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1 | INTRODUCTION

The problem of finding optimal bounds for the norm of a semigroup of linear operators is very important and wellstud-
ied in the asymptotic theory of semigroups [2, 4-6, 15, 17]. Of particular importance are characterizations that relate
the growth/decay bounds to the spectral properties of the generator of the semigroup. We mention here the celebrated
Gearhard-Priiss Theorem [7, 18], and refer to [2, section 5.7] for further references or to [9, 10, 14] for more recent results.

For families of semigroups depending on a parameter, the problem of finding estimates for their norms that are uniform
with respect to the parameter is significantly less studied. In this paper, we aim to find sufficient conditions that guarantee
uniform with respect to the parameter exponential decay estimates for families of analytic semigroups in Banach spaces.
These results are important in the study of Lyapunov linearized stability of traveling waves in systems of partial differential
equations. In many instances, such as parabolic systems of partial differential equations, the linearization along the wave
is a sectorial operator, hence it generates an analytic semigroup. In the case when the linearization along a planar wave is a
differential operator on a multidimensional domain, the generator of the semigroup is typically similar to a multiplication
operator by an operator-valued function of certain parameter, the dual variable. The Lyapunov linearized stability problem
is thus equivalent to the existence of uniform with respect to the parameter bounds for a family of analytic semigroups.
We present two specific cases, arising in the theory of reaction-diffusion systems and the bidomain equation, illustrating
these ideas in Section 4 and Section 5.

It is well known that for any strongly continuous semigroup of linear operators {T(¢)};>o on a Banach space X, there
exist two constants L > 1 and w € R such that

IT(®)| < Le*! for any ¢ > 0. (1.1)
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We recall that the infimum (which might not be the minimum) of all w for which there exists a constant L > 1 such that
(1.1) holds is called the semigroup growth bound, and is denoted wy(T). Moreover, in the case of an analytic semigroup
one has wy(T) = s(A) := sup Re o(A), where s(A) is the spectral bound and o(A) is the spectrum of the generator A of the
semigroup {T(t)};>o. We stress that it is much harder to find a direct formula, or even an estimate, for the constant L in
(1.1), unless one imposes additional conditions on the analytic semigroup {T'(¢)};>, or its generator. A classical example of
such condition reads as follows: If A is the generator of an analytic semigroup {T'(¢)};>o and A — wl is dissipative, then
(1.1) holds for L = 1, cf., for example, [2, Proposition 3.7.16].

In the case of families of semigroups whose generators depend on a parameter «, real or complex, the constants L and
w from (1.1) might depend on « as well. By studying the spectrum of the generator and the properties of its resolvent, one
can find a convenient growth rate. However, even if we use more advanced results, such as the celebrated Gearhard-Priiss
theorem [7, 18] or later results of Helfer-Sjostrand [9, 10], the constant L = L(«) is quite often such that sup  L(a) = 0.

Usually, one aims at finding the best possible decay rate or the smallest growth rate, that is, the smallest w in (1.1) may
be at the expense of making the constant L large. However, in this paper, studying exponential decay and stability of a
family of semigroups depending on a parameter, we are not necessarily interested in the optimal decay rate, but rather just
in the order of magnitude of the decay rate when the parameter changes. In this context we are willing to give up some
decay to get a constant in front of the exponential term, which is uniform with respect to the parameters in the system. In
a sense, this philosophy is opposite to what has been used in many papers, for example, in [9, 10, 14].

In this paper, we study uniform stability of a family of semigroups of operators, whose generators are bounded
perturbations of a sectorial operator. We start with assumptions on the operator.

Hypothesis (H1). We assume that A : dom(A) C X — X is a sectorial linear operator, that is, there exists a € R, 6 €
(g, 7) and M, > 0 such that

M,
Que :={1€C : 1 #a,larg(d) — a| < 6} C p(A), |[R(A, A)|| < ﬁ forany 1 € Qg . (1.2)

We recall that there are several concepts of sectorial operators in the literature. In this paper, we use the spectral conditions
given above in (1.2). See Remark 2.2 for a more detailed discussion.

It is well known that if A satisfies Hypothesis (H1), then it generates an analytic semigroup that can be evaluated using
contour integration along a counterclockwise oriented path surrounding the spectrum of A. These formulas allow us to
find estimates of the type (1.1) and find explicit formulas not only for w, but also for L. We revisit several results known in
the literature with the explicit aim of controlling the constant L, which are very useful in the sequel, see Lemma 2.4 and
Remark 2.5. Next, we add to Hypothesis (H1) some more assumptions on A.

Hypothesis (H2). We assume the following conditions on the spectrum of the operator A:

(i) sup Re(o(A) \ {0}) < —v for some v > 0;
(ii) 0is a semisimple eigenvalue of finite multiplicity of A.

If the linear operator A is obtained as the linearization of a partial differential equation (PDE) along a traveling wave, then
Hypothesis (H2) is equivalent to what is sometimes called conditional exponential stability of the wave. This situation is
very common, see examples from Section 4 and Section 5.

Next, we consider a family of operators A, := A + E(a), a > 0, where the perturbation E : [0, 00) — B(X) is such
that E(0) = 0. We denote by {T,(t)};> the semigroup of linear operators generated by A,, a« > 0. We assume the following
conditions on the perturbed family of operators.

Hypothesis (H3). The function E : [0, 0) — 9(X) is continuous in the operator norm topology. Moreover, there exists
an increasing function q : [0, o0) — [0, o0) such that

(i) there exists M; > 0 independent of a such that 6(A,) C {1 € C : Red < —q(a)} and

M
IR(A, Al < m whenever ReAd > —q(a), a > 0; (1.3)
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(i) gq(a) = q,a for any a € [0, g,], for some q;, g, > 0;

. IE@)|
iii) € :=limsup —— <
( ) a—»oljp q(er) ©

We note that the estimate (1.3) is necessary for the uniform in a exponential stability of the family of semigroups gener-
ated by A,, a > 0. In Section 4 and Section 5, we present examples of families of operators that satisfy Hypothesis (H3).
Moreover, a condition on the spectrum of the perturbed operator A,, a > 0, is needed to achieve uniform in a exponential
stability of the semigroups {T,(¢)};>0, @ > 0. Indeed, in general the spectrum of the perturbed operator A, might not be
stable, even if the space X is finite dimensional and E(a) = aW, a > 0, where W, is a constant, bounded, self-adjoint,
uniformly negative definite linear operator. See the Appendix for simple counterexamples.

Assuming Hypotheses (H1)-(H3), we show that the family of operators A,, o > 0, is uniformly sectorial, that is A,
satisfies (1.2) and all the relevant constants can be chosen independently on a. Using this crucial result, we can prove that
the family of semigroups generated by A, is exponentially stable uniformly for ¢ > &, for any § > 0. To prove the uniform
in a exponential estimate for the norm of the semigroup {T,(¢)};>¢ for a in a neighborhood of 0, we first find a spectral
decomposition of the space X into two subspaces invariant under A,. In this decomposition, one spectral subspace is
such that the spectrum of the restriction A, is uniformly bounded away from the imaginary axis, and the other subspace
is finite dimensional. To construct such a decomposition, we use a transformation operator borrowed from the classical
work of Kato [13, Chapter II, section 4.2] and Daletskii-Krein, [5, Chapter 4, section 1]. To ensure that the spectral and
semigroup estimates are uniformly bounded in «, we assume the following.

Hypothesis (H4). The function E;, : (0, c0) — 9B(X) defined by Ey(a) = éEO(oc) has the property

sup ||Eo(a)]| < oo. (1.4)
ae(0,1]

This hypothesis guarantees that there exists a positive number g, > 0, independent of a, such that the circle of radius -
centered at the origin is contained in the resolvent set p(A,), for any o € [0, ¢;], where v > 0 was introduced in Hypothe-
sis (H2) (see Lemma 3.6 for more details). This result is essential in finding the desired spectral decomposition of the space
X. Once this step is achieved, we use contour integration and the uniform sectorial property of the family of generators
A, to prove the uniform in o exponential stability of the restriction of the semigroup generated by A, a € [0, ], to the
subspace where its spectrum is bounded away from the imaginary axis uniformly in a.

Next, we turn our attention to the restriction of A,, a € [0, €y], to the finite-dimensional subspace where all of its eigen-
values are of order O(a). The most important step here is to find an expansion of this restriction near a = 0, which is so
that all the eigenvalues of the leading order term are with negative real part. Moreover, the remainder of the leading order
term is of order o(a) and bounded uniformly in « in a neighborhood of 0. To be able to obtain such an expansion, we need
the following additional smoothness assumption on the perturbation.

Hypothesis (H5). There exists r : [0, 00) — [0, o), a continuous, increasing function such that r(0) = 0, lim,_, o, r(a) =
o0, and the operator-valued function E, defined in (1.4) can be extended continuously at 0 and satisfies the inequality

|Eo(ax) — Eg(0)]| £ ¥(x) forany o > 0. (1.5)

We note that Hypotheses (H4) and (H5) are automatically satisfied if the perturbation E is analytic. The first main result
of the paper is the following.

Theorem 1.1. Assume Hypotheses (H1)-(HS5). Then, there exists a function M : (0,1) — (0, o), independent of the
perturbation variable a > 0, such that the following estimate holds:

ITL(ON < M(G)e 9@t forany t > 0,a > 0,x € (0,1). (1.6)

The function M depends on the unperturbed operator A, Ey(0), and the functions ||[E(-)||, g, r, and related constants introduced
in Hypotheses (H3)—-(H5). See Equation (3.100) for a precise formula.
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In part, assumption (H3)(i) yields that wy(T,) = s(4,) < —q(«) as the semigroup {T,(¢)};>¢ is analytic for any a > 0.
Of course, we cannot replace the decay rate —xq(«), x € (0, 1), in (1.6) by wy(T,), and thus by —g(«), unless additional
hypotheses are imposed. In many applications, however, we are mostly interested merely in the order of the decay rate,
and (1.6) captures this feature.

