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Abstract

This work offers a new prospective on asymptotic pertur-
bation theory for varying self-adjoint extensions of sym-
metric operators. Employing symplectic formulation of
self-adjointness, we use a version of resolvent difference
identity for two arbitrary self-adjoint extensions that
facilitates asymptotic analysis of resolvent operators via
first-order expansion for the family of Lagrangian planes
associated with perturbed operators. Specifically, we
derive a Riccati-type differential equation and the first-
order asymptotic expansion for resolvents of self-adjoint
extensions determined by smooth one-parameter fami-
lies of Lagrangian planes. This asymptotic perturbation
theory yields a symplectic version of the abstract Kato
selection theorem and Hadamard-Rellich-type varia-
tional formula for slopes of multiple eigenvalue curves
bifurcating from an eigenvalue of the unperturbed oper-
ator. The latter, in turn, gives a general infinitesimal
version of the celebrated formula equating the spectral
flow of a path of self-adjoint extensions and the Maslov
index of the corresponding path of Lagrangian planes.
Applications are given to quantum graphs, periodic
Kronig-Penney model, elliptic second-order partial dif-
ferential operators with Robin boundary conditions, and
physically relevant heat equations with thermal conduc-

tivity.
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1 | INTRODUCTION
1.1 | Overview

This work concerns first-order asymptotic expansions for resolvents and eigenvalues of self-
adjoint extensions of symmetric operators subject to small perturbations of their operator
theoretic domains. In the context of elliptic partial differential operators, for instance, the
perturbations that we discuss model small variations of the boundary conditions, the spatial



FIRST-ORDER ASYMPTOTIC PERTURBATION THEORY | 30f83

domains, and the lower order terms of differential expressions. Our main motivations stem from
the Arnold-Keller-Maslov index theory, cf. [8, 9, 29, 35, 84, 103, 114], for self-adjoint elliptic
differential operators and from the classical Hadamard-Rayleigh-Rellich [76, 109, 113] variation
formulas for their eigenvalues. Our main new technical tool is a strikingly simple formula for the
difference of resolvents of two arbitrary self-adjoint extensions of a symmetric operator derived
in the context of abstract boundary triplets [13, 15, 50-57, 120] and inspired in part by a recent
progress in description of all self-adjoint extensions of the Laplacian [66, 67, 69, 73, 75, 100]. This
approach gives a powerful addition to the perturbation theory via quadratic forms as it allows
one to control the resolvents and spectral projections of operators with varying domains.

In this paper, we study one-parameter families of self-adjoint extensions of densely defined
symmetric operators. The main results of this work are twofold. First, we obtain new and quite
general asymptotic expansion formulas for resolvents of self-adjoint operators determined by
one-parameter differentiable families of Lagrangian planes, and derive a Riccati-type differen-
tial equation for the resolvents. From this, we derive a new abstract variational Hadamard-type
formula for the slopes of eigenvalue curves bifurcating from a multiple discrete isolated eigen-
value of the unperturbed operator. Motivated by closely related Hadamard variation formulas for
partial differential operators on varying domains, we use the term Hadamard-type for formulas
giving t-derivatives of the eigenvalues of abstract and differential t-dependent operators treated
in this paper. Our second major set of results uses the Hadamard-type formulas to bridge the cel-
ebrated Atiyah—Patodi-Singer theory and the Maslov index theory as they relate the spectral flow
of a family of self-adjoint extensions to the Maslov index of the corresponding path of Lagrangian
planes. We give a proof of an infinitesimal version of this relation in a very general abstract set-
ting where all three objects may vary: the domains of the self-adjoint extensions, the boundary
traces, and the operators per se. On a more technical level, we systematically use a version of the
formula for the difference of resolvent operators of two arbitrary self-adjoint extensions of a given
symmetric operator. Specifically, we express this difference in terms of orthogonal projections
onto Lagrangian planes uniquely associated with the self-adjoint extensions in question and thus
offer a novel point of view on the resolvent difference formulas through the prism of symplectic
functional analysis.

The asymptotic perturbation theory is a gem of classical mathematical physics [83, Chapter
VIII]. Given a family of, generally, unbounded operators H, = H; + Hfol)(t —ty) + ... depend-
ing on a parameter t € [0, 1] and considered as perturbations of a fixed operator H, ,» the theory
provides, for ¢ near ¢,, formulas for the resolvent operators of H;, for the Riesz projections on
a group of isolated eigenvalues of H,, as well as the asymptotic expansions of the type 4;(t) =
A+ Agl)(t —tp) + ... for the semisimple eigenvalues 4;(t), 1 < j < m, of H, bifurcating from an
eigenvalue 4 = A(t,) of H, of multiplicity m. Of course, it is not always the case that H, is an
additive perturbation of H, ; a simple example being the Neumann Laplacian considered as a
perturbation of the Dirichlet Laplacian posted on the same open set Q C R". Operator-theoretical
domains of the two operators are given by the Neumann and Dirichlet boundary traces. The dif-
ference of the two operators on the intersection of their domains is zero, and thus, neither of them
is an additive perturbation of the other. When the operators are posted on a t-dependent family of
open sets Q, and, in addition, are subject to perturbations by a family of ¢-dependent potentials,
we are facing the situation when all three objects (the boundary traces, the boundary conditions
prescribing the domains of the operators, and the operators per se) are being perturbed. And yet
the fundamental questions remain of how to relate their resolvent operators, eigenvalues, and
SO on.
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To answer the questions, we employ the extension theory for symmetric operators that goes
back to M. Birman [25], M. Krein [87, 88], and M. Vishik [124], see also [5, 57, 71, 120], and that
has been an exceptionally active area of research [1, 7, 14, 18, 20, 30, 55, 71, 102, 106] culminating
in the comprehensive monograph [13]. Unlike the classical sesquilinear forms-based approach
utilized in analytic perturbation theory, see, for example, [83, Section VIL6.5], the foundational
for the current paper result is a very simple formula for the difference of the resolvents of any two
self-adjoint extensions of a symmetric operator. The classical Krein’s formula going back to [87,
88] expresses the difference of the resolvents of a special, “Dirichlet-type,” self-adjoint extension
and yet another, arbitrary, self-adjoint extension of a symmetric operator via the y-field and the
abstract Weyl M-function. Given any two arbitrary self-adjoint extensions, the classical Krein’s
formula is a powerful tool that has been used to prove, for example, that the difference of the
resolvents of the two extensions belongs to the appropriate Schatten-von Neumann class, cf. for
example, [55, Theorem 2 and Corollary 4].

In the current paper, we give a very elementary and direct proof (without using the Krein’s
formula) of the resolvent difference formula of any two arbitrary self-adjoint extensions that we
were not able to find in the literature. Unlike Krein’s resolvent formula, the resolvent difference
formula that we offer does not contain the y-fields nor the Weyl function, and thus is of much
lower level than the celebrated Krein’s resolvent formula. However, it appears to be a perfect tool
for studying families of self-adjoint extensions constructed by means of families of Lagrangian
planes and families of trace operators, which is the main objective of our work. Indeed, variation
formulas for eigenvalues of differential operators posted on a one-parameter family of domains
are typically obtained for differential operators defined via Dirichlet forms, see, for example, [83,
Section VII. 6.5], [64], which essentially restricts the set of admissible boundary conditions to
Dirichlet, Neumann, and Robin. We drop this restriction by avoiding the quadratic form approach
and, instead, dealing with perturbations of self-adjoint extensions through our new symplectic
version of the resolvent difference formula thus deriving the Hadamard-type eigenvalue formulas
in a quite general setting.

The Hadamard-type formulas are instrumental in applications of spectral theory to differential
operators. For example, they recently played a pivotal role in the works of G. Berkolaiko, P. Kuch-
ment, and U. Smilansky [23] and G. Cox, C. Jones, and J. Marzuola [45, 46] on nodal count for
eigenfunctions of Schrédinger operators and in the work of A. Hassell [78] on ergodic billiard sys-
tems that are not quantum uniquely ergodic. The formulas are also central to the applications that
we give, in particular, to our treatment, discussed in more details below, of the periodic Kronig—
Penney model, spectral flow formulas for one-parameter families of Robin Laplacians leading to
a unified approach to Friedlander’s and Rohleder’s inequalities, of the heat equation posted on
bounded domains, and of one-parameter families of quantum graphs.

1.2 | Description of abstract results

We consider self-adjoint extensions of a closed densely defined symmetric operator A acting in
a Hilbert space H. The extensions in question are defined by Lagrangian planes in an auxil-
iary (boundary) Hilbert space $ x $ by means of a two component trace map T = [T, T;]" :
dom(T) Cc H — 9 x $ with dense range and satisfying the abstract Green identity

I
(A*u,v)yy — (U, A"v)y = (JTu, Tv) gy g, u, 0 € dom(T), J := [ (; 85] . (1.1
9
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The trace operator T, geared to facilitate abstract integration by parts arguments, is a central object
in our setting.

A typical realization of this setup is given by the Laplace operator A := —A with domain
dom(A) = Hg(Q) acting in H := L?(Q) and the trace map Tu = (u |0, —®3d,u I;0)" defined on
dom(T) = {u € H'(Q) : Au € L*(Q)}. In this case, A* = —A with the domain dom(A*) = {u €
L2(Q) : Au € L*(Q)}, the boundary space $ = H/2(dQ), and (1.1) is the standard Green iden-
tity. Equipping H, := dom(A™*) with the graph norm of the Laplacian and D := dom(T) with
the norm (||u||}2q1 ot ||Au||i2 ( Q))1/ ’ we get a crucial dense embedding D < H, . This embed-
ding becomes equality in the one-dimensional setting when Q = [a,b] C R; in fact, one has
H, = D = H*([a, b]).

Motivated by this example and returning to the abstract setting, we equip D = dom(T) with
an abstract Banach norm || - ||, the space H, = dom(A*) with the graph norm of A*, and
assume that the embedding D < H, is dense and bounded. Drawing further parallels between
the abstract and the PDE/ODE settings, throughout this work, we distinguish between the strict
inclusion D ¢ H, and the equality D = H_ . The case when D is strictly contained in H, is closely
related to the setting considered in the pioneering paper by V. Derkach and M. Malamud [56],
where the concept of generalized (in fact, B-generalized) triplet was originally introduced and
applied to the inverse problem of realization of Nevanlinna functions. This case is also closely
related to the notion of quasi-boundary triplets extensively studied in the work of J. Behrndt and
M. Langer [14, 15], J. Behrndt and T. Micheler [18], and V. Derkach, S. Hassi, M. Malamud, and
H. de Snoo [50-54]. In case when D = H_, the triplet (§, Ty, T';) is called the ordinary boundary
triplet. This case is understood much better and was developed, in particular, in the classical work
by V. Gorbachuk and M. Gorbachuk [71] and A. Kochubej, by V. Derkach and M. Malamud [55],
and many others, see, for example, [13, 15, 54, 57, 120] and the extensive bibliography therein. The
main reason why we consider a nonsurjective embedding D < H__ is that, when applied to elliptic
operators, it allows one to use the standard Dirichlet and Neumann trace operators as components
of T and therefore discuss physically relevant boundary value problems (e.g., heat equation on
bounded domains). The disadvantage of the condition D ¢ H,, however, is that it restricts the
class of admissible self-adjoint extensions of A to those with domains containing in D. We refer
to [34, 50-54, 79, 126] for an in-depth study of unbounded traces and stress that abstract results
of this type are not the main focus of the current work. On the other hand, the case of ordinary
boundary triplets D = H__ covers all possible self-adjoint extensions at the expense of dealing with
the trace map T which, when considered in the context of second-order elliptic partial differential
operators, is a nonlocal first-order operator on the boundary of the spatial domain. The trace maps
of this type have been studied, in particular, by G. Grubb [73], H. Abels, G. Grubb, and 1. Wood
[1], and F. Gesztesy and M. Mitrea [67-69].

The ordinary boundary triplets are particularly well suited for ordinary differential operators
and quantum graphs; we will exploit this in Section 4. Our approach allows one to obtain some
new results that are not reachable or very hard to obtain using other methods such as the quadratic
forms. This includes our arguably new Riccati-type differential equations for the resolvents, our
ability to handle quite general boundary conditions for quantum graphs where the form method
results are not known, our new and convenient formulas for the slopes of the eigenvalue curves
for both quantum graphs with general boundary conditions and the PDE operators, as well as our

Twhere @ denotes natural Riesz isomorphism ® € B(H~1/2(3Q), H/2(Q)) as defined in (4.21).
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ability to handle nonlocal boundary conditions (even of generalized Robbin type but also such as
those that appear in describing Krein’s self-adjoint extensions of PDE operators).

Having introduced the notion of an abstract trace map and Green identity (1.1), we switch to a
symplectic version of the resolvent difference formula. We note that the right-hand side of (1.1) can
be written as w(Tu, Tw), where w(:, ) = (J-, ) $ is the natural symplectic form. It is well known
that self-adjoint extensions of A in H can be described by Lagrangian planes in various sym-
plectic Hilbert boundary spaces. W. N. Everitt and W. N. Markus [59] and B. Booss-Bavnbek and
K. Furutani [26], for example, relate self-adjoint extensions to Lagrangian subspaces of the sym-
plectic quotient space dom(A*)/ dom(A), while J. Behrndt and M. Langer [18], K. Pankrashkin
[106], and K. Schmiidgen [120, Chapter 14] and [13], on the other hand, discuss self-adjointness in
terms of linear relations. Closely following these works, we utilize the abstract Green identity (1.1)
assuming (possibly, nonsurjective) embedding D < H_, and associate self-adjoint extensions .4
of A to Lagrangian planes F C $ X $ via the mapping dom(A) —» F := T(dom(.A)), see Theo-
rems A.l and A.2 and Corollary A.5 for more details on this correspondence. This observation
brings us one step closer to the perturbation theory for self-adjoint extensions with continuously
varying domains of self-adjointness as it allows us to recast this nonadditive perturbation problem
in terms of the perturbation of Lagrangian planes, or more specifically, in terms of perturbation
of the orthogonal projections onto the planes.

A major issue in perturbation theory for unbounded operators with varying domains is that
their difference could be defined on a potentially very small subspace, for example, on the zero
subspace. This issue is not as severe when one talks about self-adjoint extensions A, .4, of the
same operator A, since dom(A) € dom(A;) N dom(.A4,) but there is still a caveat: the difference
A, — A, could be the zero operator; hence, A, A, could be trivial additive perturbations of one
another (again, think about the Dirichlet and Neumann realizations of the second derivative on a
segment). To deal with this issue, one considers instead of A, — A, the difference of the resolvents
(A; = O™ = (A, — &)l and, classically, expresses it in terms of the abstract Weyl M-function, see
Appendix B and, in particular, Proposition B.1 for a brief reminder of this topic. Such an expression
is called the Krein (or Krein-Naimark) resolvent formula; we refer to [87, 88] and [89, 90].

This foundational result in spectral theory has been studied and derived in various settings by
many authors; we refer to the texts [2, 13, 120] where one can find a detailed historical account and
further bibliography. Without even attempting to give a review of the vast literature on this subject,
we mention here the work by H. Abels, G. Grubb, and I. Wood [1], W.O Amrein and D.B. Pearson
[6], S. Albeverio and K. Pankrashkin [4], J. Behrndt and M. Langer [14], S. Clark, F. Gesztesy, R.
Nichols, and M. Zinchenko [41], V. Derkcach and M. Malamud [55, 57], F. Gesztesy and M. Mitrea
[67-69], G. Grubb [74], A. Posilicano [107], and A. Posilicano and L. Raimondi [108]. We specifi-
cally mention important contribution for the case of quasi-boundary triplets in [14, Theorem 5.1]
and in more complete form in Theorem 6.16 and Corollary 6.17 of [15]; for generalized boundary
triplets of bounded type in Theorem 7.26 and Proposition 7.27 of the paper [54] by V. Derkach, S.
Hassi and M. Malamud; for so-called AB-generalized boundary triplets (which covers the previ-
ous two cases) in Theorem 4.12, Remark 4.13, and Corollary 4.14 of [51]. In addition, in a recent
paper [52] by V. Derkach, S. Hassi, and M. Malamud (see also [50]), the authors studied boundary
triplets and gave an analytic characterization of their Weyl functions as form domain invariant
Nevanlinna functions. These papers contain applications of boundary triplets techniques closely
related to the results in Sections 4.2 and 5.1 of the present paper. Most closely related to our work
is the Krein formula for two arbitrary self-adjoint extensions of the Laplace operator expressing
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the resolvent difference in terms of an operator-valued Herglotz function that has been obtained
in [69], see also [66, 67, 100, 105].

However, all above-mentioned Krein-type formulas are not quite suited for the purposes of
the current paper as they do not capture quantitatively the perturbations of operator-theoretic
domains of the self-adjoint extensions in the form that we need. One of the main objectives of
the current work is to address this issue. Specifically, we propose to use a very elementary new
resolvent difference formula expressing the difference of the resolvents of two arbitrary self-adjoint
extensions of a given symmetric operator in terms of the projections onto the Lagrangian planes
determining the domains of the extensions. As far as we can see this simple but extremely handy
version of the formula was not widely used in the literature in the generality that we offer, see,
however, already mentioned [55, Theorem 2 and Corollary 4].

Indeed, for arbitrary self-adjoint extensions A, .4, of a symmetric operator A, we obtain the
following symplectic version of the formula for the difference of resolvents R;(¢) = (A; — ¢{)~!

and Ry(§) = (A, = )7,

Ri(Q) = Ry(©) = (TR,Q) QuJ Q1 (TR, (L)), 12)

where ¢ & Spec(A;) U Spec(A,), J is the symplectic matrix from (1.1), Q;,Q, € B(H X ) are
the orthogonal projections onto the Lagrangian planes F;, 7, C X 9 defining the self-adjoint
extensions A, A, via F; = T(dom(A,)), F, = T(dom(A,)). In particular, using the property
Q,JQ; = 0, a key property of projections onto Lagrangian planes, formula (1.2) yields

R,(&) = R,(&) = (TRy,©) (Qy — QI Q1 (TR,(L)), 13)

which indicates that ||R,({) — Ry (Ol szey = 0whenever [|Q, — Q, | 5csxs) — 0, see Theorem 2.6.
Also, we rewrite the resolvent difference formula (1.3) in terms of bounded operators X,,Y, €
B(9) chosen such that F, = ker[X;, Y, ], k = 1,2, see (2.15).

Relying on the resolvent difference formula (1.3), we investigate differentiability properties
and obtain asymptotic expansion for resolvent operators as functions of a scalar parameter ¢t €
[0, 1] parametrizing sufficiently smooth paths of Lagrangian planes ¢t — F;, additive bounded
self-adjoint perturbations t — V, € B(H), and trace maps ¢t — T, satisfying Green identity (1.1).
That is, we develop a full-scale first-order asymptotic theory for a one-parameter family of self-
adjoint operators H, := A, + V,, with A, being a self-adjoint extension of A associated with the
Lagrangian plane F; via the relation T,(dom(A,)) = F;. First, we prove that, respectively, conti-
nuity, Lipschitz continuity, and differentiability at ¢, € [0, 1] of the paths of Lagrangian planes,
bounded perturbations, and trace maps, yield continuity, Lipschitz continuity, and differentiabil-
ity, respectively, of the path of resolvent operators t = R,(¢) := (H, —¢)™1, ¢ & Spec(H, i,)- At the
first glance, such results should seemingly follow from the resolvent difference formula (1.3) as
it suggests that R,({) — Rt0(§ )and Q; — Q,, are of the same order. It turns out, however, that the
boundedness of the appropriate norm of TR, ({) for ¢ near ¢, could be a subtle issue depending on
whether we are dealing with the strict inclusion D ¢ H_ or the equality D = H..

Let us elaborate on this in more detail. First, the operator TR;(¢) is bounded as a linear map-
ping from H to $ X §, that is, TR,({) € B(H, H X $) even without assuming that D = dom(T)
is equipped with its own Banach norm, see Lemma 2.4. When it is, however, we claim more:
T e B(D, $ x ) and R,({) € B(H, D), see Proposition 3.2. The main issue is that in the abstract
setting, one does not have a good quantitative control of the norm ||R,({)ll 57,1y as a function of
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t. We therefore impose the assumption
IR 524, o o). (1.4)

That being said, condition (1.4) is automatically satisfied when the strict inclusion D ¢ H, is
replaced by the equality D = H_, in which case we show not only boundedness (1.4) but also
continuity of the reslovent operators

IR;($) = R, (Dl 34, 1) 5, o), 1.5)

d )

see Proposition 4.4. We stress that (1.4) is a natural assumption for the case when D ¢ M. This
assumption is satisfied, although not trivially, in many PDE contexts of interest as its proof essen-
tially boils down to controlling L?(Q) to H(Q) norm of the resolvent of a second-order elliptic
operator for ¢ near t,, see Section 5.2 where we check it for elliptic operators subject to Robin
boundary conditions. To sum up, the resolvent difference formula (1.3) together with hypothesis
(1.4) yields continuity of the resolvent operators ¢ — R,({). The differentiability requires not only
(1.4) but actually (1.5) that we impose as an assumption when D C H, . As we already pointed
out (1.5) holds automatically if D = H_ and it holds in most standard PDE realizations of a more
general situation D ¢ H, .

Having discussed differentiability of the mapping ¢t — R,({), we now switch to first-order
asymptotic expansions of the resolvents. The main goal of this part of the paper is to derive an
Hadamard-type formula’ for derivatives of the eigenvalues curves of H,. As a first step, we derive
in Theorem 3.18 the following asymptotic expansion for the resolvent:

R(©) = Ry + (=R, VR () + (T, R, D) QI T, R, (€)

(1.6)
+ (T R )T R ()t = t0) + 0(t = ), in BOD;

here and throughout the paper, % is abbreviated by the dot, for example, V,O = %l i=t,- In
particular, we deduce a new Riccati-type differential equation for the resolvents,

R, () =—R, OV, R, () + (T Ry, @) Qi Tiy R;, (€
+ (T, R, ()T, R, (O).

Next, we compute the slopes of eigenvalue curves {4 j(t)};": , bifurcating from an isolated
eigenvalue 4 € Spec(H, ) of multiplicity m > 1. Our strategy is to integrate (1.6) over a contour
y C C enclosing the eigenvalues {/1j(t)};."=1 for t near t,, obtain an asymptotic expansion for
the m-dimensional operator P(¢t)H,P(t), where P(t) is the Riesz projector onto the spectral
subspace ran(P(t)) = @;":1 ker(H, —/1j(t)), and reduce matters to asymptotic perturbation
techniques for finite-dimensional self-adjoint operators. Specifically, we employ the body of
finite-dimensional results from Theorem II1.5.4 and Theorem I1.6.8 of [83]. In the literature

T As we have already noted above, we borrow the term Hadamard-type formula from the PDE literature on geometric
perturbations of spatial domains and use it for general formulas for derivatives of eigenvalues.
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on Maslov index and spectral flow, these results are called the Kato selection theorem, cf. [114,
Theorem 4.28], as they allow one to properly choose the m branches of the eigenvalue curves
for P(t)H,P(t) and compute their slopes. A subtle issue in this scheme, though, is that the
finite-dimensional operators P(¢t)H,P(t) are defined on varying t-dependent spaces ran(P(t)).
As in [96], we remedy this by introducing a differentiable family of unitary operators ¢ — U;, cf.
(3.26), (3.27), mapping ran(P(t,)) onto ran(P(¢t)) and obtain the first-order expansion for unitarily
equivalent to P(¢t)H,P(t) operators acting in a fixed finite-dimensional space ran(P(t,)), see
Lemma 3.24. Finally, utilizing this expansion and the Kato selection theorem, we show that there
is a proper labeling of the eigenvalues {Aj(t)};."zl of H, for t near t, and an orthonormal basis
{u j };.":1 C ker(H ty A) such that the following Hadamard-type formula holds,

Aj(to) = (Vi ujouj)y + (Qq Ty uy, Ty up) + a(Ty up, Ty up), 1< j < m, 1.7)

where w(f, 9) = (Jf, ) gxs> [r 9 € H X 9 is the symplectic form. This quite general result is one
of the major points of the paper; we apply it in several particular situations.

Also, we use this computation to give an infinitesimal version of a general abstract analog of the
classical formula, cf. [26, 29, 35], relating the following two quantities: (1) the Maslov index of the
patht — F, @ T(ker (A* + V, — 1)) relative to the diagonal plane in X $, and (2) the spectral
flow of the family ¢ — H, through A for t near ¢,. Heuristically, the latter quantity is given by the
difference between the number of monotonically increasing and decreasing eigenvalue curves of
H, bifurcating from A. The former quantity is equal to the signature of the Maslov form that is
a certain bilinear form defined on T( ker(H, ty — /1)), see Sections 4.5 and 5.5. In order to relate
the two, we prove by computation that, in fact, the value of the Maslov crossing form coincides
with the right-hand side of (1.7), cf. Theorem 4.22 and Proposition 5.8. Similar relations have been
established, in particular, by G. Cox, C.K.R.T. Jones, and J. Marzuola in [45, 46], B. Boof3-Bavnbek,
C. Zhu [29], B. Boof3-Bavnbek, K. Furutani [26], and P. Howard and A. Sukhtayev [81, 82]. The
computational and applied aspects of the Maslov index theory have recently been considered by
F. Chardard, F. Dias, and T. J. Bridges [36-39]

In a later part of the paper, we also give a generalization of the resolvent difference formula to
the case of adjoint pair of operators, see, for example, [1, 30, 32] and the literature cited therein.
Important contributions to the theory of adjoint pairs can be found in [7, 31, 102]. It allows one to
describe nonselfadjoint extensions for an adjoint pair of densely defined closed (but not necessar-
ily symmetric) operators. A typical example of the adjoint pair is given by a nonsymmetric elliptic
second-order partial differential operator and its formal adjoint; this example is also discussed in
the paper.

