢2 are real-valued because the boundary
conditions for 𝜗 = 0 are real. Upon multiplying the eigenfunctions by appropriate constants,
we may and will assume that 𝑢1(0) and 𝑢2(0) are nonnegative. If 𝑢1(0) ≠ 𝑢2(0), then the left-
hand sides of (4.36) and (4.37) are not equal as required. If 𝑢1(0) = 𝑢2(0), then for any 𝑡 ∈ ℝ, the
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function 𝑢1 − 𝑢2 satisfies the boundary condition at 𝑥 = 0 with 𝛼0 replaced by 𝑡 + 𝛼0. Therefore,
𝑢1 − 𝑢2 ∈ ker(𝐻𝛼(𝑝)(𝑡),0 − 𝜆) ⧵ {0} and thus 𝜆 is an eigenvalue of 𝐻𝛼(𝑝)(𝑡),0 for all 𝑡 ∈ ℝ. That is,

either 𝜆𝑛(𝛼
(𝑝)(𝑡), 0) or 𝜆𝑛+1(𝛼

(𝑝)(𝑡), 0) should be identically equal to 𝜆 for all 𝑡 near 0. Hence, one
of the derivatives in (4.36) and (4.37) vanishes, say, the first one. Then 𝑢1(0) = 0. But in this case,
𝑢2(0) ≠ 0 for otherwise 𝑢1 and 𝑢2 would be linearly dependent. Thus, the value of the derivative
in (4.36) is equal to zero, while the value of the derivative in (4.37) is not, as required. □

4.5 Maslov crossing form for abstract boundary triplets

In this section, we discuss an infinitesimal version of the formula equating the Maslov index
and the spectral flow for the family of operators𝐻𝑡 = 𝑡 + 𝑉𝑡 satisfying Hypothesis 4.3, which is
assumed throughout this section. Formulas relating these two quantities are quite classical, and
we refer the reader to the papers [26–29, 35, 44, 45, 63, 93, 95, 96, 114] and the literature therein.
Employing the abstract Hadamard-type formula obtained in Theorem 3.25, we prove in Theo-
rem 4.22 that the signature of the Maslov crossing form defined in (4.41) at an eigenvalue 𝜆 of the
operator 𝐻𝑡0

is equal to the difference between the number of monotonically decreasing and the
number of monotonically increasing eigenvalue curves for𝐻𝑡 bifurcating from 𝜆.
For 𝜆 ∈ ℝ and 𝑡 ∈ [0, 1], we introduce the following subspaces:

𝕂𝜆,𝑡 ∶= T𝑡(ker(𝐴
∗ + 𝑉𝑡 − 𝜆)) ⊂ ℌ ×ℌ,

𝑡 ∶= ran(𝑄𝑡) ⊂ ℌ ×ℌ,

Υ𝜆,𝑡 ∶= 𝕂𝜆,𝑡 ⊕ 𝑡 ⊂ ((ℌ ×ℌ) ⊕ (ℌ ×ℌ)), (4.38)

𝔇 ∶= {𝐩 = (𝑝, 𝑝)⊤ ∶ 𝑝 ∈ ℌ ×ℌ} ⊂ ((ℌ ×ℌ) ⊕ (ℌ ×ℌ)).

Since T𝑡(dom(𝑡)) = ran(𝑄𝑡) by Hypothesis 4.3, the following assertions are equivalent:

(𝑖) ker(𝐻𝑡 − 𝜆) ≠ {0}, (𝑖𝑖) 𝕂𝜆,𝑡 ∩ 𝑡 ≠ {0}, (𝑖𝑖𝑖) Υ𝜆,𝑡 ∩𝔇 ≠ {0} (4.39)

since𝔇 is the diagonal subspace in (ℌ × ℌ) ⊕ (ℌ ×ℌ). In fact, using a fundamental [26, Propo-
sition 3.5], one can deduce deeper connections between the spectral information for 𝐻𝑡 and the
behavior of Lagrangian planes under the following hypotheses.

Hypothesis 4.20. Given 𝜆 ∈ ℝ and 𝑡0 ∈ [0, 1], we assume that

(i) 𝜆 ∉ Specess(𝐻𝑡0
).

Moreover, there exists an interval  ⊂ [0, 1] centered at 𝑡0 such that

(ii) the mappings 𝑡 ↦ T𝑡, 𝑡 ↦ 𝑉𝑡, 𝑡 ↦ 𝑄𝑡 are 𝐶
1 on  ,

(iii) ker(𝐴∗ + 𝑉𝑡 − 𝜆) ∩ dom(𝐴) = {0} for all 𝑡 ∈  .
Hypothesis 4.20 will be assumed through this section. Part (iii) of this hypothesis is an abstract

version of the unique continuation principle for PDEs, and we refer to [93, Theorems 3.2 and
Hypothesis 5.9] for a discussion of this connection. Part (i) implies that the operator 𝐻𝑡0

− 𝜆 is
Fredholm. Since ker(T) = dom(𝐴) by Lemma 2.3(1), parts (i) and (iii) of Hypothesis 4.20 imply
that T||ker(𝐻𝑡0

−𝜆) is an isomorphism between ker(𝐻𝑡0
− 𝜆) and 𝕂𝜆,𝑡 ∩ 𝑡, cf. (4.39). Moreover, the
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subspaces𝕂𝜆,𝑡0
and𝑡0

formaFredholmpair (i.e., their intersection is finite dimensional and their
sum is closed and has finite codimension). The latter fact has been established in [26, Proposition
3.5] in the setting of Lagrangian planes in dom(𝐴∗)∕ dom(𝐴); using this one can readily deduce
the Fredholm property of the pair in the present setting via the symplectomorphism introduced
in [93, Proposition 5.3]. The subspace 𝑡 is Lagrangian by Hypothesis 4.3. The subspace 𝕂𝜆,𝑡 is
also Lagrangian again by [26, Proposition 3.5]. Furthermore, part (ii) of Hypothesis 4.20 yields
continuity in 𝑡 of the resolvent operators for𝐻𝑡 by Theorem3.18. This, togetherwith part (i), shows
that 𝜆 ∉ Specess(𝐻𝑡) for 𝑡 near 𝑡0; hence, the subspaces𝕂𝜆,𝑡,𝑡 formaFredholmpair of Lagrangian
subspaces for each 𝑡 near 𝑡0. Hence,

(
Υ𝜆,𝑡,𝔇

)
is a Fredholm pair of Lagrangian subspaces for each

𝑡 near 𝑡0.
LetΠ𝜆,𝑡 be the orthogonal projection onto Υ𝜆,𝑡 from (4.38) so that the mapping 𝑡 ↦ Π𝜆,𝑡 is con-

tinuously differentiable on [0,1] for each 𝜆 ∈ ℝ, see [93, pp.480–481]. Furthermore, for 𝜆 ∈ ℝ and
𝑡0 ∈ [0, 1] satisfyingHypothesis 4.20, there is an interval  ⊆  ⊂ [0, 1] centered at 𝑡0 and a family
of operators 𝑡 ↦ 𝜆,𝑡, 𝑡 ∈ , which is in 𝐶1

(,(Υ𝜆,𝑡0
, (Υ𝜆,𝑡0

)⊥)
)
with𝜆,𝑡0

= 0 such that

Υ𝜆,𝑡 =
{
𝐪 +𝜆,𝑡𝐪 ||𝐪 ∈ Υ𝜆,𝑡0

}
, 𝑡 ∈ , (4.40)

see, for example, [44, Lemma 3.8]. We call (𝜆, 𝑡0) a conjugate point if ker(𝐻𝑡0
− 𝜆) ≠ {0}, or equiv-

alently, if assertions (ii) and (iii) in (4.39) hold for 𝑡 = 𝑡0. The Maslov crossing form 𝔪𝑡0
for

Υ𝜆,𝑡 relative to 𝔇 at the conjugate point (𝜆, 𝑡0) is defined on the finite-dimensional intersection
Υ𝜆,𝑡0

∩𝔇 of the Lagrangian subspaces by the formula

𝔪𝑡0
(𝐪, 𝐩) ∶=

d
d𝑡

||𝑡=𝑡0𝜔(𝐪,𝜆,𝑡𝐩) = 𝜔(𝐪,̇𝜆,𝑡0
𝐩), 𝐩, 𝐪 ∈ Υ𝜆,𝑡0

∩𝔇, (4.41)

where 𝜔 = 𝜔 ⊕ (−𝜔) is a symplectic form on (ℌ × ℌ) ⊕ (ℌ ×ℌ) and, as usual, we abbreviate

̇𝜆,𝑡0
= d
d𝑡
𝜆,𝑡

||𝑡=𝑡0 .

Lemma 4.21. Let (𝜆, 𝑡0) be a conjugate point satisfying Hypothesis 4.20 and let 𝑢 ∈ ker(𝐻𝑡0
− 𝜆).

Then there exist an open interval  ⊆  centered at 𝑡0, a family 𝑡 ↦ 𝑤𝑡 in 𝐶1(,+), and a family
𝑡 ↦ g𝑡 ∈ ran(𝑄𝑡) in 𝐶1(, ℌ × ℌ) such that

𝑤𝑡0
= 𝑢, g𝑡0

= T𝑡0
𝑢,

𝑤𝑡 ∈ ker(𝐴∗ + 𝑉𝑡 − 𝜆), (4.42)

(T𝑡𝑤𝑡, g𝑡)
⊤ =

(
T𝑡0

𝑢, T𝑡0
𝑢
)⊤

+𝜆,𝑡

(
T𝑡0

𝑢, T𝑡0
𝑢
)⊤

, 𝑡 ∈ , (4.43)

where𝜆,𝑡 is as in (4.40).

Proof. The proof is similar to that of [95, Lemma 2.6, p. 355]. For brevity, we denote 𝑁𝑡 ∶=

ker(𝐴∗ + 𝑉𝑡 − 𝜆), 𝑞 ∶= T𝑡0
𝑢, 𝐪 ∶= (𝑞, 𝑞) and let 𝑃𝑡 be the orthogonal projections onto 𝕂𝜆,𝑡. Then

𝑃𝑡 ∈ 𝐶1
(,(ℌ × ℌ)

)
for some open interval  ⊆  centered at 𝑡0 (see, e.g., [26, Theorem 3.9],

[93, Theorem 5.10]). We now consider the projections in (ℌ × ℌ) × (ℌ ×ℌ) given by

𝑃𝑡 ∶=

[
𝑃𝑡 0

0 0

]
, 𝑄𝑡 ∶=

[
0 0

0 𝑄𝑡

]
,
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so that 𝑃𝑡 + 𝑄𝑡 = Π𝜆,𝑡, ran(Π𝜆,𝑡) = Υ𝜆,𝑡 = 𝕂𝜆,𝑡 ⊕ 𝑡. Using the definition of Υ𝜆,𝑡 and 𝜆,𝑡, see
(4.38) and (4.40), we define

ℎ𝑡 ∈ ran(𝑃𝑡) ⊂ ℌ ×ℌ, g𝑡 ∈ ran(𝑄𝑡) ⊂ ℌ ×ℌ,

such that

(ℎ𝑡, 0)
⊤ = 𝑃𝑡(𝐪 +𝜆,𝑡𝐪) and (0, g𝑡)

⊤ = 𝑄𝑡(𝐪 +𝜆,𝑡𝐪), (4.44)

and so ℎ𝑡0 = g𝑡0
= 𝑞. Since 𝑡 ↦ 𝜆,𝑡, 𝑡 ↦ 𝑃𝑡 and 𝑡 ↦ 𝑄𝑡 are 𝐶

1, we know that the maps 𝑡 ↦ ℎ𝑡
and 𝑡 ↦ g𝑡 are 𝐶

1. As above, employing Hypothesis 4.20 and ker T𝑡 = dom(𝐴), see Lemma 2.3 (1),
we conclude that the restriction

T𝑡 ↾𝑁𝑡
∶ 𝑁𝑡 → ran(𝑃𝑡) ⊂ ℌ ×ℌ,

of T𝑡 to 𝑁𝑡 is a bijection. Therefore, there is a unique vector 𝑤𝑡 ∈ 𝑁𝑡 satisfying T𝑡𝑤𝑡 = ℎ𝑡.
Assertions (4.42) and (4.43) hold with this choice of 𝑤𝑡 and g𝑡.
It remains to show that the function 𝑡 ↦ 𝑤𝑡 is in 𝐶1(,+). Let 𝑈𝑡 denote the 𝐶1 family of

boundedly invertible transformation operators in + that split the projections 𝑁𝑡
onto 𝑁𝑡 and𝑁𝑡0

onto 𝑁𝑡0
so that the identity 𝑈𝑡𝑁𝑡0

= 𝑁𝑡
𝑈𝑡 holds, and 𝑈𝑡 ∶ 𝑁𝑡0

↦ 𝑁𝑡 are bijections for 𝑡

near 𝑡0, cf. [95, Remark 2.4], [44, Remark 3.5], [47, Section IV.1], [63, Remark 6.11]. We temporarily
introduce 𝑣𝑡 ∈ 𝑁𝑡0

by 𝑣𝑡 = 𝑈−1
𝑡 𝑤𝑡 so that T𝑡𝑤𝑡 = ℎ𝑡 yields (T𝑡◦𝑈𝑡)𝑣𝑡 = ℎ𝑡. The map T𝑡◦𝑈𝑡

||𝑁𝑡0
∶

𝑁𝑡0
→ ran(𝑃𝑡) is a bijection and 𝑡 ↦ T𝑡◦𝑈𝑡

||𝑁𝑡0
is in 𝐶1

(,(𝑁𝑡0
, ℌ × ℌ)

)
by the assumptions

in the lemma. Since 𝑤𝑡 = 𝑈𝑡◦
(
T𝑡◦𝑈𝑡

)−1
ℎ𝑡, the function 𝑡 ↦ 𝑤𝑡 is 𝐶

1 because each of the three
terms in the composition is 𝐶1. □

Theorem 4.22. Under Hypothesis 4.3, let (𝜆, 𝑡0) be a conjugate point satisfying Hypothesis 4.20. Let
{𝜆𝑗(𝑡)}

𝑚
𝑗=1

, with 𝜆 = 𝜆(𝑡0), {𝑢𝑗}
𝑚
𝑗=1

be as in Theorem 4.5, and let 𝐪𝑗 ∶= (T𝑡0
𝑢𝑗 , T𝑡0

𝑢𝑗)
⊤ ∈ Υ𝜆,𝑡0

∩𝔇.
Then, the slope of the eigenvalue curves satisfies

𝜆̇𝑗(𝑡0) = 𝔪𝑡0
(𝐪𝑗 , 𝐪𝑗), 1 ⩽ 𝑗 ⩽ 𝑚, (4.45)

where𝔪𝑡0
is the Maslov form introduced in (4.41).