Next, we turn our attention to the special case when 0 is a simple eigenvalue of the unperturbed operator A. The con-
clusion of Theorem 1.1 can be obtained in this case without assuming Hypothesis (H5). Arguing in the same way as in the
general case, we first establish an exponential estimate similar to (1.6) for « away from 0. In addition, when « is close to 0,
we can decompose the space X in the sum of two invariants for A, subspaces: One is such that the spectrum of the restric-
tion of A, to the subspace is away from the imaginary axis, and another is a one-dimensional subspace. A modification of
Hypothesis (H2) is imposed next.

Hypothesis (H2'). We assume the following conditions on the spectrum of the operator A:

(i) sup Re(o(A) \ {0}) < —v for some v > 0;
(ii) 0is a simple eigenvalue of A.

Theorem 1.2. Assume Hypotheses (H1), (H2’), (H3) and (H4). Then, there exists a function N : (0,1) — (0, 00), independent
of the perturbation variable a > 0, such that following estimate holds:

ITL(O < NGe ¥4 forany t > 0,a > 0,x € (0,1). .7

The function N depends on the unperturbed operator A and the functions ||E(-)||, q, and related constants introduced in
Hypothesis (H3). See Equation (3.107) for a precise formula.

Next, we present applications of Theorem 1.1 and Theorem 1.2 to Lyapunov linear stability of planar traveling waves
in reaction—diffusion systems and the bidomain equation. The two models are known to exhibit planar traveling waves.
The linearization of each of them along the wave (in the moving frame variables) is similar via the Fourier transform to
a multiplication operator by an operator-valued function of a certain parameter (the dual variable). Thus, the Lyapunov
linear stability of a planar traveling wave can be obtained by studying the stability of a family of analytic semigroups,
which is uniform with respect to the parameter.

The reaction—diffusion system

U, =DAu+Fu), t >0, x =(X1,...,X,)" € R", u e Rk, 1.8)

has exponentially localized planar traveling wave solutions, that is, solutions of the form u(x,t) = E(xl —ct), under
appropriate conditions on the matrix D € CK*¢ and the vector-valued function F : R — R¥. Considering the equa-
tion in the moving frame variable y = x — cte;, with e; = (1,0,...,0)T € R™, the linearization along the planar wave
his given by & = DA, + c[} 9, + ‘/”F'(E)’ considered as a densely defined linear operator on L>(R™, C¥). Here, /%F’(E)
denotes the operator of multiplication on L?>(R"™, CK) by the bounded, matrix-valued function F’ (E(yl)). Taking Fourier
transform in the variables (y;, ..., ¥,,) € R™1, the linear operator & is unitary equivalent to J(; the operator of mul-
tiplication on L? (R™~!, L*(R, C¥)) by the operator-valued function L :R™! 5 R (H*(R,C*), L*(R,C¥)), defined by
L) = Df."3§1 + cli 0y, + My £y, where V(y,§) = F’ (E(yl)) — |€|2D. We refer to Section 4 for a more detailed discussion
on this topic. Next, we assume the following hypothesis.

Hypothesis (RD). The spectrum of L) = Dd§1 + ¢y, + M
problem, satisfies the following conditions:

FI(iC)) the linearization along the one-dimensional

(i) sup Re (a(f(o)) \ {0}) < —v for some v > 0;
(i) 0 is a semisimple eigenvalue of finite multiplicity of Z(0).

We are now ready to formulate our Lyapunov stability result for the case of reaction-diffusion equations where the
diffusion rates of various components of u in (1.8) are close to each other.
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Proposition 1.3. Assume Hypothesis (RD) and that the diffusion matrix D is sufficiently close to dI, for some d > 0, in the
sense described in Equation (4.19) below. Then the family of semigroups generated by L(£) is stable uniformly with respect to
& € R™L. In particular, the front h is Lyapunov linearly stable.

Next, we briefly recall the bidomain model in electrophysiology studied by Matano and Mori, see, for example, [16],

u = Vy - (A4;Vyu) + f(u)
Ve - (AVou+AVu,)=0, t>0, x € R 1.9)

U=u; —u,

Here, the scalar functions u; and u, represent the intracellular and extracellular voltages, A;, A, € R?*? are symmetric,
positive definite matrices. Typically one has

Ai=

1 I=» -
+v1+ 72 0 ]’ Ae=[ 1= 0 ,  with |y £v,| < 1. (1.10)

0 1+v,—1 0 1—v,+1

The function f is of class €> and of bistable type, for example, 0 and 1 are two stable zeros of f, and there exists a unique
unstable zero of f in the interval (0,1). For a very detailed discussion regarding the applications and importance of the
bidomain Allen-Cahn model to cardiac electrophysiology, we refer to [16] and the references therein.

The bidomain model (1.9) has planar wave solutions of the form

(ua u;, ue)(x, t) = (w’ wi,we)(xl cosy + X2 Siny - Ct)’ X = (x19 xZ) € Rz’t > 0, (Y4 eR.

Next, we pass to the moving frame coordinate system (y;,y,) € R?, where the new axes are chosen such that the wave
travels in the direction of y;. Moreover, we note that last two equations of the system (1.9) are linear. Linearizing the system
along the traveling wave solution and eliminating the variables u; and u,, we obtain that the linearization is given by of =
—%, +¢d,, + Mg The linear operator £, : H*(R*) — L*(R?) is given as the Fourier multiplier £, = ?‘W%Qy% )
The function Q, is a rational function whose coefficients depend on vy, v,, and y only. Moreover, it can be represented as
follows:

Q, (&1, 8) = & <p<%> +g<%>>’ GER HERNOL ere (L11)

Ngét, §LeR & =0,

Bis+ Bo

. 1.12
s2+1 (112)

p(s) = Ny(s—m)* + 7y, g(s) =
The constants N, By, 51, 7)o, and 7; depend on v, and v, and y only. Taking Fourier transform &, with respect to y, € R,
we note that the linear operator o is unitary equivalent to /3, the operator of multiplication on L* (R,L*(R)) by the
operator-valued function 4 : R — B (HX(R),L*(R)), A(§,) = —91_1/%@(,,52)91 + 0y, + M. Here, F, denotes the
Fourier transform with respect to the variable y; € R. For more details, we refer to Section 5 and [16].
From (1.11) and (1.12), it follows that A\(O) is a second-order differential operator and there exists M, > 0 such that
My,

||R</1,A\(0)> | < 7 whenever Red > 0,4 # 0. (1.13)

We recall the following result from [16, Corollary 3.3]:

w is spectrally stable provided that 7y, > Mpgs — 8. (1.14)
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Here, ginr = infcr 8(5), gsup = SUP R 8(5)s g= M, g = gwpzﬂ, while 7, was introduced in (1.12) and M, was

introduced in (1.13). In [16], the authors show that (1.14) is met for certain values of the parameters. In this paper, we prove
that the sufficient condition of (1.14) guarantees that the planar front w is Lyapunov linearly stable.

Proposition 1.4. Assume that 1, > Mg — 8. Then, the family of semigroups generated by A(£,) is stable uniformly with
respect to &, € R. In particular, the front w is Lyapunov linearly stable.

Plan of the paper. The paper is organized as follows. In Section 2, we discuss the two most common concepts of
sectorial operators, and analyze several exponential bounds for analytic semigroups. In Section 3, we prove Theorem 1.1
and Theorem 1.2. Proposition 1.3 and Proposition 1.4 are proved in Section 4 and Section 5, respectively.

A glossary of notation. LP(R™, X), p > 1, denotes the usual Lebesgue space on R” with values in a Banach space X,
associated with the Lebesgue measure dx on R™. H5(R™, X), s > 0, is the usual Sobolev space of X-valued functions. The
open disc in C centered at a of radius € > 0 is denoted by D(a, €). The identity operator on a Banach space X is denoted
by Ix. The set of bounded linear operators from a Banach space X to itself is denoted by 98(X). For an operator B on a
Banach space X, we use dom(B), ker B, imB, o(B), and By to denote the domain, kernel, range, spectrum, adjoint, and
the restriction of B to a subspace W of X. In the case when the space is a Hilbert space, B* denotes the adjoint operator.
We denote by 04is.(B) the set of isolated eigenvalues of finite algebraic multiplicity of the linear operator B, and by 0.(B)
its complement in the spectrum of B. The direct sum of two subspaces W; and W, is denoted by W, & W,. The operator
of multiplication by a function g is denoted by J,. We use wy(T) or wy(A) to denote the growth bound of a semigroup
{T(t)};>0 with generator A. The spectral bound of the generator A is defined by s(A) = sup Re o(A).

2 | NORM ESTIMATES OF SEMIGROUPS GENERATED BY SECTORIAL OPERATORS

In this section, we assume that X isa Banach spaceand A : dom(A) C X — Xisasectorial operator generating an analytic
semigroup of linear operators denoted {T(t)},>o. There are various concepts of sectorial operators relevant to our setup that
we are going to briefly discuss below.

First, we recall that for anya € Rand 6 € (%, 7), we defined the sector with vertex at a of angle 6 the set

Qo ={1€C: 1#a,larg(d) —al <6} (2.1)
One can readily check that
C\Qup={1€C : Red <q,|Iml| < (Red —a)tanb}. 2.2)
In the literature on semigroup of linear operators (see, e.g., [6, 15, 17]), the definition of a sectorial operator is given using
its spectral properties, see (1.2). In the case of linear operators on a Hilbert space, in particular differential operators,
several classical texts [20] define sectorial operators using the numerical range. We recall that if H is a Hilbert space and
B : dom(B) C H — H is a closed, densely defined linear operator, the numerical range of B is defined by

W(B) = {(Bh, h) : h € dom(B), ||h|| = 1}. 2.3)

Definition 2.1. The operator B : dom(B) C H — H is said to be numerical range sectorial if there existsa € R, 0 € (%, )
such that W(B) C C\ Q.