1.3 | Summary of applications

Our applications are given in Sections 4 and 5. In Section 4, we collected all results pertaining
the ordinary boundary triplets (covering the case of metric graphs, and “rough” PDE traces). This
section also provides more applications of the asymptotic expansions of resolvents in the context of
ordinary boundary triplets obtained by the authors in [94]. In Section 5, we deal with more general
case of densely defined not surjective traces (which covers the “weak” PDE traces). Our main
applications are to spectral count for Robin Laplacians on bounded domains, periodic Kronig-
Penney models, Hadamard-type formulas for Schrodinger operators on metric graphs, and heat
equation posted on bounded Lipschitz domains. Let us succinctly describe relevant results.
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« We prove that for Baire almost every periodic sequence of coupling constants o = {ock};:’zl S
£®(Z,R), the spectrum of the Schrédinger operator H,, acting in L?(R) and given by

d2
— + ) @ d(x k),
dx? kez

Hy i=-

has no closed gaps, see Section 4.4. The analogous assertion for Schrédinger operators Hy, =
—% + V for periodic V € C*®(R) (due to B. Simon [121]) and their discrete versions have been
instrumental in the works of D. Damanik, J. Fillman, and M. Lukic [48] and A. Avila [11], cor-
respondingly, on Cantor spectra for generic limit-periodic Schrédinger operators. As in [121], we
prove this statement by perturbation arguments applied to the Hill equation on a finite inter-
val associated with H, (an alternative approach covering a wide class second-order differential
operators is proposed in the work of D. Damanik, J. Fillman, and the second author).

« For a general elliptic second-order operator £ := —div(AV)+a-V —V -a+ q posted on a
bounded Lipschitz domain Q C RY,d > 2, see Section 5.1, and subject to a one-parameter family of
Robin conditions d,u = ©,u on 9Q, we derive Hadamard- and resolvent difference formulas, see
Theorem 5.2, and use these results to discuss in Section 5.2 a unified approach to L. Friedlander’s
and J. Rohleder’s inequalities via a spectral flow argument, see [62, 116] and [46].

« For an arbitrary compact metric graph G and the Schrodinger operator H, = — ;—; + V subject
to parameter-dependent vertex conditions X,u + Y,d,u = 0 (here d,,u is the derivative of u taken
in the inward direction along each edge), we derive the following Hadamard-type formula for the
slopes of eigenvalue curves {1 j(t)};"zl bifurcating from an eigenvalue of H; of multiplicity m > 1,

/‘ij(to) = <Vt0uj;uj>L2(g) + <(X10Y:; - YzOX:))¢j,¢j> 1.8)

1266’

where {u j};."zl is a certain orthonormal basis of ker(H t Aty)), ¢ ; Is a unique vector in L?*(80)
satisfying u; = —Y[*quj and d,u; = X:';qu, 1 < j < m, see Section 4.3. In the theory of quantum
graphs, Hadamard-type formulas are often derived on a case-by-case basis for simple eigenvalue
curves, see, for example, a classical monograph by G. Berkolaiko and P. Kuchment [21, Sec-
tion 3.1.4.]; (1.8) closes this gap in the literature. In addition, we derive a resolvent difference
formula expressing the difference of two arbitrary self-adjoint realizations of the Schrodinger
operator in terms of the vertex matrices X Y j=12
« For the heat equation

% = u, on 0Q,

{ u, (t,x) = xp(x)A, u(t,x),x € Q,t >0,
on

describing the temperature u of a material in the region Q C R with thermal conductivity x
immersed in a surrounding medium of zero temperature (here 1/p(x) is the product of the den-
sity of the material times its heat capacity), we give a new proof of continuous dependence of u
on x with respect to L?(Q) norm, see Section 5.3.

The symplectic (Lagrangian) point of view on self-adjoint extensions and boundary triplets sys-
tematically used in this paper (and a more general approach via Krein spaces, cf. [53]) is a quite
powerful tool that, of course, brings up many new and unresolved issues. Among the open ques-
tions we mention: finding a symplectic interpretation of the abstract Weyl’s function; describing
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exit-space extensions using symplectic approach; studying (in the context of self-adjoint exten-
sions) so-called lateral perturbations introduced in [22]; and relating Hadamard-type formulas to
the secular equations [21] for quantum graphs.

Organization of the paper. In Section 2, we begin with basic setup and discuss properties
of the trace operators and their composition with the resolvents for the general case when the
embedding D < H, is not surjective. The most general symplectic resolvent difference formula
for the difference of resolvents of any two self-adjoint extensions is proven in Theorem 2.6. In
Section 3.1, we discuss our main setup and assumptions on one-parameter families of traces,
self-adjoint extensions, and bounded perturbations, and provide typical examples when our
assumptions are satisfied. The examples include: Schrodinger operators with Robin-type bound-
ary conditions on families of star-shaped domains, second-order operators on infinite cylinders
with variable multidimensional cross-sections, operators arising as Floquet-Bloch decomposition
of periodic Hamiltonians, and first-order elliptic operators of Cauchy-Riemann type on cylinders.
In Section 3.2, we obtain general resolvent expansions and derive the Riccati equations for the
resolvent operators. The variational Hadamard-type formula for the eigenvalue curves is proven
in Section 3.3. This section also contains resolvent difference formulas for families of self-adjoint
extensions given by either families of projections in the boundary space $ X $ or as kernels of
the bounded row operators [X;,Y,]. In Section 4.1, we formulate our major results for the case
D = H_, that is, for the ordinary boundary triplets. As an example, we treat the ODE case of
Robin boundary conditions on a segment. In Section 4.2, we study Robin Laplacian on multidi-
mensional domains in the framework of the boundary triplets that requires the use of the “rough”
traces. Section 4.3 is devoted to applications to quantum graphs, here, in particular, we derive
Hadamard-type formula (1.8). The periodic Kronig-Penney model is considered in Section 4.4. In
Section 4.5, we begin discussion on connections to the Maslov index and prove a general result
relating the value of the Maslov crossing form and the slope of the eigenvalue curves for ordinary
boundary triplets. In Section 5.1, we switch to the second-order elliptic operators, return back to
the case D ¢ H,, and use weak boundary traces. Hadamard-type and resolvent difference for-
mulas for Robin realizations, Friedlander’s, and Rohleder’s theorems are discussed in Section 5.2.
Applications to the heat equation are given in Section 5.3. In Section 5.4, we derive from our
general results the classical Hadamard-Rellich formula for the eigenvalues of the Schrodinger
operator posted on a family of star-shaped domains. The Maslov crossing form for elliptic oper-
ators defined by means of the weak solutions is studied in Section 5.5. In Section 6, we provide
generalizations of the resolvent difference formula to the case of an adjoin pair of operators. The
results are applied to the example of an elliptic second-order partial differential operator and its
formal adjoint. In Appendix A, we give a detailed discussion of the correspondence between the
Lagrangian planes in the boundary space $ X $ and the domains of the self-adjoint extensions.
We introduce and study the notion of aligned subspaces and show that for these the correspon-
dence is a bijection. Appendix B shows how to derive the classical Krein’s formulas involving the
M-function from the new symplectic version of the resolvent difference formula that we offered
in the paper.

Notation. We denote the space of bounded linear operators acting between two Banach spaces
X and Y by B(X, Y) and let B(X) := B(X, X). The closure of an operator T : X — Y is denoted
by T. We denote by Spec(T) the spectrum, by Specg;.(T) the set of isolated eigenvalues of finite
algebraic multiplicity, and by Spec.(T) = Spec(T) \ Specg;s.(T) the essential spectrum of T. The
scalar product (linear with respect to the first argument) and the norm on a Hilbert space H
are denoted by (-, -);, and || - ||, respectively. When H is a Hilbert space, we denote the space
of bounded linear functionals on H by H* and define a conjugate-linear Riesz isomorphism by
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@ H" > H, H" 29— &y € H so that 3 (f,9)y 1=P(f) = (f, Py)y, f € H. In the special
case of Sobolev spaces H = H'/2(3Q), we set H* = H~/2(3Q) and denote (f,%)_, "=H1200)
([ -11250) for f € HY2(8Q),1% € H~1/2(3Q). The closure of a subspace S C H with respect to

—H
|| - Il;; is denoted by S, while its orthogonal complement by S+#. For operators A, B € B(X, V),
we let [A,B] € B(X X X, V), [A,B](h,,h,)" := Ah, + Bh,, hy,h, € X and [A,B]" € B(X,Y x
V), [A,B]"(h) := (Ah,Bh)", h € X, where T stands for transposition. We denote by A(X X X)

the set of Lagrangian subspaces in X X & equipped with the symplectic form w induced by the

operator J = [—(l)x Ig’ ] € B(X X X). Given an operator valued function f : R —» B(X), we write

f@) =o((t —tp))ast — toif | f(Oll syt — Lol ™ — 0ast — t,. Similarly, f(t) = O((t — £,)") as
t — to whenever || f(0)ll x|t — o] ™" < c for some ¢ > 0 and all ¢ # £, in some open interval con-
taining t,. We denote by B,({) the disc in C of radius r centered at { and by B the ball in R" of
radius r centered at zero.

2 | ASYMPLECTIC RESOLVENT DIFFERENCE FORMULA

Let H, $ be complex, separable Hilbert spaces. Let A be a densely defined, closed, symmetric
operator acting in H and having equal (possibly infinite) deficiency indices, that is,

dim ker(A* —i) = dim ker(A™ + i).
We denote H, = dom(A™*) and equip this Hilbert space with the graph scalar product
(U, 0)yy, 1= (u, V)3 + (A"u, A"u)yy, u,v € dom(A").
Let H_ = (H, )" denote the space adjoint to H, with
H,oHoH_, 2.1

where the first embedding is given by H, > u — u € H, and the second embedding is given by
H v+ (V). Let®! : H, — H_ be the Riesz isomorphism such that

., (Us o lwy,, = (w)y, = (u,w)y + (AU, A"w)y,u,w € H,.
The following hypothesis will be assumed throughout the rest of the paper.
Hypothesis 2.1. We assume that A is a densely defined, closed, symmetric operator acting in H
and having equal (possibly infinite) deficiency indices. Suppose that D is a core for A*, that is, D
is a dense subspace of H, with respect to the graph norm of A*, and assume that dom(A) C D.
Consider a linear operator
T :=[[y,4]" : H, — $ x $ such that dom(T) = D, ran(T) = H X H (2.2)

called the trace operator. Assume that T satisfies the following abstract Green identity:

(A"u, )y — (U, A"v)y = (T1u,Tjv) g — (Tou, T v) g forallu,v € D. (2.3)
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A simple but very important setting satisfying Hypothesis 2.1 is given by ordinary boundary
triplets, cf. for example, [13, 56], in which case one lets D = dom(A*) = H, and one can always
define a Hilbert space $ and a trace operator T satisfying (2.3). This scenario is discussed in Sec-
tion 4 below. Yet, more elaborate setting, which is more suitable for PDEs, is discussed in Section 5
where Hypothesis 2.1 holds with D ¢ dom(A*) being a proper subset of 1, .

Remark2.2. The notion of ordinary boundary triplets has been modified and generalized in several
(similar but not equivalent) directions and applied to elliptic differential operators by multiple
authors. The pioneering paper [56] offered the first such generalization where I was assumed to
be surjective and the operator A*|y, ,, self-adjoint, see also [14, 15, 18, 50-55].

In the following propositions, we collect some properties of the operator T and its composition
with the resolvent R(¢, A) = (A — ¢)~! of a self-adjoint extension .A of A.

Lemma 2.3. Under Hypothesis 2.1, the following assertions hold.

(1) dom(A) = ker(T).
(2) TheoperatorT : D C H, — 9 X 9 defined in (2.2) is closable.

Lemma 2.4. Assume Hypothesis 2.1 and assume that there exists a self-adjoint extension A of A sat-
isfying dom(A) C D. Then, the resolvent operator R(¢, A) := (A —¢)~! € B(H), ¢ € C \ Spec(A),
can be viewed as a bounded operator from H to H_ . Furthermore,

TR, A) € B(H, 9 X D). 2.4)

The elementary proofs of Lemmas 2.3 and 2.4 are provided in the electronic version of this paper
available on ArXiv [92].

Remark 2.5. In Lemma 2.4 (and everywhere when needed below), in addition to Hypothesis 2.1,
we assume the existence of a self-adjoint extension A of A with dom(.A) C D. The question of
the existence of such a self-adjoint extension under merely Hypothesis 2.1 is a subtle one. The
nontrivial issue of whether or not, and under which additional minimal assumptions, this indeed
happens is beyond the scope of this paper. (We refer interested readers to [13, 50, 53, 54] where
closely related questions are discussed and relevant bibliography is provided. In this regard, we
highlight an ingenious relevant work [34] that was rediscovered and further developed in [79,
126].) That said, the condition dom(.A) C D is indeed prevalent in the settings related to elliptic
partial differential operators, ordinary differential operators, and quantum graphs covering our
principal applications, see Sections 4.2, 4.3, and 5.1-5.4 where relevant PDE models satisfying all
abstract assumptions are discussed in detail.

We stress that the main objective of our work is to develop first-order asymptotic perturba-
tion theory for given one parametric families of self-adjoint extensions ¢ — A, of the operator A
with the additional property dom(.A;) C D. In the current paper, the operator-theoretic setting
described by Hypothesis 2.1 and the condition dom(A;) C D mainly serves as the vehicle for uni-
fying several important classes of partial differential elliptic operators and ordinary differential
operators on metric graphs.

Asitis well known, the domains of self-adjoint extensions of A are closely related to Lagrangian
planes in $ X 9, see, for example, [71, Theorem 3.1.6], [77, 106, 120, Proposition 14.7], and Theo-
rems A.1 and A.2 below. The main results of this section are a resolvent difference formula for two
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given extensions corresponding to two arbitrary Lagrangian planes, see Theorem 2.6. To proceed,
we will need to recall some basic definitions from symplectic functional analysis. First, we note
that the abstract Green identity (2.3) gives rise to a symplectic form w defined by

w((fpfz)Ts(gp!]z)T) L= <f2:91>5 - <f1’92>s5

0 Ig] (2.5)

= <J(f1af2)T’(gl’ gZ)T>g)><.f)’ Ji= [_If) 0

fi 9k € 9,k = 1,2. Indeed, using this notation (2.3) can be rewritten as follows:
(A*u,v)y — (U, A"v)y; = w(Tu, Tv) for all u,v € D.
We denote the annihilator of a subspace 7 C $ X $ by

Foi={(f1. /)" € 9% o((f1./) (01,9)7) = 0forall (9, 0" €}, (26)

and recall that the subspace F is called Lagrangian if F = F°. We denote by A($ X $) the metric
space of Lagrangian subspaces of $ X $ equipped with the metric

d(F, Fy) 1= 11Q1 — Qllggxe)s Fis Fa € A(H X H),
where Q; is the orthogonal projection onto F; actingin $ X 9, j = 1,2.
Next, we recall a well-known fact (originally due to Rofe-Beketov, see [57, Chapter 7], [106,

Proposition 4(b)]", [115, 120, Chapter 14]) that any Lagrangian plane F € A($ X $) can be written
as follows:

F={(f1.f) €DxH:Xf +Yf,=0}=ker(|X,Y]), 2.7)
where [X, Y] is a (1 X 2) block operator matrix with X, Y satisfying

XY* =YX*, X,Y € B(®), 2.8)

0 ¢ Spec(M*°Y) for the operator block-matrix MX-Y := [—Y x| (2.9)
We note that
MEY(MEY Y = (XXF + YY) @ (XX* +YY™).

In particular, 0 & Spec(M*Y) if and only if 0 & Spec(XX* + YY*). Using this observation, we
write the orthogonal projection Q onto 7 from (2.7) as follows:

Q= [_XY] XX* + YY) [-Y,X] = [V, X*TW(X, Y). 210)

T Pankrashkin [106] refers to Lagrangian planes as self-adjoint linear relations (s.a.l.r.), see [106, Remark 1], and describes
F by means of the equation X f = Y f, rather than X f, + Y f, = 0 used in (2.7). We choose the latter to be consistent
with [21, Theorem 1.4.4 A].
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Here and below, for brevity, for any X, Y, X s Yj € B(9), j = 1,2, we use notation W and Zy, for
the operators

WX, Y) = (XX + YY) [-Y,X], WX, Y)EBHXH,H), o
211
Zy1 1= (WX, Y ) (XY =YV XPDW(X,, Y1), Z; € B(HXH).

We are ready to formulate the principal result of this section—a symplectic resolvent difference
formula for any two arbitrary self-adjoint extensions of A. We refer to Appendix A for connections
of the self-adjoint properties of the extensions and Lagrangian properties of the traces of their
domains. Also, we refer to Appendix B and, in particular, to Proposition B.1 for the classical Krein-
Naimark formula, cf. [2, 13, Theorem 2.6.1], [57, Chapter 7], [55, 120, Theorem 14.18]. Finally, a
more general version of the symplectic resolvent difference formula that holds for adjoint pairs of
operators is given in Theorem 6.2 below.

In the next theorem, we assume the existence of two self-adjoint extensions of A with domains
in D. As we have pointed out in Remark 2.5, this assumption is nontrivial in the abstract setting of
Hypothesis 2.1 but holds for many PDE and quantum graph scenarios, as discussed in Sections 4.2,
4.3,51,5.2,5.3, and 5.4 below.

Theorem 2.6. Assume Hypothesis 2.1 and suppose that there exist two self-adjoint extensions A,
and A, of A with domains containing in D. Then, for any ¢ & (Spec(A;) U Spec(.A,)), we have

Ro(©) = Ri§) = (ToRD) TR, ) = (TiRoD) TR, Q), @)
Ry(§) = Ry(©) = (TRyQ) JTR,({), (213)

where Rj(Q') =A; - O~ and TRJ(E) = (FORj(E), I‘le(E)) is considered as an operator in
BH,H*X ), j=1,2
Assume, further, that T(dom A;) is a Lagrangian plane in $ X $ and

T(dom A;) = ker([X;,Y;])

with X, Y ; satisfying (2.8) and (2.9), and let Q; denote the orthogonal projection onto T(dom A )
for j =1,2. Then

R,(&) = Ry () = (TRy(©) Q,JQ,TR,(¢), (2.14)

R,(Q) = Ry(©) = (TR,Q) Z,, TR (), (215)

where the operators Z,; = (W(X,,Y,))"(X,Y] — Y,X[)W(X,,Y,) and W(X;,Y;) are defined in
(2.10).

Proof. By Lemma 2.4, we have I‘ORZ(E), FlRZ(E) € B(H, ). In particular, the adjoint operators
appearing in (2.12) are also bounded. Next, using (A = R j(g“ )=A* =R j(§ ), A, = AJ, and
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the Green identity (2.3), for arbitrary u, v € H, we infer

(Ry(Ou = Ry (), 0y = (Ry(Ot = Ry, (A, = ORH(0)
= (A = DR, Ry(I0)z — (Ri (s, (A" = DR (),
= (, Ry(O)v)y — (A" = OR(Ou, Ry(OIv)
+ (T Ry (), ToRy(§)v) 5 — (ToRy (), TRy ()
= (TR (), ToRy()v) g = (ToRy (), TR, (E)v) g
= (@R TIR) = (RO TR Q) Ju0)

This yields (2.12). Rewriting (2.12) using J introduced in (2.5) yields (2.13). For all u € H, we have
TR;({)u € T(dom A;) and thus Q; TR j({ )=TR j(§’ ); so, Equation (2.13) implies (2.14) since Q] =
Q,. Equation (2.15) follows from (2.10), (2.11), and (2.14). O

Remark 2.7. Asitis easy to see from the proof of Theorem 2.6, the symplectic resolvent difference
formulas (2.13) and (2.14) hold even if A, is a nonself-adjoint restriction of A*; the only asser-
tion used was dom(A ;) C dom(T), j = 1, 2. We further recall that the classical Krein’s resolvent
formula, see, for example, [13, 120] and Appendix B, gives an expression of the difference of the
resolvents of an arbitrary self-adjoint extension .A of A and a special, “Dirichlet”-type extension
A, whose domain is ker(I'y). The difference of the resolvents of the two extensions is expressed
in terms of the y-field and the abstract Weyl’s function; we recall this in Proposition B.1. The sym-
plectic resolvent difference formula offered in Theorem 2.6 does not contain of course that much
information as Krein’s resolvent formula as it does not involve, for example, the Weyl function.
We stress, however, that Theorem 2.6 works for any two arbitrary self-adjoint extensions .4, and
A,; the domains of neither of them should be the kernels of T, or I';. Also, as we will see below in
Section 3, the symplectic resolvent difference formula in Theorem 2.6 appears to be very useful,
for instance, in establishing continuity and differentiability properties of the resolvents of families
of self-adjoint extensions. Clearly, the resolvent difference formula in Theorem 2.6 can be easily
obtained by applying the classical Krein’s formula, first, to .A; and A, and, next, to A, and A,
and then by subtracting the two formulas, cf. Remark B.2. This way of computing the difference
of resolvents of two arbitrary extensions was often used since very classical work to show, for
instance, that the difference belongs to the Schatten-von Neumann ideal, see, for example, [55,
Theorem 2 and Corollary 4]. Finally, as we demonstrate in the proof of Proposition B.1, the resol-
vent difference formula can also be used as the first step in proving the classical Krein’s formula
(of course, several more steps are required for the proof to dig out the wealth of information that
the classical formula contains).

Remark 2.8. We note that (2.13) in Theorem 2.6 yields a new streamlined proof’ of the classical
Krein’s resolvent formula, see [2, Section VIIL.106], [41, Appendix A, eq. (A.36)] in the case of finite
deficiency indices. It can also be used to derive the classical Krein-Naimark resolvent formula in
the case of infinite deficiency indices as demonstrated in Appendix B below.

 Provided in the electronic version of this manuscript [92, Proposition B.3].
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‘We conclude this section with a series of auxiliary assertions aiming to place the above results
in the vast literature on the theory of boundary relations in Krein spaces and discuss further
the adjoint operators (TR;({))* appearing in (2.14) and (2.15). Although the assertions could of
independent interests, they are not being used in the remainder of the paper.

Remark 2.9. We now briefly mention how to recast Hypothesis 2.1 using Krein’s spaces in the
context of boundary triplets as discussed in the inspirational paper [53] whose authors are dealing
with very general but still closely related to our setting. Let Jg = iJ, cf. (2.5), and define in X $
an indefinite scalar product

<<(f1’f2)T, (o1 92)T>>g)><5 L= <Jg,(f1’f2)-r, (91 92)T>35><$

= iw((fl’fZ)T7 (91 gz)T), f1:f2 01,9, € 9.

Let J;, be an analogous operator in H X H yielding the corresponding indefinite scalar product
(g, up) ", (U1, 02) "))z Then (H X H, ({5 ) gsxz¢) and (H X H, (-, -)) gx5) are Krein spaces and
the operator T induces an isometry between them. To define the latter in precise terms, let G(A*)
denote the graph of A* in H X H and introduce an operator

T :HXH - HXH,dom(T) = {(u,A*u)" : ue€ D} C GA*), T(u,A*u)" := Tou, T u)’.
Then Green’s identity (2.3) yields
(u, A*w)", (0, A" 0)"))y = (T (w, A*u)", T (v, A*0)T)) g forallu,v € D,

andso, 7 is an isometry between the Krein spaces (H X H, ((-, *))3,) and ($ X 9, ((-, -)) 5 ). Follow-
ing [53], we will identify the graph of 7 with 7" and treat it as a linear relationin H X H X $ X 9,
see [13] for a comprehensive introduction into spectral theory of linear relations. In particular,
7-1 c TI*, where the inverse is understood in the sense of relations and 7*! denotes the adjoint
relation with respect to the Krein inner products. An important question is whether 7 is unitary,
thatis, 771 = 7[*], [53, Proposition 2.5] gives sufficient conditions for an isometric map 7 to be
unitary. The conditions are: (i) G(A*)I] ¢ G(4*), (ii) (ran7)H! € mul(7) (here [1] denotes the
orthogonal complement in the Krein space, and mul is the multivalued part of the relation), and
(iii) dom 71! ¢ ran(7"). We note that (i) and (ii) follow from Hypothesis 2.1, while (iii) does not
(in general), even in the more restrictive setting of quasi-boundary triples studied in [14]. A deep
characterization of the equality 7! = 71*/ in terms of the Nevanlinna property of the Weyl func-
tion is given in [53, Theorem 3.9], see also [54, Theorem 7.57 and Corollary 7.58]. We stress that
Hypothesis 2.1 alone is not sufficient for 7 being unitary! To further compare the setting of [53]
with that given by Hypothesis 2.1, we note that the latter deals with densely defined symmetric
operator A and the linear relation 7 with dense range. These density assumptions model elliptic
differential operators on bounded domains and ordinary differential operators on metric graphs,
and, at the same time, yield natural relations between self-adjoint extensions of A and Lagrangian
planes in $ X $ as described in Theorems A.1 and A.2. In the more general setting of [53], these
relations do not always take place, cf. Remark A.3.

Remark 2.10. We choose to use Lagrangian (symplectic) language throughout the paper. Alter-
natively, Lagrangian plains are called self-adjoint linear relations, and we refer to [13, 120] for a
detailed account of the topic, see also [106]. Another way to describe the same object is to involve
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the Krein spaces introduced in Remark 2.9. We notice that 7° defined in (2.6) is just 71, the
«, -))5-0rthogonal to F subspace of § X §, and F is Lagrangian if and only if 7 = FlL].

Next, we discuss the operator (TR,({))* appearing in Theorem 2.6. Let us first record the
following useful fact about T*.

Proposition 2.11. The domain of the adjoint operator T* : dom(T*) C H X H — H_, cf. (2.1),
satisfies J(T(D)) C dom(T*).

Proof. By the general definition of adjoint operator, dom((T)*) is the set of h € $ X $ such that
there exists a w € H, so that for all u € D = dom(T), one has

(Tu,h) o o = 3, (s o lwy, = (w)yy, = (U,w)y + (AU, A"w)y; (2.16)

if this is the case, then (T)*h := ®~'w. We recall the orthogonal direct sum decomposition H,, =
dom(A)—i—(dom(A))LH+ where, by [26, Lemma 3.1(2)],

(dom(A))'""+ = {v € H, : A*v € H, and v = —A*(A*V)}. (2.17)
Since dom(A) C D and ker(T) = dom(A) by part (1) of the proposition, we have

T(D) = T((dom(A))im N D).

Ifh := (hy, hy)T = JTv for some v € (dom(A))**+ N D, then
(Tu,h)ﬁxg = (Tyu, h1>5 + (T u, hz)g) = (Tou, r10>5 — (Flu,l“ov)f)
= (u, A*v)y — (A*u,v)y

by the Green identity (2.3). Letting w = A*v, we derive (2.16) from (2.17) and thus J(T(D)) C
dom((T)*). O

It is tempting to rewrite the prefactor (TRZ(E))* in the right-hand side of (2.13) in terms of the
product of the operators adjoint to T and R, (). To that end, we first prove an auxiliary result about
the product of the adjoints.