Proof. For a fixed 𝑗, let (𝑤𝑡, g𝑡) be as in Lemma 4.21 with 𝑢 ∶= 𝑢𝑗 . Differentiating

𝐴∗𝑤𝑡 + 𝑉𝑡𝑤𝑡 − 𝜆𝑤𝑡 = 0, (4.46)

at 𝑡0 and multiplying the result by 𝑤𝑡0
= 𝑢𝑗 , we get

⟨(𝐴∗ + 𝑉𝑡0
− 𝜆)𝑤̇𝑡0

, 𝑤𝑡0
⟩ + ⟨𝑉̇𝑡0

𝑤𝑡0
, 𝑤𝑡0

⟩ = 0.

Using the Green identity (4.1) with 𝑢 = 𝑤̇𝑡0
and 𝑣 = 𝑤𝑡0

, we obtain

⟨(𝐴∗ + 𝑉𝑡0
− 𝜆)𝑤̇𝑡0

, 𝑤𝑡0
⟩ = ⟨𝑤̇𝑡0

, (𝐴∗ + 𝑉𝑡0
− 𝜆)𝑤𝑡0

⟩
+ ⟨Γ1𝑡0𝑤̇𝑡0

, Γ0𝑡0𝑤𝑡0
⟩ℌ − ⟨Γ0𝑡0𝑤̇𝑡0

, Γ1𝑡0𝑤𝑡0
⟩ℌ.

(4.47)
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Combining (4.46) and (4.47) yields

𝜔
(
T𝑡0

𝑤̇𝑡0
, T𝑡0

𝑢𝑗

)
+ ⟨𝑉̇𝑡0

𝑢𝑗 , 𝑢𝑗⟩ = 0. (4.48)

Next, (4.41) and (4.43) yield

𝔪𝑡0
(𝐪𝑗 , 𝐪𝑗) = 𝜔

(
T𝑡0

𝑢𝑗 ,
d
d𝑡

||𝑡=𝑡0(T𝑡𝑤𝑡)

)
− 𝜔(T𝑡0

𝑢𝑗 , ġ𝑡0). (4.49)

Since g𝑡 = 𝑄𝑡g𝑡, we have

ġ𝑡0
= 𝑄̇𝑡0

g𝑡0
+ 𝑄𝑡0

ġ𝑡0
= 𝑄̇𝑡0

T𝑡0
𝑢𝑗 + 𝑄𝑡0

ġ𝑡0
.

Utilizing this, the fact that ran(𝑄𝑡0
) is Lagrangian and T𝑢𝑗 ∈ ran(𝑄𝑡0

), we get

𝜔(T𝑡0
𝑢𝑗 , ġ𝑡0) = 𝜔(T𝑡0

𝑢𝑗 , 𝑄̇𝑡0
T𝑡0

𝑢𝑗 + 𝑄𝑡0
ġ𝑡0

) = 𝜔(T𝑡0
𝑢𝑗 , 𝑄̇𝑡0

T𝑡0
𝑢𝑗). (4.50)

Then, (4.48), (4.49), and (4.50) yield

𝔪𝑡0
(𝐪𝑗 , 𝐪𝑗) = 𝜔

(
T𝑡0

𝑢𝑗 , Ṫ𝑡0
𝑢𝑗

)
+ 𝜔

(
T𝑡0

𝑢𝑗 , T𝑡0
𝑤̇𝑡0

)

− 𝜔(T𝑡0
𝑢𝑗 , 𝑄̇𝑡0

T𝑡0
𝑢𝑗)

= 𝜔
(
T𝑡0

𝑢𝑗 , Ṫ𝑡0
𝑢𝑗

)
+ ⟨𝑉̇𝑡0

𝑢𝑗 , 𝑢𝑗⟩
+ 𝜔(𝑄̇𝑡0

T𝑡0
𝑢𝑗 , T𝑡0

𝑢𝑗), (4.51)

where we used 𝜔(𝑄̇𝑡0
T𝑡0

𝑢𝑗 , T𝑡0
𝑢𝑗) ∈ ℝ, see (3.39). Comparing (4.51) and (3.38), one infers (4.45)

as required. □

Remark 4.23. Formula (4.45) in Theorem 4.22 yields a fundamental relation between the Maslov
index and the spectral flow of the family of operators 𝐻𝑡 = 𝑡 + 𝑉𝑡 satisfying the condition
T𝑡(dom(𝐻𝑡)) = 𝑡 for a given family of Lagrangian subspaces𝑡, 𝑡 ∈ [0, 1]. This relation goes back
to the celebrated Atiyah–Patodi–Singer theorem and it has been a subject of intensive research
ever since, see, for example, [26–29, 35, 44, 114] and many more references therein. We will briefly
comment on the equality of the Maslov index and the spectral flow. First, we recall the definition
of the Maslov index via crossing forms. For a fixed 𝜆 = 𝜆0 from now on, we assume that Hypothe-
sis 4.20 is satisfied for all 𝑡 = 𝑡0 ∈ [0, 1]. Then, given the subspaces defined in (4.38), and assuming
that all conjugate points (𝜆, 𝑡0) for 𝑡0 ∈ [0, 1] are nondegenerate (in the sense that the quadratic
form𝔪𝑡0

from (4.41) is nondegenerate), one defines the Maslov index by the formula

Mas
(
Υ𝜆0,𝑡

∶ 𝑡 ∈ [0, 1]
)
= −𝑚−(0) +

∑
0<𝑡0<1

(
𝑚+(𝑡0) − 𝑚−(𝑡0)

)
+𝑚+(1), (4.52)

where the summation is taken over all 𝑡0 such that (𝜆, 𝑡0) is a conjugate point and we denote by
𝑚+(𝑡0), respectively,𝑚−(𝑡0) the number of positive, respectively, negative squares of the quadratic
form𝔪𝑡0

at the conjugate point. Next, we recall the definition of the spectral flow: The spectral
flow SpF𝜆0(𝐻𝑡 ∶ 𝑡 ∈ [0, 1]) for the family of operators 𝐻𝑡 is the net count of the eigenvalues of
𝐻𝑡 passing through 𝜆0 as 𝑡 changes from 𝑡 = 0 to 𝑡 = 1 and is defined as follows, cf., for example,
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[28, Appendix]. Take a partition 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 1 and𝑁 intervals [𝑎𝓁 , 𝑏𝓁] such that 𝑎𝓁 <

𝜆0 < 𝑏𝓁 and 𝑎𝓁 , 𝑏𝓁 ∉ Spec(𝐻𝑡) for all 𝑡 ∈ [𝑡𝓁−1, 𝑡𝓁], 1 ⩽ 𝓁 ⩽ 𝑁. Then, the spectral flow is defined
by

SpF𝜆0(𝐻𝑡 ∶ 𝑡 ∈ [0, 1]) =

𝑁∑
𝓁=1

∑
𝑎𝓁⩽𝜆<𝜆0

(
dimker(𝐻𝑡𝓁−1

− 𝜆) − dimker(𝐻𝑡𝓁
− 𝜆)

)
. (4.53)

By our assumptions, due to part (i) inHypothesis 4.20, 𝜆0 does not belong to the essential spectrum
of the operator 𝐻𝑡 for all 𝑡 ∈ [0, 1]. Moreover, let us assume, in addition, that for each 𝑡0 ∈ [0, 1]

such that 𝜆0 ∈ Specdisc(𝐻𝑡0
), the inequality 𝜆̇𝑗(𝑡0) ≠ 0 holds for all 𝑗 = 1,… ,𝑚. Here, 𝑚 = 𝑚(𝑡0)

is the multiplicity of the isolated eigenvalue 𝜆0 of 𝐻𝑡0
, and {𝜆𝑗(𝑡)} are the eigenvalues of 𝐻𝑡 as

in Theorem 3.26(2) and Theorem 4.5(2) for 𝑡 ∈ [𝑡′
0
, 𝑡′′

0
] near 𝑡0. With no loss of generality, 𝑡 = 𝑡0

could be assumed to be the only point in [𝑡′
0
, 𝑡′′

0
] such that 𝜆0 ∈ Spec(𝐻𝑡). By our assumptions and

formula (4.45) in Theorem 4.22, the quadratic form 𝔪𝑡0
defined in (4.41) is nondegenerate and

𝑚+(𝑡0), respectively, 𝑚−(𝑡0) is equal to the number of 𝑗’s such that the eigenvalue 𝜆𝑗(𝑡) moves
through 𝜆0 in the positive, respectively, negative direction as 𝑡 changes from 𝑡′

0
to 𝑡′′

0
. Formulas

(4.52) and (4.53) now show that Mas
(
Υ𝜆0,𝑡

∶ 𝑡 ∈ [𝑡′
0
, 𝑡′′

0
]
)
= SpF𝜆0(𝐻𝑡 ∶ 𝑡 ∈ [𝑡′

0
, 𝑡′′

0
]). Passing to a

partition of [0,1] then gives

Mas
(
Υ𝜆0,𝑡

∶ 𝑡 ∈ [0, 1]
)
= SpF𝜆0(𝐻𝑡 ∶ 𝑡 ∈ [0, 1]), (4.54)

the desired equality of the Maslov index and the spectral flow.

5 HADAMARD-TYPE FORMULA FOR ELLIPTIC OPERATORS VIA
DIRICHLET AND NEUMANN TRACES

In this section, concerns self-adjoint realizations of second-order elliptic operators on bounded
domains. We begin by discussing a resolvent difference formula, see Proposition 5.1, an
Hadamard-type formula, (5.9), and asymptotic resolvent expansions, Theorem 5.2, for the elliptic
operators (5.1) posted on bounded domains with smooth boundary. We deduce all these results
from Theorem 3.26 by appropriately choosing the trace maps. The main technical issue is to val-
idate Hypotheses 3.10 and 3.13, which is done in Proposition 5.4. Next, these results are utilized
to give simple and unified proofs of Friedlander’s theorem [62, Theorem 1.1], see Example 5.5,
and Rohleder’s theorem [116, Theorem 3.2], see Example 5.6. Furthermore, in Section 5.3, we con-
sider the heat equationwith space-dependent diffusion coefficient equippedwithRobin boundary
conditions so that both the equation and the boundary conditions contain a physically rele-
vant parameter, the thermal conductivity. The results in this section provide, in particular, a
new proof of the fact that the temperature of a nonhomogeneous material immersed into a sur-
rounding medium of constant temperature depends continuously on the thermal conductivity of
the material.
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5.1 Elliptic operators

On a 𝐶∞-smooth bounded domain Ω, we consider the following differential expression:

 ∶ = −

𝑛∑
𝑗,𝑘=1

𝜕𝑗𝚊𝑗𝑘𝜕𝑘 +

𝑛∑
𝑗=1

𝚊𝑗𝜕𝑗 − 𝜕𝑗𝚊𝑗 + 𝚚,

= −div(𝙰∇) + 𝚊 ⋅∇ −∇ ⋅ 𝚊 + 𝚚,

(5.1)

with coefficients 𝙰 = {𝚊𝑖𝑗}1⩽𝑖,𝑗⩽𝑛, 𝚊 ∶= {𝚊𝑖}1⩽𝑖⩽𝑛 satisfying, for some 𝑐 = 𝑐() > 0,

𝑛∑
𝑗,𝑘=1

𝚊𝑗𝑘(𝑥)𝜉𝑘𝜉𝑗 ⩾ 𝑐

𝑛∑
𝑗=1

|𝜉𝑗|2, 𝑥 ∈ Ω, 𝜉 = {𝜉𝑗}
𝑛
𝑗=1 ∈ ℂ𝑛, (5.2)

𝚊𝑗𝑘, 𝚊𝑗 ∈ 𝐶∞(Ω;ℝ), 𝚚 ∈ 𝐿∞(Ω;ℝ), 𝚊𝑗𝑘(𝑥) = 𝚊𝑘𝑗(𝑥), 1 ⩽ 𝑗, 𝑘 ⩽ 𝑛.