Remark 2.2. From [3, Theorem 1.4], one can readily check that any numerical range sectorial operator is sectorial, but
not vice versa. Indeed, if W(B) C C\ Q, ¢ for some a € R and 6 € (%, ), since Q¢ is open, we have o(B) C W(B) C
C\ Qgp. In addition,

1 1

R < _ ‘ 2.4
IR BN S A, 50~ Tt — 0,50 .
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Another simple computation shows that

q S |z|, |argz| <6—%,
ist(z, = 2.5
154z Soe) |z| sin (6 — |argz|), 6 — % < |argz| < 6, @5)
for any z € Qg ¢. From (2.4) and (2.5), we infer that
0—
IR(4,B)|| < % forany 1 € Q,, and any ¢ € (%,6) , (2.6)

and so B is sectorial.

It is well known that if the linear operator A : dom(A4) C X — X satisfies Hypothesis (H1), then || T(¢)|| < Le® for any
t > 0, for some L > 0. Our first task is to revisit the proof of this result and for each ¢ € (%, 0) find a constant L = L(p),
not necessarily optimal, satisfying the estimate that depends only on ¢ and M.

Lemma 2.3. Assume Hypothesis (H1). Then,

My(ep — sec @)
T

ITO| < e foranyt > 0andany ¢ € <Z,6> . 2.7)

2

Proof. Wefixgp € (%, 0),t > 0, and € > 0. We introduce the curves in the complex plane given by

Agpe=1A€C:argl—a)==%p,|1—a| >} ={a+se*? : 5>¢},
As,e=1A€C: Jargl—a)| <p.|l—a| =c}={a+ee : —p <¢ <o} (2.8)

The path A, , . is defined as the union A; , . UAG . U A;L’(P,E oriented counterclockwise. Since A x: CQpforanyt >0
and € > 0, we have (see [15, Chapter 2])

T(t) = i / e’”R(/l,A)dl forany ¢t > 0, > 0. (2.9)
27t f o .

ﬂ#’.;

Next, we estimate the contour integrals above using (1.2). Changing variables we have

ap.y

o0
eMR(A, A)dA = / e@tse™NIR(q + seti?| A) e*i?ds
€
t

eaziiga

= / 5P R <a + %em,A) dé. (2.10)
€

t

Since AT . C Qg forany t > 0 and ¢ > 0, from (1.2) and (2.10), we obtain that
a,

Tt

at o M o Ecosgp
I / eMR(2, A)dA| < eT / efcos? —L_d¢ = Mye™ / ¢ e (211)
AE € €

|etie| :
g,y t

Similarly, since A° . C Q,p for any t > 0 and € > 0, one can readily check that
a,go,;

I / eR(1, A)dA| = ||%t / qDeee“'1e<a+%,»K,A)dg“|| < Mope® / goe“(’“d;- (2.12)
A;@ -9 -

~1eo
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From (2.9), (2.11), and (2.12) we conclude that

1 * gfcose 1 [*
ITOIl < MyColg)e" for any t > 0, where Cy(gp) 1=  inf / 43 / costae ). @)
&> c o

Finally, we note that

1 ® gfcosg 1 r? cost 1 0 £ cos ep —sec
— ) - P = "
Co(go)§ﬂ</1 : d§+2/_¢e a )<= /1 eE0S9dE + g =2 (214)

proving the lemma. O

Next, we discuss how to improve estimate (2.7), provided that the sectorial semigroup generator A is such that
supReo(A) < a, where a is the vertex of the sector. Such an estimate is important since for many second-order ellip-
tic differential operators, one can immediately prove they are sectorial using Garding inequality, but typically the vertex
is positive. To formulate our result, we introduce the operator-valued function

(a—p)| tan g|
V4 (0,00) X (S(A), 00) X (%e) S BX), V4t @) = / SUR(u + is, A)ds. (2.15)
—(a—w)| tan p|

Lemma 2.4. Assume Hypothesis (H1) and that the vertex a from (1.2) is such that a > s(A) = sup Re c(A). Then,

o ut e/tt

Mje Ve
L—+ — = . .
ITO < ¥ + S sup IV A @)l forany t> 0,8 € (A9 € (5.0) (2.16)

Proof. The proof uses the typical contour integral representation for sectorial operators. First we fix u > s(A) and ¢ €
(%, 0) and set b = (a — u)| tan ¢| and ¢ = (a — u)| sec p|. Next, we introduce the curves in the complex plane given by

Fai,u,qo ={a+set? : s>}, Toue ={u+is: —b<s<b}l (2.17)

The pathT, ;. isdefined as theunion T, , U I'g , . U Fj{’w oriented counterclockwise. We note that this path is contained
in the resolvent set of A and surrounds, the spectrum of A counterclockwise. It follows that (see, e.g., [15, Chapter 2])

T() = 1 / e*R(A, A)dA for any t > 0. (2.18)
27l r

a,u.p

Since Iy , , € Qu0,a = u— ccos @ from (1.2) and (2.17) (Figure 1), we obtain that

au.p =
/ e(a+seilw)1R(a + Seiitp’A) eJ_rigodS S/ e(a+scosgo)t Tods
C c

a,u.p

/ e/“R(/l,A)d/lH =
r+

" 0 o(s—c)cos gt
= / e(ut(s—c)cosp)t %ds = Mot / &ds
¢ c

[e%) _5[ [e's) —§t
= Moel"t / Mdg = Moe,ut / e—dg
o C+|secplé o a—u+§

ot M, ut
< MyeHt / ¢~ qe= 29 (2.19)
0 a—u (a - ,Ll)l’
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v

Red=s(A) Red=yp

FIGURE 1 A plotof the spectrum of A, the sector Q, ¢, and the path I’ in the case when the vertex a is positive.

a,u.p

C

Unlike AS . used in Lemma 2.3 above, T’ is not contained in the sector Q ¢. To finish the proof of the lemma, we

a,p,€ au.@
note that
b .
/ eMR(A, A)dA| = ||ieH / e R(u + is, A)ds|| < e sup ||V 4(t, 1, @) (2.20)
rg,,u@ -b t>0
The estimate (2.16) follows shortly from (2.18), (2.19), and (2.20). O

We note that surprisingly the estimate (2.16) is more useful in the case when a > 0. The main reason is thatif a > 0 and

u = —xq(a), with the function g as in Hypothesis (H3) and »x € (0, 1), then the constant - Z[_OM) from (2.16) is uniformly

is of order @(i), making the estimate (2.16)

bounded by M Ifa=o0and u = —xq(a) with a close to 0, the constant Mo
wa (a

not that useful.

Remark 2.5. Assuming Hypothesis (H1) and that a > s(A), one can readily check that

suop 17 4(t, )l < 2(a — )| tan @| supf||R(u +is, A)|| = |s| < (a —u)|tan |} < oo (2.21)
>

for any u € (s(A),a) and p € (%, 0). From Lemma 2.4, it follows that

Mye'  (a—p)|tan plet!
(a—mt s

ITOI < - sup{||R(u +is, A)|l : |s| < (a — )| tan [} (2:22)

forany ¢ > Oand any 1 > s(A), ¢ € (%, ). This result for the special case of analytic semigroups on Banach spaces resem-
bles the famous Gearhart-Priiss result for semigroups on Hilbert spaces [7, 18], which was optimized by Helffer and
Sjostrand [9, 10]. Indeed, the Gearhart-Priiss theorem says that a strongly continuous semigroup is exponentially stable
provided its generator has no spectrum in the right half plane and its resolvent operator is bounded along the whole
imaginary axis. In case of analytic semigroups, however, it is enough to estimate in (2.22) the resolvent operator of A
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along a bounded vertical segment, not the entire vertical line as it is needed for Cy-semigroups that are not necessarily
analytic.

Next, we collect a couple of other properties of the operator-valued function 7’ 4. In particular, we are interested to find
an alternative formula involving convolutions.

Remark 2.6. Setting b = (a — )| tan ¢| and using the fact that the resolvent operator of A is the Laplace Transform of the
analytic semigroup {T'(f)};>o, it follows that

b o0 b o0
Vatue)= [ & [ ewingas= [ [ ez
-b 0 -bJO

o0 b o0 .
_ / < / ei(t_g)sds>e_ﬂgT(§)d§= / sin((a =t = Ol e o, .
0 —b 0 t—¢&

for any u > s(A) and ¢ € (%, 9). This representation as a convolution shows that the estimate (2.16) is somewhat similar
to convolution-type results of Latushkin and Yurov for the case of general semigroups on Banach spaces [14, Theorem 1.2].

Remark 2.7. From Hypothesis (H2)(ii) we infer that 0 is a pole of order 1 of R(:, A), hence lim;_,;, AR(1, A) does exist in
the operator norm. We infer that the operator-valued function

A= AR(A,A) : Quo U{d € C : Red > —v}\ {0} > B(X) (2.24)

can be extended analytically to Q, g U {4 € C : Red > —v}. For simplicity, we will use the same notation for this function
and set (AR(/I,A))MzO = lim;_ o AR(4, A).

Next, we recall a sufficient condition that guarantees that a linear operator is sectorial due to A. Lunardi [15].

Lemma 2.8. Assume that A : dom(A) C X — X s a linear operator and r € R such that
fAeC:Rel>w}Cp(A) and |AR(A,A)|| <N, whenever Rel > w. (2.25)

Then, the operator A is sectorial. More precisely,

2
\/AN2 +1

Q,; CplA R(1,A)|| <
wr CP(A) and IRGL A < e

forany 1€Q,., (2.26)

where T = m — arctan(2N,).

It is well known that any bounded perturbation of a sectorial operator is also sectorial. To finish this section, we discuss
a sufficient condition that guarantees that the angle of the sector remains the same.

Lemma 2.9. Assume Hypothesis (H1) and W € B(X). Then,

2M(1 + cscH)

Qgzo Cp(A+ W), |[RA,A+W)| < P
—a

forany 1 € Qgg, (2.27)

wherea = a + 2M,||W || cscb.