Proposition 2.12. Assume Hypothesis 2.1 and recall (2.1). Assume that there exists a self-
adjoint extension A of A satisfying dom(A) C D and denote R(¢, A) := (A — )71 € B(H) for
all ¢ € C\ Spec(A). The operator R(E, A) € B(H) can be uniquely extended to a bounded linear
operator in B(H_,H) that we will denote by R(Z, A). This extension is given by the opera-
tor (R(¢, A))* € B(H_, H) adjoint to R(§, A) € B(H, H, ). With this notational conventions, the
operator (TR(§, A))* € B(H X 9, H) can be written as

(TR(¢, A))*h = R(C, A)X(T)*h for all h € J(T(D)). (2.18)
Proof. For the sake of the proof, we will denote by R(¢, A) € B(H, H +) the resolvent operator

R(¢, A) viewed as an operator acting from H to H,; thus, (R(¢, A)* € B(H_,H). We let i €
B(H,,H) denote the first embedding i : w — w in (2.1) and let j = (i)* € B(H, H_) denote the
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second embedding in (2.1) so that (iu, w)y = w, (U, jw)y_forallu e H, & Handw € H & H_.

In this notation, iR(¢, A) = R(¢, A), and, in order to prove the first part of the proposition, we have
to show that

(R(¢, A))* jw = R, A)w for all w € H, (2.19)

and so, R(E, A) := (R, A))* € B(H_,H) is indeed a bounded extension to H_ of R(E, A) €
B(H).Forany u € H, and w € H, we infer

(iu, (RS, A))* jw)y = 3¢, (s JR(S, A jw)y (because i* = j)

(R, A j) uw)y,  (because j(R(¢, A)*j € B(H, H_))

= (iR($, Aiu, w)y, (because i* = j)
= (R, Aiu, w)y, (because iR(¢, A) = R(¢, A))
= (iu,R(, A)w)y (because A = A* in H).

Since ran(i) is dense in H, we have (2.19).
It remains to prove (2.18), that is, in the notation of the current proof, that

(TR(¢, A)*h = (R(¢, A))*(T) h for all h € J(T(D)). (2.20)

By [83, Problem I11.5.26], we have (R(¢, A))*(T)* C (TR(¢, A))*, where the domain of the product
(1?(; , A))*(T)* is set to be equal to dom(T*). Since J(T(D)) C dom(T*) by Proposition 2.11, we infer
(2.20). 0

Corollary 2.13. Resolvent difference formula formulas (2.12) and (2.13) can be also rewritten as

R,(§) — Ry () = Ry (OTITR($), (2.21)

where the operator R,({) in the right-hand side is viewed as a unique extension of the resolvent
R,($) € B(H) to an element of B(H_, H) as in Proposition 2.12 and, in fact, is given by (RZ(E))* €
B(H_, H). Indeed, (2.21) follows from (2.13), (2.18), and the fact that ran(JTR,({)) € J(T(D)) C
dom(T*), by Proposition 2.11 (3).

Remark 2.14. We conclude this preliminary section with a slight generalization,"' see (2.23) below,
of the resolvent difference formula in Theorem 2.6. To formulate it, we will freely use elemen-
tary facts on (linear) relations as nicely described in [13, Chapter 1]. In particular, we will identify
the operators on a Hilbert space H with their graphs in H X H. In this remark (and only in this
remark) instead of Hypothesis 2.1, we will impose the following assumptions. Let A C A* be a
symmetric relation in 7 X H (not necessarily densely defined), and T = [Ty, T;]" : dom(T) C
A* > $H X $ be a linear operator (possibly unbounded) with a dense in A* domain and such
that the following abstract Green’s identity holds:

(Up,v1)3 — (U, Vy)y = (T4, T0) g — (Toil, [, 0) g for all & = (uy, uy), 0= (v, ;) € dom(T).

TWe thank the referee of an earlier version of the paper for suggesting this generalization.
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(Clearly, if A* is an operator, then u, = A*u;, v, = A*v, and so this becomes (2.3) upon setting
Tyu; = Iyl and T'yu; = I}, cf. [13, Section 2.1]). Furthermore, let A; and A, be two relations
suchthatA C A; C A*andp(A;) # @,j =1,2,and assume that A; C dom(T)and A5 C dom(T).

Letus fix{ € p(A;) N p(A,) and use the resolvents R; ({) and R,()* = (A] — E)_l of A; and AJ
to write the relations .4, and A} as follows:

Ay ={i = (Ri(Qu, I + SR(O)u) : ue HY,

- (2.22)
Ay = {0 1= RyQ) v, (I + (R, ) : v € M.

Using Green’s identity then yields

(11, Ty0) g — (Toth, T10) g = (I3 + R (ENu, Ry(§) v)3p — (Ry($u, (I + ERz(g)*)WH,

and so, rearranging the right-hand side of the last formula gives the desired generalization of the
resolvent difference formula,

(Ry(§) = Ry (D), v}y, = (111U, Ty0) g — (Toli, [10) g for allu,v € H (2.23)

and #, 0 as defined in (2.22). (Clearly, when A, A, A, are operators, the resolvent difference
Equation (2.23) becomes (2.12)).

3 | RICCATI EQUATION FOR RESOLVENTS AND HADAMARD-TYPE
FORMULAS FOR EIGENVALUES

In this section, we consider a one-parameter family of self-adjoint extensions of a given symmetric
operator perturbed by a family of bounded operators. In turn, the extensions are constructed using
families of Lagrangian subspaces in a boundary space and boundary traces that also depend on the
parameter. Our final objective is to derive a differential (Riccati-type) equation for the resolvents of
the perturbed operators and formulas for the derivatives of their isolated eigenvalues with respect
to the parameter. The latter abstract formulas generalize, on the one side, the classical perturba-
tion results from the case of additive perturbations, see, for example, [83, Section II.5], and, on
another, the Rayleigh-Hadamard-type variational formulas for eigenvalues of partial differential
operators depending on a parameter, see, for example, [72, 80].

3.1 | Parametric families of operators

We continue to assume that A is a densely defined closed symmetric operator with equal (possibly
infinite) deficiency indices, that H, = dom(A*) is equipped with graph norm of A*, and that D,
the domain of the trace operator, is a dense subspace of H . The following hypothesis will be
assumed throughout this section.

Hypothesis 3.1. We assume that Hypothesis 2.1 holds for the trace operator T and a subspace
D c H, with dom(T) = D, and, in addition, we assume that the subspace D of H_ is equipped
with a Banach norm || - || such that the (injective) embedding j of D into , is continuous with
respect to this norm, thatis,j € B(D, H,).
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A typical example that we have in mind is the Laplacian A = —A on L?(Q) with dom(A) =
HS(Q) for an open bounded Q0 C R" with smooth boundary. In this case, we have

A* = —A, H, = dom(A*) :={u € L*(Q) : Au € L*(Q)},
D := D'(Q), where the space
DY(Q) :={u e H'(Q) : Au e L*(Q)}

. . . 1/2
is equipped with the norm ||u||, := (||u||iﬂ(m + ||Au||i2(m) 2,

For u € D, the trace operator is given by
Tu = [y, u,—®y ul" € Hx Hwith  := H'/*(30),

herey  isthe Dirichletandy =v -y Vuisthe (weak) Neumann trace maps, and @ is the Riesz
isomorphism between H~/2(3Q) = (H'/2(3Q))* and HY/2(3Q), cf. (4.21) below.

Proposition 3.2. Under Hypothesis 3.1, one has T € B(D, $ X ). In addition, if A is a self-adjoint
extension of A with dom(A) C D, then there exist ¢, C > 0 such that

cllully, < llullp < Cllully, forallu € dom(A). 3.

In other words, the norms in H, and D are equivalent on dom(A) for any self-adjoint extension A
of Awith dom(A) C D. Furthermore, if V = V* € B(H) and { ¢ Spec(A + V), then

A+V ="' e BH,D). (3.2)

Proof. The operator T is bounded as an everywhere defined on the Banach space D closable oper-
ator (see Lemma 2.4). We claim that dom(.A) is a || - ||p-closed subspace of the Banach space D.
Indeed, suppose that u, — u in D for some u,, € dom(.A). Since D is continuously embedded into
H_, the sequence {u,,},cy is Cauchy in M, that is, it is Cauchy with respect to the graph norm of
A*. Hence, {u,} is convergent to u in H and the sequence of vectors A*u,, = Au,, converges in H.
Since A is a closed operator, we conclude that u € dom(.A), as claimed. Now, we will consider j

as a mapping from the Banach space (dom(.A), || - ||p) into the Banach space (dom(.A), || - ||H+).
This mapping is bounded and bijective; hence, its inverse is also bounded yielding (3.1). Assertion
(3.2) follows from Lemma 2.4 and (3.1). O

Remark 3.3. 1t is worth comparing Lemma 2.4 and 3.2: indeed, (2.4) says that the product TR(¢, .A)
is a bounded operator, while Proposition 3.2 gives that each factor in this product is bounded. The
latter fact will be used in the proof of Theorem 3.18 below (specifically, see (3.21)) and it comes at
the expense of assuming Hypothesis 3.1.

Hypothesis 3.4. We assume that
T:[0,1] > BD,HxXH) : t T,

is a one-parameter family of trace operators and D C H, is a t-independent subspace such that
T, and D = dom(T,) satisfy Hypothesis 3.1 (and thus, in particular, Hypothesis 2.1) for each t €
[0,1]. Let Q : [0,1] = B(H X H),t — Q,, be a one-parameter family of orthogonal projections.



220f 83 | LATUSHKIN and SUKHTAIEV

We assume that ran(Q,) € A(H X $) is a Lagrangian plane for each ¢t € [0, 1]. We further assume
that there exists a family A;, t € [0, 1], of self-adjoint extensions of A satisfying

dom(A;) C D, (3.3)
T,(dom(A4,) = ran(Q,).

Let V : [0,1] — B(H), t — V, be a one-parameter family of self-adjoint bounded operators. We
denote H, := A, +V,and R,(¢) := (H, — ¢)~! € B(H) for ¢ ¢& Spec(H,) and ¢ € [0,1].

Hypothesis 3.4 gives a rather general setup for boundary value problems parameterized by a
one-dimensional variable. We briefly list several families of operators for which the operators per
se, their domains, and respective traces depend on a given parameter. Our immediate objective
is just to give a glimpse of the typical situations of the setup described in Hypothesis 3.4. More
examples with detailed analysis are given below, see Subsections 4.2, 4.3, 4.4, 5.2, 5.3, and 5.4.

Example 3.5. A well-studied model that fits Hypothesis 3.4 is the family of Schrédinger operators
equipped with Robin-type boundary conditions considered on a family of subdomains Q, C Q
obtained by linear shrinking of a bounded star-shaped domain Q C R" to its center. The linear
rescaling of Q, back to Q leads to a one-parameter family of Schrédinger operators H, := —A;, + V
in L?(Q) subject to Robin boundary conditions (6,u — 1.‘_1 Ju l30= 0,where 6, € L*(0Q, R)isthe
rescaled boundary function. In this case, the minimal symmetrlc operator is given by the Lapla-
cian considered on Hg(Q), and its self-adjoint extensions —A, are determined by the boundary
condition (6;u — t‘lg—;‘) tso= 0 that, in turn, corresponds to the Lagrangian planes {(f,g)" €
H'2(0Q) x H/2(0Q) : 6,f = g} in H'/2(3Q) x H'/2(Q). That is, we have

H :=1XQ), 9 :=H'20Q).T, :=[y,.~ "oy 1T,

A 1= —A,dom(A) = H}(Q),D = D'(Q) :={u € H(Q) : Au € L*(Q)},
dom(A,) :={u € D'(Q) : 6,y u=1t"y u},

ran(Q,) :={(f,9)" € H'2(3Q)x H'*(3Q) : 6, = g},

here Y, and Yy denote the Dirichlet and (weak) Neumann traces and ® : H~/2(3Q) - HY/2(3Q)
denotes the Riesz isomorphism, see (4.21). Similar models are systematically studied in [44, 45,
49] and discussed in some details in a more general setting in Section 5.4 below.

Example 3.6. Our next example is a matrix second-order operator posted on a multidimensional
infinite cylinder with variable cross sections. We denote by ¢ € R the axial and by x the transversal
variables, that is, we set
.- — n+1 n n+1

Q:={t,x)eRr telee[EB(t)}cR ,
where, for instance, r(t) = 1+ t/(1 + t?), and B is the ball in R" of radius r centered at zero.
Denoting A ) =82 + A, and A, = Z] ) 5)% , we will consider in L?(Q;CN) the Schrédinger
operator

—Ayy+V =—0} +B,, where B, = —A,(t) + V and V = V(t,X)
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is a smooth-bounded (N X N)-matrix-valued potential taking symmetric values, while the
x-Laplace operator —A (t) is acting in LZ(B:‘(O; CN) and equipped with the following domain:

dom(-A, (1) :={ueD'®",) : Tu :=(y

) u,—dy

u) €T},
)

D,arﬁs;'(t) N,BH:‘O
where F : t — F,; is a given smooth family of Lagrangian subspaces in the boundary space
H'Y?@4 B;‘(t)) x H'/2(3 B:l(t))' We note parenthetically that the spectral flow of the family {B,}%
of the self-adjoint operators B, is of interest as it is related to the spectrum of the Schrodinger
operator —A(t’x) + V in L2(Q; CN); this relation could be established using spatial dynamics, cf.
[91, 118, 119], via a connection to a first-order differential operator, cf. [97] and [65]. Rescaling

X+ z=x/r(t) of [EB:‘([) onto B} gives rise to a family of operators H, defined analogously to B, by

—00

H, = —(r(t))_zAZ(t) +V,, where z € BY, V,(z) = V(t,r(1)z), (3.4)

the Lagrangian subspace 7, is obtained from 7, by rescaling as well, and the z-Laplacian —A_(t)
acting in L2(B"; C") is equipped with the domain

dom(—A,(1) :={w e D'®) : T,w :=(y

n
D,ﬁIEB1

w,—r) ey wyeF}. (35

n
N,S[Els1

The family of operators H, can be considered within the setting of Hypothesis 3.4 with T, given
in (3.5), V; given in (3.4), and Q, being the projection onto f‘t.

Example 3.7. The next example is given by a one-parameter family of operators arising in

Floquet-Bloch decomposition of periodic Hamiltonians on R, see [111, Theorem XII.88] and
2

Example 4.18 below. We consider the Schrodinger operator A : = —% + V on (0,1) with domain
X

H(Z)(O, 1) and its sefl-adjoint extensions determined by the following boundary conditions u(1) =

el'u(0),u’(1) = el'u’(0),t € [0,27). In this case, the setup described in Hypothesis 3.4 is as

follows:

H :=1*0,1), 9 := C* Tou = (u(0),u(1)), [ u = (' (0), —u'(1)),

2
A:=—L dom(a) = HX0,1), D = H2(0, 1);
dx?

dom(A,) :={u € HX(Q) : u(1) = e"u(0),u’'(1) = eu/(0)},

ran(Q,) :={(z,,25,23,2,) €C* : z, = ellz), 2, = —el'z,}.
Example 3.8. This example concerns a first-order operator related to the perturbed Cauchy-
Riemann operator on a two-dimensional infinite cylinder, cf. [114, Section 7]. Let a,b : R —» R

be smooth functions having limits a, < b, at +co and such that a(t) < b(¢) for all t € R, and
consider the two-dimensional cylinder

Q={(t,x) €R? : a(t) < x < b(t),t € R}.
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For N > 1, we consider the perturbed Cauchy-Riemann operator ds » = 8, + B, acting in the
space L*(Q; R?N) of real vector-valued functions, where

0 I
B, =—JN0, (1) + S, t ER,Jy = [ I “EN] ,
Iy

and S = S(t, x) € R?™2N js a given smooth-bounded matrix-valued function taking symmetric
values and having limits S, (x) as t — +o0. Here and below for each ¢t € R, we denote by d,(¢) the
operator of x-differentiation in L*((a(t), b(t)); R*") with the domain

dom(d, (1)) = {u S Hl((a(t), b(1)); RZN) : Tu i= (u(a()), u(b(t))) € 7-’[}, (3.6)

where F : t = F, € A(2N) is a given smooth family of Lagrangian subspaces in R*" having limits
F, ast — +oo. Again, we note that the spectral flow of the family {B,}/®  of the self-adjoint
operators B, is of interest since, in particular, it is equal (see, e.g., [65, 97]) to the Fredholm index
of the Cauchy-Riemann operator 55’;», see a detailed discussion and various implications of this
fact in [114, Section 7]. Rescaling u(t, x) = w(t,z) := u(t, z(b(t) — a(t)) + a(t)), z € (0, 1), gives
rise to an analogous to B, operator H, acting in L?([0, 1]; R?N) as

H, = —-J\0,(t) +V;,t € R,z € (0,1),where V,(z) = S(¢, (b(t) — a(t))z + a(t)), (3.7
and 8,(t) = (b(t) — a(t));—z is the operator in L2([0, 1]; R*N) with the domain
dom(3,(1)) = {w € H'([0,1];R*)) : Tw := (w(0), w(1)) € F,}.

The family of operators H; can be considered within the setting of Hypothesis 3.4 with the trace
given in (3.6), with Q, being the projection onto F;, and V; given in (3.7).

Example 3.9. Parameter-depended Hamiltonians satisfying Hypothesis 3.4 play an important
role in the theory of quantum graphs. For example, the well-known eigenvalue bracketing, see
[21, Section 3.1.6], is established by studying the dependence of eigenvalues of the §-type graph
Laplacian on the coupling constant. We refer the reader to Section 4.3 for an in-depth discussion
of parameter-depended quantum graphs satisfying Hypothesis 3.4.

Remark 3.10. Hypothesis 3.4 is satisfied, for example, when ran(Q;) € A(9 X )is (D, T,) aligned,
cf. Definition A.4, and A, is the operator associated with ran(Q,) and dom(A,) C D, t € [0,1],
see Theorem A.1. Conversely, if A, is a self-adjoint extension of A with dom(4;) C D, t € [0,1],
which is (D, T,) aligned and ran(Q,) is a subspace associated with A, then ran(Q,) € A($ X H),
t € [0,1], see Theorem A.2.

3.2 | Resolvent expansion

Our first major result in the setting of Hypothesis 3.4 is a symplectic formula for the difference of
the resolvents R,(¢) = (H, — ¢)~! of the operators H, at different values of t.

Theorem 3.11. Assume Hypothesis 3.4 and let t,s,7 € [0,1], { & Spec(H,) U Spec(H;). Then for
R() :=H,—¢)land H, = A, +V,, one has
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R($) = Ry(§) = RV = VIR,() + (TR,()IT,R,(S) (38)

= ROV = VIR(E) + (T,R(O)"(Q, — QTRy(&)
+ (TR J(T, — TYR,(L). (3.9)

The operators whose adjoints enter (3.8), (3.9) are being considered as elements of B(H, X )
(cf. Proposition 3.2), and thus, their adjoints are elements of B(H X H, H).

Proof. As in the proof of Theorem 2.6 for arbitrary u,v € H and T, = [T, I';]", one has
(RO = R, 0y = (R(Eu — Ry, (H, — OR,(E)v)y,
= ((H, = DR, R0}y — (RO, (A + V, = OR,(E)v)y
= (u, R0}y + Ry, (Vi = VIR — (A" + V = OR(Ou, R(v)
+ (T R, TR, ()0} 6 — (ToRy(ut, T R(Ov)
= Ry, (Vs = VOR,()v)y; + (TR, ToR, (O)v) g — (TR, T1 R, (§)v)
= ((RAOV, = VOR() + (TR TiR, = (TR Q) TR, Ju,v)
Thus,
R,($) = R($) = ROV, = VIR(E) + (TR, () Ty Ry($) — (T R,()) TR($),
yielding (3.8). In order to prove (3.9), we note that
TyRy($) = QT Ry(¢) and T,R,($) = Q,T,R,().
In addition, we have QJJQ, = 0 since ran(Q,) is Lagrangian. This implies
(TR ITR(E) = (TRE)ITR) + (TR I(T, = TOR()
= (TR, ()" QI QTR () + (T,R())*J(T, — TYR(C)
= (TR, ()*(Q, — QTR + (T,R,()I(T, — TYR(?).
Utilizing this and letting T = ¢ in (3.8) yields (3.9). O
Remark 3.12. We note that (3.8) holds even if A, is a nonself-adjoint restriction of A.

Next, given the one-parameter families of self-adjoint extensions A, traces T, and operators
V, described in Hypothesis 3.4, we will show that the resolvent operators for H, = A, + V, are
continuous (differentiable) at a given point t = t, whenever the mappingst — Q,,t = T,,t = V,
are continuous (differentiable) at ¢.

To introduce appropriate assumptions, we recall from Proposition 3.2 (replacing dom(.A) by
dom(A,)) that under Hypothesis 3.1, the norms in D and M, are equivalent on dom(A,) for each
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€ [0,1], cf. (3.1), but with the constant c¢ that might depend of t. We will need a uniform for ¢
near f, version of this assertion: In addition to Hypothesis 3.4, we will often assume that, for a
given ¢, € [0, 1], there are constants C, ¢ > 0 such that

C||“||H+ < ullp < C||”||H+ for all u € dom(.A;) and ¢ near ¢. (3.10)

These inequalities are equivalent to uniform with respect to the parameter t boundedness of the
norms of resolvents of A, as operators from H to D, see Proposition 3.15 below. We stress that
(3.10) does not mean that the norms || - ||H+ and || - ||p are equivalent on D; they are equivalent
only on the domains of the extensions .4, of A but uniformly for ¢ near ¢,,.

Hypothesis 3.13. In addition to Hypotheses 3.1 and 3.4, we assume, for a given ¢, € [0, 1], that
(A, = Dl pepy) = O as t = 1. (3.11)

Remark 3.14. Suppose that V, form Hypothesis 3.4 satisfies V, = O(1), t — t,and that{ € C \ R.
Then (3.11) is equivalent to

A, +Vv, - g)_IHB(H,D) =01)ast = t,.
Indeed, we have
(A+V, =0 = -+ A, -DTTE= ¢+ VA +V, O

Considering (A, —i)~! as a mapping from H to D, (A, + V, — ¢)~! as a mapping from H to itself,
and using the bound [|(A; + V; = )"l zay) < (| Im¢])~, we infer the claim.

The equivalence of Hypothesis 3.13 and assertion (3.10) is proven next.
Proposition 3.15. Assume Hypothesis 3.1. Then, (3.10) is equivalent to (3.11).
Proof. If (3.11) holds, then for any u € dom(.A4;) and t near ¢, one has

lullp = I1(A, = DA, = Dullp < cll(A, = Dully,
< c(llAully + Mlullz) < \/ECIIMIIH+,

thus proving (3.10), as ||u||7_[+ < c||lu||p by Hypothesis 3.1.
Conversely, using (3.10), for all ¢ near t, and any v € H, one has

(A, =D~ vllp < CICA, =D vllyy,

o\ — o\ — 1/2
= (A, — DI, + 14, (A, — D) oll2,) "

o\ — o\ — 1/2
< C(I1CA, = D™ s 10112, + (ol + 1CA, — D~ oll,)%) "
< V5CIvlly,

since A, is self-adjoint, thus proving (3.11). O
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Assuming that the families Q,, T, are continuous at ¢ = f,, under Hypothesis 3.13 the resolvent
difference formula (3.9) with V; = 0 shows (as in the proof of Theorem 3.18 (1) below) that

14 = D7 = (A =Dy , =, 0D
(4, =D = (4, — D" [ - o(1).

In the proof of differentiability of the resolvent of H,, we will need, however, a somewhat stronger
continuity assumption, given next, regarding the resolvents of .4, considered as operators from
H to D. As we will demonstrate in Sections 4 and 5 below, the stronger assumption does hold in
the case of boundary triplets and for Robin-type elliptic partial differential operators on bounded
domains.

Hypothesis 3.16. In addition to Hypotheses 3.1 and 3.4, we assume that for a given ¢, € [0, 1],
one has

(A, =D = (A, =D gy = 0 £ = 1. (312)

Remark 3.17. Suppose that V; from Hypothesis 3.4 satisfies (V, —V; ) = o(1), t — f, and that
¢ € C\ R. Then (3.12) is equivalent to

(A, +V, — O - (‘Afo +Vi, — §)_1I|B(H,D> =o(l)ast — f,.
The proof is similar to the proof of Remark 3.14. We also note that (3.12) implies (3.11).

After these preliminaries, we are ready to present the main result of this subsection.

Theorem 3.18. We fixt, € [0,1], {, & Spec(H, ) and define

U, ={t¢) €[0,1]xC : |t — o] <€, =&l <€} fore > 0.

(1) Assume Hypothesis 3.13 and suppose that the mappingst — T, t = V,, t — Q, are continuous
at ty. Then there exists an € > 0 such that if (t,{) € U, then { & Spec(H,) and the operator-
valued function t = R,($) = (H, — ¢)~ is continuous at t, uniformly for |{ — ¢, < e.

(2) Assume Hypothesis 3.13 and suppose that the mappings t — T;, t = V;, t = Q; are Lipschitz
continuous at t,. Then, there exists a constant ¢ > 0 such that for all (¢,{) € U, one has

IR () = Ry (Dl sy < clt =t (3.13)

(3) Assume Hypothesis 3.16 and suppose that the mappingst — T, t = V,, t = Q, are differentiable
at t,. Then, for somee > 0, the following asymptotic expansion holds uniformly for |§ — {,| < e:

R,($) ! R, )+ (_Rto (g)VtORtO )+ (TtORtO(E))*QtOJTtORzO ©)
’ (3.14)
+(TtORtO(§))*JTt0RtO(§’))(t —t)) +o(t —to), in B(H).
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In particular, the function t — R,({,) = (H, — ;)" is differentiable at t = t, and satisfies the
following Riccati equation:

R, (o) = =Ry, G0l Ry, (Co) + (T, Ry, (Co))* QT T, Ry, (Co) 1)
3.15

+ (Ty, Ry, G T Ty, Ry, (G-

The operators whose adjoints enter (3.14), (3.15) are considered as elements of B(H, $ X H),
cf. Proposition 3.2, and their adjoints are elements of B(H X $, H), the dot denotes the deriva-
tive with respect to t evaluated at t,. We emphasize the generality of formulas (3.14)-(3.15) where
all three objects may vary: the domain of the extension, the trace operator, and the “lower order
terms” of the operator itself. In Theorem 3.26, we will give analogous results using a slightly differ-
ent description of the domains of the self-adjoint extensions. Also, see Theorem 4.16 for the case
when the trace operator is t-independent. We refer to Remark 3.19 below for somewhat more sym-
metric versions of the RHS of (3.14) and (3.15) and to Remark 3.20 for a comment on the continuity
and differentiability conditions in the theorem.