Associated with  is the following space of distributions:

𝑠(Ω) ∶= {𝑢 ∈ 𝐻𝑠(Ω) ∶ 𝑢 ∈ 𝐿2(Ω)}, 𝑠 ⩾ 0,

equipped with the norm

‖𝑢‖𝑠 ∶=
(
‖𝑢‖2

𝐻𝑠(Ω)
+ ‖𝑢‖2

𝐿2(Ω)

)1∕2
, (5.3)

where𝑢 should be understood in the sense of distributions. Let us introduce two operators acting
in 𝐿2(Ω),

min𝑓 ∶= 𝑓, 𝑓 ∈ dom(min) ∶= 𝐻2
0(Ω),

max𝑓 ∶= 𝑓, 𝑓 ∈ dom(max) ∶= 0(Ω).

The operator min is closed, symmetric, and (min)
∗ = max. Associated with  is a first-order

trace operator 𝛾
𝑁, ∈ (1(Ω),𝐻−1∕2(𝜕Ω)) that is a unique extension of the conormal derivative

𝛾
𝑁,𝑢 ∶=

𝑛∑
𝑗,𝑘=1

𝚊𝑗𝑘𝜈𝑗𝛾𝐷
(𝜕𝑘𝑢) +

𝑛∑
𝑗=1

𝚊𝑗𝜈𝑗𝛾𝐷
𝑢, 𝑢 ∈ 𝐻2(Ω)

to the space 1(Ω) (here, (𝜈1, … , 𝜈𝑛) is the outward unit normal on 𝜕Ω). Then, the following
Green identity holds:

⟨𝑢, 𝑣⟩𝐿2(Ω) − ⟨𝑢,𝑣⟩𝐿2(Ω) = ⟨𝛾
𝐷
𝑢, 𝛾

𝑁,𝑣⟩−1∕2 − ⟨𝛾
𝐷
𝑣, 𝛾

𝑁,𝑢⟩−1∕2,

for all 𝑢, 𝑣 ∈ 1(Ω). In order to rewrite this identity in a form compatible with (2.3), let Φ denote
the Riesz isomorphism Φ ∈ (𝐻−1∕2(𝜕Ω),𝐻1∕2(𝜕Ω)) as in (4.21) and define

Γ0 ∶= 𝛾
𝐷
∈ (1(Ω),𝐻1∕2(𝜕Ω)), Γ1 ∶= −Φ𝛾𝑁, ∈ (1(Ω),𝐻1∕2(𝜕Ω)). (5.4)
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Then, we have, for all 𝑢, 𝑣 ∈ 1(Ω),

⟨max𝑢, 𝑣⟩𝐿2(Ω) − ⟨𝑢,max𝑣⟩𝐿2(Ω)

= ⟨Γ1𝑢, Γ0𝑣⟩𝐻1∕2(𝜕Ω) − ⟨Γ0𝑢, Γ1𝑣⟩𝐻1∕2(𝜕Ω).
(5.5)

We claim that Hypotheses 2.1 and 3.1 are satisfied for

𝐴 = min,+ = 0(Ω), = 1(Ω), Γ0 = 𝛾
𝐷
, Γ1 = −Φ𝛾𝑁,. (5.6)

Since we already checked the Green identity, (5.5), to justify the claim, it remains to show that
T() is dense in𝐻1∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω) and that1(Ω) is dense in0(Ω). By [73, Proposition 2.1]
and [18, Section 4.3], one has

(𝛾
𝐷
, 𝛾

𝑁,)(𝐻
2(Ω)) = 𝐻3∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω),

and the right-hand side is dense in 𝐻1∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω). By [73, Theorem 3.2], 𝐻2(Ω) is dense
in𝑠(Ω), 𝑠 < 2; hence,1(Ω) is dense in0(Ω).

Proposition 5.1. Under the assumptions on  imposed in this section, for any two self-adjoint
extensions 1,2 of 𝑚𝑖𝑛 with domains containing in 1(Ω) and 𝜁 ∉ (Spec(1) ∪ Spec(2)), the
following resolvent difference formula holds:

(2 − 𝜁)−1 − (1 − 𝜁)−1 = (T(2 − 𝜁)−1)∗ 𝐽T(1 − 𝜁)−1,

where T = [Γ0, Γ1]
⊤ is defined in (5.4), and

(T(2 − 𝜁)−1)∗ ∈ (𝐻1∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω), 𝐿2(Ω)).

Proof. The results follow directly from (2.13). □

5.2 Hadamard-type formulas for Robin elliptic operators, L.
Friedlander’s and J. Rohleder’s inequalities

In this section, we obtain an Hadamard-type formula for a one-parameter family of differen-
tial operators 𝑡𝑢 = 𝑢 as in (5.1) for which the dependence on the parameter 𝑡 enters through
the Robin boundary condition 𝛾

𝑁,𝑢 = Θ𝑡𝛾𝐷
𝑢, see Theorem 5.2. We will utilize Theorem 3.26 by

choosing the symmetric operator 𝐴, the function spaces ,+, ℌ, and the trace operator T as
indicated in (5.6). The main challenge is to check Hypothesis 3.16 that in this setting reads as
follows:

‖‖(𝑡 − 𝐢)−1 − (𝑡0
− 𝐢)−1‖‖(𝐿2(Ω),1(Ω)) = 𝑜(1), 𝑡 → 𝑡0,

and can be reduced to showing that for some constant 𝑐 > 0, one has the inequality

‖∇𝑢‖2
𝐿2(Ω)

⩽ 𝑐
(
‖𝑢‖2

𝐿2(Ω)
+ ‖𝑢‖2

𝐿2(Ω)

)
, 𝑢 ∈ dom(𝑡),
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for 𝑡 near 𝑡0. We discuss the reduction and give the proof of this inequality in Proposition 5.4.
Throughout this section, we will make use of the continuous embedding 𝜄 ∶ 𝐻1∕2(𝜕Ω) ↪ 𝐿2(Ω)

and its adjoint 𝜄∗ ∶ 𝐿2(Ω) ↪ 𝐻−1∕2(𝜕Ω).

Theorem 5.2. Suppose that, in addition to the assumptions on  listed in Subsection 5.1, we are
given a mapping 𝑡 ↦ Θ𝑡 belonging to 𝐶

1([0, 1], 𝐿∞(𝜕Ω,ℝ)). Then, for 𝑡 ∈ [0, 1], the Robbin elliptic
operator 𝑡 defined by

𝑡 ∶ dom(𝑡) ⊂ 𝐿2(Ω) → 𝐿2(Ω), 𝑡𝑢 = 𝑢,
𝑢 ∈ dom(𝑡) = {𝑢 ∈ 1(Ω) ∶ 𝛾

𝑁,𝑢 = 𝜄∗Θ𝑡𝜄𝛾𝐷
𝑢},

is self-adjoint, where 𝜄 denotes the embedding of 𝐻1∕2(𝜕Ω) into 𝐿2(Ω). The following resolvent
difference formula holds:

(𝑡 − 𝜁)−1 − (𝑠 − 𝜁)−1 =
(
𝛾
𝐷
(𝑡 − 𝜁)−1

)∗
(Θ𝑡 − Θ𝑠)

(
𝛾
𝐷
(𝑠 − 𝜁)−1

)
, (5.7)

for 𝑡, 𝑠 ∈ [0, 1], 𝜁 ∉ (Spec(𝑡) ∪ Spec(𝑠)). Moreover, the mapping

𝑡 ↦ (𝑡 − 𝜁)−1 ∈ (𝐿2(Ω))

is well defined for 𝑡 near 𝑡0 as long as 𝜁 ∉ Spec(𝑡0
). This mapping is differentiable at 𝑡0 and satisfies

the following Riccati equation:

d
d𝑡

|𝑡=𝑡0
(
(𝑡 − 𝜁)−1

)
=

(
𝛾
𝐷
(𝑡0

− 𝜁)−1
)∗

(
d
d𝑡

|𝑡=𝑡0Θ𝑡

)(
𝛾
𝐷
(𝑡0

− 𝜁)−1
)
. (5.8)

Finally, if 𝜆(𝑡0) is an isolated eigenvalue of 𝑡0
of multiplicity 𝑚 ⩾ 1, then there exists a choice of

orthonormal eigenfunctions {𝑢𝑗}
𝑚
𝑗=1

⊂ ker(𝑡0
− 𝜆(𝑡0)) and a labeling of eigenvalues {𝜆𝑗(𝑡)}

𝑚
𝑗=1

of
𝑡 , for 𝑡 near 𝑡0, such that

𝜆̇𝑗(𝑡0) = −⟨Θ̇𝑡0
𝛾
𝐷
𝑢𝑗 , 𝛾𝐷

𝑢𝑗⟩𝐿2(𝜕Ω), 1 ⩽ 𝑗 ⩽ 𝑚. (5.9)

Proof. We will employ Theorem 3.26. The proof consists of two steps. First, we derive (5.7) from
(3.41). We can use (3.41) because Hypothesis 3.4 is trivially satisfied. Second, we derive (5.8) and
(5.9) from (3.43) and (3.44). To apply (3.43) and (3.44), we need to verify Hypotheses 3.13 and 3.16.
They are satisfied by Proposition 5.4 given next; the proof of this proposition uses formula (5.7)
proved in the first step.
To proceed, we choose +,, 𝐴 as in (5.6) and rewrite the Robin condition 𝛾

𝑁,𝑢 = 𝜄∗Θ𝑡𝜄𝛾𝐷
𝑢

in the definition of 𝑡 as Φ𝛾𝑁,𝑢 = Φ𝜄∗Θ𝑡𝜄𝛾𝐷
𝑢

𝑋𝑡Γ0𝑢 + 𝑌𝑡Γ1𝑢 = 0, where we set 𝑋𝑡 ∶= Φ𝜄∗Θ𝑡𝜄, 𝑌𝑡 ∶= 𝐼.

It is worth noting that 𝑋𝑡 just defined is self-adjoint in 𝐻1∕2(𝜕Ω) since for 𝜙, 𝜓 ∈ 𝐻1∕2(𝜕Ω), one
has

⟨Φ𝜄∗Θ𝑡𝜄𝜙, 𝜓⟩1∕2 = ⟨𝜓,Φ𝜄∗Θ𝑡𝜄𝜙, 𝜓⟩1∕2 = ⟨𝜓, 𝜄∗Θ𝑡𝜄𝜙, 𝜓⟩−1∕2
= ⟨𝜄𝜓, Θ𝑡𝜄𝜙⟩𝐿2(𝜕Ω) = ⟨𝜄𝜙, Θ𝑡𝜄𝜓⟩𝐿2(𝜕Ω)
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= ⟨𝜙, 𝜄∗Θ𝑡𝜄𝜓⟩−1∕2 = ⟨𝜙,Φ𝜄∗Θ𝑡𝜄𝜓⟩1∕2.

Continuity ofΘ𝑡 with respect to 𝑡 and Theorem 3.18 with𝑡 ∶= 𝑡,𝑉𝑡 ∶= 0, T𝑡 ∶= [𝛾
𝐷
, −Φ𝛾𝑁,]⊤

yield that the map 𝑡 ↦ 𝑅𝑡(𝜁) ∶= (𝑡 − 𝜁)−1 is well defined for 𝑡 near 𝑡0. Next, with𝑊 defined in
(2.11), we observe that 𝑅𝑡(𝜁)𝑢 ∈ dom(𝑡) yields

(𝑊(𝑋𝑡, 𝐼))T𝑅𝑡(𝜁)𝑢 = −Γ0𝑅𝑡(𝜁)𝑢 = −𝛾
𝐷
𝑅𝑡(𝜁)𝑢 for all 𝑢 ∈ 𝐿2(Ω).

This can be checked directly or by noting that 𝜙 =
(
𝑊(𝑋𝑡, 𝐼)

)
T𝑅𝑡(𝜁)𝑢 is the unique vector satisfy-

ing the relations Γ0𝑅𝑡(𝜁)𝑢 = −𝜙, Γ1𝑅𝑡(𝜁)𝑢 = 𝑋𝑡𝜙, cf. (3.45). This observation together with (3.41)
yield (5.7). We can now involve Proposition 5.4 given next and verify Hypotheses 3.13 and 3.16 in
the present setting. Thus, Theorem 3.26 applies and therefore (5.8) and (5.9) follow from (3.43)
and (3.44) with 𝜙𝑗 = −Γ0𝑢𝑗 . □

Remark 5.3. It is worth comparing Theorems 4.13 and 5.2 for the case  = −Δ where both the-
orems apply. The major difference is in the type of trace operators utilized in each theorem. In
Theorem 4.13, we use T = [−𝜏

𝑁
, Φ𝛾

𝐷
]⊤ that is defined on the entire space+ = dom(−Δmax) and

is surjective, while in Theorem 5.2, we have T = [𝛾
𝐷
, −Φ𝛾

𝑁,]
⊤ that is defined only on a dense

subset = 1(Ω) of+ = 0(Ω). We note that the latter trace operator is local, while the former
is not. In addition, these trace maps do not match even on smooth functions onΩ. Another major
technical difference is that Hypotheses 3.13 and 3.16 are automatically satisfied in one case but not
in the other.

Proposition 5.4. Under assumptions of Theorem 5.2, one has

‖(𝑡 − 𝐢)−1‖(𝐿2(Ω),1(Ω)) = (1), 𝑡 → 𝑡0, (5.10)

‖‖(𝑡 − 𝐢)−1 − (𝑡0
− 𝐢)−1‖‖(𝐿2(Ω),1(Ω)) = 𝑜(1), 𝑡 → 𝑡0, (5.11)

for all 𝑡0 ∈ [0, 1]. In other words, Hypotheses 3.13 and 3.16 hold for𝑡 ∶= 𝑡 .