Proof. Fix A € Qg. Since a > a, we have 1 € Q, o C p(A). Moreover, from Hypothesis (H1) we obtain that

_ M,y ||W
|4 — a| > dist(a, Qze) = (@ — a)sin6 = 2M||W||, and thus [[WR(A, A)|| < MO! a|” < %

(2.28)
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It follows that Iy — WR(A, A) is invertible with bounded inverse and || (Ix — WR(/l,A))_1 || <2.Since Alx —A—W =
(Ix — WR(A, A)) (AIx — A), from (2.28) we infer that 1 € p(A + W) and

_ 2M, 2My|A —a — 2M,||W || csc 6

IR, A+ W)l < IR, AIlIIx — WR(A,A) | < 0= o 0 |
|4 —al [A—a]|d-a]

2M, < 2M, || W || csc@) < 2M,(1 + csc6)

< — —
-1 1 —al 1 -1

, (2.29)

proving the lemma. O

3 | NORM ESTIMATES OF FAMILIES OF ANALYTIC SEMIGROUPS

In this section, we discuss the uniform exponential stability of families of analytic semigroups whose generators are
bounded perturbations of a sectorial operator satisfying Hypotheses (H1) and (H2). Throughout this section, we assume
that E : [0, 00) — ZB(X) is such that E(0) = 0, and the family of operators denoted by A, := A + E(a), a > 0, satisfies
Hypothesis (H3). In addition, we recall that {T,(¢)},»o denotes the semigroup of linear operators generated by A, a > 0.

3.1 | Basic properties of families of analytic semigroups

First, we will show that the operator A,, a > 0, is sectorial and all the constants from (1.2) can be chosen independent of
a.

Lemma 3.1. Assume Hypotheses (H1)-(H3). Then, there exist a > 0, 6e (%, ), and M > 0, independent of a > 0, such that

Qz5 Cp(Ay),  IIR(A, A < —I/IA—/Ia'l forany 1€ Qg5 a>0. (3.1)

The constants @, 8, and M depend on the unperturbed operator A and the functions ||[E(-)|| and q and related constants in
Hypotheses (H3).

Proof. Without loss of generality we can assume that a > 0, where a is the vertex of the sector from Hypothesis (H1). From
Hypothesis (H3)(iii) we have there exists a > 0 such that ||[E(a)|| < (€ + 1)g(a) for any o > «,. From Hypotheses (H2)
and (H3), respectively, it is clear that {1 € C : Red > a + 1} C p(A4) N p(A,) for any a > a,. Moreover,

R(A,A,) — R(A,A) = R4, AL)E(x)R(A,A) whenever Rel>a+1, a > «a. 3.2)

From (3.2), Hypothesis (H1), and Hypothesis (H3)(i), we obtain that

M,|A M ||E
ARG, A < ARG A + IR, AN IE@ ARG, A < '<1 il (“)”>

A —al Red + q(a)

< M,|A| <1+M1||E(OC)||

1l
<—al '@ ) S =g + M€+ 1)

<Myl + M (¢ + 1))<1 + ) <My +a)1 + M (€ +1)) (3.3)

a
|4 —al
whenever Red > a + 1 and o > «y. From Hypothesis (H3), we infer that SUD (0,0 ] [|[E(x)]| < o0. Lemma 2.9 yields

2My(1 + cscH)

forany 1€ Q, g, @ €0, x], (34)
|4 —ayl .

Qg6 € P(Aa), IR, ARl <
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|E(a)|| csc 6 > a. It follows that {1 € C : Red > a; + 1} C p(A,) for any a € [0, ay] and

where a =a + 2MO Supae[o,ao] l
(3.5)

M, (1 + cscO)|
IAR(, Al < 0(|/1+ c;cl Il 2M0(1+csce)<1+ 7 ala I) < 2My(1 + cscO)(1 + a;)
-1 — 41

whenever Red > a; + 1 and a € [0, ay]. Since a; > a from (3.3) and (3.5), it follows that {1 € C : Red > a; + 1} C p(A4,)

for any o > 0 and
[AR(A, Al < My(1 + a;)(1 + max{cscO,M;(f +1)}) whenever Rel >a; +1,a > 0. (3.6)

Setting @=a; +1, N =My(1+ a;)(1+max{cscd, M,(¢ +1)}), M =V4N2+1, and 6 = 7 — arctan(2N), from

Lemma 2.8 and (3.6), we infer that
(3.7

V4N2 +1 M
+ — il forany 1 € Qa,é’ a>0,

Qa5 = Qa1+1,9

proving the lemma.
In the next lemma, we apply Lemma 2.4 to estimate the norm of the semigroup {T,(¢)};>o for o away from 0.

Lemma 3.2. Assume Hypotheses (H1)-(H3). Then the following estimate holds,
ITL(Ol < MGe,a)e™ 4@ forany t >0, a>0, x € (0,1). (3.8)

Here the function M : (0,1) X (0, ) — (0, 00) is defined by
tan <9 + f)‘
2 4

(1 —0)g(a)

M, (@ + xq(a))

>

— _ Mq(x)
M(J{,C()—Em a+}{q(a)

(3.9)

1\7]<e(25+7r)—4sec<9+£>> _

2 4 %+1

q(a
2 e

In particular, for any § > 0 the family of semigroups {T(t)};o is exponentially stable uniformly for a > 8.
+ % € (%, 6)andb = (@ — )| tan ¢|. From Hypothesis (H3),

Proof. Fixx € (0,1),a > 0,and let u = —xq(x). Wesetp = %
we have u > s(A,) and
. Ml Ml Ml
IR(u +is, Al < - = = forany se€ R. (3.10)
HTBAIT= Re(ur i +q@)  mta@ (- 0@
Using definition (2.15) leads to
~ ]
5 — 2My(a — u) tan<5+%>
| 4 (t, 1, @)l = / eBSR(u + is, Ay )ds|| < Mib (3.11)
A, s My - 5 - - .
“ -5 * (1 —0)g(a) (1 —5)g(@)




LATUSHKIN and POGAN MATHEMATISCHE 13
NACHRICHTEN

for any t > 0. From (3.1), (3.11), and Lemma 2.4, it follows that
2My (@ — )

6
_ tan <— + f)
Meut e,ut 2 4

t@-mr 2w - 0q@)

1T (Ol

~ 5 .
e—xq@)t M, (@ + xq(a)) |tan <E + Z)

= @+ g + A= 9@ forany t > 0. (3.12)

Ift > L, then (@ + xq(x))t > S x, thus from (3.12), we have
q(a) q(a)

M, (@ + xq(a))

6,
tan| - + —
e—xq()t I\7[q(oc) ( 2 4 >

1
Tt xq@) T xq@ forany t > —. (3.13)

T
IT(Ol < 2@

From Lemma 2.3 and Lemma 3.1, we infer

e(25+ ) — 4sec (g +%

1Tl < > ) e@+xq(@)t g—xq(a)t

_ 1\71<
M(ep — sec @) ot —
p B Ar

J\7I(e(25+7t)—4sec<§+%>> .
< ype ed@ ! gmralan (3.14)
foranyt € [O, ﬁ) The estimate (3.8) follows from (3.13) and (3.14), with M(x, &) given by (3.9). One can readily check
that
2l T a ~ ~ 6 T
i ran (24 7)[ (2 44) Casee(E27))
B . i 1 an(2 4) @ x M<e(26+7r) 4sec<2+4>> (i)+1
< = — a . .
M(x,a) < nmax ” + = , ! ed (3.15)

Since inf 5 g(a) = q(6) > 0 for any & > 0, by Hypothesis (H3), from (3.8) and (3.15), it follows that for any § > 0 the
family of semigroups {T,(t)};»o is exponentially stable uniformly for a > 6. O

Remark 3.3. In the case when the space X is a Hilbert space, one can use the results of B. Helfer and J. Sjostrand [9, 10] to
obtain an estimate similar to (3.8). Indeed, from Lemma 2.3 and Lemma 3.1, it follows that

M(e(2§+ ) — 4sec <§+ Z))
2 4 a

[T, ()] < yp e? forany t>0, a>0. (3.16)

From Hypothesis (H3)(i), we have

M M
sup  [R(LAI < sup ! -

< forany a >0, x € (0,1). (3.17)
Red>—xq(a) Rel>—xq(@) Red +q(a) — (1 —x)q(a)
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From [9, Proposition 2.1], we obtain that

ITL(Oll < NG, a)e 4@ forany ¢ >0, a >0, (3.18)
where the function N : (0,1) X (0, ) — R is defined by

__ ~ 6 = o A 6 =
M<€(29 + ) —4sec <E + Z>> M<e(26 + ) — 4sec <E + Z)) <1 . M;(@ + xq(a)

N(ea) = ype 1+ 2 (1 - 0q(a)

> . (3.19)

Here M, 6, and @ are obtained in Lemma 3.1 and M 1 is taken from Hypothesis (H3)(i). We note that N(x, o) = @(%) and
q(a

M(x,a) = ®($) as a — 0, which shows that regardless of what approach is used one can conclude uniform exponential
stability of the family of semigroups {T(t)};»o for a > &, for any & > 0, but not for « > 0. Also, from (3.19) we note that
sup,. o N(x, a) < oo only if @ = 0, which occurs only when the family of semigroups {T¢(t)};0, @ > 0, is bounded uni-
formly in a > 0, a property which is as difficult to establish as the result of exponential decay of the family of semigroups
with uniform in «a constants.