Proof. First, we prove that the mapping ¢t — R,(i) € B(H) is continuous at t,. Hypothesis 3.13 by
Remark 3.14 yields

IR Dl 52,0y = O(), t — ¢, (3.16)
Using (3.9) with ¢ =1, s = ¢, and (3.16), we get

Rt(i) - Rzo(i) = Rt(i)(VtO - Vz)RtO(i)
+ (T,R,(—1))*(Q, — Qto )JQ[OT[ORzO(i) (3.17)

+ (TR(D)T(T, = TR, () = 0(1).

Proof of (1),(2). Fix 5 > 0 such that B, ) cC\ Spec(H,O). Then, by (3.17) and [110, Theorem
VIII.23], we have B, ($o) N Spec(H,) = @ for ¢ sufficiently close to t,. Hence,

sup{lIR,(Dll s : (1, €V} < 0 (3.18)

for a sufficiently small € > 0. We claim that yet a smaller choice of € > 0 gives

sup{lR, (Ol s,y * (£,$) € U} < oo. (3.19)

Indeed, by the resolvent identity, one has

R,($) = R, () — (G — OHR,DR(O).
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Using this and (3.16), we see that (3.18) yields (3.19). Next, by (3.9) and (3.19), we infer

R,($) = Ry, (§) = ROV, — VIR, ()
+(TR()*(Q — Q, QT Ry, (£)
+ (TR, () I(T, = T, )R, ()
< emax{||Q, — Q lssxs) ITe = Toy s, 5x5) 1Ve = Ve llsao

for some ¢ > 0 and all (¢,{) € U;; here, we used the inequality

IT RN s1,9x5) < 1Tl sp,9x5) IR 534,0)5

see Proposition 3.2 and Remark 3.3. Now both assertions (1),(2) follow from (3.20).
Proof of (3). First, we notice that (3.12) and the resolvent identity give

IR () = Ry (Dl s,y = 0, t = 0,
uniformly for [{ — | < €, with € > 0 as above. Next, by assumptions, we have
Q= Qt Qy, (t = to) + o(t — ty),
—to

Vi = Vi +V, (¢ =tg)+o(t = tp),
0

.

T, = T, + T, (¢ = to) + o(t — to).

Combining these expansions, (3.9), (3.13), and (3.22), we see that

R/() =R, () i (R, () + Ot = t)) =V, (t = tg) + 0t — tg))R; ({)

+ (T, + 0 = )R, @) + Oy, (D) X

X (Qy, (¢t — to) +0(t = to))JQ; T, R, (§)
+ (T, + 0 = )R, @) + Oy, (D) X

X J (T, (¢ = tg) + ot — tg))R,,($)

= (=R OV R, ) + (T, Ry ) QI T, R, (©)

+(Tt0Rto)*JTt0Rto(§)>(t —ty) +o(t —ty),

in B(H) uniformly for |{ — {,| < e. This shows (3.14) that implies (3.15).

(3.20)

(3.21)

(3.22)

g

Remark 3.19. The operator Q'tOJ € B(H x 9)in (3.14), (3.15) is self-adjoint. Indeed, since ran(Q; ) is
Lagrangian, we have J = JQ, + Q,J that implies the assertion upon differentiating with respect to
t. Since Q,J = —JQ, we can rewrite the term Q; J in (3.14) and (3.15) in a more symmetric fashion
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as
. 1. . .
QtOJ = E(Q‘OJ_]Q%)'

Furthermore, the identity Q,JQ, = 0 yields

<TrRz0(E)>*JTthO(§) = <Q[TIR[O(E))*JQIT[RtO(§) =0.

Differentiating this identity at t = t, shows that the respective terms in the RHS of (3.14) and (3.15)
could also be rewritten as

(T, R, G T, R (€)= 2 (T R, @0 T, R, (G0)
= (T, R, G T, R €0))-

Remark 3.20. The assumptions of continuity and differentiability of the families T,V and Q are
imposed at a fixed point ¢, € [0, 1]. For many interesting examples, these assumptions hold for all
to € [0,1]; a typical situation of this type is described in Example 4.7. However, these assumptions
might fail for some points in [0,1]. A typical example of the latter situation is furnished by the
classical Hadamard formula setting for star-shaped domains described in Section 5.4 where the
trace operator is singular at ¢, = 0 but is differentiable for each ¢, € (0, 1].

Remark 3.21. Discontinuities of the path t +— Q; in general result in discontinuities of the
eigenvalues curves. To give an example, let A, = —A be the realization of the Laplacian on a
bounded Lipschitz domain Q C R",n > 2, subject to the boundary conditions x|/, (t)y, u +
X210y u=0; here y .y are Dirichlet and Neumann traces and y is the characteristic
function. That is, A, is the Dirichlet Laplacian for ¢t € [0,1/2] and the Neumann Laplacian for
t € (1/2,1]. The corresponding path of Lagrangian planes is piece-wise constant with a jump at
t = 1/2. At this point, the boundary conditions change from Dirichlet to Neumann and, due to
the celebrated inequality of L. Friedlander [62], this produces a nontrivial shift in the spectrum,
which, in turn, shows the discontinuities of the eigenvalues. We revisit Friedlander’s Inequality
in Example 5.5 below and provide a symplectic proof thereof, cf. [46].

3.3 | Hadamard-type variational formulas

In this section, we derive the first-order expansion formula for the mapping ¢t — P(t)H,P(t)
near t = t,. Here, the operator H, = A, + V, is as in Hypothesis 3.16 and P(¢) is a spectral pro-
jection of H, that corresponds to the A-group, cf. [83, Section II.5.1], consisting of m isolated
eigenvalues of H, bifurcating from the eigenvalue 4 = 4, of multiplicity m of the operator H, ,
see Hypothesis 3.22 below. A subtlety is presented by the fact that the operators P(t)H,P(t) act
in varying finite-dimensional spaces ran(P(¢)); we rectify this by means of a unitary mapping
U : ran(P(t,)) — ran(P,), as in, for example, [83, Section 1.4.6]. After this, we use the first-order
perturbation theory for finite-dimensional operators, cf. [83, Section I1.5.4], to deduce a formula
for the derivative of the eigenvalue curves which we call the Hadamard-type variational formula,
see (3.38). This terminology stems from a classical Rayleigh-Hadamard-Rellich formulas for
derivatives of the eigenvalues of Laplacian posted on a parameter-dependent family of domains, cf.
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Section 5.4 below for details of this particular situation. We note that the approach adopted in this
section was originally carried out in [96] for a specific PDE situation of the one-parameter family
of Schrédinger operators with Robin boundary conditions on star-shaped domains mentioned in
Example 3.5.

Hypothesis 3.22. For a given t, € [0, 1], we assume that 4 = A(¢,) is an isolated eigenvalue of
H, with finite multiplicity m € N. Let

={zeC:2|z—A| =dist(4, Spec(HtO) \ {AD},
and let B C C denote the disc enclosed by y such that Spec(H, [0) NB = {A}.

Throughout this section, we assume Hypothesis 3.13, and that the maps ¢t = T;,V,,Q, are
continuous at a given ¢, € [0, 1]. By Theorem 3.18, there exists € > 0 such that y encloses m eigen-
values (not necessarily distinct) of the operator H, whenever |t — t,| < ¢ and € > 0 is sufficiently
small. For such ¢, we let P(¢t) denote the Riesz projection

Py 1= T /y RS R = (H, — &) (3.23)
and recall the reduced resolvent given by
1=§j/§lW&£M§ (3.24)

and the identity P(to)R; ({) = (A — OLP(ty).

Remark 3.23. The Riemann sums defining integrals in (3.23), (3.24) converge not only in B(H)
but also in B(H, D). Consequently, P(t),S € B(H, D). In addition, one has

1
27r1

7 [ TE-DTROM =T (€T R@Mg =TS, 629

14

(T,P(1)) € B(H, H X H).

This follows from continuity of the mapping C o { = R,({) € B(H, D) foreveryt € [0,1] thatcan
be inferred from R,(¢) — R,(§y) = (¢ — {)R, (R, (&), (cf. (3.18), (3.19)),and T, € B(D, H X H).

Next, we derive an asymptotic expansion of P(t)H,P(¢) for ¢ near t,. To that end, we introduce
the operator D(¢) := P(t) — P(¢t,) satisfying ||[D(O)]l 571 = 0(1), which follows from (3.13) and
—lo

(3.23). In particular, for ¢ near ¢, the following operators are well defined:

U(t) := (I — D2(1))"V/2( — P()T — P(ty)) + P(P(t,)),

U™ = ((I = P(t,))I — P(1)) + P(t,)P())I — D3(£)) /2,

(3.26)

moreover, as in [83, Section 1.4.6], [63, Proposition 2.18], we note that

U(t)P(t,) = P(1)U(2), (3.27)
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and that U(t) maps ran(P(t,)) onto ran(P(¢)) unitarily (for ¢t near t,). Given this auxiliary
operators, we are ready to expand P(t)H,P(t), which is an m-dimensional operator, for ¢ near

tO-

Lemma 3.24. For a given t; € [0, 1], we assume that the mappingst — T, t = V,, t — Q; are
differentiable at t, and that Hypotheses 3.16 and 3.22 hold. Then, one has

P(t)UO) HPOUMP) = AP(t) + (P)Vy, Plto)
’ (3.28)
~(TP(t))* @\, TP(tg) = (T4, P(t0))" T T PUt9) )& = ) + (2 = to).

Proof. Our strategy is to expand the left-hand side of (3.28) using (3.14). Multiplying (3.14) by P(t,)
from the right and using identity

Ry, (OP(ty) = P(tg)R, (§) = (A = )™ P(ty), (3.29)
where R,($) = (H, — ¢)™!, we get
R(OP() = (A=8)"Plt) + (A=) (=R, )V, Plto)
+<Tt0Rto(E)>* QI T, Plty) + (TtORIO(E)YJTtOP(tO))(t “ 1) (3.30)
+o(t — ty).

The proof is split in several steps.
Step 1. One has

P()P(OP(to) =, Pltg) +0(t = 1o) (3.31)

Proof. For any continuous F : y — B($ X 9, H), we have

( /y FQ) dc)* . /y EQ) .

Applying this to F(¢) = ﬁ(/l ¢ )_1Tt0R[0 (¢) and using (3.24), (3.25) yields
(Gha-01,R,0) &= (- [La-o mr,@a) =,
y \2mi fo™o h y 2mi fo™o Tt
We use this, multiply both sides of (3.30) by —ﬁ and integrate over y to obtain the following:

POP(ty) = Plty)+ (=SV,,P(to) + (T,,5) @ IT,,Plto)
(3.32)

+<TIOS>*JTtOP(tO))(t — 1))+ o(t — t,).
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Taking adjoints, we get
P(g)P(0) = Plt) + (=PUig)V:, S + (T P(to))* QT S
+<Tl0P(t0)>*JTtOS)(t —ty) +o(t —ty).
Multiplying this by P(¢,) from the right and using SP(t,) = 0, we arrive at (3.31). O
Step 2. One has

P(t)U(DP(t) = (PU)U (OP(t))" = Plto) +0(t — 1), (3.33)

-ty

(I — P(t))YU(t)P(ty) = (P(t)U(6) (I — P()))*

S, 0 P(tO))(_SVtOP(t()) + <T105>* Q. JT;, P(ty)

+<T,Os)*JT,OP(tO))(t ~ 1)+ olt — t,). (3.34)

Proof. First, we note an auxiliary expansion D(t) = O(t — t,,) that follows from (3.13), (3.23) and
—lo
formula D(t) = P(t) — P(t,). Thus,
I=D*O)? = T+0(t—t]*)
—lo
and then,

U(t) = (I = D*(1)™/2((I — P())UT — P(ty)) + P(t)P(t,))

=, (= POYT = P(t9)) + POP(1)) + o(t = L), (339
Using this and (3.31), we obtain
PUOUMP() = PU)PIOP(ty) +0(t = 1) = Plig) +0(t = Ly).
Similarly, employing (3.35), one infers
(I = P(tp))U(0)P(t) o (I = P(ty))P(t)P(ty) + o(t — to),
and thus, (3.34) follows by multiplying (3.32) by I — P(t,) from the left. O
Step 3. One has
Pt)U (OR,OUDP() 5 (A=) Plto)
+(A— §)_2(—P(t0)VtOP(t0) + <TtOP(t0)>*QtOJT,0P(tO) (3.36)

+<T10P(t0)>*JTtOP(tO))(t —ty) +o(t —ty).
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Proof. First, we sandwich the middle term in the left-hand side, R,({), by P(t,) + (I — P(t,)) and
write

Pt )U Y (OR(OUP(ty) =1 + IT +III +1V.
Let us treat each term individually, starting with

I 1= P(to)U ()T = P(tg)) X (I = P(t,))R,($P(ty)

X P(ty)U(t)P(t,) o o(t — tp),

by (3.30), (3.33), and (3.34) as the main terms in the RHS of (3.30) and (3.34), both contain the
factor (¢ — t,). Similarly, we infer

IT := P(t))U ™ (1)P(ty) X P(t)R, ()T — P(ty))

X (I =P, )U@)P(t,) t—=>to o(t —ty),
by (3.30), (3.33), and (3.34), and

1T :=P(t,)U~ ()T — P(t,)) X R,({)

X (I —P(t,))U(t)P(t,) o o(t —ty),
by (3.34). The last term admits the required in (3.36) expansion because
IV 2= P(to))U (DP(tg) X P(t)R,({)P(te) X P(tg)U(1)P(to)
and we can use (3.30), identity (3.29), and (twice)(3.33). O

Step 4. Recalling the identities

P = % [oras, s [ea-oras =,
14 14

27
multiplying (3.36) by —¢ /271 and then integrating over y, we arrive at (3.28) O

We are ready to present the main result of this section that gives a formula for the slopes of
the appropriately chosen branches of the eigenvalues curves bifurcating from an isolated eigen-
value of finite multiplicity. We recall that our assumptions on differentiability of T, V, and Q are
imposed at a particular point ¢, where 4 = A(t,) is the isolated eigenvalue, cf. Remark 3.20. To
avoid confusions, we also refer to the classical Rellich’s example [83, Example V.4.14] recalled as
Example 4.8 below to emphasize that we are not claiming global differentiability of all eigenvalue
curves. Indeed, in this example, there is a point f, where one eigenvalue curve has a singularity,
and so, our assumptions do not hold while all others curves are differentiable as claimed in the
theorem.
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Theorem 3.25. Assume Hypotheses 3.16 and 3.22 and suppose that the mappingst — T, t = V,,
t = Q, are differentiable at t,. We introduce the operator

TW = P(ty)V, P(ty) — (T, P(t))*Q, J T, P(to) — (T, P(t))*T T, P(t,),

and denote the eigenvalues and the orthonormal eigenvectors of this m-dimensional operator by
{/15.1)};.'; L, and {u j};"zl C ran(P(t,)) = ker(H P 1) correspondingly.” Then there exists a labeling of
the eigenvalues {1 j(t)};'n=1 of H,, for t near t, satisfying the asymptotic formula

4@ = A+ /15.% —ty) + o(t — ty), (3.37)
—lo

moreover, one has
A(tg) = (Vi ujsuj)y + 0(Qq Ty us, Ty ) + (T, uy, Ty uy), (3.38)

foreach1 < j<m

Proof. Recalling that U(¢) is a unitary map between ran(P(¢,)) and ran(P(t)), see [83, Section 1.4.6]
and [63, Proposition 2.18], we note that H; |'n(p(s) is similar to

P(to)U([)_lH[P(t)U(t)P(tO) rran(P(to))

for t near t,,. In particular, the eigenvalues of these operators coincide and it is sufficient to expand
the eigenvalues of the latter. To that end, we utilize the expansion (3.28) together with the finite-
dimensional first-order perturbation theory, specifically, [83, Theorem I1.5.11], to deduce (3.37).
Next, we have

Aj(tg) = 27 = (TWuj,u)y,
= ((P(tO)VIOP(to) — (T, P(6))*Qy, J T, Plty) (Ttop(to))*JTtop(to))u )
= (Vy ujs i)y — @(Ty uj, Qy Ty ) — (T, uy, Ty ;)
= (Vi uj )y + w(QzOTzouj,TtOuj) + w(TtOuj,T,Ouj),
which gives (3.38). In the last step, we used the inclusions
(T, uj,Q; Ty ;) € Rand (T, u;, T, u;) € R.

The latter inclusion follows from w(T,u;, T,u;) = 0 after differentiating at ¢ = ¢,. To prove the
former inclusion, we use JQ, + Q.J = J to get JQ, = —Q, J and write

CU(Tfo uj, QtoTto uj) = <JTfo Ujs Qfono uj>5><33

= —(JQy, Ty uj, Ty U)oy (3.39)

= —w(Qy, Ty uj, Ty u;) = w(Ty uj, Q; T, uj),

as claimed. O

T We stress that u ; are eigenvectors of H;  corresponding to its eigenvalue 4 = A(t).
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In PDE and quantum graph settings, the Lagrangian planes are often defined by operators
[X, Y] asin (2.7)-(2.9) rather than by orthogonal projections onto these planes. It is therefore nat-
ural to restate (3.14), (3.38) in these terms which we do next. Given families t — X,,Y, € B(®), we
will now denote by A, the self-adjoint extension of A with dom(A4;) :={u €D : [X,,Y,]T,u =
0}, that is, we augment (3.3) by requiring that

T,(dom(A,)) = ran(Q,) = ker([X,,Y,]), -
X, Y, € B(9);X,Y! =Y,X},0¢& Spec(M*"1), '

where M*X+-Yt is defined in (2.9). We recall formula (2.10) for the projection Q, onto ker([X,.Y,]).
A typical example of X;, Y, are given by X; = I and Y, = —0, where 0, is an operator (in general,
not local) entering the Robbin boundary condition.

Theorem 3.26. Under Hypothesis 3.4, if A, satisfies (3.40), then the following symplectic resolvent
difference formula holds for the resolvent R,(¢) = (H, — ¢)™! of the operator H, = A, + V,,

Ri($) = Ry(&) = RV = VORY(E) + (T R())* Z, Ty Ry(£)
(3.41)

+ (T,R(O)"I(T, = TOR(Q),

where{ & (Spec(H,) U Spec(Hy)), s, t € [0,1], and theoperator Z; ; € B($ X ) is given by formula
(2.11),

Z s 1= (WX, Y,))*(X[YS* Y X)W (X, Y)). (3.42)

Moreover, under Hypothesis 3.13, if the mappings t — T,,V,,X,,Y, are continuous at t, € [0,1] in
the respective spaces of operators, then the function t — R,({,) is continuous at t = t,, for any {, &
Spec(H to)' Further, assume Hypothesis 3.16 and suppose that the mappings t = T,,V,,X,,Y, are
differentiable at t, € [0, 1]. Then, the function t — R,({,) = (H, — ;)™ is differentiable at t = t,,
and satisfies the following Riccati equation:

Rto(go) = _Rto(go)VtORto o)
+(TtOR[O(Q’_O))*<W(Xt0,YIO))*(XtOYZ) ~ Y, X )(W(Xto,Yt0)>>< -
3.43
X TtUR[O(g“O)

+ (T, R, (G TT, R, (&o).  Co & Spec(H,).

Furthermore, if A(t,) € Spec(H, ) is an isolated eigenvalue of multiplicity m > 1, then there exists
a choice of orthonormal eigenfunctions {u; };”zl C ker(H, — A(t)) and a labeling of the eigenvalues
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{1 j(t)};”=1 of H,, for t near t,, such that the following Hadamard-type formula holds:
A’](t()) = (Vlouj, u]>H + <(X[OY::) - Y[()X;:))¢J’ ¢] >5 + CU(TIOUJ‘, Ttouj), (344)

where we denote ¢ = W(XtO,Yto)Ttouj, 1 < j < m, with the operator W defined in (2.11), or,
equivalently, ¢; is a unique vector in § satisfying

Tou; = —Y;:)qu and T'yu; =X;’;¢j. (3.45)
Proof. The resolvent difference formula (3.41) follows from (3.9) and the computation
(TR ) (Q = QUTR() = (TR QIQT,R()
= (TR,(C))* Z, T R(Y):
Hypothesis 3.13 and (3.41) imply continuity of t —» R,({) as in the proof of Theorem 3.18. To prove
(3.43), weremark that X, Y7 — Y, X7 = (X; — X)Y] — (Y, — Y )X by (2.8). Plugging this in (3.42),

using (3.41) at s = ¢, dividing by (¢t — ) and passing to the limit as t — ¢, yields (3.43). Next,
we turn to (3.44). We recall that u jin Theorem 3.25 are the eigenvectors in ran(P(t,)) such that

TWy j= /15.1)14 j- Butsince ran(P(t,)) = ker(H to — A(ty)), the vectors u jare also eigenvectors of H, t
such that H U = Alto)u ;- By (3.38), we only need to show

w(QfonouJ’Ttouj) = <(X[OY;; - YIOX;k )¢j’¢j>5- (3.46)

0

Using (2.10) and differentiating Q,, we infer
@(Qy, Ty 1), Ty 1))
= vox (L we,y) )T, u,T
=oll- to’ fo] a’zﬂo X0 Y1) )Ty 1) Ty,
d Y, x5 T \wX, Y, )T, u;,T
T E|t=t0[_ ly’ to] ( lo? to) toWj> Lty Uj

d
- <<E‘t=t0W(Xt,Yt)>Tt0uj, [X,O,Y[O]T,Ouj>g)

d % 1T
+o < <a|t=t0[—yto,xto] WX, Y )T, ), Ty

d AT
- Ca(<E’t=t0[_Y;x;’Xv;:)] >W(Xt0’Yt0)Ttouj’Tt0uj>y

where we used [X, o Yto]Tto u; = 0. Finally, employing (2.10) and

* T .
Ttouj = QtoTtouj = [_Y[O’X;i)] ¢]’ ¢] .= W(X[O, YIO)TtOuj’ (3.47)
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we obtain
5 _ sk vk 1T * % 1T
QT Tyy1t) = (X2, V7 1T, =Y 7, X, ¢j>5
= (&, Y, ~ Y, X[ )9;:9)) o
thus completing the proof of (3.44), while (3.45) follows from (3.47). O

Remark 3.27. We close with a remark that assertions proved in Theorem 3.26 allow one to make
conclusions regarding the behavior of the spectra of the operators H, as a function of ¢, see,
for example, [110, Theorem VIIL.23]. Also, the results of this section can be used to study vari-
ous properties of strongly continuous semigroups generated by the operators —H,. For instance,
the Trotter-Kato Approximation Theorem, see, for example, [58, Theorem II1.4.8], implies that
the semigroups are continuous with respect to the parameter ¢ as soon as the continuity of the
resolvent of H, in Theorem 3.26 is established, see Section 5.3 for an example.

4 | ORDINARY BOUNDARY TRIPLETS

Ordinary boundary triplets have been intensively studied since probably [34, 71], see the vast bib-
liography in [13, 55, 57, 120] and related papers [15, 33, 53, 54, 56, 79, 86, 126] and the bibliography
therein. In this section, we revisit main results of Sections 2 and 3 in the context of ordinary
boundary triplets and present several applications. The case of boundary triplets is the one that
is widely considered in the literature, and in this section, we will see that for this case, one may
impose fewer assumptions to prove the same set of general results. Also, we will demonstrate that
this case is sufficient to cover many interesting applications. In particular, we show that conclu-
sions of Theorems 3.18, 3.25, and 3.26 hold under a mere assumption that the mappings ¢t — Q;,
t = T, t = V, are continuous (differentiable) with respect to ¢ and that ($,Ty,,I'; ;) is an ordi-
nary boundary triplet. Utilizing this, we derive Hadamard-type formulas for quantum graphs,
Schrodinger operators with singular potentials, and Robin realizations of the Laplace operator on
bounded domains.

We recall the following widely used definition, cf. [13, Section 2.1], [57, 71], and [120,
Section 14.2].

Definition 4.1. Given a symmetric densely defined closed operator A on a Hilbert space H with
equal deficiency indices, we equip H, = dom(A*) with the graph scalar product and consider
linear operators I'y and I'; acting from H, to a (boundary) Hilbert space $. We say that (9, [, T';)
is a ordinary boundary triplet if the operator T := (I'y,I';) : H, — 9 X © is surjective and the
following abstract Green identity holds:

(A%u,v)y — (U, A"v)y = (T1u, Tyv) g — (Tou, Tv) g forall u,v € H,. (4.1)

In other words, (§, T, ') is an ordinary boundary triplet, provided that Hypothesis 2.1 holds
with D = H_ and surjective T. In this case, we have T € B(H,, 9 X $) by Lemma 2.3 (2).

Remark 4.2. The setting of ordinary boundary triplets gives a particularly simple illustration of
Corollary A.5. Specifically, if (9, I'y, T';) is a ordinary boundary triplet associated with A, then F C
9 x 9 is Lagrangian if and only if A := A*|;-1(p) is self-adjoint. In other words, the Lagrangian
plane ¥ and the self-adjoint operator A := A*|p-1(5 are automatically aligned in the sense of
Definition A.4 as long as (9,T,,T;) is a ordinary boundary triplet. In particular, if A is a self-
adjoint extension of A, then the subspace T(dom(.4)) is closed, cf. [120, Lemma 14.6(iii)].
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4.1 | Main results for the case of boundary triplets

In this section, we discuss our main results, Theorems 3.18, 3.26, in the context of boundary
triplets. In Proposition 4.5, we verify that Hypothesis 3.16 (and, hence, Hypothesis 3.13) holds auto-
matically for boundary triplets. This allows us to obtain the central result of the current section,
Theorem 4.5. The latter, in turn, gives a plethora of applications discussed in Sections 4.2-4.5.

In the setting of boundary triplets, Hypothesis 3.4 should be naturally replaced by the following
assumption.