Proof. To prove (5.10), it is enough to show that there exists a constant 𝑐 > 0 such that

‖𝑢‖21(Ω)
⩽ 𝑐‖𝑢 − 𝐢𝑢‖2

𝐿2(Ω)
, 𝑢 ∈ dom(𝑡),

for all 𝑡 ∈ [0, 1]. By the definition of1(Ω)-norm, see (5.3), we need to prove that

‖∇𝑢‖2
𝐿2(Ω)

⩽ 𝑐(‖𝑢‖2
𝐿2(Ω)

+ ‖𝑢‖2
𝐿2(Ω)

), 𝑢 ∈ dom(𝑡). (5.12)

To show this, we first notice that for 𝑢 ∈ dom(𝑡), one has

⟨𝙰∇𝑢,∇𝑢⟩𝐿2(Ω) = ⟨𝑢, 𝑢⟩𝐿2(Ω) − ⟨𝚚𝑢, 𝑢⟩𝐿2(Ω) − ⟨Θ𝑡𝛾𝐷
𝑢, 𝛾

𝐷
𝑢⟩𝐿2(𝜕Ω).

Using the Cauchy–Schwartz inequality and (5.2), we get

‖∇𝑢‖2
𝐿2(Ω)

⩽ 𝑐(‖𝑢‖2
𝐿2(Ω)

+ ‖𝑢‖2
𝐿2(Ω)

+ ‖Θ𝑡‖𝐿∞(𝜕Ω)‖𝛾𝐷
𝑢‖2

𝐿2(𝜕Ω)
), (5.13)
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for 𝑐 > 0 (which is 𝑡- and 𝑢-independent). Let us recall from [67, Lemma 2.5] the inequality

‖𝛾
𝐷
𝑢‖2

𝐿2(Ω)
⩽ 𝜀‖∇𝑢‖2

𝐿2(Ω)
+ 𝛽(𝜀)‖𝑢‖2

𝐿2(Ω)
, where 𝜀 > 0 and 𝛽(𝜀) =

𝜀→0
(𝜀−1).

Thus, continuing (5.13), we infer

‖∇𝑢‖2
𝐿2(Ω)

⩽ 𝑐
(
‖𝑢‖2

𝐿2(Ω)
+ ‖𝑢‖2

𝐿2(Ω)
+ 𝜀‖Θ𝑡‖𝐿∞(𝜕Ω)‖∇𝑢‖2

𝐿2(Ω)

+𝛽(𝜀)‖Θ𝑡‖𝐿∞(𝜕Ω)‖𝑢‖𝐿2(Ω)

)

for some 𝑐 > 0. Taking 𝜀 > 0 sufficiently small yields (5.12) and thus (5.10).
Starting the proof of (5.11), we first show that

‖‖(𝑡 − 𝐢)−1 − (𝑡0
− 𝐢)−1‖‖(𝐿2(Ω),𝐻1(Ω)) = 𝑜(1), 𝑡 → 𝑡0. (5.14)

We denote𝑅(𝑡) ∶= (𝑡 − 𝐢)−1 and recall thatwemay use resolvent difference formula (5.7) already
established in the first part of the proof of Theorem 5.2. It yields

⟨𝑅(𝑡)𝑢 − 𝑅(𝑡0)𝑢, 𝑣⟩𝐿2(Ω) = ⟨(Θ𝑡0
− Θ𝑡)𝛾𝐷

𝑅(𝑡)𝑢, 𝛾
𝐷
𝑅(𝑡0)𝑣⟩𝐿2(𝜕Ω) (5.15)

for all 𝑢, 𝑣 ∈ 𝐿2(Ω). For 𝑣 ∈ (𝐻1(Ω))∗ = 𝐻−1(Ω), we view 𝑤 ∶= 𝑅(𝑡0)𝑣 ∈ 𝐻1(Ω) as the solution
to the boundary value problem ( − 𝐢)𝑤 = 𝑣, 𝛾

𝑁,𝑤 = Θ𝑡0
𝛾
𝐷
𝑤. Using a well-known elliptic esti-

mate ‖𝑤‖𝐻1(Ω) ⩽ 𝑐‖𝑣‖𝐻−1(Ω) from [104, Theorem 4.11(i)], the operator 𝑅(𝑡0) can be extended to an
operator in ((𝐻1(Ω))∗, 𝐻1(Ω)). So, (5.15) can be extended as follows:

𝐻1(Ω))⟨𝑅(𝑡)𝑢 − 𝑅(𝑡0)𝑢, 𝑣⟩(𝐻1(Ω))∗ = ⟨(Θ𝑡0
− Θ𝑡)𝛾𝐷

𝑅(𝑡)𝑢, 𝛾
𝐷
𝑅(𝑡0)𝑣⟩𝐿2(𝜕Ω),

now for all 𝑢 ∈ 𝐿2(Ω) and 𝑣 ∈ (𝐻1(Ω))∗. Hence,

|𝐻1(Ω))⟨𝑅(𝑡)𝑢 − 𝑅(𝑡0)𝑢, 𝑣⟩(𝐻1(Ω))∗ | ⩽ ‖Θ𝑡0
− Θ𝑡‖𝐿∞(𝜕Ω)‖𝛾𝐷

‖2(1(Ω),𝐻1∕2(𝜕Ω))

× ‖𝑅(𝑡)‖(𝐿2(Ω),1(Ω))‖𝑢‖𝐿2(Ω)‖𝑅(𝑡0)‖((𝐻1(Ω))∗,𝐻1(Ω))‖𝑣‖(𝐻1(Ω))∗ .

Since ‖𝑅(𝑡)‖(𝐿2(Ω),1(Ω)) = (1) by (5.10), and ‖Θ𝑡0
− Θ𝑡‖𝐿∞(𝜕Ω) = 𝑜(1), 𝑡 → 𝑡0, the above

inequality gives (5.14). We now combine (5.14) with the estimate

‖‖(𝑡 − 𝐢)−1𝑢 − (𝑡0
− 𝐢)−1𝑢‖‖21(Ω) =

‖‖(𝑡 − 𝐢)−1𝑢 − (𝑡0
− 𝐢)−1𝑢‖‖2𝐻1(Ω)

+ ‖‖(𝑡 − 𝐢)−1𝑢 − (𝑡0
− 𝐢)−1𝑢‖‖2𝐿2(Ω)

⩽ 2‖‖(𝑡 − 𝐢)−1𝑢 − (𝑡0
− 𝐢)−1𝑢‖‖2𝐻1(Ω), 𝑢 ∈ 𝐿2(Ω),

finishing the proof of (5.11). □

Example 5.5. Theorem 5.2 can be used in proving the celebrated Friedlander inequalities 𝜆𝐷,𝑘 ⩾

𝜆𝑁,𝑘+1, 𝑘 = 1, 2, … , for the eigenvalues of the Dirichlet and Neumann Laplacians, see [62], which
was improved in [60] to state that 𝜆𝐷,𝑘 > 𝜆𝑁,𝑘+1, see also [19, 61, 68, 117] for further advances,
detailed bibliography and a historical account of this beautiful subject. Also, we refer to Exam-
ple 5.10 for connections to the Maslov index. The proof of the Friedlander inequalities consists
of two major steps. First, one proves that the counting functions of the Dirichlet and Neumann



FIRST-ORDER ASYMPTOTIC PERTURBATION THEORY 65 of 83

boundary problems differ by a number of negative eigenvalues of the Dirichlet-to-Neumann
operator, see (5.33) below. Second, one proves the existence of a nonnegative eigenvalue of the
latter. The first step involves a one-parameter family of Robin boundary value problems giving a
homotopy of the Dirichlet to the Neumann boundary problem. The critical issue here is to show
monotonicity of the eigenvalues of the Robin problems with respect to the parameter, and this
is where the results of the current paper help. (In fact, monotonicity holds not merely for the
Laplacian but for general elliptic operators as described in Subsection 5.1). Indeed, formula (5.9)
in Theorem 5.2 with = −Δ andΘ𝑡 = −cot(𝜋

2
𝑡) shows that the eigenvalues 𝜆 = 𝜆(𝑡) of the Robin

problem

{𝑢 = 𝜆𝑢 in Ω,

sin(𝜋
2
𝑡)𝛾

𝑁
𝑢 + cos(𝜋

2
𝑡)𝛾

𝐷
𝑢 = 0 on 𝜕Ω for 𝑡 ∈ [0, 1],

(5.16)

are monotonically decreasing with respect to 𝑡 ∈ [0, 1]. We note that

𝜆𝑘(0) = 𝜆𝐷,𝑘 ⩽ 𝜆𝐷,𝑘+1 = 𝜆𝑘+1(0) and

𝜆𝑘(1) = 𝜆𝑁,𝑘 ⩽ 𝜆𝑁,𝑘+1 = 𝜆𝑘+1(1), 𝑘 = 1, 2, … ,

are the Dirichlet and Neumann eigenvalues. From this point on, the arguments given in [62] and
[60] are as follows. Monotonicity in 𝑡 of the Robin eigenvalues 𝜆𝑘(𝑡) just proved, and the stan-
dard inequalities 𝜆𝐷,𝑘 ⩾ 𝜆𝑁,𝑘 show the strict inequalities 𝜆𝐷,𝑘 > 𝜆𝑁,𝑘+1, provided that we know
the fact, cf. [62, Lemma 1.3], that for each 𝜆, there is a 𝑡 ∈ [0, 1] such that (5.16) has a nontrivial
solution. This fact is equivalent to the existence of a positive eigenvalue cot(𝜋

2
𝑡) of the Dirichlet-

to-Neumann operator when 𝜆 ∉ Spec(−Δ𝐷), and its proof has been carried out in [62] and [60]
for the Laplacian using the minimax principle and infinitely many linearly independent explicit
functions 𝑒𝑖𝜂⋅𝑥, with 𝜂 ∈ ℝ𝑛 such that ‖𝜂‖2

ℝ𝑛 = 𝜆, which satisfy −Δ(𝑒𝑖𝜂⋅𝑥) = 𝜆𝑒𝑖𝜂⋅𝑥.

Example 5.6. Wewill nowderive fromTheorem 5.2 an elegant result in [116, Theorem3.2] regard-
ing monotonicity of Robin eigenvalues. Given Θ(𝓁) ∈ 𝐿∞(Ω;ℝ), 𝓁 = 0, 1, we define the Robin
operators (𝓁)𝑢 = 𝑢 such that

dom((𝓁)) = {𝑢 ∈ 1(Ω) ∶ 𝛾
𝑁,𝑢 = Θ(𝓁)𝛾

𝐷
𝑢}

for the elliptic differential expression in (5.1). We let 𝜆1((𝓁)) ⩽ 𝜆2((𝓁)) ⩽ … denote the eigen-
values of (𝓁) counting multiplicities. Assume that Θ(0) ⩽ Θ(1). We will give a new proof of J.
Rohleder’s result stating that

if Θ(0) < Θ(1) on a set of positive measure then 𝜆𝑘((0)) > 𝜆𝑘((1)) (5.17)

for 𝑘 = 1, 2, … . Denote Θ𝑡 = Θ(0) + 𝑡(Θ(1) − Θ(0)) for 𝑡 ∈ [0, 1] and introduce operators 𝑡 as in
Theorem 5.2 such that 0 = (0) and 1 = (1). Denoting by 𝜆𝑘(𝑡) ∶= 𝜆𝑘(𝑡) the eigenvalues of𝑡 counting multiplicities and by 𝑢𝑘 the respective eigenfunctions, formula (5.9) implies

d𝜆𝑘(𝑡)

d𝑡
= −⟨(Θ(1) − Θ(0))𝛾

𝐷
𝑢𝑘, 𝛾𝐷

𝑢𝑘⟩𝐿2(𝜕Ω) < 0, 𝑘 = 1, 2, … , 𝑡 ∈ [0, 1] (5.18)

becauseΘ(0) < Θ(1) on a set of positivemeasure, thus proving (5.17). Let us elaborate on some addi-
tional consequences ofmonotonicity of eigenvalues.As the eigenvalue curves 𝑡 ↦ 𝜆𝑘(𝑡) are strictly
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F IGURE 1 Illustration of (5.18), (5.19).

monotone and continuous, we obtain the following count for the eigenvalues, see Figure 1,

(#{𝑘 ∶ 𝜆𝑘((1)) < 𝜆}) − (#{𝑘 ∶ 𝜆𝑘((0)) < 𝜆})

=
∑

𝑡∈[0,1]

dimker(𝑡 − 𝜆).
(5.19)

A weaker version of this counting formula

(#{𝑘 ∶ 𝜆𝑘((1)) < 𝜆}) − (#{𝑘 ∶ 𝜆𝑘((0)) < 𝜆}) ⩾ dimker((0) − 𝜆),

was obtained by J. Rohleder [116, (3.4)] by variational methods. This is a key estimate in [116]
leading to (5.17) in the original proof. Now, (5.19) can be viewed as a prequel to Section 5.5, where
the left-hand side of (5.19) is treated as the spectral flow of the family {𝑡}𝑡∈[0,1] through 𝜆 and
the right-hand side is viewed as the Maslov index of a certain path of Lagrangian planes. The
equality between theMaslov index and the spectral flow in a very general setting has been recently
investigated in, for example, [44–46, 93, 95] and the vast literature cited therein.