3.2 | Norm estimates of {T,(t)};>, when « is in a neighborhood of 0

To estimate the norm of the semigroup {T,(t)};>o When « is in a neighborhood of 0, we need a different approach. The
key part of the argument is to find a spectral decomposition of the Banach space X, into a sum of two closed subspaces
invariant under the semigroup {T,(¢)};>0, such that the spectrum of the restriction of A, to the two subspaces is either
away from the imaginary axis or made up entirely of eigenvalues. We first look for such a decomposition of the linear
operator A. From Hypothesis (H2) we have the spectrum of A has two disjoint parts, separated by the circle D(0, %). We
define P, € 9B(X) as the spectral projection relative to the spectral subset {0} of o(A), given by the formula

! R(A, A)dA. (3.20)

0= 5~
27l 3 D(O,g )
Remark 3.4. We collect several well-known properties of the spectral projection Py, see, for example, [6, 15, 17]:
(i) ImP, Cc dom(A);
(ii) ImP, and KerP, are invariant under A and T(¢) for any ¢ > 0;

(iii) the linear operator A := Ajdom(a)nKerp, IS the generator of the semigroup {T()}so = 4T ()kerp, Je=0 On KerPy;

(iv) o(A) = a(4) \ {0}.
In the next lemma, we aim to refine the properties of P, by making use of Hypotheses (H1)-(H2).
Lemma 3.5. Assume Hypotheses (H1)-(H2). Then, the following assertions hold true:

(i) dimImP; < co and Ajiyp, = 0;
(ii) The operator A is sectorial, and thus it generates an analytic semigroup. Moreover, there exists M, > 0 such that!

Tv

IT(Ol < Mye 5" forany t>0; (3.21)

(iii) The linear operators A and T(t), t > 0, respectively, have the representations

o o _ [fmp, O
A_[O g]’ T(t)—[ 0 T(t)],tzo, (3.22)

with respect to the decomposition X = ImP, @ KerP,, (direct sum, not necessarily orthogonal).
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Proof. (i) Since 0 is a semisimple eigenvalue of finite multiplicity of A we infer that dim ImP, < co. Moreover, from
Remark 3.4(i) and since A is a closed linear operator, we have

1 1
= AR(, )i = — (AR(A, A) — Ix)dA. (3.23)

AP,
ap(0,%) 7 Jap@,2)
By Remark 2.7 we know that the function 4 - AR(1,A) : Q,0 U{1 € C : Red > —v}\ {0} » B(X) can be extended
analytically to Q, ¢ U{1 € C : Red > —}, therefore from (3.23), we obtain that AP, = 0, hence A;,p, = 0.

(ii) From Remark 3.4(iv) and Hypothesis (H1), we have Q, 5 C p(A4) C p(A) and R(A, A) = R(A, A)gerp, for any 1 €
Q,.0, hence

IR, Al < IR, A)|| < forany 1€ Q. (3.24)

M
|4 —al
We conclude that the linear operator A is sectorial, therefore the semigroup {T(t)}tzo is analytic. From Hypothesis (H2)(i),
it follows that

wo(A) = sup Rea(A) = sup Re(a(A) \ {0}) < —v < —%”. (3.25)

From the definition of the growth rate of a semigroup, one immediately concludes that
LI
M, = sup <e 8 ||T(t)||> < 00, (3.26)
£20

proving (ii). Assertion (iii) follows shortly from (i) and Remark 3.4(ii) and (iii). O

To construct a representation of A, similar to (3.22) for the case when « is in the neighborhood of 0, we utilize the
standard transformation/conjugation operators, see [13, Chapter II, section 4.2] and [5, Chapter 4, section 1]. First, we
need to show that the circle dD(0, %) separates o(A,) into two disjoint spectral subsets for any « in a neighborhood of 0.
For the remainder of the section, we need to assume Hypothesis (H4) in order to ensure that all the spectral and semigroup
bounds are ar-independent. Moreover, we recall that from (1.4) and Hypothesis (H3), we can immediately infer that E is
continuous on (0, o) in B(X).

Lemma 3.6. Assume Hypotheses (H1)-(H4). Then,

16M
€, = {/1 €C :Rel> —%”, 2] > %} C p(Ag) and R, Al < — 2 (3.27)

forany A € €, a € [0, ¢,], where

v
€y := min ,1 (3.28)
{ 16M2 Supae[o’l] “E()(CC)“ +1 }

and M, is defined in (3.26).

Proof. First, we collect some properties of the linear operator A. From Remark 3.4(iv) and Lemma 3.5(ii), respectively, we
have
7v

- ~ M
o(A) C {1 €C : Red < —v}and |R(1, A)|| < ——— whenever Red > — . (3.29)
Reld + ? 8
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In addition, from Lemma 3.5(iii) it follows that the resolvent operator of A has the representation

1
R(A,A) = ZIImPO 0 _ | whenever ReA > —v, 1 #0 (3.30)
0 R(1,A)

with respect to the decomposition X = ImP, @ KerP,. From (3.29) and (3.30), it follows that

1 M 4 8M SM

IR(, A)|| < max{ —, —2 1 <max{ -, —= ¢ = —= forany 1 € G,,. (3.31)
7 Ren+ 2 2

8

Fix 1 € €, and «a € [0, 4], where ¢ is defined in (3.28). Then,
Ay — Ay = AIy — A — E(at) = (Ix — E(@)R(2, A))(AIx — A). (3.32)
Moreover, from (1.4) and (3.31), we obtain that

8M2C{

IE(@R@A, Al < —

8M,e 1
IEo(@)ll < === sup [IEy(e)ll < 5. (333)
4 ael0,e]

which implies that Iy — E(a)R(4, A) is invertible and H Ix — E(oc)R(/l,A))_1 ” < 2. From (3.31) and (3.32), we infer that

16M
8, C p(A,) and ||[R(4, A )|l < ” 2 for any A €€, a € [0,g)],
proving the lemma. O

Next, we note that assertion (3.27) allows us to define the spectral projection

o« = L R(A,A)dA,  a €10,¢]. (3.34)
271 aD(O,g)

Remark 3.7. Clearly, P, satisfies the following properties:

(i) ImP, and KerP, are invariant under A, and T, (t) forany ¢t > 0, a € [0, &];
(ii) ImP, C dom(A) for any a € [0, &y];
(ili) The linear operator A, := (Ax)jdom(A)nKerp, 18 the generator of the semigroup {Ta(t)}tzo = {T(t)kerp, }>0 O KerP,
forany a € [0,¢];
(iv) o(A,) = a(A,) \ D(0, g) for any a € [0, & ].

In the next lemma, we show that the family of spectral projections {P}.¢[o.,] is continuous in the operator norm.

Lemma 3.8. Assume Hypotheses (H1)-(H4). Then, the function a — P, : [0,g,] = PB(X) is continuous in the operator
norm. Moreover, the following estimate holds:

2

128M?
I1Pg, = Po, |l < > IE(ay) — E()ll  forany oy, a; € [0,5)]. (3.35)

Proof. Since A, = A + E(a) for any a > 0, from (3.27), we immediately infer that
y y

R(A, Ay,) = R(A, Ag,) = R(A, Ay )(E(aq) — E(@2))R(4, Ag,) (3.36)
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forany A € €, a;, o, € [0, gy]. From (3.27), (3.34), and (3.36), it follows that

1
“Pal_Paz” = o

/ RQL Ag Y(E(@y) — E(@))R(E, Ag, )2
dD(O,g)

1ength<aD(o, Z))

< o= 2~ sup IR(A, Ag DIl IE(et;) — E(ero)|l sup [|R(A, Ag))l
21=3 21=3
2
< —2IIE(@) - E@)|l forany ay,a; € [0.5]- (337)
The lemma follows shortly from (3.37) and since E is continuous on [0, c0) in B(X). O

Following [5, Chapter 4], we introduce the operator transformation/conjugation function associated to the family of
projections {P,}ye[o,] as follows:

U :[0,60] > B(X), Ula) = PoPy + (Ix — Po)Ix — Po)- (3:38)
The properties of the operator transformation/conjugation function U defined above are collected in the following lemma.
Lemma 3.9. Assume Hypotheses (H1)-(H4). Then, the following assertions hold true:

(i) The function U is continuous on [0, gy] in the B(X) operator norm;
(ii) U(a) is an invertible operator for any o € [0, €;], where

€, :=min > v ,1 (3.39)
256M5(16M, + 1) sup (o 4 IlEo(@)ll + 1

and M, is defined in (3.26);
(iii) The function U(-)~"! is continuous on [0, ¢, ] in the B(X) operator norm;
(iv) P, = U(@)PyU(a)~! forany a € [0,¢;].

Proof. Assertion (i) follows immediately from (3.38) and Lemma 3.8.
(ii) Since Py is a projection, one can readily check that

U(a) = Ix + P4Py + (Ix — P,)Ix — Po) — Py — (Ix — P,)*
= Ix + (Py — Po)Py + ((Ix — Py) — (Ix — Po))Ix — Py)

= Ix + (P4 — Py)(2P, — Iy) for any a € [0, g]. (3.40)

Moreover, from (3.20) and Lemma 3.6, we have

length(aD (0, % ) )

< sup [|[R(4, Al < 8M, (3.41)
2 =2
2

1
IPell = 5— / R(4,A,)dA
5D(0,§)

for any a € [0, ¢y]. Since E(0) = 0 and g; < 1 from (1.4), (3.35), and (3.41), we obtain that

128M; 128M35(16M, + 1)
|(Pe, — Po)(2Py — Ix)Il < " 16M, + DIE(@)|| £ a ” 81[1p] IEo(a)ll <
ae|0,1

(3.42)

N =
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for any a € [0, €; ]. From (3.40) and (3.42), we obtain that U(«) is invertible for any a € [0, ¢y]. Moreover,

IU@)| < %, lU@) ! <2 forany o €[0,¢]. (3.43)
(iii) From (3.43), we immediately infer that
1U)™ = Ula) ™Ml < N1U) U () — Ua)ll U (a) M| < 411U (ay) — Ula)l (3.44)

for any o, a, € [0, €;]. Assertion (iii) follows from (i) and (3.44).
(iv) Since P, is a projection for any a € [0, ¢;] from (3.38), we have

U(a)Py = PPy =P, U(x) forany o €[0,&]. (3.45)

Assertion (iv) follows from (iii) and (3.45). O

When X is a Hilbert space, the operator transformation/conjugation function U can be chosen such that U(a) is an
unitary operator, see [13, Formula (4.18), p. 102]. In this case, the estimates (3.43) are simpler. However, since our goal is to
find uniform bounds, not necessarily optimal bounds, not having U(«) and its inverse of norm 1 is not an inconvenience.