Hypothesis 4.3. Let
T:[0.1] = B(H,, % 9) 1t T, 1= [Ty, Iy lT

be a one-parameter family of trace operators. Suppose that (§,T'y;,';;) is an ordinary boundary
triplet for each t € [0,1]. LetQ : [0,1] — B($H X H),t — Q, be a one-parameter family of orthog-
onal projections. Suppose that ran(Q,) € A($ X $) is a Lagrangian plane for each ¢ € [0, 1]. Let
A, be a family of self-adjoint extensions of A satisfying

T,(dom(A,)) = ran(Q,).

LetV : [0,1] - B(H) : t — V, be a one-parameter family of self-adjoint bounded operators. We
denote H, := A, +V,and R,(¢) := (H, — ¢)~! € B(H) for ¢ ¢& Spec(H,) and ¢ € [0,1].

Proposition 4.4. Suppose that Hypothesis 4.3 holds for the ordinary boundary triplet
(9,Ty,,T1). If Q and T are continuous at a given t, € [0, 1], then

(A =D = (A =Dl sgr 0,y = 0D £ = . (4.2)
In other words, Hypothesis 3.16 is automatically satisfied for the boundary triplets.
Proof. We claim that
A, =7 = (A, =D Mg, < V24 = D7 = (A, =D 0. (43)
Indeed, using A, C A*, A, C A", we get
1A = D)7 = (A, = DRI, = G4, — D) h = (A, — D) R,
+ A% (A, =) Th = A%(A,, =D 7RI, = 20I(A, DT R = (A4, — D) 7RI,

Thus, it is enough to prove that the right-hand side of (4.3) is 0(1) as t — ¢,,. To this end, we first
note that, given A,u + iu = f,u € dom(A,), we have

=1 2012 2 2 2
(A, + D7 fl5,, = llully,, = A ull7, + llull;,
2 2 s 02 2.
= | Aully, + llulls, = lAu +iully, = 1 f115;
hence,

(A, + i)_1||13(H,H+) <Ll (4.4)
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By resolvent difference formula (2.14), we infer
”(At - i)_l - (Ato - i)_lnB(H)
= |I(T,(A, + i)_l)*(Qt - Qto)]Tt(-AtO + i)_1||13(7-{)
Tl s, oxe) ICA: + D7 g0, 10Qr = Qi) 3gxs)X
XNT Ml s, oxp)ICA, + i)_lllB(H,H+)

<cllQr — Qp ll soxs) S o(1),¢ >0, 4.5)

where we used (4.4), and continuity of Q and T at t,. Then (4.3) and (4.5) yield (4.2) and so
Equation (3.12) in Hypothesis 3.16 holds. [l

We summarize our main results for the case of boundary triplets as follows.

Theorem 4.5. Assume Hypothesis 4.3. If A, is defined as in (3.40) and H, = A, + V, then for
R,(&) = (H, — &)™}, the following resolvent difference formula holds:

R/($) = Ry($) = ROV = VIR + (TR, Z, T, Ry(O)

+ (T,R,(O))I(T, = TOR(L),

(4.6)

where ¢ & (Spec(H,) U Spec(H,)), s,t € [0,1] and
Z[,S i= (W(X[’ Y[))*(XtY;k - YtX_:)(W(Xs’ Ys))7

with the operator W defined in (2.11). Moreover, if the mappingst — T;,V,,X;,Y, are continuous at
to € [0,1] in the respective spaces of operators, then the function t — R,({,) is continuous at t = t,
for any ¢, & Spec(H, to)' Further, if the mappings t — T,,V,,X,,Y, are differentiable at t, € [0, 1],
then the functiont — R,(¢,) = (H, — )~} is differentiable. In this case, the following two assertions
hold.

(1) The resolvent operators satisfy the following differential equation:
Rto o) = _Rto (go)Vro Rto ()
+ (T, R, ()" (W(XZO, Y,0)> X, Y Y, X )(W(Xto, Yto)>TtoRt0(§0) 4.7)

Loty
+ (T, Re G T, Ry (L), $o & Spec(H,).
(2) If A(ty) € Spec(H, ) is an isolated eigenvalue of multiplicity m > 1, then there exists a choice

of orthonormal eigenfunctions {u j};."zl C ker(H,;  — A(ty)) and a labeling of the eigenvalues
{/Ij(t)};.';l of H,, for t near t,, such that

Loty

Aj(te) = (Vi ujug)y + ((XtOYj0 -Y, X* )¢j,¢j)b + (T, u;, T, uy), (4.8)
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where ¢; = W(X, 10 Y1, )Tlou j» 1 < j < m, or, equivalently, ¢; is a unique vector in § satisfying

Proof. The resolvent difference formula (4.6) follows directly from (3.41). The continuity of t —
R;(¢,) at t, follows from Theorem 3.26 upon noticing that Hypothesis 3.13 holds in the setting of
boundary triplets by Proposition 4.4. Similarly, Proposition 4.4 combined with (3.43) and (3.44)
yields (4.7) and (4.8). O

Remark 4.6.

(1) In the setting of Theorem 4.5, the resolvent difference formula (4.6) can also be rewritten as

Ri(§) = Ry($) = RV = VIR(E) + R (OT; Z, T Ry(§)

+ R(OT I (T, = TOR(S),

(4.10)

where in the RHS, we have R,({) € B(H_, H), that is, as in Proposition 2.12 and Corol-
lary 2.13, we view R,({) € B(H_, H) as a unique extension of R,({) € B(H) to an element
of B(H_, H),while T, € B(H,, 9 X 9), T} € B(H x H,H_). We note that, in a more general
setting of Theorem 3.26, the trace operator T, is unbounded and one only has the inclusion
(Tth(E))* 2 R,/(§)(T,)*. In this case, (4.10) holds provided ran(Z; ;T; R(({)) € JT(D).

(2) The resolvent difference formula derived in Theorem 4.5 yields continuity of the map-
ping B(H) X B(H) 2 (X,Y) = (Axy — i)~! € B(H); here, for an ordinary boundary triplet
(9,T,,T;), we denote by Ay y the self-adjoint extension of A such that T(dom(Ay y)) =
ker([X,Y]), cf. (3.40).

In Sections 4.2-4.5 below, we will give applications of Theorem 4.5 for several important classes
of problems that fit the framework of the boundary triplets. To give the simplest possible illustra-
tion of the setup described in Hypothesis 4.3 and of Theorem 4.5, we now consider the following
two ODE examples where the conclusions of the theorem are probably well known, see, for
example, [10, 40, 41, 83] and the vast bibliography therein.

Example 4.7. Let Au = —u"' be the minimal symmetric operator on H = L?(0, 1) with domain
dom(A) = H}(0,1)so that A*u = —u” with dom(A*) = H, = H*(0,1), set § = C* and introduce
the surjective trace operator T = (I'), ;) € B(H ., X ) using the Dirichlet and (inward) Neu-
mann traces Tyu = [u(0),u(1)]" and T';u = [u’(0), —u/(1)]". Integration by parts yields (4.1), and
thus, (9, T, ;) is an ordinary boundary triplet, cf. [120, Section 14.4]. For ¢ € [0,1], we let A,
denote the self-adjoint extension of A with the domain

dom(A,) = {u € H*(0,1) : cos(rt/2)[yu — sin(xt/2)[ u = 0} = ker([X,, Y,]), (4.11)
where, cf. (3.40),
sin?(7t /2) % sin(7t)

X, =cos(mt/2),, Y, = —sin(nt/2)], Q, = | | .
5 sin(rt) cos?(mt/2)

Given a bounded real-valued potential V, we let H,u = —u" + Vu, t € [0,1], be the family of
scalar Schrodinger operators on L?(0,1) equipped with the boundary conditions specified in
(4.11) so that Hypothesis 4.3 holds. In particular, H;, is the Dirichlet and H, is the Neumann
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Schrodinger operator. To apply Theorem 4.5, we first perform a standard calculation of the resol-
vent R,(¢) = (H, — &)}, cf. for example, [123, Lemma 9.7]: For t € [0,1] and ¢ € C, we letv,(-;¢),
w, (- ;¢) denote the solutions to the equation —u'’ + Vu = {u that satisfy the initial conditions

(v,(0;),v;(0,$)) = (sin(rt/2), cos(t /2)),
(w(1;$), w;(1,)) = (sin(xt/2), — cos(7t /2)),

and let W,($) = v,(x; OHw](x;¢) — v/ (x; Hw, (x; ) denote their Wronskian. Then, for each u €
L?(0, 1), the function R,(¢)u is given by the formula

X 1
(Rt(s“)m(x)=<wt<§))—1<wt<x;§) /0 0, s UMY + v,(6:¢) / wt<y;§)u(y>dy>,

€ [0,1]. Using this, it is convenient to write TR,({) = K,({)L;({) where we temporarily
introduced the (4 X 2) matrix K,({) and the operator L;({) by the formulas

K,(O) = W) [sin(t /2)I,, cos(nt /)L, ],
L(Ou = [(w,(50), 812, (0, (5, Wy2] T Li(Q) € B0, 1),C2)

so that (L,(¢))* maps (z,, z,) € C? into w;(- Oz, + v, (- :$)z, € L*(0,1). Theorem 4.5 and a short
calculation now yield

(Ri(O) = R(u = W OW() ™" sin(z(t — 5)/2)
X (w39 2w, (3 9) + (vs(5€), )20, (5)), § & Spec(H,) U Spec(H),

R,($u = %(Wt(g“))—z((wl(';g),ﬁ)szt(-; $) + (v (59, uhp2v, (- §)),

¢ & Spec(H,),

Alty) = —% || sin(zty/2)Tu, + cos(ﬂto/z)l“luonéz, ty € [0,1],
where u, is the normalized eigenfunction corresponding to the eigenvalue A(t,) € Spec(H, lo)‘

Example 4.8. As promised prior to Theorem 3.25, we now recall the classical Rellich’s exam-
ple, cf., for example, [83, Example V.4.14] which shows the singularity at t, = 0 of the smallest
eigenvalue A)(r) of the operator A, = —32_in L?(0,1) equipped with the boundary conditions
u(0) = 0, tu/(1) = u(1) for real t; meanwhile, the resolvent t — (A, —i)~! is continuous and
all other eigenvalues A(k)(t), k =1,2,..., are differentiable for each ¢ including ¢t = 0, see [83,
Fig. 1, p.292]. Indeed, letting Tyu = (u(0), u(1))T, T u = (&/(0), —u’(1)) foru € H,. := H(0,1),
$H = C?and

0 0 0 0
1 0 0 0 0 2A+t3)1 0 —t@a+3)?
X, = Y, = Q= ( ) ( ) , (4.12)
0 -1 0 —t 0 0 1 0
0 —t1+)1T 0 A+5)7!
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we notice that dom(A;) = ker([X, Y;]) = ranQ,. The maps t » X, Y;, Q; are all differentiable at
each t € R, and so, Theorem 4.5 (or Theorem 3.26) applies. In particular, the resolvent operators
of A, are differentiable at each ¢, and a short calculation using (4.8), (4.9), and (4.12) shows that if
u denotes the norm one eigenfunction with the eigenvalue A(t) € Spec(A,) then A(t) = |[u/(1)|?,
provided that we know that A(¢) is an eigenvalue of A, foragivent € R. Thus, each of the branches
A0, k € {0} U N, of the eigenvalues is monotone for all t where it is defined.

We proceed with finding the actual location of 1 € Spec(A;) and formulas for u dealing with
the two possible cases: (i) 4 = x? > 0, respectively, and (i) 1 = —x? < 0 for x = x(t) € R. Solving
the equation u”’ = 0 with the boundary conditions, we note that 1 = 0 € Spec(A,) with u = Xx,
and that 0 ¢ Spec(A,) for all ¢ # 1. Plugging a linear combination of (i) cos(xx) and sin(xx),
respectively, (ii) sinh(xx) and cosh(xx) into the boundary value problem —u'" = Au, u(0) = 0,
tu’(1) = u(1) shows that nonzero x = x(t) are the solutions to the equation (i) tx = tanx with
u = asin(xx), a=? = (1 — t cos? x)/2, respectively, equation (ii) tx = tanhx with u = a sinh(xx),
a~? = (t cosh? x — 1)/2. By inspection of the graphs in the equations, in case (i), for each t € R
and n € 7 \ {0}, there is a unique solution x € (—7/2 + n, /2 + n), for each t > 1, there is
a unique solution k¥ = x(t) € (—r/2,7/2) with x(t) - 0" as t — 17, and for any ¢ < 1, there are
no solutions x € (—z/2,7/2). In case (ii), for any ¢t < 0 or t > 1, there are no solutions x € R,
while for each t € (0, 1], there exists a unique solution x = x(t) € R such that x(t) > 0 as t —
1~ and x(t) » 40 as t — 0*. By squaring x, we obtain the branches 19(¢t) < A1)(¢) < ... of the
eigenvalues of A, such that A)(t) are defined for t > 0 with A)(t) - —oo0 as t — 07, is negative
for t € (0,1) and positive for ¢t > 1, while 1%)(¢) for k € N is defined and positive for all t € R,
cf. [83, Fig. 1, p. 292]. Using A(t) = |u/(1)|? and the expressions for u just given, one obtains very
particular formulas for A)(¢) for all t and k except when k = 0 and t < 0.

4.2 | Laplace operator on bounded domains via boundary triplets

The main result of this section is Theorem 4.13 in which we derive the resolvent difference for-
mula, Riccati equation, and Hadamard-type formula for a family of Robin-type Laplacians. To
that end, we employ abstract results of Theorem 4.5 with an ordinary boundary triplet specifi-
cally defined for the Laplace operator. The construction of such triplet for second-order elliptic
operators goes back to the work of M.I. Visik [124, 125] who proposed the regularization of
the Neumann trace by means of the Dirichlet-to-Neumann map, G. Grubb [73] who investi-
gated the case of higher order operators building upon the trace theory of J. L. Lions and E.
Magenes [98]. We also note that the work of M. Malamud [100] provides boundary triplets with
dual parity in L?(8Q) x L*(3Q) as well as important relation between the Weyl function and the
Dirichlet-to-Neumann map. Another relevant construction of trace maps is offered in [17] where
a B-regularized boundary triplet was originally proposed.
Throughout this section, we assume the following.

Hypothesis 4.9. Letn € N,n > 2, and Q C R" be a bounded domain with C'", r > 1/2, bound-
ary.

Remark 4.10. The construction of trace maps, which we briefly recall below, is of paramount
importance to this paper. We stress that the material discussed up to Theorem 4.13 is well known
and presented here only for the sake of a smoother exposition of the subsequent results. The full
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credit for original discoveries in this direction belongs to M.I. Visik, J. L. Lions, E. Magenes, and
G. Grubb, see [73, 75, 98, 100, 124, 125].

Let us briefly recall trace maps that will be used below. The Dirichlet trace operator
v, s H'(Q) » H™2(3Q) & L*(3Q), 1/2<s<3/2. (4.13)

is a bounded and surjective extension of the mapping yg : Co(ﬁ) - C%0Q), ygu = ulzq, See
[122, Proposition 4.4.5]. The operator y, : {u € H L(Q) | Au € L2(Q)} — H™Y/2(8Q) is the weak
extension of the usual Neumann trace operator, still denoted by Yy

v, =v-7,Vi H*(Q) - [*(6Q), 1/2<5<3/2. (4.14)
As shown in [69, Corollary 6.6, Corollary 6.11]," there exist unique linear bounded operators

7, i {u € LX(Q)| Au € LX(Q)} - H™Y28Q),
(4.15)
7, {u e L*(Q)| Au € LA(Q)} - H/*(3Q),

which are compatible with the Dirichlet and Neumann trace introduced in (4.13) and (4.14),
respectively. We note that both ?D, ?N have dense ranges. These trace maps give rise to the Dirichet-

to-Neumann map M}, y associated with —A on Q via M,y : H™/2(6Q) - H™%/2(3Q) : g —
—)7N (up), where up, is the unique solution of the boundary value problem

—Au =0, u € L*(Q), ?Du = g on dQ. (4.16)
As was shown in [69, Theorem 12.1], the map
T {u e LA(Q)|Au € LX(Q)} » H'/2(3Q), T u :=7, u+ Mp (7, ), (4.17)

is bounded when the space {u € L*(Q)|Au € L*(Q)} = dom(—A,,,,) is equipped with the natural

graph norm (||u||i2 @ + ||Au||i2 ( Q))1/ 2, Moreover, this operator is onto. In fact,

7 (H*(Q) N Hy(Q)) = H'/*(3Q). (4.18)
Also, the null space of the map 7 is given by
ker(r ) = Hy(Q)+{u € L*(Q), —Au = 0}. (4.19)
Let us note that the following Green formula holds for every u, v € dom(—A,,4),

(—Au, V)2q) — (U, —AV) 2

= _H1/2(aQ)<TNu, ?DU>H_1/2(aQ) + H1/2(50)<TNU’ )//\Du>H_1/2(aQ). (4.20)

1In the context of Remark 4.10, we note that the series of papers [67-69] provides an extension of the classical results to
the setting of domains with C" boundaries.
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In the sequel, we use the Reisz isomorphism given by
@ : H'/20Q) — HY*(Q),
H'2(60) 3 ¢ » @, € H/?(5Q), (4.21)
(fr$)_1j2 1= () = (F, @)1 o, f € H/?(8Q),9 € HT'/2(30),
in particular, for f,®% € H'/2(3Q) & L2(3Q) & H-1/2(3Q), we have
(Fo)-1y2 = (Fr )20

We also note that @ is a conjugate linear mapping.
Having recalled the trace maps above, we are ready to define the maximal and minimal Laplace
operators as follows:

—Apax - dom(=A,,,) C LA(Q) - LA(Q),
dom(—Ap,,) = {u € L*(Q)| Au € L*(Q)},
—A U4 = —Au (in the sense of distributions),
dom(—Ap,;,) = HS(Q)’ —Apintt = —Au,
and remark that by [69, Theorem 8.14]," one has
dom(—A ) = Hy(Q) = {u € L*(Q)| Au € L*(Q), 7, () = 0, 7, (u) = 0},
(4.22)
—Apin = (_Amax)*’ —Apax = (_Amin)*'

The next lemma is a well-known fact that goes back to [73, 124, 125].

Lemma 4.11. Assume that Q C R" is a bounded domain with C'"-boundary, r > 1/2, and the
boundary traces ?D, T, areasin (4.15), (4.17). Then

(9.1, 1)) 1= (H'?(3Q),7,®7,) (4.23)
is an ordinary boundary triplet for A = —A ;..
]T

Proof. The trace operator T := [TN, (D?D is defined on the space

H, :={uel’*(Q) : Au € L*(Q)}
with the norm
1/2

lullye, = (lZy g + 1AulZ, )

Recalling the Green identity (4.20)

(_Au, U)LZ(Q) - (u, _AU)LZ(Q)

The description of the minimal domain in the case of C? boundary dQ is a classical result, cf. [75, 98].
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= —g1200) T W ¥,V a-120) T+ 11/2(30) (T Vs ¥, Wa-1/2(50)
we rewrite it as
(A'u,0)y — (U, A™v)y = =(Tou, I'1v) g + m’
= (Thu,Lyv)g — (Tou, I'1v) g,

and thus check that (4.23) satisfies the abstract Green identity. It remains to show that the map T :
H, — H'/?(0Q) x H'/>(8Q) is onto. We fix a vector (f, g) € H/?(dQ) x H~'/?(3Q). By (4.18),
there exists u, € H*(Q) N H é(Q) such that T Uy = f. By [69, Theorem 10.4], the boundary value
problem (4.16) has a unique solution that we denote by v, (we note that zero is outside of the
spectrum of the Dirichlet Laplacian). Employing (4.19) and v, € ker(z, ) yields

T(ug + vo) = (7, (Ug + o), PY, (g + vy)) = (T Uy, P¥, V) = (f, Pg)
since ¥, uy =y, up = 0. ]

Remark 4.12. In PDE literature, boundary value problems are often formulated in terms of the
Dirichlet and Neumann traces defined by

v, t{u € HY(Q) : Aue LX(Q)} » H'?0Q).7, =7, luem(o):auerzy
7, e H(Q) : Aue LX(Q)} » H2BQ),y, :=7, luem(): auer2y -

We note that (—A ., Yy yN) isnotan ordinary boundary triplet. First, T := (yD, yN) isnotdefined
on the entire space dom(—A,,,,)- Second, T is not onto, see [93, Proposition 2.11]. However,
Hypothesis 2.1 is still satisfied with D : = {u € H'(Q) : Au € L?>(Q)}and equipped with the norm

1/2 . . - . .
(||u||il1 @ + ||Au||i2 ( Q)) 2 In fact, Hypothesis 3.1 is also satisfied for this choice of T, D. These

facts serve as our main motivation for introducing Hypotheses 2.1 and 3.1. We elaborate on this
further in Section 5.

Having constructed the ordinary boundary triplet for the Laplacian, we can now apply the
abstract results from Theorem 4.5.

Theorem 4.13. Let Q C R" be a bounded domain with C*"-boundary, r > 1/2, and let t — E, €
B(HY?(0Q)), t € [0,1], be a differentiable family of self-adjoint operators. Then, for t € [0,1], the
linear operator

— A, : dom(=A,) € LX(Q) = L*(Q), —A,u = —Au,

u € dom(-4,) :={u € dom(A,,,) : @?Du +E T u= 0},
is self-adjoint. The following resolvent difference formula holds:
(A=) = (=a ="

= (TN(—At _Fn )*(Et ) (TN(—AS o ) (4.24)
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fort,s € [0,1], ¢ & (Spec(—A,) U Spec(—A,)). Moreover, for a fixed t, € [0, 1], the mapping
te (A, -7 e BILA(Q) (4.25)

is well defined for t near t, as long as ¢ ¢ Spec(—A;, ). This mapping is differentiable at t, and
satisfies the following Riccati equation:

d -
d_t"=‘0 ((_At = 1)

= <TN(—A10 - E)_1>* <%|[:[03t> (TN(—A[O - {)_1>.

Finally, if A(ty) is an eigenvalue of —A,  of multiplicity m > 1, then there exists a choice of orthonor-
mal eigenfunctions {u j};."zl C ker(=A, — A(ty)) and a labeling of eigenvalues {4 j(t)}T=1 of —A,, for
t near ty, such that

(4.26)

/ij(to) = —(EtorNuj,tNuj)Lz(aQ), 1<j<m (4.27)

Proof. By Lemma 4.11, (H'/2(3Q), (5 CD?D) is an ordinary boundary triplet. In order to check that
—A, is self-adjoint, it suffices to check conditions (2.8) and (2.9) with X :=E,;, Y :=I. Indeed,
(2.8) holds since E; is self-adjoint, and (2.9) holds since the operator XX* + YY™ given by I +
B2 > 0 is invertible. The fact that (4.25) is well defined for ¢ near ¢, follows from continuity of Z,
and Theorems 4.5 and 3.18 upon setting A; := -4, V, :=0,T, :=[7, <I>)’/‘D]T. In order to prove
(4.24), (4.26), and (4.27), we use (3.41), (3.43), and (3.44), respectively, with

(W(ELD)TR,() = T +ED T (-TR,($) + E,T R, ()

=+ E?)_l(_roRt(g) - EtZFORt(Q')) = _FORI(g) = _TNRz(g)

O

and ¢; = -7 u;.
Remark 4.14. The assumption dQ being C", r > 1/2, imposed in this section could be replaced
by dQ being Lipschitz and Q quasi-convex, see [69, Section 8] for the definition. As proved in [69],
these weaker assumptions are sufficient for the domains of the Dirichlet and Neumann Laplacians
to belong to H2(Q), which, in turn, is equivalent to (4.22) to hold. Also, for the case of Lips-
chitz domains Lemma 4.11 as well as the discussion of trace maps prior to Lemma 4.11 hold with
the Sobolev spaces H'/2(3Q) and H~'/2(3Q) replaced by N'/2(3Q) and its adjoint (Nl/z(aﬁ))*,
respectively, where the space N/2(3Q) is defined as {f € L2(3Q) : fv; € HY206Q)},v = ; )’J?:l,
and is equal to H'/2(3Q) provided dQis C*",r > 1/2, see [69]. In the context of Lipschitz domains,
we also mention an important paper [18].

Remark 4.15. Our motivation to consider the boundary condition in Theorem 4.13 stems from
[44, 67, 96]. More generally, the boundary condition described in Theorem 4.13 can be replaced
by X,y u+Y,r, u=0forX,Y, € B(H'/2(3Q)) satisfying (2.8) and (2.9). In this case, as in The-
orem 4.13, continuity of the mappings ¢t — X, t — Y, yields continuity of the resolvent operator
with respect to t. Moreover, differentiability of the mappings t — X;, t — Y, yields differentiabil-
ity of the resolvent operator with respect to ¢t as well as the Reccati equation and the formula for
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the slopes of the eigenvalue curves (both obtained by dropping the potential terms V; in (4.7) and
(4.8), respectively).

4.3 | Quantum graphs

The main result of this section is Theorem 4.16 in which we derive the resolvent difference for-
mula, Riccati equation, and Hadamard-type formula for Schrodinger operators on metric graphs.
To that end, we employ the abstract results discussed in Theorem 4.5 with an ordinary boundary
triplet specifically defined for quantum graphs. Examples 4.17 and 4.18 give two applications of
Theorem 4.16. Both examples concern monotonicity of eigenvalue curves of Schrédinger operators
with respect to some natural parameter present in the boundary conditions.

We begin by discussing differential operators on metric graphs. To set the stage, let us fix a
discrete graph (V, £) where V and £ denote the set of vertices and edges, respectively. We assume
that (¥, £) consists of a finite number of vertices, | V|, and a finite number of edges, |£|. We assign
to each edge e € £ a positive and finite length £, € (0, o). The corresponding metric graph is
denoted by G. The boundary d¢ of the metric graph is defined by

ag = Ueeg{ae, be}:

where a,, b, denote the end points of the edge e. It is convenient to treat 2|£|-dimensional vec-
tors as functions on the boundary 8¢, in particular, L2(3G) =~ C?¢l, where the space L*(3G) =
B.ce (L*({a,}) x L*({b,})) corresponds to the discrete Dirac measure with support U,c¢{a,, b, }.
In addition to the space of functions on the boundary, we consider the Sobolev spaces of functions
on the graph G,

L*G) := @ L), B*(©C) := P H (o),

ee& ee&
where H?(e) is the standard L? based Sobolev space. As in the setting of Laplace operators on

bounded domains, the spaces L?(C) and L?(3G) are related via the trace maps. We define the trace
operators (T, I';) by the formulas

Ty : H*(G) —» L*(3G), Tyu :=ulsg,u € HX(G),

Ty 1 H(G) —» L*(3G), Tyu :=8,ulag,u € H*(G),

where 0,,u denotes the derivative of u taken in the inward direction. The trace operator is a
bounded, linear operator given by

T :=[T,,I,]7, T : H*(G) — L*(3C) x L*(3¢) = c*¢l.