5.3 Continuous dependence of solutions to heat equation on thermal
conductivity

In this section, we apply our general results to give a new proof that solutions to the linear homo-
geneous heat equation depend continuously on a certain physically relevant parameter present in
both the operator and the boundary condition. The assertions of this type have a long and distin-
guished history, and have been resolved even for quite general Wentzell boundary conditions. We
refer the reader to [42, 43] where one can also find further literature. We did not attempt to cover
the case of Wentzell boundary conditions anywhere in this paper but remark parenthetically that
it is an interesting open area to develop a version of the asymptotic perturbation theory for oper-
ators equipped with this type of dynamical boundary conditions. At the moment, as in [70], we
consider the following heat equation:

{
𝑢𝚝(𝚝, 𝑥) = 𝜅𝜌(𝑥)Δ𝑥𝑢(𝚝, 𝑥), 𝑥 ∈ Ω, 𝚝 ⩾ 0,

−𝜅 𝜕𝑢

𝜕𝑛
= 𝑢, on 𝜕Ω,

(5.20)

describing the temperature 𝑢 of a material in the region Ω ⊂ ℝ3 with thermal conductivity 𝜅

immersed in a surrounding medium of zero temperature. Here, 1∕𝜌(𝑥) is the product of the
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density of the material times its heat capacity. The continuous dependence of the temperature
𝑢 on the thermal conductivity 𝜅 with respect to 𝐿2(Ω) norm follows from Theorem 5.7 proved
below, which is a version of Theorem 5.2. To sketch the argument, we consider the self-adjoint
operator 𝜅 ∶= −𝜅Δ, 𝜅 ∶ dom(𝜅) ⊂ 𝐿2(Ω) → 𝐿2(Ω) with dom(𝜅) = {𝑢 ∈ 1(Ω) ∶ −𝜅𝛾

𝑁
𝑢 =

𝛾
𝐷
𝑢}. Then by Trotter–Kato Approximation Theorem [58, Theorem III.4.8], the family of semi-

groups {𝑒−𝚝𝜌𝜅 }𝚝⩾0 is strongly continuous in 𝜅 uniformly for 𝚝 from compact subsets whenever
𝜅 ↦ (𝜌𝜅 − 𝜁)−1 is continuous as a mapping from (0, +∞) to (𝐿2(Ω)) for some 𝜁 ∉ Spec(𝜅)

(we note that 𝜌𝜅 is not necessarily self-adjoint). The next theorem gives a rigorous argument for
the required continuity of the resolvent in a slightly more general form. (In the next theorem, to
keep upwith notation used in the rest of the paper, we denote the parameter with respect to which
the continuity is established by 𝑡, not by 𝜅; this is not to be confused with notation 𝚝 for time used
in (5.20)).

Theorem 5.7. Let Ω ⊂ ℝ𝑑 be a bounded open set with 𝐶∞-smooth boundary 𝜕Ω. We assume
that 𝑡 ↦ 𝛼𝑡 , 𝑡 ↦ 𝛽𝑡 are mappings in 𝐶([0, 1], 𝐿∞(𝜕Ω;ℝ)) such that 𝛼2

𝑡 (𝑥) + 𝛽2
𝑡 (𝑥) ≠ 0 for 𝑥 ∈ 𝜕Ω,

𝑡 ∈ [0, 1], and 𝑡 ↦ 𝜌𝑡 is amapping in𝐶([0, 1], 𝐶(Ω;ℝ)) such that inf {𝜌𝑡(𝑥) ∶ 𝑡 ∈ [0, 1], 𝑥 ∈ Ω} > 0.
Recall the differential expression  from (5.1) and define the following operator acting in 𝐿2(Ω):

𝑡,𝜌𝑢 ∶= 𝜌𝑡𝑢, 𝑢 ∈ dom(𝑡,𝜌),

dom(𝑡,𝜌) ∶= {𝑢 ∈ 1(Ω) ∶ 𝛼𝑡𝛾𝐷
𝑢 + 𝛽𝑡𝛾𝑁,𝑢 = 0}.

Then, the operator 𝑡,𝜌 is sectorial and the mapping 𝑡 ↦ (𝑡,𝜌 − 𝜁)−1 lies in 𝐶([0, 1],(𝐿2(Ω))) for
all 𝜁 ∈ ℂ ⧵ Spec(𝑡,𝜌).

Proof. To prove that 𝑡,𝜌 is sectorial, we have to show the existence of such 𝜃 ∈ (0, 𝜋
2
) and 𝑀 =

𝑀(𝜃) > 0 that

𝜁 ∈ ℂ ⧵ Spec(𝑡,𝜌) and ‖(𝑡,𝜌 − 𝜁)−1‖(𝐿2(Ω)) ⩽ 𝑀|𝜁|−1,

provided 𝜁 ≠ 0 and | arg 𝜁| ∈ (𝜃, 𝜋]. First, we introduce a self-adjoint operator 𝑡 acting in 𝐿2(Ω)

and defined by𝑡𝑢 ∶= 𝑢 for𝑢 ∈ dom(𝑡) ∶= dom(𝑡,𝜌) so that𝑡,𝜌 = 𝜌𝑡𝑡. Since𝑡 is bounded
from below, we may assume without loss of generality that 𝑡 ⩾ 0 and, given a 𝜃 ∈ (0, 𝜋

2
), use the

estimate

‖(𝑡 − 𝜉)−1‖(𝐿2(Ω)) ⩽ (|𝜉| sin 𝜃)−1 for all 𝜉 ∈ ℂ ⧵ {0} such that | arg 𝜉| ∈ (𝜃, 𝜋]. (5.21)

Indeed, (5.21) follows from the estimate

‖(𝑡 − 𝜉)−1‖(𝐿2(Ω)) ⩽ | Im 𝜉|−1 ⩽ (|𝜉| sin 𝜃)−1

provided | arg 𝜉| ∈ (𝜃, 𝜋
2
] and

‖(𝑡 − 𝜉)−1‖(𝐿2(Ω)) = (dist(𝜉, Spec(𝑡)))
−1

⩽ |𝜉|−1 ⩽ (|𝜉| sin 𝜃)−1

provided | arg 𝜉| ∈ (𝜋
2
, 𝜋].
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Throughout the rest of this proof, we take all inf ’s and sup’s over (𝑡, 𝑥) ∈ [0, 1] × Ω. We pick
𝜃 ∈ (0, 𝜋

2
) such that

(1 − sin2 𝜃) sup 𝜌𝑡(𝑥) < inf 𝜌𝑡(𝑥) (5.22)

and fix any 𝜁 ∈ ℂ ⧵ {0} such that | arg 𝜁| ∈ (𝜃, 𝜋]. Using (5.22), we can choose 𝜉 ∈ ℂ such that
arg 𝜉 = arg 𝜁 with |𝜉| that satisfies the inequality

(1 − sin2 𝜃) sup 𝜌𝑡(𝑥) < |𝜁||𝜉|−1 < inf 𝜌𝑡(𝑥). (5.23)

Dividing this by 𝜌𝑡(𝑥), we infer

sup ||(|𝜁|(|𝜉|𝜌𝑡(𝑥))−1 − 1)|| ⩽ sin2 𝜃. (5.24)

Since 𝜉 ∈ ℂ ⧵ Spec(𝑡), we have

𝜌𝑡𝑡 − 𝜁 = 𝜌𝑡(𝑡 − 𝜉)
(
𝐼 − (𝑡 − 𝜉)−1(𝜁𝜌−1𝑡 − 𝜉)

)
. (5.25)

Combining (5.21) and (5.24), we infer

‖(𝑡 − 𝜉)−1(𝜁𝜌−1𝑡 − 𝜉)‖(𝐿2(Ω)) ⩽ (|𝜉| sin 𝜃)−1 sup ||𝑒𝐢 arg 𝜁(|𝜁|𝜌𝑡(𝑥)−1 − |𝜉|)||
⩽ sin 𝜃 < 1,

which by (5.25) gives 𝜆 ∈ ℂ ⧵ Spec(𝜌𝑡𝑡) and, using the second inequality in (5.23), the required
resolvent estimate ‖(𝑡,𝜌 − 𝜁)−1‖(𝐿2(Ω)) ⩽ 𝑀|𝜁|−1. Thus, 𝑡,𝜌 is sectorial.
It is enough to prove continuity of the resolventmapping at any 𝜁 ∈ ℝ in the resolvent set of𝑡,𝜌.

We note that if 𝜁 ∈ ℝ ⧵ Spec(𝑡,𝜌), then 0 ∈ ℂ ⧵ Spec(𝑡 − 𝜌−1𝑡 𝜁) and the identity (𝜌𝑡𝑡 − 𝜁)−1 =

(𝑡 − 𝜌−1𝑡 𝜁)−1𝜌−1𝑡 holds. Since the map 𝑡 ↦ 𝜌−1𝑡 is continuous, it remains to prove continuity of
the map 𝑡 ↦ (𝑡 − 𝜌−1𝑡 𝜁)−1, that is, of the resolvent of the operator 𝐻𝑡 = 𝑡 − 𝜌−1𝑡 𝜁 at zero. This
follows from Theorem 3.26 with 𝑡 = 𝑡, 𝑉𝑡 = −𝜌−1𝑡 𝜁, T ∶= (𝛾

𝐷
, 𝛾

𝑁,) ∈ (1(Ω),𝐻1∕2(𝜕Ω) ×

𝐻−1∕2(𝜕Ω)) and

𝑍𝑡,𝑠 ∶= [𝑊(𝛼𝑡, 𝛽𝑡)]
∗(𝛼𝑡𝛽𝑠 − 𝛽𝑡𝛼𝑠)[𝑊(𝛼𝑠, 𝛽𝑠)] → 0, 𝑠 → 𝑡.

To justify the use of Theorem 3.26, we note that Hypothesis 3.13 in the theorem is satisfied, that
is, (𝑡 − 𝐢)−1 = (1) as 𝑡 → 𝑠 in (𝐿2(Ω),1(Ω)). The proof of this assertion is similar to that of
(5.10) (one imposes Robin boundary condition withΘ𝑡(𝑥) ∶= −𝛼𝑡(𝑥)𝛽

−1
𝑡 (𝑥) on the portion of the

boundary where 𝛽−1
𝑡 (𝑥) ≠ 0 and the Dirichlet condition elsewhere). □

5.4 The Hadamard formula for star-shaped domains

In this section, we show how to use Theorem 3.26 to derive the classical Hadamard for-
mula for the Schrödinger operators subject to the Dirichlet boundary condition on variable
star-shaped domains.
Let Ω ⊂ ℝ𝑛 be a smooth star-shaped domain centered at zero and Ω𝑡 = {𝑡𝑥 ∶ 𝑥 ∈ Ω} be its

variation for 𝑡 ∈ (0, 1]. We consider a smooth (𝑁 ×𝑁)-matrix potential 𝑉 = 𝑉(𝑥) for 𝑥 ∈ Ω

taking symmetric values. Suppose that 𝜇 ∈ ℝ is such that dimker(−Δ𝐷,Ω + 𝑉 − 𝜇) = 𝑚 ⩾ 1,
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where −Δ𝐷,Ω denotes the Dirichlet Laplacian acting in 𝐿2(Ω). We claim that there exists a
choice of orthonormal eigenfunctions {𝑢𝑗}

𝑚
𝑗=1

⊂ (−Δ𝐷,Ω + 𝑉 − 𝜇) and a labeling of the eigenval-

ues {𝜇𝑗(𝑡)}
𝑚
𝑗=1

of−Δ𝐷,Ω𝑡
+ 𝑉 ↾Ω𝑡

, for 𝑡 near 1, such that𝜇𝑗(1) = 𝜇 for each 𝑗, and that the following
classical Rayleigh–Hadamard–Rellich formula holds, cf. [80, Chapter 5],

𝜇̇𝑗(1) = −∫𝜕Ω(𝜈 ⋅ 𝑥)(𝜈 ⋅∇𝑢𝑗)
2d𝑥, 1 ⩽ 𝑗 ⩽ 𝑚. (5.26)

Rescaling Ω ∋ 𝑡 ↦ 𝑡𝑥 ∈ Ω𝑡 of the operator
(
− Δ𝐷,Ω𝑡

+ 𝑉
)||Ω𝑡

back to Ω yields a one-parameter

family of self-adjoint operators 𝐻𝑡 = −Δ𝐷,Ω + 𝑡2𝑉(𝑡𝑥), 𝑡 ∈ (0, 1] acting in the fixed space 𝐿2(Ω).
This family of operators fits the framework of Theorem 3.26 with 𝑡 ≡ −ΔΩ, 𝑉𝑡(𝑥) = 𝑡2𝑉(𝑡𝑥),
T𝑡 = [𝛾

𝐷
, −𝑡−1Φ𝛾

𝑁
]⊤, cf. (5.4), 𝑡0 = 1, 𝜆(𝑡0) = 𝜇 and 𝑄𝑡 given by the 𝑡-independent projection

onto the Dirichlet subspace {(0, g) ∶ g ∈ 𝐻1∕2(𝜕Ω)} for all 𝑡. All assumptions of Theorem 3.26
are clearly satisfied in the present setting. By the theorem, there exists a choice of orthonormal
eigenfunctions {𝑢𝑗}

𝑚
𝑗=1

⊂ ker(−Δ𝐷,Ω + 𝑉 − 𝜇) and a labeling of the eigenvalues {𝜆𝑗(𝑡)}
𝑚
𝑗=1

of 𝐻𝑡,
for 𝑡 near 1, such that

𝜆̇𝑗(1) =

⟨
d(𝑡2𝑉(𝑡𝑥))

d𝑡
|||𝑡=1𝑢𝑗 , 𝑢𝑗

⟩

𝐿2(Ω)

= 2⟨𝑉𝑢𝑗 , 𝑢𝑗⟩𝐿2(Ω) + ⟨(∇𝑉 ⋅ 𝑥)𝑢𝑗 , 𝑢𝑗⟩𝐿2(Ω), 1 ⩽ 𝑗 ⩽ 𝑚.