We introduce the linear operators B, : dom(B,) C X - X, a € [0,&;] by

dom(B,) = U(a)"'dom(A), B, =U(a)'A,U(a), a €[0,¢]. (3.46)
Next, we collect some of the properties of the family of linear operators B, a € [0, &;].
Remark 3.10. Since U(x) is invertible by Lemma 3.9(ii) for any a € [0, ; ] from (3.46), we infer that
0(Ba) = 0(Aa),  Gaisc(Ba) = 0gisc(Ay) forany a €[0,¢]. (3.47)

Therefore, the circle dD(0, %) separates o(B,) into two disjoint spectral subsets for any « € [0, £;]. Moreover, from (3.46),
we have

R(A,B,) = U(a)'R(A,A,)U(a) forany A€ p(A,) = p(B,), a € [0,&]. (3.48)

From Lemma 3.1, (3.47), and (3.48), we obtain

Q5 € (B IRGL BN < UG IRGL A U@ < (3.49)

forany 1 € Qs a € [0,].
Lemma 3.11. Assume Hypotheses (H1)-(H4). Then, the following assertions hold true:

(i) P, is the spectral projection of B, associated to the spectral subset of o(B,,) contained in D(0, %) forany a € [0,¢;].
(i) Im P, C dom(B,) for any o € [0, ;]

(iii) Im Py and Ker P, are invariant under B, for any a € [0, €, ].

Proof. (i) Since 0D(0, g) C 8, C p(A,) = p(By) forany a € [0,¢;] C [0, g5] by Lemma 3.6, from (3.48) and Lemma 3.9(iv),

it follows that the spectral projection of B, associated to the spectral subset of o(B,) contained in D(0, %) is given by

L R(A,B)dA = ZL U(a)"'R(, A,)U(@)dA = U(a)~'P,U(«) = Py (3.50)

27 ap(0.3) 71 ap(0,2)

for any a € [0, €; ]. Assertions (ii) and (iii) follow shortly, cf. [6, 15, 17]. O
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We define the linear operators B, : dom(B,) C Ker P, — Ker Py and K,, : Im P, — Im P, by

dom(B,) = dom(B,) N KerPy, B, = (By)|dom(s,)nkerpy» Ko = Be)jimp,» @ € [0,€1]. (3.51)

In addition, we denote by {S,(¢)};>0 and {§a(t)},20 the semigroups generated by B, and B, a € [0, ¢, ], respectively. The
advantage of working with the family of operators B,, a € [0, €; ], is that its spectral projection P, associated to the spectral
subset of o(B,) contained in D(0, g) is independent on a € [0, ¢1]. From (3.49) we see that the semigroups {S,(¢)};>o and

{§a(t)}t20 are analytic, moreover, the following representation holds:

(K,

T (£) = U@)S,()U(@)", Sy(t) = [eo gao(t)] , forany ¢ >0, a € [0,¢,], (3.52)

with respect to the decomposition X = ImP, @ KerP,,.
In the next lemma, we study the spectrum of the linear operator B, in particular, we estimate sup Rea(B,) for a €

[09 El]'
Lemma 3.12. Assume Hypotheses (H1)-(H4). Then, the following assertions hold true:
(i) o(By) C{1€C : Red < —g}foranyoc €[0,&];

(i) |IR(, Bl < 222

v

whenever Reld > —%, a€l0,g]

Proof. (i) From Lemma 3.6, Lemma 3.11, (3.51), and (3.47), we have
o(B,) = G(Ba)\D<0, %) - cr(Aa)\D<0, %) c(C\ %v)\D<0, g) C {,1 €C:Rel< —%} . (3.53)

for any a € [0, &;], proving (i).
(ii) First, we note that from Lemma 3.6, (3.43), and (3.48), it follows that

48M,

IR, BNl < IR(A, Bl = IU(@) ™' R(A, AU @] < 3lIR(Z, Al < >

(3.54)

for any 1 € €,,, @ € [0,¢;]. To prove the lemma, we need to prove the estimate from (ii) for the case when 1 € D(0, z).
From Lemma 3.9(iv), one can readily check that

KerP, = U(a)KerP, for any a € [0,¢]. (3.55)

We infer that the linear operator U(a) := U(a)|kerp, is bounded, invertible from KerP, to KerP,, with bounded inverse
U™ = U(oc)l‘KledD , for any a € [0, €1 ]. From Lemma 3.9(i), (3.46), and (3.55), we obtain that

U(a)(dom(B,) N KerP,) = dom(A,) N KerP, = dom(A) n KerP, forany a € [0,¢,], (3.56)
which implies that
B, = U(a)'A,U(a) for any a € [0,¢]. (3.57)
Moreover, from (3.43) and (3.57), we have
IR, Bo) = 10(2) R, AT (@) < NU@)L . IR, A IT@)ierr, |

< NU@HIRA, ADI U@ < 3IRA, AL (3.58)
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forany A € p(B,) = p(A,)and a € [0, ¢ ]. To estimate ||R(A, A,)|| for 1 € D(0, %) and a € [0, ¢; ], we need to find a contour
integral representation of R(4, A,). We consider the function F : C \ 4D(0, g) X [0,&;] = B(X) defined by

1
Fa) = 5 /D(O = gR(é’ Ade, (3.59)

cf. [13, section I11.6.5]. From Remark 3.7(i), we have P,R({, A, ) = R({, A,)P, for any ¢ € 4D(0, g) and a € [0, ¢ ], which
implies that

P.F(A,a) = F(1,a)P, forany 1 € C \ 4D(0, %), ae[0,¢] (3.60)

Since A R(¢, A,) = (R(¢, A,) — Ix for any ¢ € 8D(0, %) and A, is a closed linear operator, we obtain that Im F(1, &) C
dom(A,) and

1
AFa) = /D(O e g,@R(s“ AL — T)d

27

1 A 1 d¢
~ 2z aD(0,%) <ﬁ - 1>R(§ AadE %(/D(O 5{- /1)1

1 d¢
= AF(A, .
F(A,a) — P, at 5~ (/D(o T2 A) (3.61)

for any A € C \ dD(0, %) and a € [0,¢;]. From (3.60) and (3.61), it follows that F(4, a)KerP, C (dom(A,) N KerP,) =
dom(A,) and

F(A, a)x = A F(A, a)x = AF(A,a)x — Pyx + %(/@D(OE) %)x =AF(A,a)x + x (3.62)

for any x € KerP,, 4 € D(0, %), and a € [0, ; ]. Since D(0, E) c D(0, g) C p(ga) for any a € [0, ¢; ], by Remark 3.7(iv), we
conclude that R(A, A4,,) = —F(/I,Aa)merpa forany A € D(0, %) and a € [0, &;]. Since D(0, %) cé,and A= = |¢] — Al =
% for any 4 € D(0, Z) and ¢ € D(0, g), from Lemma 3.6 and (3.59), we infer that

1

IR AN = IF, Ajkerr, | < IF A, = || — / on - ToERG A
aD(0,

length(aD (O, % ) )

LM
< .
< o lzup_ IR(S, Al |Zu_p - s“l > (3.63)
T2
for any 4 € D(0, %) and o € [0, ¢; ]. Finally, from (3.58) and (3.63), we conclude that
- 96M
IR, BN < —~2 for any 1 € D <0, %) , ael0,g], (3.64)
proving the lemma. O

We are now ready to prove that the semigroup {§a(t)},20, generated by B,, is uniformly exponentially stable for a €
[07 El]'
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Lemma 3.13. Assume Hypotheses (H1)-(H4). Then, the following estimate holds:

1S, (O < M3e_5t forany t>0, a€[0,g], where (3.65)

SR

A’7I<e(6§ +371) — 12sec (

w
- +=
6 = 4)> @+2)
tan<§+Z>D, e 27 ¢, (3.66)

4

3M  96M, (_
o= ma) (204 288 (a4.3)
wa v

and M, is defined in (3.26).

Proof. The proof of the lemma is similar to the proof of Lemma 3.2, the main tool is the estimate (2.16) of Lemma 2.4. We
fixa € [0,ey] and u € (—2,0). Hence, 1 > s(B,) by Lemma 3.12. Also, we set ¢ = g + % € (%,5) and b = (@ — )| tan |
First, from (3.49) and (3.51), we immediately conclude that B,, is sectorial, moreover

= = 3M
Qﬁ,é c p(Ba) Cc p(Boc)’ ”R(AaBa)” < ”R(/LBO()” < 1—al for any e Qa,é" (3.67)
In addition, from (2.15) and Lemma 3.12(ii), we obtain
. _ 192My(@ — p) tan<§+%>‘
ist PR 192M2b
175, @ll = [ _e™R(u+is,Bds|| < — = = ” (3.68)
-b

for any ¢ > 0. Applying Lemma 2.4, from (3.67) and (3.68), we infer that

Aot 96M,(a@ — ) |tan (% + %) eHt
e

3M  96M, /_ v
= + <=+ (a + —)
(@ — it v 7Ta v 2

for any t > 1. From Lemma 2.3, Lemma 3.1, (3.43), and (3.52), it follows that

SOl <

tan §+E
2 4

)e‘” (3.69)

IS (Ol < 1Sl = 1U(@) ' To(OU @Il < U@ T NT@I < 31T @)l

_ M(e(65+ 37m) — 12sec <§+§>> S
< 3M(ep — sec ) o3t — @D 12

Vo 4r
~ = 6 =
M(e(66+37r)—123ec<5+Z>> ) )
< 273 for any t € [0,1]. (3.70)
4
Passing to the limit as u — —% in (3.69), we obtain the estimate (3.65) from (3.69) and (3.70). O

Next, we focus our attention on the family of operators K, = (Bg)imp,> @ € [0,¢;]. First, we show that it depends
continuously on a € [0, ¢;]. Moreover, we look for a representation of K, in a neighborhood of 0.