The Sobolev space of functions vanishing on the boundary d¢G together with their derivatives is
denoted by

HXG) :={u e H*G) : Tu=0}.
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Using our notation for the trace maps, the Green identity can be written as follows:

/(—u”)ﬁ —u(=v") = / 3,ub — ud,v
g ¢
=([J ®12|g|]Tu,Tv)C4\g\, u,v e ?Iz(g).

The right-hand side of the Green identity defines a symplectic form

w : 9L%(80) x UL*(8¢C) — C,
o((Frs f s (g1 g2)) o= / 27 - 1T
oG

(f1 £2), (91, 92) € L2 (80,

where 9L2(8C) := L2(3G) x L2(3C).

Next, we introduce the minimal Laplace operator A,,;, and its adjoint A ... The operator

max-*
d? 2
Anin += el dom(A;,) = H(9),
is symmetric in L*(G). Its adjoint A, 1= A* . is given by
d? 2
Amax = —@, dom(AmaX) =H (g)

The deficiency indices of A, ;, are finite and equal, that is,
0 < dimker(A,, — i) = dimker(A,,, +1) < .
Theorem 4.16. Assume that
t =V, isin C([0,1],L%(C)),
t e X, Y, isin CY([0,1], CHEPAEN), det(X X + Y, Y]) #0,X,Y] =YY,
Then, the operator
A, 1 L*(Q) —» L*(G),dom(A,) :={u € H*() : [X,,Y,]Tu = 0},
Au=—u",u € dom(A,),
is a self-adjoint extension of A,,;,,- The operator-valued function
te R(&o) = (A, +V, —¢) forall ¢, & Spec(A,)
is in C1([0, 1], B(L*(G))) and for any t, € [0, 1] one has
Rto(fo) = —Rto(fo)VtORto(go)

_ . (4.28)
+(TRt0(g°0))*(W(XtO,YIO)) X, Y7~ X*)(W(XtO,YIO))TRtO(g’O),

Loty
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where W(X[o, Yto) is as in (2.11). Furthermore, if A(t,) is an eigenvalue of Ay, + Vi, of multiplicity
m > 1, then there exist a choice of orthonormal eigenfunctions

{uj};.":1 C ker(A; +V; —4(t)))

and a labeling of eigenvalues {/lj(t)};."zl of A, +V,, fort near t,, such that

)1]([0) = <Vt0uj7uj>L2(g) + <(XtOYZJ - YtOX:))¢jy¢j> (4.29)

12(66)’

where ¢; = W(XtO,YtO)Tuj is a unique 2|€|-dimensional vector satisfying Tyu; = —Y;’; ¢; and
Tu;=X; ¢ 1<j<m

Proof. Since (L?*(3G),T,,T;) is an ordinary boundary triplet, Equations (4.7) and (4.8) in
Theorem 4.5 give (4.28) and (4.29), respectively. O

2
Example 4.17. Consider the Schrodinger operator H, = —% + V on a compact star graph G =

(&€,V) with a bounded real-valued potential V' subject to arbitrary self-adjoint vertex conditions at
the vertices of degree one and the following d-type condition at the center v, € V,

Y B,u,(ve) = tu(v,), t ER.

e~V

We recall that the spectrum of H, can be described via secular equations [21]. In this example,
we will derive an Hadamard-type formula (4.30) for the derivative of the eigenvalues of H,. Such
a formula is discussed in [21, Proposition 3.1.6] for simple eigenvalues. The general case can be
treated using (4.29) as follows. The boundary matrices describing the vertex conditions are given
by X x X, and Y X Y where

1 -1 0 0 0
1 -1 0 0 0
X, = , Y= >
0 1 -1 0 0
-t 0 0 1 1 1

and the matrices X and ¥ correspond to the vertex conditions at ¥ \ {v.}. A direct computation
gives

00 0
00 0
XY =YX, =
00 ~t

For the eigenvalue A(t;) of H, , of multiplicity m € N, we use (4.29) to get

i(to) = (X, Y7 =Y XDty = b0l

L%(96)
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where 1 < j<m, ¢; = W(X,,Y, )Tu;, and {uj};": , are the eigenfunctions of H, corresponding
to A(t,). Furthermore, using (3.45), we obtain ¢ j(vc) =—-u j(vc), and hence,

ij(to) = |uj(vc)|2’ 1<jsm. (4.30)
Example 4.18. This example concerns monotonicity of eigenvalue curves of a class of
Schrodinger operators on a compact interval arising in the spectral theory of periodic Hamil-
tonians. Specifically, we consider the Schrodinger operators Hg with a real-valued potential
V € L*°(0,1) which are parameterized by 4 € [0, 27) and defined as follows:
Hy=Ag+V, Ag : L*(0,1) —» L*(0,1), Agu = —u”,u € dom(Ay),
dom(Ag) := {u € H*0,1) : e®*u(0) = u(1),¢¥u’(0) = u’(1)}. (4.31)
Such operators are of interest, in particular, because their eigenvalues fill up the spectral bands
of the Schridinger operator in L?(R) with the potential given by the periodic extension of V, see
[111, Theorems XII1.89, XII1.90]. We claim that the eigenvalue curves satisfy
A;(8y) =2 Im(u(0)u;(0)) for all §, € (0,27), (4.32)
where, as usual, u i € ker(.As0 -1 j(So)), j = 1,2 (in fact, all but, possibly, periodic and antiperi-
odic operators have simple spectra). We derive this formula from (4.8) by defining trace operators
appropriately. It is well known that ordinary differential operators fit well into the scheme of

boundary triplets, cf. for example [71, Chapter 3]; however, for completeness, we recall the setting.
We set

H :=L%0,1),H, := H*(0,1),A = —dd—xzz,dom(A) = HZ(0,1)
T : H*(0,1) = C* Tyu := (u(0),u(1)", T u := '(0), —u'(1)".

Next, to utilize (4.8), we first rewrite the boundary conditions in (4.31) as follows:

id
—ei® 1 0 0
XsTou + YgTyu = 0, where Xg 1= [ (e) 0] Yy 1= [ei9 1],

and compute

1 .
¢ =W(X5,Yg)Tu; = 5(_Y90r0uj + X5, Thuy) = —819"(”}(0), u;(0)",
) , 0 i
* *
X3, Y3 = Y5, X} = [_i 0] :

Plugging this in (4.29) yields (4.32). Monotonicity of the eigenvalues follows from linear
independence of u i u_J and the formula

2| Im(u} (0)u; ()] = [W(u;, U)(O)] # 0,8, € (0, 27).

involving the Wronskian.
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4.4 | Periodic Kronig-Penney model

" In this section, we give yet another application of Theorem 4.5 proving a version of B.
Simon’s theorem [121] that states that a certain open gap property (described below) of periodic
Schrédinger operators is generic in the class of periodic C*°(R) potentials. The main result of this
section, Theorem 4.19, states this assertion for singular §-type potentials. Its proof is based on a
perturbative argument inspired by [121] and technically made available by Theorem 4.5.

The spectrum of the Schrddinger operator with periodic potential on the line has a bandgap
structure, that is, in general, it consists of closed segments, called bands, such that two adjacent
bands can either have a common endpoint or be separated by an open interval, a gap, of the resol-
vent set; in the latter case, we say that the gap is open. We will now use Theorem 4.5 to prove that
all gaps of a generic periodic Kronig-Penney model are open. The operators in question are the
Schrodinger operators with d-type potentials that in physics literature are written as follows:

42

HO( = —@ + kezzock5(x - k),

and mathematically are defined by
H,u :=—u",u € dom(H,),H, : dom(H,) C L*(R) — L*(R),
dom(H,) ={u € H (R \ Z) : u satisfies (4.33) for all k € 7},
ukt) = uk™), u'(k*) =/ (k™) = oqu(k), (4.33)
where o = {q; }ez € £°(Z; R), u(k*) are the one-sided limits, and H? denotes the direct sum of
the Sobolev spaces on respective intervals. The spectrum of H, for the case of periodic sequence
a has a bandgap structure, see [3, Theorem 2.3.3]. This was originally proved for 1-periodic

sequences but can be directly extended to any p-periodic ones. Specifically, given a p-periodic
sequence a = {0y }rey € £°(Z; R), the operator H, is unitary equivalent to the direct integral

52
/102 )HO{(p),S%, where we denote a(P) := {ag, ..., ap_1} ERP,
27T

and H )  for 9 € [0, 27r) is the operator defined in LZ(Ip) withI, :=(-1/2,p—1/2) by
H i gu i=—u", Hyp g : dom(Hy) 5) C L*(I,) — L*(I1,),
dom(H ) g) = {u IS ﬁz(Ip \ 2) : u satisfies (4.33) for k € I, n Z and (4.34)},
u(=1/2") = ®u((p — 1/2)7), w'(-1/2") = U/ (p - 1/2)), (4.34)
where

ﬁZ(Ip \ Z2) := H*(-1/2,0) ® H*(0,1)® .. ® H* (p—2,p— 1) ®H*(p—1,p—1/2).

T An alternative approach applicable to a very broad class of second-order operators is discussed in the upcoming work of
D. Damanik, J. Fillman, and the second author. See also [24].
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Denoting the eigenvalues of H ) g (ordered in nondecreasing order) by
(p) .
/1]-(0: P 9),j=1,2,..,

we have

(@P,0) < 4P, 9) < 4, (P, ) < A,(aP), ) < (P, 8) < 4,(«(P, 0)

< 3(@P,0) < 2;(@P), 9) < 43P, 1) < ... for § € [0, 7].
Then, the spectrum of H, is given by

Spec(H,) = U Spec(H p) 5)
9el0,7]

= [4,@?,0),4,@?, D] U [2,(aP, 7), 15 (aP, 0)] U ...

The intervals [1,(a(P,0), 1, (P, )], [A,(aP), 7r), 1,(aP), 0)], ... are called bands. The endpoints
of two adjacent bands may coincide. In this case, we say that the respective gap is closed; otherwise
the respective gap, (4,(aP, ), ,(a'P, m)), (lz(oc(P), 0), A;(a(P), 0)), ... is said to be open. In the

following theorem, we show that all gaps are open for a generic periodic sequence «.

Theorem 4.19. There is a dense Gs-set S C £*°(Z; R) of sequences o such that for each a € S, all

gaps in the spectrum of H,, are open.

Proof. We let

S, :={a € £*(Z;R) : a is p-periodic and the nth gap of H, is open}.

Itis enough to prove that each S, is open and dense (then (), S, gives the required dense Gs-set
of potentials). To begin, let us rewrite dom(H () ¢) in terms of Lagrangian planes in A(CHPHD),

Foru € I/—\IZ(IP \ Z), we introduce the traces Tyu, [;u € CXP+D by
Tou :={u(=1/2%),u((p — 1/2)7),u(07),u(0%), ..., u(k™), u(k*), ...,

u((p— 1)) u((p - DM} e P,

Tu =/ (=1/2%), —u'(p — 1/2)7), —u'(07),u'(01), ..., =/ (k7), v/ (k), ...,

—u'(p—1),u'((p— 1))} e cXptD),

Also, let us introduce 2(p + 1) X 2(p + 1) matrices

—el? 1 1 -1 1 -1
S Rt R B ER |

0o o] oo 0 0
Va5 °= [ew 1] ® [1 1] ®-® [1 1] '

Then, one has

dOIl’l(H[x(p),s) ={ue ﬁz(Ip \2) : Xa(p),sI‘Ou + Ya(p),sI‘lu = 0}.
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That is, the Lagrangian plane corresponding to H ) s is given by

ker[X ) g, Yo 5]

In order to prove that S, is open, let us recall that the edges of the spectral gaps are given by
consecutive eigenvalues of the periodic, H ) (, or antiperiodic, H ) ., operators. Suppose that
a € S, and that the edges of the nth gap satisfy 1,,(a(P,9) < 1,,,,(aP), §) with either 9 = 0 or
9 = 7. We claim that this strict inequality holds for all &?) € RP near a(P), that is, that the gap is
open under small perturbations of «(P). Indeed, since the mapping

RP 5 aP) [Xop,9) Yo gl ford =00rd =7
is continuous, Theorem 4.5 yields continuity of the mapping
RP 3 aP) o (Hyp g — 1) € BULAI,)) for 8 = 0or § = m;
hence, the mappings
aP) Aj(a(p),S), aP) /1j+1(a(p),8), ford =0o0rd=nm
are also continuous, which implies the asserted strict inequality
1,@P,9) < 2,1, @7, 9)

for all @P) near a(P).

In order to prove that S, is dense, we need to show that for both cases § = 0 and § = 7, the
equality 4,,(a(P),9) = 1,,,,(aP), 9) will not hold if «'P is replaced by its small perturbation. We
will consider the case § = 0, that is, we will assume that /ln(oc(P), 0) =21, +1(a(1’), 0);thecased =7
is treated analogously. For t € R, let us introduce the perturbation a(P)(t) : = {t + Oy Oy s A1}
We claim that for every € > 0, there is a t, € (0, ¢) with

1,(@P(ty),0) < Ay (@P(ty),0). (4.35)

When proven, this inequality shows that there exist arbitrarily close to a(P) perturbations that
open the closed gap. To prove the claim, we utilize the Hadamard-type formula (4.29) for the
boundary matrices X (). 0» Yoi(r)0- We recall that 4 1= 2,,(a'P),0) = 1,,,,(a'P,0) is an eigen-
value of H ) , of multiplicity two. By Theorem 4.16, there is a basis {u;, u,} in ker(H ) o — 1)
such that

d

dt |t=0/1n(oc(P)(t), 0) = |u; (0)I, (4.36)
%|[=01n+1(a(”)(t), 0) = [u,(0)|2. (437)

Next, we will prove that the values of the derivatives in (4.36) and (4.37) are not equal to each
other. This fact implies that the eigenvalue curves ¢ — An(a(P)(t), O)and t - 1, +1(oc(l’)(t), 0) do
not coincide for ¢ near ¢t = 0, which, in turn, yields (4.35) as needed. Starting the proof of the
fact, we first remark that the eigenfunctions u, and u, are real-valued because the boundary
conditions for 9 = 0 are real. Upon multiplying the eigenfunctions by appropriate constants,
we may and will assume that u,(0) and u,(0) are nonnegative. If u,(0) # u,(0), then the left-
hand sides of (4.36) and (4.37) are not equal as required. If u,(0) = u,(0), then for any t € R, the
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function u; — u, satisfies the boundary condition at x = 0 with «, replaced by ¢ + «,. Therefore,
u; —u, € ker(H 2P0 — A)\ {0} and thus 4 is an eigenvalue of H a0 for all t € R. That is,
either /1n(oc(1’)(t), 0)or 4, +1(oc(p)(t), 0) should be identically equal to A for all ¢ near 0. Hence, one
of the derivatives in (4.36) and (4.37) vanishes, say, the first one. Then u,(0) = 0. But in this case,
u,(0) # 0 for otherwise u; and u, would be linearly dependent. Thus, the value of the derivative
in (4.36) is equal to zero, while the value of the derivative in (4.37) is not, as required. O

4.5 | Maslov crossing form for abstract boundary triplets

In this section, we discuss an infinitesimal version of the formula equating the Maslov index
and the spectral flow for the family of operators H, = A, + V, satisfying Hypothesis 4.3, which is
assumed throughout this section. Formulas relating these two quantities are quite classical, and
we refer the reader to the papers [26-29, 35, 44, 45, 63, 93, 95, 96, 114] and the literature therein.
Employing the abstract Hadamard-type formula obtained in Theorem 3.25, we prove in Theo-
rem 4.22 that the signature of the Maslov crossing form defined in (4.41) at an eigenvalue A of the
operator H; is equal to the difference between the number of monotonically decreasing and the
number of monotonically increasing eigenvalue curves for H, bifurcating from 4.
For A € Rand ¢ € [0, 1], we introduce the following subspaces:

Ky, :=Ti(ker(A* +V, =) C Hx 9,
F, :=ran(Q,) C H X 9,
Y =K @F, C(HXH)D(HXH)), (4.38)
D:={p=(p.p) 1 PEHXHIC(HXH) D (HxH)).
Since T,(dom(A,)) = ran(Q,) by Hypothesis 4.3, the following assertions are equivalent:
(i) ker(H, — 1) # {0}, (iD) K, NF, # {0}, (iii) Y, n D # {0} (4.39)

since D is the diagonal subspace in ($ X ) @ ($H X $H). In fact, using a fundamental [26, Propo-
sition 3.5], one can deduce deeper connections between the spectral information for H, and the
behavior of Lagrangian planes under the following hypotheses.

Hypothesis 4.20. Given 1 € R and ¢, € [0, 1], we assume that
() 1 ¢ SpeceSS(HtO).
Moreover, there exists an interval J C [0, 1] centered at ¢, such that

(ii) the mappingst +— T,, ¢+~ V,,t — Q,areC' on J,
(iii) ker(A* +V, —A1)ndom(A) = {0} forallt € J.

Hypothesis 4.20 will be assumed through this section. Part (iii) of this hypothesis is an abstract
version of the unique continuation principle for PDEs, and we refer to [93, Theorems 3.2 and
Hypothesis 5.9] for a discussion of this connection. Part (i) implies that the operator H ty ~ Ais
Fredholm. Since ker(T) = dom(A) by Lemma 2.3(1), parts (i) and (iii) of Hypothesis 4.20 imply
that T|ker(H[0 ) is an isomorphism between ker(HtO —A) and K; , N Fy, cf. (4.39). Moreover, the
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subspaces i , and F; forma Fredholm pair (i.e., their intersection is finite dimensional and their
sum is closed and has finite codimension). The latter fact has been established in [26, Proposition
3.5] in the setting of Lagrangian planes in dom(A*)/ dom(A); using this one can readily deduce
the Fredholm property of the pair in the present setting via the symplectomorphism introduced
in [93, Proposition 5.3]. The subspace 7, is Lagrangian by Hypothesis 4.3. The subspace K, , is
also Lagrangian again by [26, Proposition 3.5]. Furthermore, part (ii) of Hypothesis 4.20 yields
continuity in ¢ of the resolvent operators for H, by Theorem 3.18. This, together with part (i), shows
that 1 & Spec,(H,) fort near t; hence, the subspaces K, ;, F; form a Fredholm pair of Lagrangian
subspaces for each ¢ near t,. Hence, (Y ;,®) is a Fredholm pair of Lagrangian subspaces for each
t near ¢,.

Let IT, , be the orthogonal projection onto Y, , from (4.38) so that the mapping ¢ = II, , is con-
tinuously differentiable on [0,1] for each 4 € R, see [93, pp.480-481]. Furthermore, for 1 € R and
t, € [0,1] satisfying Hypothesis 4.20, there isan interval T C J C [0, 1] centered at ¢, and a family
of operators ¢ = M, ,, t € T, whichisin C*(Z, B(Y;,, (Y1,,)")) with M;, = 0such that

Y, ={a+M;q|qeY,, },t €T, (4.40)

see, for example, [44, Lemma 3.8]. We call (4, t,) a conjugate point if ker(H, ty 1) # {0}, or equiv-
alently, if assertions (ii) and (iii) in (4.39) hold for ¢ = ¢,. The Maslov crossing form m; for
Y, , relative to D at the conjugate point (4, t,) is defined on the finite-dimensional intersection
Y, N D of the Lagrangian subspaces by the formula

d, . .
wm, (q,p) = alt:tow(q’ M;p) = d(q, My, P), P.AE Y, ND, (4.41)

where @ = w @ (—w) is a symplectic form on ($H X H) B (H X H) and, as usual, we abbreviate
My, =4m
Ato — dt /1,t|t=t0'

Lemma 4.21. Let (4,t,) be a conjugate point satisfying Hypothesis 4.20 and let u € ker(H ty — A
Then there exist an open interval I C J centered at t, a family t — w, in cy(z, H.), and a family
t — g, € ran(Q,) in CX(Z, H X H) such that

wto =u, gto = Ttous
w, € ker(A* +V, — 1), (4.42)
T T
(T,w,, g)" = (Ttou, Tt0u> + M/Lt(TtOu,Tlou) tel, (4.43)

where M, ; is as in (4.40).

Proof. The proof is similar to that of [95, Lemma 2.6, p. 355]. For brevity, we denote N; :=
ker(A* +V;—21),q :=T, u,q :=(q,q) and let P, be the orthogonal projections onto K, ;. Then
P, ecC! (I, B(H % 3:))) for some open interval T C .J centered at f, (see, e.g., [26, Theorem 3.9],
[93, Theorem 5.10]). We now consider the projections in ($ X $) X ($ X ) given by

s . [P o] ~ . [o o
=[od-o=fo ol

3
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so that P, + Q, = I, ,, ran(Il ;) = Y, , = K; , ® F;. Using the definition of Y, , and M, ,, see
(4.38) and (4.40), we define

h’[ € ran(Pt) C b X ga g[ € ran(Q[) c b X g’
such that
(h,0)" = P,(q + M, ,q)and (0, g)" = Q,(q + M,,q), (4.44)

andso h; =g, =gq.Sincet > M, t— P and ¢t — Q, are C!, we know that the maps ¢ — h,
and t — g, are C'. As above, employing Hypothesis 4.20 and ker T, = dom(A), see Lemma 2.3 (1),
we conclude that the restriction

T; Iy, Ny > ran(P) C HX 9,

of T, to N, is a bijection. Therefore, there is a unique vector w, € N, satisfying T,w, = h,.
Assertions (4.42) and (4.43) hold with this choice of w, and g;.

It remains to show that the function ¢ — w; is in C}(Z, H,). Let U, denote the C! family of
boundedly invertible transformation operators in H, that split the projections Py_onto N; and
PN[O onto N, so that the identity UtPN[O = Py, U, holds, and U, : N; — N, are bijections for ¢
near t, cf. [95, Remark 2.4], [44, Remark 3.5], [47, Section IV.1], [63, Remark 6.11]. We temporarily
introduce v, € N; by v, = U; 'w;, so that T,w, = h, yields (T;o U,)v, = h,. The map T,o Ut|Nt0 :
N,, — ran(P,) is a bijection and ¢t = T,o U,| Ny is in C'(Z, B(N,,, § X $)) by the assumptions
in the lemma. Since w, = U,o(T,0 Ut)_lh,, the function ¢ — w, is C! because each of the three
terms in the composition is C'. [l

Theorem 4.22. Under Hypothesis 4.3, let (4, t,,) be a conjugate point satisfying Hypothesis 4.20. Let
{xlj(t)};ﬁ:l, with 1 = A(ty), {uj};ﬁ:l be as in Theorem 4.5, and let q; := (Ttouj, Ttouj)T €Y N D.
Then, the slope of the eigenvalue curves satisfies

/:Lj(tO) = mto(qj’ qj)’ 1 s] <m, (445)
where m, s the Maslov form introduced in (4.41).
Proof. For a fixed j, let (w, g;) be as in Lemma 4.21 with u := u;. Differentiating

A*w, + V,w, — Aw, =0, (4.46)
at t, and multiplying the result by w, = u;, we get
(A" + V= Dy, Wy )y + (Vi Wiy Wi )30 = 0.
Using the Green identity (4.1) with u = w, and v = w, , we obtain
(A" + V= Dy, wy )y = Wy, (A" +V, — Dw; )y

(4.47)
+ <F1t0 Wy, > Log, Wy, e — <F0t0 Wy, > Iy Wy, )s-
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Combining (4.46) and (4.47) yields
(T Wy, Tpu; >+(V Uj, uj)y = 0. (4.48)

Next, (4.41) and (4.43) yield

mto(qjs q]) = (U< [0 ]’ d[|t to (T w[)) w(Tto j’ gt())' (449)
Since ¢, = Q,g;, we have

9t = ongzo + Q9 = QtOTtOuj + Q1 9,

Utilizing this, the fact that ran(Q, ) is Lagrangian and Tu; € ran(Q, ), we get

co(TtOuj, Gty )= co(TtO i Q[OTtouj + Qlogto) cu(T[0 szOTzO“j)- (4.50)
Then, (4.48), (4.49), and (4.50) yield
m,o(qj,qj)— (T Uj, T, WU >+co<T uj, Ty, )
— (T, uj, Qy Ty uj)
—co<T uj, T, WU >+(V Uj, Uj)y
+ w(Q[OT[Ouj,TtOuj , (4.51)

where we used W(onTzouj’ Ttouj) € R, see (3.39). Comparing (4.51) and (3.38), one infers (4.45)
as required. O

Remark 4.23. Formula (4.45) in Theorem 4.22 yields a fundamental relation between the Maslov
index and the spectral flow of the family of operators H; = A, + V, satisfying the condition
T,(dom(H,)) = F, for a given family of Lagrangian subspaces 7, t € [0, 1]. This relation goes back
to the celebrated Atiyah-Patodi-Singer theorem and it has been a subject of intensive research
ever since, see, for example, [26-29, 35, 44, 114] and many more references therein. We will briefly
comment on the equality of the Maslov index and the spectral flow. First, we recall the definition
of the Maslov index via crossing forms. For a fixed 4 = A, from now on, we assume that Hypothe-
sis 4.20 is satisfied for all t = ¢, € [0, 1]. Then, given the subspaces defined in (4.38), and assuming
that all conjugate points (4, t,) for ¢, € [0, 1] are nondegenerate (in the sense that the quadratic
form m; from (4.41) is nondegenerate), one defines the Maslov index by the formula

Mas(YAo,t te [0,1]) =—m_ O+ Y, (my(t) = m_(t)) + m, (D), (4.52)

0<ty<1

where the summation is taken over all ¢, such that (4, ) is a conjugate point and we denote by
m_(ty), respectively, m_(t,) the number of positive, respectively, negative squares of the quadratic
form m, at the conjugate point. Next, we recall the definition of the spectral flow: The spectral
flow SpF;, (H; : t €[0,1]) for the family of operators H; is the net count of the eigenvalues of
H, passing through 4, as t changes from ¢t = 0 to t = 1 and is defined as follows, cf., for example,
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[28, Appendix]. Take a partition0 = t, < t; < -+ < t5y = 1l and N intervals [a,, b,] such thata, <
Ay <byanda,,b, & Spec(H,) forallt € [t,_;,t,],1 < ¢ < N. Then, the spectral flow is defined
by

N
SPF;,(H, s te0,1) =, > (dimker(H,  —A)—dimker(H, —2)).  (453)

£=1a,<A<Ay

By our assumptions, due to part (i) in Hypothesis 4.20, 4, does not belong to the essential spectrum
of the operator H, for all t € [0, 1]. Moreover, let us assume, in addition, that for each ¢, € [0, 1]
such that 4, € Specg;s.(H; ), the inequality A j(tp) # 0 holds for all j = 1,..., m. Here, m = m(t,)
is the multiplicity of the isolated eigenvalue 4, of H, , and {4;(t)} are the eigenvalues of H; as
in Theorem 3.26(2) and Theorem 4.5(2) for ¢ € [t{, ] near ¢,. With no loss of generality, ¢ = t,
could be assumed to be the only point in [¢;, ¢;] such that A, € Spec(H,). By our assumptions and
formula (4.45) in Theorem 4.22, the quadratic form m; defined in (4.41) is nondegenerate and
m, (t,), respectively, m_(t,) is equal to the number of j’s such that the eigenvalue 1 j(t) moves
through 4, in the positive, respectively, negative direction as ¢ changes from t(’) to t(’)’ . Formulas
(4.52) and (4.53) now show that Mas(Y,IOJ crelt),t]]) = SpF,,(H; : t € [tg, {]). Passing to a
partition of [0,1] then gives

Mas(YAO,z te [0,1]) = SpF,, (H, : t €[0,1]), (4.54)

the desired equality of the Maslov index and the spectral flow.