(5.27)

By the same rescaling as above, the eigenvalues 𝜆𝑗(𝑡) uniquely determine the eigenvalues 𝜇𝑗(𝑡)
for 𝑡 near 1, and one has 𝜆𝑗(𝑡) = 𝑡2𝜇𝑗(𝑡). Our next objective is to use this identity together with
(5.27) to derive (5.26).
We pause to consider the case of the Laplace operator with no potential. If 𝑉 ≡ 0, then the

proof is essentially completed as 𝐻𝑡 does not depend on 𝑡 and 0 = 𝜆̇𝑗(1) = 2𝜇𝑗(1) + 𝜇̇𝑗(1). This
yields (5.26) by the celebrated Rellich formula [112] expressing the eigenvalues 𝜆𝑗(1) = 𝜇𝑗(1) of
the Dirichlet Laplacian via the Neumann boundary values of the respective eigenfunctions (this
formula, in turn, easily follows from the Pokhozaev–Rellich identity, see, for example, [12, p. 201],
[85, p. 237], and formula (5.30) below).
Returning to the general case of nonzero potential, to derive (5.26) from (5.27), we will follow

the strategy of [44, Lemma 5.5]. Let us fix 𝑗 and denote, for brevity, 𝑢 ∶= 𝑢𝑗 and 𝜆(𝑡) ∶= 𝜆𝑗(𝑡),
𝜇(𝑡) = 𝜇𝑗(𝑡). First, integration by parts for Ω ⊆ ℝ𝑛 yields

⟨(∇𝑉 ⋅ 𝑥)𝑢, 𝑢⟩𝐿2(Ω) = −⟨𝑉𝑢, 2(∇𝑢 ⋅ 𝑥) + 𝑛𝑢⟩𝐿2(Ω) and ⟨𝑢,∇𝑢 ⋅ 𝑥⟩𝐿2(Ω) = −𝑛∕2. (5.28)

Using−Δ𝑢 + 𝑉𝑢 = 𝜆(1)𝑢 and replacing𝑉𝑢 by Δ𝑢 + 𝜆(1)𝑢 in (5.27) and (5.28), a short calculation
gives

𝜇̇(1) = 𝜆̇(1) − 2𝜆(1) = (2 − 𝑛)⟨Δ𝑢, 𝑢⟩𝐿2(Ω) − 2⟨Δ𝑢,∇𝑢 ⋅ 𝑥⟩𝐿2(Ω). (5.29)

The standard Rellich’s identity, see, for example, [12, p. 201], yields

⟨Δ𝑢,∇𝑢 ⋅ 𝑥⟩𝐿2(Ω) = ∫𝜕Ω
(
(𝜈 ⋅∇𝑢)(𝑥 ⋅∇𝑢) −

1

2
(𝑥 ⋅ 𝜈)‖∇𝑢‖2

)
d𝑥 (5.30)

+
𝑛 − 2

2 ∫Ω ‖∇𝑢‖2d𝑥.
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Since 𝑢 satisfies the Dirichlet condition, 𝜕Ω is a level curve, and thus, ∇𝑢 and 𝜈 are parallel, that
is, ∇𝑢 = (𝜈 ⋅∇𝑢)𝜈. Using all this in (5.29) yields (5.26) because

𝜇̇(1) = ∫𝜕Ω
(
−2(𝜈 ⋅∇𝑢)(𝑥 ⋅∇𝑢) + (𝑥 ⋅ 𝜈)‖∇𝑢‖2)d𝑥 = −∫𝜕Ω(𝜈 ⋅∇𝑢)2(𝜈 ⋅ 𝑥)d𝑥.

5.5 Maslov crossing form for elliptic operators

In this section,we continue the discussion began in Section 4.5 on the relation between theMaslov
crossing form and the slopes of the eigenvalue curves bifurcating from a multiple eigenvalue of
the unperturbed elliptic operator. Here, we assume the setting of Theorem 5.2 and obtain a version
of formula (4.45) for the Robin-type elliptic operators 𝑡, see Proposition 5.8 below. For 𝜆 ∈ ℝ, we
let

𝜆 ∶= T

({
𝑢 ∈ 𝐻1(Ω) ∶

𝑛∑
𝑗,𝑘=1

⟨𝚊𝑗𝑘𝜕𝑘𝑢, 𝜕𝑗𝜑⟩𝐿2(Ω) +

𝑛∑
𝑗=1

⟨𝚊𝑗𝜕𝑗𝑢, 𝜑⟩𝐿2(Ω)

+

𝑛∑
𝑗=1

⟨𝑢, 𝚊𝑗𝜕𝑗𝜑⟩𝐿2(Ω) + ⟨𝑣𝑢 − 𝜆𝑢, 𝜑⟩𝐿2(Ω) = 0, 𝜑 ∈ 𝐻1
0(Ω)

})
,

where the trace operator T = [Γ0, Γ1]
⊤ is as in (5.6). This is a “weak” version of the set 𝕂𝜆,𝑡 from

Section 4.5. The mapping 𝜆 ↦ 𝜆 is in 𝐶1(ℝ, Λ(𝐻1∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω))) by [45, Proposition 3.5].
Let 𝑡 ↦ 𝑡 ∶= {(𝑓, −Θ𝑡𝑓) ∶ 𝑓 ∈ 𝐻1∕2(𝜕Ω)}, then for 𝑡0 ∈ [0, 1], there is an interval  ⊂ [0, 1]

centered at 𝑡0 and a family of operators 𝑡 ↦ 𝑡, 𝑡 ∈ , which is in𝐶1
(,(𝑡0

,⊥
𝑡0
)
)
with𝑡0

= 0

and

𝑡 =
{
𝐪 +𝑡𝐪 ||𝐪 ∈ 𝑡0

}
, 𝑡 ∈ ,

see, for example, [44, Lemma 3.8]. In other words, 𝑡 can be written locally as the graph of the
operator𝑡, which is a replacement of𝜆,𝑡 from Section 4.5. We say that (𝜆, 𝑡0) is a conjugate
point if𝜆 ∩ 𝑡0

≠ {0} or, equivalently, if ker(𝑡0
− 𝜆) ≠ {0}.

We recall 𝜆(𝑡0) ∈ Specdisc(𝑡0
) from Theorem 5.2 and let 𝜆 ∶= 𝜆(𝑡0). Then, (𝜆, 𝑡0) is a conjugate

point at which the Maslov crossing form 𝔪𝑡0
for the path 𝑡 ↦ 𝜆 ⊕ 𝑡 relative to the diagonal

subspace𝔇 = {𝐩 = (𝑝, 𝑝) ∶ 𝑝 ∈ 𝐻1∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω))} is defined by the formula

𝔪𝑡0
(𝐪, 𝐩) ∶=

d
d𝑡

||𝑡=𝑡0𝜔(𝐪,𝑡𝐩) = 𝜔(𝐪,̇𝑡0
𝐩), 𝐩, 𝐪 ∈ (𝜆 ⊕ 𝑡0

) ∩ 𝔇, (5.31)

where 𝜔 = 𝜔 ⊕ (−𝜔) and ̇𝑡0
= d
d𝑡
𝑡

||𝑡=𝑡0 . We stress that the pair of Lagrangian subspaces(𝜆,𝑡0

)
is Fredholm since 𝜆 = 𝜆(𝑡0) ∉ Specess(𝑡0

), see [93, Theorem 3.2]. Hence, dim
(
(𝜆 ⊕

𝑡0
) ∩ 𝔇

)
< ∞ and𝔪𝑡0

is a finite-dimensional bilinear form. In fact, the pair of Lagrangian sub-

spaces
(𝜆,𝑡

)
is Fredholm for 𝑡 near 𝑡0 due to continuity of the path of the resolvent operators

𝑡 ↦ (𝑡 − 𝐢)−1.

Proposition 5.8. Let 𝜆(𝑡0), {𝜆𝑗(𝑡)}
𝑚
𝑗=1

and {𝑢𝑗}
𝑚
𝑗=1

be as in Theorem 5.2, and denote 𝐪𝑗 ∶=

(T𝑢𝑗 , T𝑢𝑗). Then, 𝐪𝑗 ∈ (𝜆(𝑡0)
⊕ 𝑡0

) ∩ 𝔇 and

𝜆̇𝑗(𝑡0) = 𝔪𝑡0
(𝐪𝑗 , 𝐪𝑗), 1 ⩽ 𝑗 ⩽ 𝑚, (5.32)



FIRST-ORDER ASYMPTOTIC PERTURBATION THEORY 71 of 83

where𝔪𝑡0
is the Maslov crossing form introduced in (5.31).

Proof. The inclusion 𝐪𝑗 ∈ (𝜆(𝑡0)
⊕ 𝑡0

) ∩ 𝔇 holds since 𝑢𝑗 is an eigenfunction of 𝑡0
corre-

sponding to the eigenvalue 𝜆(𝑡0). For a fixed 𝑗, we abbreviate 𝐪 ∶= 𝐪𝑗 = T𝑢𝑗 and introduce

g𝑡 ∈ 𝐻1∕2(𝜕Ω) × 𝐻1∕2(𝜕Ω) as in (4.44) but with 𝜆,𝑡 replaced by 𝑡. In particular, g𝑡0 = T𝑢𝑗
because𝑡0

= 0. Since g𝑡 = 𝑄𝑡g𝑡 where 𝑄𝑡 is the orthogonal projection onto 𝑡, we have

ġ𝑡0
= 𝑄̇𝑡0

g𝑡0
+ 𝑄𝑡0

ġ𝑡0
= 𝑄̇𝑡0

T𝑢𝑗 + 𝑄𝑡0
ġ𝑡0

.

This and that ran(𝑄𝑡0
) is Lagrangian yields, as in (4.50),

𝜔(T𝑢𝑗 , ġ𝑡0) = 𝜔(T𝑢𝑗 , 𝑄̇𝑡0
T𝑡0

𝑢𝑗).

As in (4.51), by definition of𝔪𝑡0
, this implies

𝔪𝑡0
(𝐪𝑗 , 𝐪𝑗) = −𝜔(T𝑢𝑗 , ġ𝑡0) = −𝜔(T𝑢𝑗 , 𝑄̇𝑡0

T𝑢𝑗) = 𝜔(𝑄̇𝑡0
T𝑢𝑗 , T𝑢𝑗).

By formula (5.9) in Theorem 5.2, we have 𝜆̇𝑗(𝑡0) = −⟨Θ̇𝑡0
𝛾
𝐷
𝑢𝑗 , 𝛾𝐷

𝑢𝑗⟩𝐿2(𝜕Ω). Thus, it remains to
show that

𝜔(𝑄̇𝑡0
T𝑢𝑗 , T𝑢𝑗) = −⟨Θ̇𝑡0

𝛾
𝐷
𝑢𝑗 , 𝛾𝐷

𝑢𝑗⟩𝐿2(𝜕Ω).

The latter assertion follows from (3.46) with 𝜙𝑗 = −𝛾
𝐷
𝑢𝑗 and 𝑋𝑡 = Θ𝑡, 𝑌𝑡 = 𝐼 as

𝑡 = graph(−Θ𝑡) = ker([𝑋𝑡, 𝑌𝑡])

with this choice of 𝑋𝑡 and 𝑌𝑡. □

Remark 5.9. As discussed in Remark 4.23, formula (5.32) relating the derivative of the eigenvalues
of the elliptic operators 𝑡 with respect to the parameter 𝑡 and the value of the (Maslov) crossing
form for the flow 𝑡 ↦ 𝜆(𝑡) ⊕ 𝑡 of Lagrangian planes could be viewed as an infinitesimal ver-
sion of the fundamental relation between the spectral flow and the Maslov index. Indeed, as in
Remark 4.23, formula (5.32) implies relation (4.54) with 𝐻𝑡 replaced by 𝑡 and Υ𝜆,𝑡 replaced by𝜆(𝑡) ⊕ 𝑡.

Example 5.10. We will now briefly return to the Robin eigenvalue problem (5.16) related to the
Friedlander inequalities but at once for the general elliptic operator  described in Subsection
5.1. We recall that for 𝜆 ∉ Spec(𝐷), the Dirichlet-to-Neumann operator 𝑀𝐷,𝑁(𝜆) is defined by
𝑓 ↦ −𝛾

𝑁
𝑢 (in the relevant papers [46, 62],𝑀𝐷,𝑁 is defined by 𝑓 ↦ 𝛾

𝑁
𝑢) where 𝑢 is the solution

to𝑢 = 𝜆𝑢, 𝛾
𝐷
𝑢 = 𝑓. It is easy to see that (5.16) has a nontrivial solution if and only if 𝜇 = cot(𝜋

2
𝑡)

is an eigenvalue of𝑀𝐷𝑁(𝜆). CombiningRemarks 4.23 and 5.9 andExample 5.5with Proposition 5.8
can be used to show the following formula relating the spectral counting functions of theDirichlet
and Neumann realizations 𝐷 and 𝑁 and the Dirichlet-to-Neuman map𝑀𝐷,𝑁(0),

#{𝜆 ∈ Spec(𝑁) ∶ 𝜆 < 0} − #{𝜆 ∈ Spec(𝐷) ∶ 𝜆 < 0}

= #{𝜇 ∈ Spec(𝑀𝐷,𝑁(0)) ∶ 𝜇 ⩾ 0},
(5.33)

see [62] and, specifically, [46, Theorem 3] and the literature therein (in [46, 62] the RHS of (5.33) is
given by the number of negative eigenvalues of𝑀𝐷,𝑁(𝜆), this is due to sign discrepancy in the def-
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inition of 𝑀𝐷,𝑁(𝜆)). We omit details and just mention that the monotonicity of the eigenvalue
curves 𝜆𝑘(𝑡), 𝑘 = 1, 2, … , established in Example 5.5 and formula (5.32) show that the Maslov
crossing form is sign definite at each conjugate point on the vertical line through 𝜆when 𝑡 changes
from 0 to 1 (Figure 1 serves as a schematic illustration of this assertion). By a standard calculation,
see, for example, Step 1 in the proof of [93, Theorem 3.3], theMaslov crossing form is also sign def-
inite at each conjugate point on the horizontal lines through 𝑡 = 0 and 𝑡 = 1 when 𝜆 is changing.
These two properties are sometimes referred to as the monotonicity of the Maslov index. Thus,
cf. Remark 4.23, the spectral flow through zero given by the LHS of (5.33) is equal to the Maslov
index along the vertical line through 𝜆 that, in turn, is equal to the RHS.