Lemma 3.14. Assume Hypotheses (H1)—(H4). Then, the following assertions hold true:

(i) The operator-valued function « — K, : [0,g,] — SB(ImP,) is continuous;
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(i) Ky = a (PyU(a) 'G(a)U(a))

forany a € [0,¢,], where G : [0,&,] — B(X) defined by

ImP,
Gla) = —— / AR, A)Eo(@)R(A, A)d; 3.71)
271 aD(O’%)
(iii) The function G is bounded. Moreover,
IG(@)|l < 64M; Sl[.10p1] lEo(x)|| forany o €[0,g]. (3.72)
aegl0,

Proof. (i) From Lemma 3.9(iv) and (3.51), we have
K. x = PyK,x = PyU(a) A, U(a)x = PyU(a) LA, U(ax)Pyx = PyU(a) LA, P, U(ct)x (3.73)

for any x € ImP, and « € [0,¢]. Since A R(4,A,) = AR(A,A,) —Ix for any A € p(A,), ImP, C dom(4,), by
Remark 3.7(ii), from (3.34), we obtain that

AP, = 2L AR, A)dA = ZL (AR, Ay) — Ix)dA
1 Jap,%) 71 Jap,3)
=L AR(A, A)dA (.74)

2mi 5D0.2)

for any a € [0, ¢;]. Since the operator-valued function E is continuous on [0, ¢, |, by Hypothesis (H3), from Lemma 3.6, we
infer that the function

(A4, a) > R(A4,AL) : €, X[0,g] — B(X) is continuous. (3.75)
Since dD(0, g) C 8,,by (3.27), from (3.74) and (3.75), we conclude that
a — AgP, : [0,6;] = B(X) is continuous. (3.76)

Assertion (i) follows shortly from Lemma 3.9(i) and (iii), (3.73), and (3.76).
(ii) We recall that from Lemma 3.5(i) and (3.23), we have

0= APy = —— (AR(L, A) — I )dA = —— AR(A, A)dA. (3.77)

2mi 5D(0,%) 1 Jap(,%)

From (1.4), (3.74), and (3.77), it follows that

AP, = = AR(L, AL)dA = —— / AR, Ay) — R(4, A))dA
27l aD(o,g) 27 6D(0,§)
=L AR(A, ADE()R(A, A)dA = — / AR(A, A)Eo(a)R(A, A)dA (3.78)
27 aD(o,g) 27l 6D(0,%)

for any a € [0, &;], proving (ii).
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(iii) From (3.27), one can readily check that

1
6@ =50 [ | IRGAJE(@RG AYA
27l aD(o,§>
1ength<6D (0, %))
< o= sup [[AR(4, A sup [[Eo(a)l| sup [IR(A, A)Il;
=2 2€[01] Ial=2
<64M3 sup [|Ey(a)|| forany «€l0,g], (3.79)
a€gl0,1]
proving the lemma. O

The previous lemma shows that K, is of order ©(«) in a neighborhood of 0. In addition, we note that the operator-valued
function G is not necessarily continuous at 0. Therefore, to prove our main result, we assume Hypothesis (H5).

Lemma 3.15. Assume Hypotheses (H1)-(H5). Then, the following assertions hold true:

(i) The operator-valued function G defined in (3.71) is continuous in the %B(X) operator norm;
(i) PyG(0)jimp, = P0E0(0)|ImP0
(iii) |Ky — aPoEo(0)jimp, |l <8 ZV a’ + 768Msar() for any a € [0,&].

1

Proof. From (1.4) and (1.5) and since E is continuous in the 9B(X) operator norm by Hypothesis (H3), we infer that E is
continuous on [0, o) in the B(X) operator norm. Moreover, U and U~! are continuous on [0, ¢; ], by Lemma 3.9. Assertion
(i) follows shortly from (3.73) and (3.76).

(ii) First, we note that from Lemma 3.5(iii) we have (R(A,A))llmp0 = %IImPO for any 4 € D(0, g). Hence, from (3.71), it
follows that

1
PyG(0)jimp, = 5oko /5D(0 V)R(l, A)E((0)(AR(A, A)mp, )dA

= epo [ R A, = PoB O, (3:50)
Tl D(O,Z)

To prove (iii), we need a long but standard series of estimates of all the functions involved in formula (3.71). For
completeness we give the details below. Since E(0) = 0 from (1.4), (3.27), (3.36), and (3.39), we have

128M?
IR(4, Ay) — R(A, Al < IR, ADIE@)|| IIR(A, A)|| < «

a
sup 1ol < 5. (3.81)

a€l0,1]
forany A € €,, a € [0,¢;]. From (1.5), (3.27), and (3.81), we obtain
IR(A, Ag)Eo(a) — R(A, A)Ep(0)]] < [I(R(A, Ag) — R(A, A)Eg(a)ll + [IR(4, A)(Eg(a) — Eo(O)l

<% sup Bl + 221 (3.82)

=% €17 aefo,1]
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forany A € €, a € [0, ¢;]. Using again (3.27), from (3.71) and (3.82), it follows that

L / ARG, A)Eo(@) — R(A, A)Ey(0)R(L, A)dA
a v

IG(a) — G(O)|| = .
2mi D(O’E)

length(dD(O, Z))

< s sup [IARA A)|| sup R(A, A)Eo(@) — R A)E,O)|
IA1=3 141=3
2M.
<2 sup [|Eg(a)|| + 64M3r(ar) forany o € [0,g].

1 aeo1]
Moreover, from (3.40), (3.42), and (3.44), we have

128M35(16M, + 1)

a
1U(a) — Ix|l = |(Pq — Po)(2Py — Ix)ll < & sup [|Eo(e)ll < %

ael0,1] 2

U@ —Ixll < 2U@ —Lxll < = forany @€ [0,e1].
1

From (3.39), (3.43), (3.79), and (3.81)—(3.84), we infer that

U@ 6(@U(@) - GOl < || (U@ - Ix) 6@U@)| + 16U - GO

96M2a
< sup [|Ep(@)ll + I(G(ar) — GOO)HU () + |GO0)(U(ax) — L)l
&1 aegf01]
96 M2 3M,a 32M3«a
< 2 sup [IEg(a)ll + —= sup [|Eo()l + 96M>r(cr) + sup ||Eg(a)l
€1 aeglo1] 1 aeglo,1] €1 aefo1]
128M3 + 3M, av
=a——— sup [Eo(a)]l +96M3r(a) < = +96M;r(a) forany « € [0,g].
& a€l0,1] £

Assertion (iii) follows from (i), (3.41), (3.80), and (3.85).
Lemma 3.16. Assume Hypotheses (H1)-(H5). Then,
sup Rea(PyEy(0)1mp,) < —q1,
where the constant q; > 0 was introduced in Hypothesis (H3)(ii).
Proof. We denote by Gy, : [0,&;] - B(ImP,) the function defined by

Go(@) = (PoU(0) ' G(@)U(a))

|ImP,’

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

and introduced in Lemma 3.15(i). Fix 49 € 0(PyE(0)imp,). From Lemma 3.15(ii), we have 4y € o(PyG(0)imp,) =
0(Gy(0)). Since G is continuous on [0, €, ], we conclude that G is continuous on [0, €, ]. Using the semicontinuity property
of the spectrum of bounded linear operators in finite-dimensional spaces, there exist two sequences {a,,},>1 and {4, },>1

such that

a, >0, 4, >y as n - o0, a, € (0,&), 1, € a(Gy(a,)) forany n > 1.

(3.88)
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Since K, = aGy(a) for any a € [0, ¢; ], by Lemma 3.15(i), from Hypothesis (H3)(i), (3.47), (3.51), and (3.88), it follows that

a,l, € 0(Ky,) Co(By,) =0(Ag,) C{1 €C : Red < —q(a,)} forany n>1. (3.89)

From (3.88), we have there exists ny > 1 such that «,, € (0, g,) for any n > n,. Since q(«) = g« for any a € [0, q,], from
(3.89), we obtain

Reld, < —q, forany n > n,. (3.90)
Passing to the limit as n — oo yields Red, < —q;, proving the lemma. O

We are now ready to estimate the norm of the semigroup generated by K,, for « in a neighborhood of 0. To formulate
the result, we need to point out a couple of immediate consequences of Hypothesis (H5) and Lemma 3.16.

Remark 3.17. We assumed in Hypothesis (H5) that the function r : [0, c0) — [0, 00) is continuous, increasing, and r(0) =
0. Hence, it is one-to-one and its inverse r~! : [0, c0) — [0, c0) is continuous and increasing. Moreover, since G,(0) =
PyE(0)jimp, € B(ImP,) by (3.80) and (3.87), from Lemma 3.15(iii), it follows that

wy(Gp(0)) = sup Rea(Gy(0)) < —q;. (3.91)

By the definition of the growth rate of a semigroup, one may define M, : (0,1) — [1, o0) such that
By
M, (x) = sup <e 2 I ||e’G0(°)||) < 0. (3.92)
£>0

Lemma 3.18. Assume Hypotheses (H1)-(H5). Then the following estimates hold true,

@) |le®=«| < M, (G0)e 4t forany t > 0, a € [0,,(x)], x € (0,1), where e, : (0,1) — (0, o) is the function defined by

. A —0)qe o Q=x)aq
&,(x) := min {51, g2, M, NG 3072M§ > 0. (3.93)

(i) || To(0)] < 3(8M; + 1)(M;3 + My(x))e 4! for any t > 0, a € [0,€3(x)], x € (0,1), where &5 : (0,1) — (0, c0) is the
function defined by

. v ) v (—x)qe L Q=0q
53(}{) .—mln{&'z(}{),z—ql} —mln{sl,qz,z—ql,w,r 307—2]\/[% >O, (394)

and the constant Mz and the function M, are defined in (3.66) and (3.92), respectively.