5 | HADAMARD-TYPE FORMULA FOR ELLIPTIC OPERATORS VIA
DIRICHLET AND NEUMANN TRACES

In this section, concerns self-adjoint realizations of second-order elliptic operators on bounded
domains. We begin by discussing a resolvent difference formula, see Proposition 5.1, an
Hadamard-type formula, (5.9), and asymptotic resolvent expansions, Theorem 5.2, for the elliptic
operators (5.1) posted on bounded domains with smooth boundary. We deduce all these results
from Theorem 3.26 by appropriately choosing the trace maps. The main technical issue is to val-
idate Hypotheses 3.10 and 3.13, which is done in Proposition 5.4. Next, these results are utilized
to give simple and unified proofs of Friedlander’s theorem [62, Theorem 1.1], see Example 5.5,
and Rohleder’s theorem [116, Theorem 3.2], see Example 5.6. Furthermore, in Section 5.3, we con-
sider the heat equation with space-dependent diffusion coefficient equipped with Robin boundary
conditions so that both the equation and the boundary conditions contain a physically rele-
vant parameter, the thermal conductivity. The results in this section provide, in particular, a
new proof of the fact that the temperature of a nonhomogeneous material immersed into a sur-
rounding medium of constant temperature depends continuously on the thermal conductivity of
the material.
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5.1 | Elliptic operators

On a C*°-smooth bounded domain Q, we consider the following differential expression:

n n
L:=- Z djaji 0k + Za.jaj —dja;+q,
Jk=1 j=1

(5.1)
=—div(AV)+a-V—-V-.a+q,

with coefficients A = {a;;}1; j<n» @ 1= {a;}1<i<n satisying, for some ¢ = ¢(£) > 0,

D ap&E e Y 15l xeQ =) ech, (5.2)
j=1

k=1
aji,aj € C®(Q;R),q € L¥(R), aji(x) = ag;j(x),1 < j,k<n.
Associated with £ is the following space of distributions:
D(Q) :={ue H(Q) : LueL*(Q)}, s>0,

equipped with the norm

1/2
il 2= (1l gy + 12Ul ) (53)

where Lu should be understood in the sense of distributions. Let us introduce two operators acting
in L2(Q),

Loinf 1= Lf, [ € dom(L ) 1= HY(Q),
Lowf :=Lf, f€dom(L,,,,) := DQ).

The operator L ;, is closed, symmetric, and (£,;,)" = Lpax- Associated with L is a first-order
trace operatory € B(D'(Q), H ~1/2(3Q)) that is a unique extension of the conormal derivative

n n
Vel = Z ajkvij(aku) + Z ajvy, u,u € H?*(Q)
Jj.k=1 j=1

to the space D'(Q) (here, (v, ..., v,,) is the outward unit normal on dQ). Then, the following
Green identity holds:

(L1, 0120y = (1, LV) 20y = Vo7, ) = 707, W1

-1/2

for all u,v € D'(Q). In order to rewrite this identity in a form compatible with (2.3), let ® denote
the Riesz isomorphism ® € B(H~'/2(3Q), H/2(Q)) as in (4.21) and define

T, 1=y, € BD'(Q),H'*(3Q)), T, := —®yy , € BD'(Q), H'/*(3Q)). (5.4)
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Then, we have, for all u, v € D}(Q),

<£maxu’ v)Lz(Q) - <u’ £maxv>L2(Q)

(5.5)
= (L1, ToL)in/2(s0) = (Lot T10) /20
We claim that Hypotheses 2.1 and 3.1 are satisfied for
A= Ly, H, =D%Q),D=D"(Q),Ty=7,,T1 = —Pyy,. (5.6)

Since we already checked the Green identity, (5.5), to justify the claim, it remains to show that
T(D) is dense in H/2(3Q) x H'/2(3Q) and that D'(Q) is dense in D°(L2). By [73, Proposition 2.1]
and [18, Section 4.3], one has

(¥, 7 JH(Q) = HY*(3Q) x H'/*(30),

and the right-hand side is dense in H'/2(dQ) x H'/2(3Q). By [73, Theorem 3.2], H%(Q) is dense
in D3(Q), s < 2; hence, D'(Q) is dense in D°(Q).

Proposition 5.1. Under the assumptions on L imposed in this section, for any two self-adjoint

extensions L, L, of L,,;, with domains containing in D'(Q) and ¢ & (Spec(L,) U Spec(L,)), the
following resolvent difference formula holds:

=0T = (L = O = (T = T ITL = O

where T = [Ty, T',]" is defined in (5.4), and

(T(L, — O)™H)* € BHY?(8Q) x H/2(30), LA (Q)).
Proof. The results follow directly from (2.13). O
5.2 | Hadamard-type formulas for Robin elliptic operators, L.
Friedlander’s and J. Rohleder’s inequalities
In this section, we obtain an Hadamard-type formula for a one-parameter family of differen-
tial operators £,u = Lu as in (5.1) for which the dependence on the parameter ¢ enters through
the Robin boundary condition y, .u = ©,y u, see Theorem 5.2. We will utilize Theorem 3.26 by
choosing the symmetric operator A the function spaces H,H_, 9, and the trace operator T as

indicated in (5.6). The main challenge is to check Hypothesis 3.16 that in this setting reads as
follows:

”(Et - i)_l - (Eto - i)_lng(LZ(Q)’Dl(Q)) = 0(1)’ - to,

and can be reduced to showing that for some constant ¢ > 0, one has the inequality

Va2, g < (LI, ) + Il ) € dom(L,),
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for t near t,. We discuss the reduction and give the proof of this inequality in Proposition 5.4.
Throughout this section, we will make use of the continuous embedding ¢ : H/2(dQ) < L*(Q)
and its adjoint ¢* : L2(Q) & H-1/2(3Q).

Theorem 5.2. Suppose that, in addition to the assumptions on L listed in Subsection 5.1, we are
given a mapping t — O, belonging to C([0, 1], L®(8Q, R)). Then, for t € [0, 1], the Robbin elliptic
operator L, defined by

L, : dom(L,) c L*(Q) - L*(Q), L,u=Lu,

u € dom(£,) = {u € DY(Q) : Yy U= L*@tl}/Du},

is self-adjoint, where 1 denotes the embedding of H'/2(3Q) into L*(Q). The following resolvent
difference formula holds:

(L =07 = =7 = (1, = 71) @, = 0)(1, £, - ), (57)
fort,s €[0,1], § & (Spec(L;) U Spec(Ly)). Moreover, the mapping
t (L, =7 € BLAQ)

iswell defined for t neart, aslongas¢ & Spec(L,,). This mapping is differentiable at t, and satisfies
the following Riccati equation:

(=0 = (08, -07") <%|@> (7, =07). (538)

Finally, if A(t,) is an isolated eigenvalue of L of multiplicity m > 1, then there exists a choice of
orthonormal eigenfunctions {u j};"zl C ker(L; — A(ty)) and a labeling of eigenvalues {1 j(l‘)};”=1 of
L,, for t near t,, such that

Aj(to) = —<@[0)/Duj,)/Duj>Lz(aQ), 1 <J < m. (59)

Proof. We will employ Theorem 3.26. The proof consists of two steps. First, we derive (5.7) from
(3.41). We can use (3.41) because Hypothesis 3.4 is trivially satisfied. Second, we derive (5.8) and
(5.9) from (3.43) and (3.44). To apply (3.43) and (3.44), we need to verify Hypotheses 3.13 and 3.16.
They are satisfied by Proposition 5.4 given next; the proof of this proposition uses formula (5.7)
proved in the first step.

To proceed, we choose H_ , D, A as in (5.6) and rewrite the Robin condition Yyt = Oy, u
in the definition of £, as Dy, U= DOy, u

X, Tou+Y,Tju =0, where weset X, := ®"0,,Y, :=1.

It is worth noting that X, just defined is self-adjoint in H'/2(3Q) since for ¢, € H'/2(3Q), one
has

<q>l*®zl¢:§b>1/2 = <Zp’q)[*®tt¢’¢>1/2 = <¢’[*®tl¢’¢>—1/2

= (), O ) 250) = (19, ©,¥) 1250
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= (5, 00Y) 15 = ($, POP), 5.

Continuity of ®; with respect to t and Theorem 3.18 with A, :=L;,V, :=0,T, 1= [y, —Dyy T
yield that the map ¢t — R,(¢) := (£, — ¢)~! is well defined for ¢ near t,. Next, with W defined in
(2.11), we observe that R,({)u € dom(.A,;) yields

(WX, D)TR,($)u = —ToR,($)u = =y R(Qu forallu € L*(Q).

This can be checked directly or by noting that ¢ = (W(X 0l ))TR[(§ Ju is the unique vector satisfy-
ing the relations I'\R,({)u = —¢, T1R,({)u = X, ¢, cf. (3.45). This observation together with (3.41)
yield (5.7). We can now involve Proposition 5.4 given next and verify Hypotheses 3.13 and 3.16 in
the present setting. Thus, Theorem 3.26 applies and therefore (5.8) and (5.9) follow from (3.43)
and (3.44) with ¢; = —Tou;. O

Remark 5.3. It is worth comparing Theorems 4.13 and 5.2 for the case £ = —A where both the-
orems apply. The major difference is in the type of trace operators utilized in each theorem. In
Theorem 4.13, weuse T = -7, cI);?D]T that is defined on the entire space H, = dom(—A,,,) and
is surjective, while in Theorem 5.2, we have T = [yD, —CIJyN,E]T that is defined only on a dense

subset D = DY(Q) of H, = D°(Q). We note that the latter trace operator is local, while the former
is not. In addition, these trace maps do not match even on smooth functions on Q. Another major
technical difference is that Hypotheses 3.13 and 3.16 are automatically satisfied in one case but not
in the other.

Proposition 5.4. Under assumptions of Theorem 5.2, one has
(L, =D )iy = O, t = ty, (5.10)

”(Et - i)_l - (‘Cto - i)_l ”B(LZ(Q),DI(Q)) = 0(1)’ t— tO’ (5-11)
forallt, € [0,1]. In other words, Hypotheses 3.13 and 3.16 hold for A, := L,.
Proof. To prove (5.10), it is enough to show that there exists a constant ¢ > 0 such that

[lell < cllLu — iull u € dom(L,),

2 2
DI(Q) L2(Q)’

for all ¢ € [0, 1]. By the definition of D'(Q)-norm, see (5.3), we need to prove that

IValZy g < eCllCulZy g + lullZ, ), u € dom(£,). (5.12)

To show this, we first notice that for u € dom(L,), one has
(AVu, Vi oy = (Lu, u)p2(q) — (qu, )2y — (O, U, ¥ )23
Using the Cauchy-Schwartz inequality and (5.2), we get

IValZ, g < L2, o) + 112, ) + 1w l17, 1l 50 ) (5.13)
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for ¢ > 0 (which is ¢- and u-independent). Let us recall from [67, Lemma 2.5] the inequality
— -1
Iyl ) < ENVUI, g + B@IulZ, . Wheree > 0and fe) = OE™).
Thus, continuing (5.13), we infer

Va1, g < e (120112, ) + Tl ) + €10l ogsan |Vl o

+BENO; |l L0 1l r2(q))

for some ¢ > 0. Taking ¢ > 0 sufficiently small yields (5.12) and thus (5.10).
Starting the proof of (5.11), we first show that

102 =D = (2, = DY ez mmcay = 0D t = to. (5.14)

We denote R(t) := (£, —i)~! and recall that we may use resolvent difference formula (5.7) already
established in the first part of the proof of Theorem 5.2. It yields

(R(Ou — R(to)u, v)12(q) = (0, — Oy, R(Ou, ¥ R(tx)v)1250) (5.15)

for all u,v € L*(Q). For v € (H(Q))* = H™'(Q), we view w := R(t,)v € H'(Q) as the solution
to the boundary value problem (£ —i)w = v, Yy, W =07, w. Using a well-known elliptic esti-
mate [|w|| 1) < cllvllg-1(q) from [104, Theorem 4 11(31)], the operator R(t,) can be extended to an
operator in B((H'(Q))*, H'(Q)). So, (5.15) can be extended as follows:

@) (R(Ou — R(E))u, v) 1y = (O, — © )y, R(Ou, ¥, R(£)v)1250)s

now for all u € L*(Q) and v € (H'(Q))*. Hence,
2
|1 @) (R(OU = R, V) 1)y | < 110, — Ol ooy llY, ||B(D1(Q)’H1/2(m))

X IR pr2ca), o @) 1l 2oy IRED e @y o @ 10l qyys-

Since |[R(OI p2).pi) = O1) by (5.10), and 10, — OllL=0) = o(1), t —»ty, the above
inequality gives (5.14). We now combine (5.14) with the estimate

0L =) u = (2, = D7) = 1€ = D7 'u = (2, = D77 g
+ e, =D - £, - D7),
<2f|(e, = Du = (L, — D)7 Mul|7p ) u € LHQ),
finishing the proof of (5.11). O

Example 5.5. Theorem 5.2 can be used in proving the celebrated Friedlander inequalities 4p, ; >
AN k+1- k = 1,2,..., for the eigenvalues of the Dirichlet and Neumann Laplacians, see [62], which
was improved in [60] to state that A, , > Ay 41, see also [19, 61, 68, 117] for further advances,
detailed bibliography and a historical account of this beautiful subject. Also, we refer to Exam-
ple 5.10 for connections to the Maslov index. The proof of the Friedlander inequalities consists
of two major steps. First, one proves that the counting functions of the Dirichlet and Neumann
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boundary problems differ by a number of negative eigenvalues of the Dirichlet-to-Neumann
operator, see (5.33) below. Second, one proves the existence of a nonnegative eigenvalue of the
latter. The first step involves a one-parameter family of Robin boundary value problems giving a
homotopy of the Dirichlet to the Neumann boundary problem. The critical issue here is to show
monotonicity of the eigenvalues of the Robin problems with respect to the parameter, and this
is where the results of the current paper help. (In fact, monotonicity holds not merely for the
Laplacian but for general elliptic operators as described in Subsection 5.1). Indeed, formula (5.9)
in Theorem 5.2 with £ = —Aand ©, = — cot(%t) shows that the eigenvalues 4 = A(t) of the Robin
problem

Lu=Auin Q,
"= i (5.16)
sin(5 )y, u + cos(50)y,u =0ondQfor ¢ €[0,1],

are monotonically decreasing with respect to t € [0, 1]. We note that

(0) = Ap e < Ap 41 = Ap41(0) and
Ak(l) = /IN,k S AN,k+1 = /‘lk_'_l(l), k = 1, 2, eey

are the Dirichlet and Neumann eigenvalues. From this point on, the arguments given in [62] and
[60] are as follows. Monotonicity in ¢ of the Robin eigenvalues 4,(t) just proved, and the stan-
dard inequalities Ap, ; > Ay show the strict inequalities Ap, , > Ay x4, provided that we know
the fact, cf. [62, Lemma 1.3], that for each A, there is a t € [0, 1] such that (5.16) has a nontrivial
solution. This fact is equivalent to the existence of a positive eigenvalue cot(%t) of the Dirichlet-
to-Neumann operator when 1 ¢ Spec(—Ap), and its proof has been carried out in [62] and [60]
for the Laplacian using the minimax principle and infinitely many linearly independent explicit
functions e, with 7 € R" such that ||n||2, = A, which satisfy —A(e”*) = 1e'7~.

Example 5.6. We will now derive from Theorem 5.2 an elegant result in [116, Theorem 3.2] regard-
ing monotonicity of Robin eigenvalues. Given 0¥ g L®(Q;R), £ = 0,1, we define the Robin
operators £)u = Lu such that

dom(£) = fu € D'(Q) 1 y, . u =0y u}

for the elliptic differential expression in (5.1). We let A;(£)) < 1,(£®) < ... denote the eigen-
values of £(“) counting multiplicities. Assume that ©© < ©1), We will give a new proof of J.
Rohleder’s result stating that

if 8© < ®M on a set of positive measure then 1, (£®) > 1, (£WV) (5.17)

for k = 1,2, .... Denote ©, = @©) + (@1 — ©©) for ¢ € [0,1] and introduce operators £, as in
Theorem 5.2 such that £, = £ and £, = £, Denoting by 1,(t) : = 1,(L,) the eigenvalues of
L, counting multiplicities and by u,, the respective eigenfunctions, formula (5.9) implies

da, ()
é‘t = —((©Y =0y w, v, w20 < 0.k =1,2,...,t €[0,1] (5.18)

because @ < ©) on aset of positive measure, thus proving (5.17). Let us elaborate on some addi-
tional consequences of monotonicity of eigenvalues. As the eigenvalue curves ¢t — 4,(t) are strictly
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FIGURE 1 Illustration of (5.18), (5.19).

monotone and continuous, we obtain the following count for the eigenvalues, see Figure 1,

(#k : 4, (£D) < 2P — @k 49 < )

= Z dimker(£, — 2). (519)

te[0,1]

A weaker version of this counting formula
(#k 2 D) < 1) — @k : 2,(£©9) < 2}) > dimker(£©® — 1),

was obtained by J. Rohleder [116, (3.4)] by variational methods. This is a key estimate in [116]
leading to (5.17) in the original proof. Now, (5.19) can be viewed as a prequel to Section 5.5, where
the left-hand side of (5.19) is treated as the spectral flow of the family {£,},¢[o ;] through 4 and
the right-hand side is viewed as the Maslov index of a certain path of Lagrangian planes. The
equality between the Maslov index and the spectral flow in a very general setting has been recently
investigated in, for example, [44-46, 93, 95] and the vast literature cited therein.

5.3 | Continuous dependence of solutions to heat equation on thermal
conductivity

In this section, we apply our general results to give a new proof that solutions to the linear homo-
geneous heat equation depend continuously on a certain physically relevant parameter present in
both the operator and the boundary condition. The assertions of this type have a long and distin-
guished history, and have been resolved even for quite general Wentzell boundary conditions. We
refer the reader to [42, 43] where one can also find further literature. We did not attempt to cover
the case of Wentzell boundary conditions anywhere in this paper but remark parenthetically that
it is an interesting open area to develop a version of the asymptotic perturbation theory for oper-
ators equipped with this type of dynamical boundary conditions. At the moment, as in [70], we
consider the following heat equation:

du (5.20)

—x=— =u, on 9Q,

{ u. (t,x) = xp(x)A u(t,x),x € Q,t >0,
on

describing the temperature u of a material in the region Q C R* with thermal conductivity x
immersed in a surrounding medium of zero temperature. Here, 1/p(x) is the product of the
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density of the material times its heat capacity. The continuous dependence of the temperature
u on the thermal conductivity x with respect to L?(Q) norm follows from Theorem 5.7 proved
below, which is a version of Theorem 5.2. To sketch the argument, we consider the self-adjoint
operator L, 1= —xA, L, : dom(L,) C L*(Q) — L?(Q) with dom(L,) = {u € D}(Q) : —Ky U=
yDu}. Then by Trotter-Kato Approximation Theorem [58, Theorem I11.4.8], the family of semi-
groups {e~*£x}, _ is strongly continuous in x uniformly for t from compact subsets whenever
x> (oL, —¢)~! is continuous as a mapping from (0, +o0) to B(L*(Q)) for some ¢ & Spec(L,.)
(we note that oL, is not necessarily self-adjoint). The next theorem gives a rigorous argument for
the required continuity of the resolvent in a slightly more general form. (In the next theorem, to
keep up with notation used in the rest of the paper, we denote the parameter with respect to which
the continuity is established by ¢, not by «; this is not to be confused with notation t for time used
in (5.20)).

Theorem 5.7. Let Q C R? be a bounded open set with C*®-smooth boundary 0Q. We assume

that t — a,, t — B, are mappings in C([0, 1], L*(8Q; R)) such that a’(x) + BZ(x) # 0 for x € 6Q,

t €[0,1], andt — p, isamapping in C([0, 1], C(ﬁ; R)) such thatinf{p;(x) : t € [0,1],x € 5} > 0.

Recall the differential expression L from (5.1) and define the following operator acting in L*(Q):
Lyou = pLu,u € dom(L, ),

dom(L, ) := {ue D'(Q) : ay,u+ ﬁ[quﬁu = 0}.

Then, the operator L, , is sectorial and the mapping t — (L, , — O~ lies in C([0, 1], B(L*(Q))) for
all{ € C\ Spec(L, ).

Proof. To prove that L, o is sectorial, we have to show the existence of such 6 € (0, %) and M =
M(6) > 0 that

¢ eC\Spec(L, ) and (L, = O ) < MIEIT,

provided ¢ # 0 and | arg¢| € (6, 7). First, we introduce a self-adjoint operator £, acting in L?(Q)
and definedby £,u := Luforu € dom(£,) :=dom(L, ,)sothatL, , = p,L,.Since L, isbounded
from below, we may assume without loss of generality that £, > 0 and, given a 6 € (0, %), use the
estimate

e, — §)_1I|B(L2(Q)) < (|¢]sin@)7! for all ¢ € C\ {0} such that | arg | € (6, 7). (5.21)
Indeed, (5.21) follows from the estimate

(L = O sy < 1Tm &7 < (1€]sin)~!

provided | arg | € (6, g] and

0L, = & sy = (dist(€, Spec(£)) ™" < €171 < (1€] sin €)™

provided |argé| € (%, 7.
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Throughout the rest of this proof, we take all inf’s and sup’s over (¢, x) € [0,1] X Q. We pick
0 € (o, %) such that

(1 —sin? @) sup p:(x) < inf p,(x) (5.22)

and fix any ¢ € C \ {0} such that |arg¢| € (6, 7]. Using (5.22), we can choose ¢ € C such that
arg & = arg ¢ with |£] that satisfies the inequality

(1 —sin® 8) sup p,(x) < I¢]1€]" < inf p, (x). (5.23)
Dividing this by p,(x), we infer

sup |(I¢1(1€]p,(x)) ™" = 1)| < sin6. (5.24)

Since ¢ € C \ Spec(£L,), we have

Pt[/r —§ = pt(ﬂt - §)(I - (Et - g)—l(é—pt—l - f)) (5-25)

Combining (5.21) and (5.24), we infer

(L, = 7P = Ollprcay < (1€]sin @)~  sup |e € (|¢]p,(x)™" — [€])

<sinfb < 1,

which by (5.25) gives 1 € C \ Spec(p;L;) and, using the second inequality in (5.23), the required
resolvent estimate [|(£, , — §) 7l 52y < MIS|™!. Thus, £, , is sectorial.

Itisenough to prove continuity of the resolvent mapping atany ¢’ € R in the resolventsetof £, o
We note that if { € R \ Spec(L, ), then 0 € C \ Spec(L, — p;'¢) and the identity (o, £, —{)™! =
(L, — ;') p; ! holds. Since the map ¢ — p; ! is continuous, it remains to prove continuity of
the map ¢ — (£, — p;*¢)~", that is, of the resolvent of the operator H, = £, — p; !¢ at zero. This
follows from Theorem 3.26 with A, = L;, V, = —pt_lé', T:= (yD,)/NL) € B(D'(Q), H/2(3Q) x
H~1/2(8Q)) and

Zs o= [Wiap, B (@ By — Bra)IW(ay, B;)] = 0,5 — &

To justify the use of Theorem 3.26, we note that Hypothesis 3.13 in the theorem is satisfied, that
is, (£, —i)~! = O(1) as t — s in B(L*(Q), D'(Q)). The proof of this assertion is similar to that of
(5.10) (one imposes Robin boundary condition with ©,(x) := —a,(x)g; 1(x) on the portion of the
boundary where 8, 1(x) # 0 and the Dirichlet condition elsewhere). O

5.4 | The Hadamard formula for star-shaped domains

In this section, we show how to use Theorem 3.26 to derive the classical Hadamard for-
mula for the Schrodinger operators subject to the Dirichlet boundary condition on variable
star-shaped domains.