6 SYMPLECTIC RESOLVENT DIFFERENCE FORMULAS FOR DUAL
PAIRS

In this section, we give a generalization of the resolvent difference formula (2.12) to the case of
boundary triplets for an adjoint pair 𝐴,𝐴, see, for example, [1, 30, 32] and the literature cited
therein. The theory of adjoint pairs goes back to [99, 124], see also [7, 16, 31, 102]. It allows one
to describe nonself-adjoint extensions for an adjoint pair of densely defined closed (but not nec-
essarily symmetric) operators. A typical example of the adjoint pair, see, for example, [30, 32],
is furnished by a nonsymmetric elliptic second-order partial differential operator and its formal
adjoint; this example is discussed in detail in the end of this section.
We follow [32] to recall the definition of the adjoint pair and its boundary triplet. Let 𝐴,𝐴 be

closed densely defined operators on a Hilbert space forming an adjoint pair, that is, we assume
that𝐴 ⊆ 𝐴∗ and𝐴 ⊆ (𝐴)∗. We denote by+, respectively, ̃+ the domain dom(𝐴∗), respectively,
dom((𝐴)∗) equipped with the graph-scalar product and graph norm for 𝐴∗, respectively, (𝐴)∗, cf.
Section 2. Letℌ and𝔎 be some “boundary” Hilbert spaces and

Γ0 ∶ ̃+ → ℌ, Γ1 ∶ ̃+ → 𝔎, Γ̃0 ∶ + → 𝔎, Γ̃1 ∶ + → ℌ

be some “boundary trace operators.” The collection {ℌ,𝔎, Γ0, Γ1, Γ̃0, Γ̃1} is called a boundary
triplet for the adjoint pair 𝐴,𝐴 when the following hypothesis is satisfied.

Hypothesis 6.1. Suppose that 𝐴,𝐴 is an adjoint pair of densely defined closed operators such
that 𝐴 ⊆ 𝐴∗ and 𝐴 ⊆ (𝐴)∗. Consider linear operators, called the trace operators,

T ∶= [Γ0, Γ1]
⊤ ∶ ̃+ → ℌ×𝔎, T̃ ∶= [Γ̃0, Γ̃1]

⊤ ∶ + → 𝔎×ℌ.

Assume that the operators T and T̃ are surjective and satisfy

⟨(𝐴)∗𝑢, 𝑣⟩ − ⟨𝑢,𝐴∗𝑣⟩ = ⟨Γ1𝑢, Γ̃0𝑣⟩𝔎 − ⟨Γ0𝑢, Γ̃1𝑣⟩ℌ, (6.1)

for all 𝑢 ∈ ̃+ and 𝑣 ∈ +.

The existence of a boundary triplet for every adjoint pair 𝐴,𝐴 was proved in [99], where, in
addition, it was shown that

dom(𝐴) = dom((𝐴)∗) ∩ ker Γ0 ∩ ker Γ1, dom(𝐴) = dom(𝐴∗) ∩ ker Γ̃0 ∩ ker Γ̃1.

It is well known that the operators 𝑇, 𝑇 are bounded, cf. [102, 120, Lemma 14.13].
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The following resolvent difference formula is a direct generalization of Theorem 2.6. It gives
the difference of the resolvent operators of any two (not necessarily sel-adjoint) extensions of the
operator 𝐴 that are parts of (𝐴)∗.

Theorem 6.2. Let {ℌ,𝔎, Γ0, Γ1, Γ̃0, Γ̃1} be a boundary triplet for an adjoint pair 𝐴,𝐴, and let 𝑗

for 𝑗 = 1, 2 be any two closed extensions of 𝐴 acting in  and satisfying 𝐴 ⊆ 𝑗 ⊆ (𝐴)∗. Suppose
that 𝜁 ∈ ℂ ⧵ (Spec(1) ∪ Spec(2)) and denote 𝑅𝑗(𝜁) ∶= (𝑗 − 𝜁)−1 for 𝑗 = 1, 2. Then one has

𝑅2(𝜁) − 𝑅1(𝜁) =
(
Γ̃0𝑅

∗
2(𝜁)

)∗
Γ1𝑅1(𝜁) −

(
Γ̃1𝑅

∗
2(𝜁)

)∗
Γ0𝑅1(𝜁), (6.2)

𝑅2(𝜁) − 𝑅1(𝜁) =
(
T̃𝑅∗

2(𝜁)
)∗
𝑄2𝐽𝑄1(T𝑅1(𝜁)), (6.3)

where 𝑅∗
2
(𝜁) = ((2)

∗ − 𝜁)−1, the operator T̃𝑅∗
2
(𝜁) =

(
Γ̃0𝑅

∗
2
(𝜁), Γ̃1𝑅

∗
2
(𝜁)

)
is considered as an oper-

ator in (,𝔎 × ℌ) and the adjoint operators in (6.2), (6.3) are defined correspondingly, 𝑄1,

respectively,𝑄2 denotes the orthogonal projection onto T(dom(1)) in the spaceℌ×𝔎, respectively,

onto T̃(dom((2)
∗)) in the space𝔎×ℌ, and the operator 𝐽 maps a pair (𝑓, g) fromℌ×𝔎 into the

pair (g , −𝑓) from𝔎×ℌ.

Proof. The inclusion 𝐴 ⊆ 𝑗 ⊆ (𝐴)∗ yields 𝐴 ⊆ (𝑗)
∗ ⊆ 𝐴∗ for 𝑗 = 1, 2 [83, Section III.5.5]. The

operator 𝑅∗
2
(𝜁) ∈ () is also bounded from  onto dom((2)

∗) ⊆ + = dom(𝐴∗). Thus, the
operator T̃𝑅∗

2
(𝜁) is well defined, and, analogously, the operator T𝑅1(𝜁) is well defined. Moreover,

for all 𝑢, 𝑣 ∈ , one has

(𝐴∗ − 𝜁)𝑅∗
2(𝜁)𝑣 = (2 − 𝜁)∗𝑅∗

2(𝜁)𝑣 = 𝑣,
(
(𝐴)∗ − 𝜁

)
𝑅1(𝜁)𝑢 = (1 − 𝜁)𝑅1(𝜁)𝑢 = 𝑢. (6.4)

We also have𝑄2T̃𝑅
∗
2
(𝜁) = T̃𝑅∗

2
(𝜁) and𝑄1T𝑅1(𝜁) = T𝑅1(𝜁) by the definition of the orthogonal pro-

jections 𝑄2 and 𝑄1. Thus, (6.3) is just a reformulation of (6.2). For the proof of (6.2), we use (6.1)
and (6.4) to write

⟨(𝑅2(𝜁) − 𝑅1(𝜁))𝑢, 𝑣⟩ = ⟨𝑅2(𝜁)𝑢 − 𝑅1(𝜁)𝑢, (2 − 𝜁)∗𝑅∗
2(𝜁)𝑣⟩

= ⟨(2 − 𝜁)𝑅2(𝜁)𝑢, 𝑅
∗
2(𝜁)𝑣⟩ − ⟨𝑅1(𝜁)𝑢, (𝐴

∗ − 𝜁)𝑅∗
2(𝜁)𝑣⟩

= ⟨𝑢, 𝑅∗
2(𝜁)𝑣⟩ − ⟨((𝐴)∗ − 𝜁

)
𝑅1(𝜁)𝑢, 𝑅

∗
2(𝜁)𝑣⟩

+ ⟨Γ1𝑅1(𝜁)𝑢, Γ̃0𝑅
∗
2(𝜁)𝑣⟩𝔎 − ⟨Γ0𝑅1(𝜁)𝑢, Γ̃1𝑅

∗
2(𝜁)𝑣⟩ℌ

= ⟨(Γ̃0𝑅∗
2(𝜁)

)∗
Γ1𝑅1(𝜁)𝑢, 𝑣⟩ − ⟨(Γ̃1𝑅∗

2(𝜁)
)∗
Γ0𝑅1(𝜁)𝑢, 𝑣⟩ ,

for all 𝑢, 𝑣 ∈ , yielding (6.2). □

In particular, for 𝑗 = 1, 2, given an operator Ψ𝑗 ∈ (ℌ,𝔎) (not necessarily self-adjoint), we

consider in the extension𝑗 of 𝐴 satisfying 𝐴 ⊆ 𝑗 ⊆ (𝐴)∗ and defined by the formulas

𝑗𝑢 = (𝐴)∗𝑢 for 𝑢 ∈ dom(𝑗) ∶= {𝑢 ∈ ̃+ ∶ Γ1𝑢 = Ψ𝑗Γ0𝑢}, 𝑗 = 1, 2.

Corollary 6.3. Under assumptions in Theorem 6.2, one has

𝑅2(𝜁) − 𝑅1(𝜁) =
(
Γ̃0𝑅

∗
2(𝜁)

)∗
(Ψ1 − Ψ2)Γ0𝑅1(𝜁).
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The proof of this corollary is similar to the poof of Theorem 6.2 and is omitted here, but it is
presented in the electronic version of this manuscript [92].

Remark 6.4. We note that both the Weyl function and the 𝛾-field for an adjoint pair were origi-
nally introduced and studied in [101, 102], where the Krein-type formula written in terms of these
objects was derived for the first time.

Remark 6.5. The formulas for resolvent difference presented inTheorem6.2 are applicable to a pair
of formally adjoint uniformly elliptic operators on domains with 𝐶∞ boundaries. The celebrated
work of M.I. Višik [124, 125] and G. Grubb [73] provides boundary triplets for dual pairs in this
setting. We elaborate on this point in the electronic version of this paper available on ArXiv [92].

APPENDIX A: LAGRANGIAN PLANES AND SELF-ADJOINT EXTENSIONS

In this appendix, we elaborate on the assumption of the second part of Theorem 2.6—that the
image of the domain of a self-adjoint extension is a Lagrangian plane. It is well known that self-
adjoint extensions of𝐴 can be parameterized by Lagrangian planes, see, for example, [71, Theorem
3.1.6], [77, 106], and [120, Proposition 14.7]. Such parameterization depends on the choice of the
trace operator T and the “boundary” space ℌ, see, for example, [14, Proposition 2.4] and [71,
Chapter 3]. Theorems A.1 and A.2 and Corollary A.5 below give yet another variant of the param-
eterization. The proofs amount to checking basic definitions and therefore omitted for the sake
of brevity. They are, however, presented in the electronic version of this paper available on ArXiv
[92].
TheoremA.1. Assume Hypothesis 2.1 and that  ∈ Λ(ℌ ×ℌ) is a Lagrangian subspace inℌ×ℌ

such that

 ∩ T() = T
(
T−1()

)
is (ℌ × ℌ)-dense in  . (A.1)

Then, the operator = 𝐴∗||T−1() is essentially self-adjoint, that is, = ∗, if and only if

dom(∗) ∩ is (+)-dense in dom(∗). (A.2)

Next, we present a result saying that the traces of the domains of self-adjoint extensions of 𝐴
form Lagrangian planes inℌ×ℌ.

Theorem A.2. Assume Hypothesis 2.1 and that there exists a self-adjoint restriction  of 𝐴∗ on a
subspace dom() ⊂ + such that

dom() ∩ is (+)-dense in dom(). (A.3)

Then the (ℌ × ℌ)-closure of the subspace  defined by  ∶= T(dom() ∩) is Lagrangian, that
is,  = ◦, if and only if

◦ ∩ T() is (ℌ × ℌ)-dense in ◦. (A.4)

We note that conditions (A.1)–(A.4) automatically hold for all classes of PDE, ODE, and quan-
tum graphs operators and all examples that we know; these conditions trivially hold provided
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 = + andT() = ℌ ×ℌ, that is, when (ℌ, Γ0, Γ1) is an abstract boundary triplet, see Section 4.
We recall Remark 2.5 regarding the existence of self-adjoint extensions of𝐴 under Hypothesis 2.1.

Remark A.3. The density assumptions dom(𝐴) = , ran(T) = ℌ ×ℌ introduced in Hypothesis
2.1 are absolutely critical for Theorems A.1 and A.2 to hold. Indeed, [53, Example 6.6] gives a
scenario in which dropping the above-mentioned density assumptions facilitates a Lagrangian
plane inℌ×ℌwhose preimage is equal todom(𝐴), which is evidently not a domain of self-adjoint
extension of 𝐴.