Let QO C R" be a smooth star-shaped domain centered at zero and Q; = {tx : x € Q} be its
variation for ¢ € (0,1]. We consider a smooth (N X N)-matrix potential V = V(x) for x € Q
taking symmetric values. Suppose that x4 € R is such that dimker(=Ap o +V —u) =m > 1,
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where —Ap , denotes the Dirichlet Laplacian acting in L*(Q2). We claim that there exists a
choice of orthonormal eigenfunctions {u j};"z 1 € (=Ap g +V —p) and a labeling of the eigenval-
ues {¢; (t)};”=1 of —Ap o +V Iq,.fortnearl, such that u;(1) = uforeach j, and that the following
classical Rayleigh-Hadamard-Rellich formula holds, cf. [80, Chapter 5],

,aj(l) = —/ -x)(v- Vuj)zdx, 1<jsm. (5.26)
Elo)

Rescaling Q > t = tx € Q; of the operator ( —Apg, + V) |Qz back to Q yields a one-parameter
family of self-adjoint operators H, = —Ap, o + t*V(tx), t € (0,1] acting in the fixed space L*(Q).
This family of operators fits the framework of Theorem 3.26 with A, = —Aq, V,(x) = t?V(tx),
T, = [yD,—t_ldJyN]T, cf. (5.4), t, =1, A(t,) = u and Q, given by the t-independent projection
onto the Dirichlet subspace {(0, g) : g € H/2(6Q)} for all t. All assumptions of Theorem 3.26
are clearly satisfied in the present setting. By the theorem, there exists a choice of orthonormal
eigenfunctions {u j};.”: C ker(=Ap g +V — ) and a labeling of the eigenvalues {4 j(t)}»;.”:1 of H,,
for t near 1, such that

. d(£?V(tx))
/‘lj(l) = <Tlt:1u]‘, uj>

= 2<Vuj',uj>L2(Q) + ((VV . x)uj,u]'>L2(Q), 1 S J < m.

L2(Q) (5.27)

By the same rescaling as above, the eigenvalues 4;(¢) uniquely determine the eigenvalues u;(t)
for t near 1, and one has 4 j(t) = t’u j(t). Our next objective is to use this identity together with
(5.27) to derive (5.26).

We pause to consider the case of the Laplace operator with no potential. If V = 0, then the
proof is essentially completed as H, does not depend on ¢t and 0 = /ij(l) = 2u;(1) + f2;(1). This
yields (5.26) by the celebrated Rellich formula [112] expressing the eigenvalues 4 (1) = p;(1) of
the Dirichlet Laplacian via the Neumann boundary values of the respective eigenfunctions (this
formula, in turn, easily follows from the Pokhozaev-Rellich identity, see, for example, [12, p. 201],
[85, p. 237], and formula (5.30) below).

Returning to the general case of nonzero potential, to derive (5.26) from (5.27), we will follow
the strategy of [44, Lemma 5.5]. Let us fix j and denote, for brevity, u :=u ; and Alt) =2 j(t),
u(t) = w;(t). First, integration by parts for Q C R" yields

((VV - )u, u) 2y = —(Vu, 2(Vu - X) + nu)2q) and (u, Vu - X)2q) = —n/2. (5.28)

Using —Au + Vu = A(1)u and replacing Vu by Au + A(1)u in (5.27) and (5.28), a short calculation
gives

(1) = -2 =02- n){Au, u)LZ(Q) —2(Au,Vu - x)Lz(Q). (5.29)
The standard Rellich’s identity, see, for example, [12, p. 201], yields

(Au, Vu - X) 120y = /an ((v -Vu)(x - Vu) — %(x . v)lqullz)dx (5.30)

+n_2/||Vu||2dx.
2 Jao
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Since u satisfies the Dirichlet condition, dQ is a level curve, and thus, Vu and v are parallel, that
is, Vu = (v - Vu)v. Using all this in (5.29) yields (5.26) because

u) = / (=2(v - Vu)(x - Vu) + (x - v)|| Vul*)dx = —/ v - Vu)*(v - x)dx.
£ 50

5.5 | Maslov crossing form for elliptic operators

In this section, we continue the discussion began in Section 4.5 on the relation between the Maslov
crossing form and the slopes of the eigenvalue curves bifurcating from a multiple eigenvalue of
the unperturbed elliptic operator. Here, we assume the setting of Theorem 5.2 and obtain a version
of formula (4.45) for the Robin-type elliptic operators L,, see Proposition 5.8 below. For 1 € R, we
let

n n
K, =T <{u €H'(Q) 1 ) (a0, 892y + D (201, @) 12
jk=1 j=1

n
+ 2(11, a;0;®)2q) + (VU — AU, @)20) =0, p € Hé(Q)}) ,
j=1

where the trace operator T = [T, T, ]" is as in (5.6). This is a “weak” version of the set ; , from
Section 4.5. The mapping A = K, is in C*(R, A(H'/?(3Q) x H'/2(3Q))) by [45, Proposition 3.5].

Lett > F, :={(f,—0©,f) : f € H/?(3Q)}, then for ¢, € [0,1], there is an interval Z C [0,1]
centered at t, and a family of operators t — M,,t € T,whichisinC? (I, B(Pto, Fi)) with Mzo =0
and

Fi={q+M,q|qeF, } 1T,

see, for example, [44, Lemma 3.8]. In other words, F; can be written locally as the graph of the
operator M,, which is a replacement of M, , from Section 4.5. We say that (4, t,) is a conjugate
pointif K; NF; # {0} or, equivalently, if ker(E[0 — A1) #{0}.

We recall A(t) € Specgis.(L;,) from Theorem 5.2 and let 1 := A(t,). Then, (4, ¢) is a conjugate
point at which the Maslov crossing form m, for the path ¢ — K; @ 7, relative to the diagonal
subspace ® = {p = (p, p) : p € H'/2(3Q) x H/2(3Q))} is defined by the formula

d . N .
m, (q,p) := al,ztow(q, M;p) = w(q, M, p), p.q € (K; ®F, )ND, (5.31)
where & = w @ (—w) and Mlo = %Mth:zo' We stress that the pair of Lagrangian subspaces

(K1, Fy,) is Fredholm since 4 = A(ty) & Speces(L, ), see [93, Theorem 3.2]. Hence, dim ((K; &
Fi,)n D) < o0 and m, is a finite-dimensional bilinear form. In fact, the pair of Lagrangian sub-
spaces (K;, F,) is Fredholm for ¢ near ¢, due to continuity of the path of the resolvent operators
te (L, —i)7L

Proposition 5.8. Let A(t)), {1 j(t)};”:1 and {u j};n=1 be as in Theorem 5.2, and denote q; :=
(Tuj, Tu;). Then, q; € (K @ F;) N D and

Ai(ty) = my (g;,9)), 1<j<m, (5.32)
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where m, is the Maslov crossing form introduced in (5.31).

Proof. The inclusion q; € (K;;) @ F; ) N D holds since u; is an eigenfunction of £, corre-

sponding to the eigenvalue A(t,). For a fixed j, we abbreviate q :=q; = Tu; and introduce
g9, € HY2(3Q) x HY/?(8Q) as in (4.44) but with M, , replaced by M,. In particular, 9, = Tu;
because M, = 0. Since g, = Q,g; where Q; is the orthogonal projection onto F;, we have

Gty = Qu 9ty + Qi 9ty = Qu, T + Qy Gy, -
This and that ran(QtO) is Lagrangian yields, as in (4.50),
W(Tuja gto) = W(Tuj’QtOTtouj)-
As in (4.51), by definition of m;, this implies
mto(q]‘,q]') = —CU(T“]': gto) = —W(Tuj,onT”j) = w(QtOTuj7Tuj)-

By formula (5.9) in Theorem 5.2, we have /ij(to) = —(C;)[Oy
show that

Duj,yDuj)LZ(aQ). Thus, it remains to

w(QtOTuj, Tu]) = _<®t0yDuj’ yDuj>L2(aQ).
The latter assertion follows from (3.46) with ¢; = —y ujand X; =©,,Y, =1 as
F; = graph(—0©,) = ker([X,,Y,])

with this choice of X, and Y. O

Remark 5.9. As discussed in Remark 4.23, formula (5.32) relating the derivative of the eigenvalues
of the elliptic operators £; with respect to the parameter ¢ and the value of the (Maslov) crossing
form for the flow t = &),y @ F; of Lagrangian planes could be viewed as an infinitesimal ver-
sion of the fundamental relation between the spectral flow and the Maslov index. Indeed, as in
Remark 4.23, formula (5.32) implies relation (4.54) with H, replaced by £, and Y, , replaced by
Ky @ T

Example 5.10. We will now briefly return to the Robin eigenvalue problem (5.16) related to the
Friedlander inequalities but at once for the general elliptic operator £ described in Subsection
5.1. We recall that for 4 & Spec(Lp), the Dirichlet-to-Neumann operator M, y(4) is defined by
fr—-ru (in the relevant papers [46, 62], M, y is defined by f yNu) where u is the solution
to Lu = Au,y u = f.Itis easy to see that (5.16) has a nontrivial solution if and only if u = cot(%t)
is an eigenvalue of M, (1). Combining Remarks 4.23 and 5.9 and Example 5.5 with Proposition 5.8
can be used to show the following formula relating the spectral counting functions of the Dirichlet
and Neumann realizations £, and £ and the Dirichlet-to-Neuman map M, 5(0),

#{A € Spec(Ly) : 4 <0} — #{1 € Spec(Lp) : 1 <0}
(5.33)
= #{u € Spec(Mp x(0)) : u > 0},

see [62] and, specifically, [46, Theorem 3] and the literature therein (in [46, 62] the RHS of (5.33) is
given by the number of negative eigenvalues of M, (), this is due to sign discrepancy in the def-
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inition of Mp, y(4)). We omit details and just mention that the monotonicity of the eigenvalue
curves 4;(t), k =1,2,..., established in Example 5.5 and formula (5.32) show that the Maslov
crossing form is sign definite at each conjugate point on the vertical line through 4 when ¢ changes
from O to 1 (Figure 1 serves as a schematic illustration of this assertion). By a standard calculation,
see, for example, Step 1in the proof of [93, Theorem 3.3], the Maslov crossing form is also sign def-
inite at each conjugate point on the horizontal lines through ¢t = 0 and ¢t = 1 when 4 is changing.
These two properties are sometimes referred to as the monotonicity of the Maslov index. Thus,
cf. Remark 4.23, the spectral flow through zero given by the LHS of (5.33) is equal to the Maslov
index along the vertical line through A that, in turn, is equal to the RHS.

6 | SYMPLECTIC RESOLVENT DIFFERENCE FORMULAS FOR DUAL
PAIRS

In this section, we give a generalization of the resolvent difference formula (2.12) to the case of
boundary triplets for an adjoint pair A, A, see, for example, [1, 30, 32] and the literature cited
therein. The theory of adjoint pairs goes back to [99, 124], see also [7, 16, 31, 102]. It allows one
to describe nonself-adjoint extensions for an adjoint pair of densely defined closed (but not nec-
essarily symmetric) operators. A typical example of the adjoint pair, see, for example, [30, 32],
is furnished by a nonsymmetric elliptic second-order partial differential operator and its formal
adjoint; this example is discussed in detail in the end of this section.

We follow [32] to recall the definition of the adjoint pair and its boundary triplet. Let A, A be
closed densely defined operators on a Hilbert space H forming an adjoint pair, that is, we assume
that A C A* and A C (A)*. We denote by ., respectively, H, the domain dom(A*), respectively,
dom((A)*) equipped with the graph-scalar product and graph norm for A*, respectively, (4)*, cf.
Section 2. Let $ and & be some “boundary” Hilbert spaces and

Tp:H, -9, TI:H,-& T,:H, -], T,:H, -9

be some “boundary trace operators.” The collection {$), S%,FO,Fl,fo,fl} is called a boundary
triplet for the adjoint pair A, A when the following hypothesis is satisfied.

Hypothesis 6.1. Suppose that A, A is an adjoint pair of densely defined closed operators such
that A C A* and A C (A)*. Consider linear operators, called the trace operators,

T:=[[4]" : H, - Hx K, T:=[T,,T}]" : H, - K x 9.
Assume that the operators T and T are surjective and satisfy
((A)*u,v)y — (u, A*v)y = (Tyu, Tov) g — (Tou, T 0)g, (6.1)
forallu € H, andv € M,.

The existence of a boundary triplet for every adjoint pair A, A was proved in [99], where, in
addition, it was shown that

dom(A) = dom((A)*) nker Ty N ker T}, dom(A) = dom(A*) nker T, nker T,.

It is well known that the operators T, T are bounded, cf. [102, 120, Lemma 14.13].



FIRST-ORDER ASYMPTOTIC PERTURBATION THEORY | 73 of 83

The following resolvent difference formula is a direct generalization of Theorem 2.6. It gives
the difference of the resolvent operators of any two (not necessarily sel-adjoint) extensions of the
operator A that are parts of (A)*.

Theorem 6.2. Let {9, K, T, T, fo, T} be a boundary triplet for an adjoint pair A, A, and let A i
for j =1,2 be any two closed extensions of A acting in H and satisfying A C A; C (A)*. Suppose
that{ € C\ (Spec(A;) U Spec(A,)) and denote Rj(é’) 1= (Aj —¢)~! for j = 1,2. Then one has

Ry(O) = Ry(§) = (ToR3(O)) TR () — (T1R3()) "ToRy (), (6.2)

R, () —Ry({) = (TR;(g))*QZJQl(TRl(g))’ (6.3)

where R3($) = (A" — &)Y, the operator TR:($) = (ToR:($), T1R:(2)) is considered as an oper-
ator in B(H, & X ) and the adjoint operators in (6.2), (6.3) are defined correspondingly, Q,,
respectively, Q, denotes the orthogonal projection onto T(dom(.A,)) in the space $ X K, respectively,

onto T(dom((Az)*)) in the space & X 9, and the operator J maps a pair (f, g) from $ X K into the
pair (g,—f) from & X 9.

Proof. The inclusion A C A; C (A)* yields A C (Aj)* CA*for j=1,2 [83, Section II1.5.5]. The
operator R3(¢) € B(H) is also bounded from H onto dom((A,)*) € H, = dom(A*). Thus, the
operator TR} () is well defined, and, analogously, the operator TR, (¢) is well defined. Moreover,
for all u,v € H, one has

(A* = DR = (A, = O'R; O = v, (A =R O = (A ~ORQu =1 (64)

We also have QZTR;" )= TR;‘ (¢) and Q; TR, ({) = TR, (¢) by the definition of the orthogonal pro-
jections Q, and Q;. Thus, (6.3) is just a reformulation of (6.2). For the proof of (6.2), we use (6.1)
and (6.4) to write

((Ry(©) = Ry, 0y = (Ry(Ot — Ry, (A, = O R5 (v
= (A, = DR/, RY0)y — (R, (A" = OR; ()
= (W, Ry (O)y — (A" = )R, (Ou R (v)y,
+ (T Ry (O, ToR5 (Ov) g — (ToR (O, T1 R () g
= ((ToR5()) Ty Ry (O, v)y = ((T1R5(S)) TR (O, vy,

for all u,v € H, yielding (6.2). O

In particular, for j = 1,2, given an operator ¥; € B($, &) (not necessarily self-adjoint), we
consider in H the extension A; of A satisfying A C A; C (A)* and defined by the formulas

Aju = (A)*u for u € dom(A;) :={u € fl+ tTyu=%Tou}, j=12

Corollary 6.3. Under assumptions in Theorem 6.2, one has

Ry($) — Ry (§) = (ToR3(O)) (W1 — W,)T R, ().
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The proof of this corollary is similar to the poof of Theorem 6.2 and is omitted here, but it is
presented in the electronic version of this manuscript [92].

Remark 6.4. We note that both the Weyl function and the y-field for an adjoint pair were origi-
nally introduced and studied in [101, 102], where the Krein-type formula written in terms of these
objects was derived for the first time.

Remark 6.5. The formulas for resolvent difference presented in Theorem 6.2 are applicable to a pair
of formally adjoint uniformly elliptic operators on domains with C*® boundaries. The celebrated
work of M.I. Visik [124, 125] and G. Grubb [73] provides boundary triplets for dual pairs in this
setting. We elaborate on this point in the electronic version of this paper available on ArXiv [92].

APPENDIX A: LAGRANGIAN PLANES AND SELF-ADJOINT EXTENSIONS

In this appendix, we elaborate on the assumption of the second part of Theorem 2.6—that the
image of the domain of a self-adjoint extension is a Lagrangian plane. It is well known that self-
adjoint extensions of A can be parameterized by Lagrangian planes, see, for example, [71, Theorem
3.1.6], [77, 106], and [120, Proposition 14.7]. Such parameterization depends on the choice of the
trace operator T and the “boundary” space $, see, for example, [14, Proposition 2.4] and [71,
Chapter 3]. Theorems A.1 and A.2 and Corollary A.5 below give yet another variant of the param-
eterization. The proofs amount to checking basic definitions and therefore omitted for the sake
of brevity. They are, however, presented in the electronic version of this paper available on ArXiv
[92].

Theorem A.1. Assume Hypothesis 2.1 and that F € A($ X ) is a Lagrangian subspace in $ X $
such that

FNT(D) =T(TY(F)) is (H X H)-dense in F. (A1)
Then, the operator A = A* |T—1(T’) is essentially self-adjoint, that is, A= A% if and only if
dom(A*) N Dis (H,)-dense in dom(A*). (A.2)

Next, we present a result saying that the traces of the domains of self-adjoint extensions of A
form Lagrangian planes in X 9.

Theorem A.2. Assume Hypothesis 2.1 and that there exists a self-adjoint restriction A of A* on a
subspace dom(A) C H, such that

dom(A) N D is (H . )-dense in dom(A). (A3)

Then the (9 X H)-closure of the subspace F defined by F := T(dom(A) N D) is Lagrangian, that
is, F = F°, ifand only if

F°NT(D)is (H X H)-dense in F°. (A4)

We note that conditions (A.1)-(A.4) automatically hold for all classes of PDE, ODE, and quan-
tum graphs operators and all examples that we know; these conditions trivially hold provided
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D =H,and T(D) =  x 9, thatis, when (9, Tj, T'; ) is an abstract boundary triplet, see Section 4.
We recall Remark 2.5 regarding the existence of self-adjoint extensions of A under Hypothesis 2.1.

Remark A.3. The density assumptions dom(A) = H,ran(T) = § X 9 introduced in Hypothesis
2.1 are absolutely critical for Theorems A.1 and A.2 to hold. Indeed, [53, Example 6.6] gives a
scenario in which dropping the above-mentioned density assumptions facilitates a Lagrangian
planein $ x $ whose preimage is equal to dom(A), which is evidently not a domain of self-adjoint
extension of A.

Assuming Hypothesis 2.1, for the sake of brevity, in the sequel, we will use the following
terminology.

Definition A.4.

(i) Given a subspace F in $ X $, we call A = A* |T*1(P) the operator associated with F.
(ii) Given an operator A, we call F = T( dom(A) N D) the subspace associated with A.

(iii) We say that a Lagrangian subspace F € A($ X 9) is (T, D)-aligned or, when there is no con-
fusion, simply aligned if (A.1) holds and the adjoint to the associated with F operator A
satisfies (A.2).

(iv) We say that a self-adjoint restriction .4 of A* is (T, D)-aligned or, when there is no confusion,
simply aligned if (A.3) holds and the annihilator of the associated with .4 subspace F satisfies
(A.4).

Employing Definition A .4, let us state a result overarching Theorems A.1 and A.2.

Corollary A.5. If F is an aligned Lagrangian subspace, then the operator A associated with F
is essentially self-adjoint and its closure A is aligned; in particular, the closure of the subspace
associated with A is equal to F.

Conversely, if A is an aligned self-adjoint restriction of A*, then the closure F of the subspace
F associated with A is an aligned Lagrangian subspace; in particular, the closure of the operator
associated with F is equal to A.

A particularly transparent and widely studied scenario of aligned Lagrangian subspaces and
self-adjoint operators is discussed in Section 4, see, in particular, Remark 4.2.

APPENDIX B: THE KREIN-NAIMARK RESOLVENT FORMULA REVISITED
In this appendix, we revisit the classical Krein-Naimark (B.4) formula for the difference of resol-
vents of two self-adjoint extensions of an abstract symmetric operator, see, for example, [120,
Section 14.6]. As we demonstrate in the proof of Proposition B.1, the Krein-Naimark formula
(B.4) can be naturally derived from formula (2.12) in Theorem 2.6 by specializing it to the case of
ordinary boundary triplets. Conversely, in Remark B.2, we show how to derive (2.12) from (B.4).
Let (9, T, ;) be an ordinary boundary triplet as described in Definition 4.1. Following com-
mon convention, we define one of the two self-adjoint extensions of A in the Krein-Naimark
formula by

AO = 14”< rker(FU)’ (Bl)

and subtract from its resolvent the resolvent of yet another, arbitrary, self-adjoint extension.
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First, we recall some known facts, see, for example, [120, Section 14]. Since
dom(A*) = dom(Ay)+ ker(A* —¢) for{ € C\ R,

the map Ty lyer(ax—¢): ker(A™ — ) — $ is bijective, and thus, we define y({) := (Ty Mer(as—¢)
)1 and notice that y(¢) € B($H, H) and Tyy({)h = h for any h € $. In particular, y(¢) is injec-
tive. We will use the well-known Derkach-Malamud lemma saying that y*(?) =T(A4, -7
see [55, Lemma 1] or [120, Proposition 14.14(i)]. The operator-valued function y(-) can be extended
analytically to C \ Spec(.A,) giving rise to the abstract Weyl function M({) :=T,y({), { € C\
Spec(A,).

Next, let A be an arbitrary self-adjoint extension of A, and let 7 € A($ X ) be the Lagrangian
subspace such that 7 = T(dom(.A)), cf. Theorems A.1 and A.2 and Remark 4.2. We will treat
F as a linear relation, see, for example, [120, Section 14.1]. Slightly abusing notation, we do
not distinguish between the operator M(¢) and its graph, in particular, we write F — M({) :=
F — graph(M(¢)) and treat both terms in the right-hand side as linear relations. The linear relation
F — M({) is called invertible whenever

ker(F — M) :={f €  : (f,0) € (F - M({))} = {0}, and (B2)

ran(F - M) :={g € H :If € Hs.t.(f,9) € F-M)} = 9. (B.3)
In this case, there exists an operator in B($) whose graph is given by
{(9./)eHxH : (f.9) € F-MEk

this operator is denoted by (F — M(¢))~!.

Proposition B.1. Let (9,1, I';) be a boundary triplet for the symmetric operator A, see Defini-
tion 4.1, let A, be the self-adjoint extension of A from (B.1), let A be an arbitrary self-adjoint extension
of Aand F = T(dom(A)). Then F — M({) is invertible and

(A= = (A= O™ +7OF = M) 'y € for ¢ & Spec(Aq) U Spec(A). (B4)

Proof. We denote Ry(¢) := (Ay— &)™ and R() = (A —¢)~". Since TyRy($) = 0 by (B.1), the
resolvent difference formula from Theorem 2.6 and the Derkach-Malamud lemma above yield

Ry($) = R() = (ToRy(O)'T1R() — (T Ry (D) THR() = —y(O)THR(Q).
It remains to prove (B.2) and (B.3), and that
ToR(E) = (F = M) ). (B.5)
The main identity needed for the proofs is that
Y*(Ou =T Ry(O)u = T, R(u — M(T,R(¢)u forall u € H. (B.6)

To justify the second equality in (B.6), we use (A* — {)y($) = 0 and [y(I;; — y({)T,) = 0, yielding
ran(l;; — y(¢)Ty) € dom(A,), and write

FlRO(Q') = rlRO(g)(A - {)R({) = rlRO(g)(A* - {)R(é’)



FIRST-ORDER ASYMPTOTIC PERTURBATION THEORY 77 of 83

=T Ry (A" = (I — ¥(THRE)
=T1R($)(Ag — U3 — ¥(§THR(E)
=TIy — Y(OTHRE) = T1R(E) — M(TGR(Q),

thus proving (B.6). Since R({) is a bijection of H onto dom(.A), we have F = {(TyR({)u, ' R(Ou) :
u € H}. This and (B.6) yield

F—MQ) ={(f,0- M) : (f.9) € F} (B.7)
= {(ToRQu, TR u — MEOTRE ) : u € H)

= {(FoR(g)u,y*(E)u> ‘u€H}.

Since T is surjective, (B.3) follows from (B.7). Indeed, for any g € $, there is some v € dom(A*)
such that I'yv = 0 and I';v = g. Since v € dom(A,), there is some u € H such that v = Ry({)u
and so g = I'}Ry($)u € ran(F — M({)) by (B.7) and (B.6). To begin the proof of (B.2), we first
notice that y(¢) ker(F — M({)) € dom(.A). Indeed, by (B.7) and (B.6), we have ker(F — M({)) =
{TeR(Ou : T1R(u = M({T,R()u, u € H}, and thus,

Ty(§) ker(F — M({))
= {Tor(OTR(u, T1y(OTGR(u) = T1R(Ou = M(OTGR(u, u € H}
= {ToR(Ou, M(OToR(Ou) = T1R(Ou = M(OTR(Ou, u € H}
=7 n graph(M({)).

Therefore, (A — {)y({) ker(F — M(£)) = (A* — {y() ker(F — M(¢)) = {0} yields the inclusion
y(Q ker(F — M({)) C ker(A — ¢) = {0} and thus ker(F — M({)) = {0} because y({) is injective,
thus finishing the proof of (B.2). Finally, using (B.7) again,

graph(F — M) ={(g,. /N € Hx 9 : (f,9) € F-M()}
= {(y*(z)u, FOR(Q')u) CuEH}
yielding (F — M(¢ ))_ly*(g) = T'yR($), as required to finish the proof of (B.5) and thus (B.4). []

Remark B.2. In the course of proof of the Krein-Naimark formula (B.4), we established relation
(B.5). Using this relation, we now show how to derive formula (2.12) in Theorem 2.6 from formula
(B.4), cf. the proofs of Theorem 2 and Corollary 4 in [55]. For any two self-adjoint extensions .4,
and A, and the extension A, given by (B.1), we denote R;({) = (A4; — ¢ )~! for any ¢ that is not in
the spectrum of A, j = 0,1,2. Applying (B.4) and using (B.5) for A, and A, yields

Ri(§) = Ry($) + 7(OTR1 (), Ry($) = Ry(§) + y(OTR,(£). (B.8)
Multiplying (B.8) by I'; and using formulas y*(z) =TRy($) and M($) = I';y($) gives

TR (O) = 7" () + MOTGR (), T1R,(E) = 7*() + M(OT R, (0).
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Plugging this in the RHS of formula (2.12) and using the property M*(¢) = M(E) of the Weyl
function, see, for example, [120, Proposition 14.15(ii)], yields

(ToRe®) TR (©) = (T1RD) ) ToR,©)

= (k@) (1" @ + MOTLR ) = (@) + MOTRD) ToRi(Q)

*

= (YOTRAD) = FOTREN + (TR D) (MO = M@ TR (©)

= (RO - R®) = RO = R = RoO) = Ri©),
where, to pass to the last line, we used (B.8) again. This proves (2.12) as required.
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