Assuming Hypothesis 2.1, for the sake of brevity, in the sequel, we will use the following
terminology.

Definition A.4.

(i) Given a subspace  inℌ×ℌ, we call = 𝐴∗||T−1() the operator associated with  .
(ii) Given an operator, we call  = T

(
dom() ∩)

the subspace associated with.
(iii) We say that a Lagrangian subspace  ∈ Λ(ℌ ×ℌ) is (T,)-aligned or, when there is no con-

fusion, simply aligned if (A.1) holds and the adjoint to the associated with  operator 
satisfies (A.2).

(iv) We say that a self-adjoint restriction of𝐴∗ is (T,)-aligned or, when there is no confusion,
simply aligned if (A.3) holds and the annihilator of the associatedwith subspace satisfies
(A.4).

Employing Definition A.4, let us state a result overarching Theorems A.1 and A.2.

Corollary A.5. If  is an aligned Lagrangian subspace, then the operator  associated with 
is essentially self-adjoint and its closure  is aligned; in particular, the closure of the subspace
associated with is equal to  .
Conversely, if  is an aligned self-adjoint restriction of 𝐴∗, then the closure  of the subspace

 associated with  is an aligned Lagrangian subspace; in particular, the closure of the operator
associated with  is equal to.
A particularly transparent and widely studied scenario of aligned Lagrangian subspaces and

self-adjoint operators is discussed in Section 4, see, in particular, Remark 4.2.

APPENDIX B: THE KREIN–NAIMARK RESOLVENT FORMULA REVISITED

In this appendix, we revisit the classical Krein–Naimark (B.4) formula for the difference of resol-
vents of two self-adjoint extensions of an abstract symmetric operator, see, for example, [120,
Section 14.6]. As we demonstrate in the proof of Proposition B.1, the Krein–Naimark formula
(B.4) can be naturally derived from formula (2.12) in Theorem 2.6 by specializing it to the case of
ordinary boundary triplets. Conversely, in Remark B.2, we show how to derive (2.12) from (B.4).
Let (ℌ, Γ0, Γ1) be an ordinary boundary triplet as described in Definition 4.1. Following com-

mon convention, we define one of the two self-adjoint extensions of 𝐴 in the Krein–Naimark
formula by

0 ∶= 𝐴∗ ↾ker(Γ0), (B.1)

and subtract from its resolvent the resolvent of yet another, arbitrary, self-adjoint extension.
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First, we recall some known facts, see, for example, [120, Section 14]. Since

dom(𝐴∗) = dom(𝐴0)+̇ ker(𝐴∗ − 𝜁) for 𝜁 ∈ ℂ ⧵ ℝ,

the map Γ0 ↾ker(𝐴∗−𝜁)∶ ker(𝐴∗ − 𝜁) → ℌ is bijective, and thus, we define 𝛾(𝜁) ∶= (Γ0 ↾ker(𝐴∗−𝜁)

)−1 and notice that 𝛾(𝜁) ∈ (ℌ,) and Γ0𝛾(𝜁)ℎ = ℎ for any ℎ ∈ ℌ. In particular, 𝛾(𝜁) is injec-

tive. We will use the well-known Derkach–Malamud lemma saying that 𝛾∗(𝜁) = Γ1(0 − 𝜁)−1,
see [55, Lemma 1] or [120, Proposition 14.14(i)]. The operator-valued function 𝛾(⋅) can be extended
analytically to ℂ ⧵ Spec(0) giving rise to the abstract Weyl function 𝑀(𝜁) ∶= Γ1𝛾(𝜁), 𝜁 ∈ ℂ ⧵

Spec(0).
Next, let be an arbitrary self-adjoint extension of𝐴, and let  ∈ Λ(ℌ ×ℌ) be the Lagrangian

subspace such that  = T(dom()), cf. Theorems A.1 and A.2 and Remark 4.2. We will treat
 as a linear relation, see, for example, [120, Section 14.1]. Slightly abusing notation, we do
not distinguish between the operator 𝑀(𝜁) and its graph, in particular, we write  −𝑀(𝜁) ∶=

 − graph(𝑀(𝜁)) and treat both terms in the right-hand side as linear relations. The linear relation
 −𝑀(𝜁) is called invertible whenever

ker( −𝑀(𝜁)) ∶= {𝑓 ∈ ℌ ∶ (𝑓, 0) ∈ ( −𝑀(𝜁))} = {0}, and (B.2)

ran( −𝑀(𝜁)) ∶= {g ∈ ℌ ∶ ∃𝑓 ∈ ℌ 𝑠.𝑡. (𝑓, g) ∈ ( −𝑀(𝜁))} = ℌ. (B.3)

In this case, there exists an operator in (ℌ) whose graph is given by

{(g , 𝑓) ∈ ℌ ×ℌ ∶ (𝑓, g) ∈ ( −𝑀(𝜁))};

this operator is denoted by ( −𝑀(𝜁))−1.

Proposition B.1. Let (ℌ, Γ0, Γ1) be a boundary triplet for the symmetric operator 𝐴, see Defini-
tion 4.1, let0 be the self-adjoint extension of𝐴 from (B.1), let be an arbitrary self-adjoint extension
of 𝐴 and  = T(dom()). Then  −𝑀(𝜁) is invertible and

( − 𝜁)−1 = (0 − 𝜁)−1 + 𝛾(𝜁)( −𝑀(𝜁))−1𝛾∗(𝜁) for 𝜁 ∉ Spec(0) ∪ Spec(). (B.4)

Proof. We denote 𝑅0(𝜁) ∶= (0 − 𝜁)−1 and 𝑅(𝜁) = ( − 𝜁)−1. Since Γ0𝑅0(𝜁) = 0 by (B.1), the
resolvent difference formula from Theorem 2.6 and the Derkach–Malamud lemma above yield

𝑅0(𝜁) − 𝑅(𝜁) = (Γ0𝑅0(𝜁))
∗Γ1𝑅(𝜁) − (Γ1𝑅0(𝜁))

∗Γ0𝑅(𝜁) = −𝛾(𝜁)Γ0𝑅(𝜁).

It remains to prove (B.2) and (B.3), and that

Γ0𝑅(𝜁) = ( −𝑀(𝜁))−1𝛾∗(𝜁). (B.5)

The main identity needed for the proofs is that

𝛾∗(𝜁)𝑢 = Γ1𝑅0(𝜁)𝑢 = Γ1𝑅(𝜁)𝑢 −𝑀(𝜁)Γ0𝑅(𝜁)𝑢 for all 𝑢 ∈ . (B.6)

To justify the second equality in (B.6), we use (𝐴∗ − 𝜁)𝛾(𝜁) = 0 and Γ0(𝐼 − 𝛾(𝜁)Γ0) = 0, yielding
ran(𝐼 − 𝛾(𝜁)Γ0) ⊂ dom(0), and write

Γ1𝑅0(𝜁) = Γ1𝑅0(𝜁)( − 𝜁)𝑅(𝜁) = Γ1𝑅0(𝜁)(𝐴
∗ − 𝜁)𝑅(𝜁)
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= Γ1𝑅0(𝜁)(𝐴
∗ − 𝜁)(𝐼 − 𝛾(𝜁)Γ0)𝑅(𝜁)

= Γ1𝑅0(𝜁)(0 − 𝜁)(𝐼 − 𝛾(𝜁)Γ0)𝑅(𝜁)

= Γ1(𝐼 − 𝛾(𝜁)Γ0)𝑅(𝜁) = Γ1𝑅(𝜁) − 𝑀(𝜁)Γ0𝑅(𝜁),

thus proving (B.6). Since𝑅(𝜁) is a bijection of onto dom(), we have = {(Γ0𝑅(𝜁)𝑢, Γ1𝑅(𝜁)𝑢) ∶

𝑢 ∈ }. This and (B.6) yield

 −𝑀(𝜁) = {(𝑓, g −𝑀(𝜁)𝑓) ∶ (𝑓, g) ∈  } (B.7)

=
{
(Γ0𝑅(𝜁)𝑢, Γ1𝑅(𝜁)𝑢 −𝑀(𝜁)Γ0𝑅(𝜁)𝑢) ∶ 𝑢 ∈ }

=
{(

Γ0𝑅(𝜁)𝑢, 𝛾
∗(𝜁)𝑢

)
∶ 𝑢 ∈ }

.

Since T is surjective, (B.3) follows from (B.7). Indeed, for any g ∈ ℌ, there is some 𝑣 ∈ dom(𝐴∗)

such that Γ0𝑣 = 0 and Γ1𝑣 = g . Since 𝑣 ∈ dom(0), there is some 𝑢 ∈  such that 𝑣 = 𝑅0(𝜁)𝑢

and so g = Γ1𝑅0(𝜁)𝑢 ∈ ran( −𝑀(𝜁)) by (B.7) and (B.6). To begin the proof of (B.2), we first
notice that 𝛾(𝜁) ker( −𝑀(𝜁)) ⊂ dom(). Indeed, by (B.7) and (B.6), we have ker( −𝑀(𝜁)) ={
Γ0𝑅(𝜁)𝑢 ∶ Γ1𝑅(𝜁)𝑢 = 𝑀(𝜁)Γ0𝑅(𝜁)𝑢, 𝑢 ∈ }

, and thus,

T𝛾(𝜁) ker( −𝑀(𝜁))

= {(Γ0𝛾(𝜁)Γ0𝑅(𝜁)𝑢, Γ1𝛾(𝜁)Γ0𝑅(𝜁)𝑢) ∶ Γ1𝑅(𝜁)𝑢 = 𝑀(𝜁)Γ0𝑅(𝜁)𝑢, 𝑢 ∈ }

= {(Γ0𝑅(𝜁)𝑢,𝑀(𝜁)Γ0𝑅(𝜁)𝑢) ∶ Γ1𝑅(𝜁)𝑢 = 𝑀(𝜁)Γ0𝑅(𝜁)𝑢, 𝑢 ∈ }

=  ∩ graph(𝑀(𝜁)).

Therefore, ( − 𝜁)𝛾(𝜁) ker( −𝑀(𝜁)) = (𝐴∗ − 𝜁)𝛾(𝜁) ker( −𝑀(𝜁)) = {0} yields the inclusion
𝛾(𝜁) ker( −𝑀(𝜁)) ⊂ ker( − 𝜁) = {0} and thus ker( −𝑀(𝜁)) = {0} because 𝛾(𝜁) is injective,
thus finishing the proof of (B.2). Finally, using (B.7) again,

graph( −𝑀(𝜁))−1 =
{
(g , 𝑓) ∈ ℌ ×ℌ ∶ (𝑓, g) ∈ ( −𝑀(𝜁))

}

=
{(

𝛾∗(𝜁)𝑢, Γ0𝑅(𝜁)𝑢
)
∶ 𝑢 ∈ }

yielding ( −𝑀(𝜁))−1𝛾∗(𝜁) = Γ0𝑅(𝜁), as required to finish the proof of (B.5) and thus (B.4). □

Remark B.2. In the course of proof of the Krein–Naimark formula (B.4), we established relation
(B.5). Using this relation, we now show how to derive formula (2.12) in Theorem 2.6 from formula
(B.4), cf. the proofs of Theorem 2 and Corollary 4 in [55]. For any two self-adjoint extensions 1

and2 and the extension0 given by (B.1), we denote 𝑅𝑗(𝜁) = (𝑗 − 𝜁)−1 for any 𝜁 that is not in
the spectrum of𝑗 , 𝑗 = 0, 1, 2. Applying (B.4) and using (B.5) for1 and2 yields

𝑅1(𝜁) = 𝑅0(𝜁) + 𝛾(𝜁)Γ0𝑅1(𝜁), 𝑅2(𝜁) = 𝑅0(𝜁) + 𝛾(𝜁)Γ0𝑅2(𝜁). (B.8)

Multiplying (B.8) by Γ1 and using formulas 𝛾
∗(𝜁) = Γ1𝑅0(𝜁) and𝑀(𝜁) = Γ1𝛾(𝜁) gives

Γ1𝑅1(𝜁) = 𝛾∗(𝜁) + 𝑀(𝜁)Γ0𝑅1(𝜁), Γ1𝑅2(𝜁) = 𝛾∗(𝜁) + 𝑀(𝜁)Γ0𝑅2(𝜁).
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Plugging this in the RHS of formula (2.12) and using the property 𝑀∗(𝜁) = 𝑀(𝜁) of the Weyl
function, see, for example, [120, Proposition 14.15(ii)], yields

(
Γ0𝑅2(𝜁)

)∗
Γ1𝑅1(𝜁) −

(
Γ1𝑅2(𝜁)

)∗
Γ0𝑅1(𝜁)

=
(
Γ0𝑅2(𝜁)

)∗(
𝛾∗(𝜁) + 𝑀(𝜁)Γ0𝑅1(𝜁)

)
−

(
𝛾∗(𝜁) + 𝑀(𝜁)Γ0𝑅2(𝜁)

)∗
Γ0𝑅1(𝜁)

=
(
𝛾(𝜁)Γ0𝑅2(𝜁)

)∗
− (𝛾(𝜁)Γ0𝑅1(𝜁)) +

(
Γ0𝑅2(𝜁)

)∗(
𝑀(𝜁) −𝑀∗(𝜁)

)
Γ0𝑅1(𝜁)

=
(
𝑅2(𝜁) − 𝑅0(𝜁)

)∗
− (𝑅1(𝜁) − 𝑅0(𝜁)) = 𝑅2(𝜁) − 𝑅1(𝜁),

where, to pass to the last line, we used (B.8) again. This proves (2.12) as required.
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