Proof. (i) Fix »x € (0, 1). First, we note that the estimate from Lemma 3.15(ii) is equivalent to

8M,v

IGo(@) = Go(O)I| £ ——a + 768M5r(a) forany «a € [0,¢]. (3.95)
€
1
. . . 1-x)q; €2 - .
From Remark 3.17, (3.92), Gronwall’s inequality, and since a < (=xag andr(a) < % for any a € [0, £5(x)], we infer
2
that
(=22 g+ 22Y o L 768M2r (@)t Clbx  1-x
[eCo@|| < MyG)e > A T < MyG0eT T BT W 2 My Ge)erant (3.96)
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forany ¢t > 0, a € [0,&,(x)]. Since K, = aGy(a) by Lemma 3.14 and g(a) = q,a for any a € [0, €,(x)] by Hypothesis (H3),
using Lemma 3.15(i), we conclude from (3.96) that

[[eK=|| = [|e“®C@ || < My(x)e=*D%t = My(x)e= 4@ for any t > 0, a € [0,,(x)]. (3.97)

(ii) Fix again x € (0,1). From Lemma 3.13 and e3(x) < min{q,, %}, so that g(a@) = q,a for any a € [0, £3(x)], we have
1

1S, (Ol < Mze 2" = M3e(_5+q1a)le‘q(°‘)‘ < Mse 9@t forany t > 0, a € [0,5(x)]. (3.98)
From (3.41), (3.52), (3.98), and (i) we conclude that

1Tl = 1U@S(OU @) < NU@I IS OIl 1U@)~H| < 31IS ()]l

< 3([le™= [l 11Poll + 1S (Ol 15 = Poll) < 3(8M; + 1)(M + My(x))e 4 (3.99)
foranyt > 0, a € [0, 3(x)], proving the lemma. O

We conclude this subsection by proving one of our main results, the uniform in « exponential stability of the family of
semigroups {7 (£)}>0, @ > 0.

Proof of Theorem 1.1. From Lemma 3.2 and Lemma 3.18(ii), we derive

T2 )] < max{M(e, e5(x)), 3(8M, + 1)(Ms + My(x))je 4@ (3.100)
forany t > 0, > 0, x € (0,1). Here, M(,-), M5, M5, M,(+), and &5(-) are defined in (3.9), (3.26), (3.66), (3.92), and (3.94),
respectively. Tracing back the dependence of each of these quantities, we conclude that estimate (1.6) holds and that the
function M depends on the unperturbed operator A, E,(0), and the functions ||E(-)||, g and r, and the relevant constants
in Hypotheses (H3)-(H5). O
3.3 | The special case when 0 is a simple eigenvalue
In this subsection, we show that in the case when 0 is a simple eigenvalue, we can prove the main estimate (3.100) without
using Hypothesis (H5). Throughout this subsection, we assume Hypotheses (H1), (H3), (H4), and Hypothesis (H2). In this
case, dim Im P, = 1. This fact makes estimating ||e‘%«|| significantly simpler. In particular, the function M, in Lemma 3.18
can be replaced by 1, see (3.104) below.
Lemma 3.19. Assume Hypotheses (H1), (H2’), (H3) and (H4). Then,

1T <3(M3 + 1)(8M, + 1)e~4®  forany t>0,a € [0,¢], (3.101)
where ¢, := min {51, g2, 21}; } M is taken from Lemma 3.13, €, from Lemma 3.9, q; and q, from Hypothesis (H3).
Proof. Since dim Im P, = 1, there exists a function k : [0,&;] — C such that
Ky = k(0)Iy,p, forany o € [0,¢]. (3.102)

Since K, = (By)|mmp,> from (3.47), (3.51), and (3.102), it follows that k(a) € o(B,) = 0(A,) for any a € [0,¢;]. From
Hypothesis (H3)(i), we infer that

Rek(a) < —q(a) forany a €[0,g]. (3.103)
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From (3.102) and (3.103), we immediately conclude that
leKa|| = eRek@l < e=1a(@)  forany t>0,a € [0,g]. (3.104)

Since g4 < min {qz, % }, and so q(a) = q;a for any a € [0, g4], it follows from Lemma 3.13 that
1

(3N —g(@t < ML= forany ¢ > 0, « € [0,¢,]. (3.105)

IS (DIl < Mse 2" = Mse
From Lemma 3.13, (3.52), and (3.104), we infer

ITON = 1U@S (U@ < U@ ISOIU @) < 3118 ()]
<3([le™= [ 1Poll + US(OIl 1 = Poll) < 3(M; + 1)(8M, + 1)e ™4 (3.106)
foranyt > 0, a € [0, &;], proving the lemma. O
Proof of Theorem 1.2. From Lemma 3.2 and Lemma 3.19, it follows that
[To(0)]] < max{M(x,e,), 3(M3 + 1)(8M, + 1)}e 4@ forany t > 0, & > 0, x € (0,1). (3.107)
Here, M(-), M. 5, M3, and ¢ are defined in (3.9), (3.26), (3.66), and Lemma 3.19, respectively. Arguing the same way as in the

proof of Theorem 1.1, we conclude that estimate (1.7) holds and that the function N depends on the unperturbed operator
A and the functions ||E(-)|| and g and the relevant constants in Hypotheses (H3)-(H4). O

4 | APPLICATIONS TO LINEAR STABILITY OF PLANAR TRAVELING WAVES IN
REACTION-DIFFUSION SYSTEMS
In this section, we give an application of our results to the case of families of analytic semigroups obtained by linearizing a
reaction—diffusion system along a planar traveling wave (front). In particular, we give sufficient conditions for Lyapunov
linear stability of such fronts, proving Proposition 1.3. First, we recall the reaction-diffusion system (1.8), which reads as
follows:

u, =DAu+Fu), t >0, x = (xq,...,xX,)" € R™.
Here, F : R¥ — R¥ is a function of class at least €> and D € C*¥ is a matrix satisfying the condition

inf Re (D) > 0. (4.1)

We recall that a planar traveling wave of (1.8) is a solution of (1.8) of the form u(x,t) = E(xl —ct), where ¢ € R and

h : R — RK is a smooth function exponentially convergent at +oo to the limit values h.. One can readily check that the
profile h satisfies the nonlinear system of equations

- -/ -
Dh +ch +F(h)=0. (4.2)
Making the change of variables y = x — cte,, where e; = (1,0, ...,0)" € R™, we notice that Equation (1.8) is equivalent to

uw, =DAju+cd, u+Fu), t 20,y =©,..,yn) € R™. (4.3)
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We note that  is a standing wave solution of (4.3) depending only on y;. The linearization of (4.3) along h reads as follows,

u=%u, t >0, where & = DA, + clkéy1 + M (4.4)

F'(h)’

We recall that '/”F'(E) denotes the operator of multiplication on L*(R™, C¥) by the bounded, matrix-valued function

F’ (E(yl)), while & is considered as a closed, densely defined linear operator on L2(R", CK) with domain H2(R™, C¥).
Moreover, as mentioned in the introduction, by taking Fourier transform in the variables (y,, ..., ¥,) € R™-1 we infer
that the linear operator & is unitary equivalent to ./, the operator of multiplication acting on L? (R™~!, L*(R, C¥)) by
the operator-valued function

L:R™! - B(HXR,CK),L*(R,CY)), L(§) = DA, + LBy, + My z), (4.5)
where V : R™ — RF is defined by

V{1, &) = F'(h(y))) - |£|°D. (4.6)

For any ¢ € R™~! the linear operator L() can be considered as a closed, densely defined linear operator on L3(R, CK)
with domain H2(R, CK).

It is well known that elliptic operators generate analytic semigroups, see, for example, [1, 2, 11, 15, 17, 21, 22]. In the next
lemma, we show that condition (4.1) is enough to infer the analyticity of the semigroup generated by L(0).

Lemma 4.1. If inf Rea(D) > 0, then the linear operator f({), defined in (4.5), is sectorial, for any &€ € R™!, hence it
generates an analytic semigroup. In particular, L(0) satisfies Hypothesis (H1).

Proof. Let dy = inf Re (D) > 0. First, we show that the linear operator D@;1 is sectorial. Denoting by %, the Fourier
transform with respect to the variable y; € R, one can readily check that

Dé} = F'MpF,, where D : R — C** is defined by D(§;) = —£7D. 4.7)
Since D € C**k we have
wo(—D) = supRec(—D) = —inf Reg(D) = —d; < 0. (4.8)
From the definition of the growth rate of a semigroup, we obtain that there exists Cy > 0 such that
_do,
le”P|| < Cye” 2~ forany ¢t > 0. (4.9)

Since{A € C : Redl > —%} C p(=D), we have

0 d
AAI, + D) ' =I, = DI, + D) =I, = D / e *Me~'Pdt whenever Rel > —70. (4.10)
0
Therefore, from (4.9) and (4.10), we immediately obtain
2||D||C
sup ||AAL, + D)7 <1+ ZIDIIC, < o0 (4.11)
Rel1>0 0
From Lemma 2.8, it follows that there exists Co > 1 and ¢, € (%, 7) such that
-1 60

Qop, Cp(=D), |[A+D) || £ =5 forany A€ Q. (4.12)

4]
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Since 5112 € Qqy, forany 1 € Qg and §; € R\ {0}, from (4.7) and (4.12), we conclude that
~ ~ -1 C,
Qog, C (D), |(AIx—D(&D) | < |70| forany 1€ Qg § €ER, (4.13)
which is equivalent to
Qg € PMp), IR, Mp)Il < ITOI forany 1 € Qg (4.14)

From (4.14), we infer that the linear operator M5, and hence Daf,l, is a sectorial operator. Since D € C**¥ is an invertible
matrix, one can readily check that

16y, ull2 = —(82,u, u) = (D&% u, (D~ )u)

-1 2
et = < D711 1D33,ull [l (415)

L2(R,CK)
for any u € H3(R, C*), which implies that

1/2 1/2

— - 1/2
16y, ully < ID~H M2 1DA2, ully? lally> < D112 )/

dom(Déy,

ity (4.16)

foranyu € dom(D6§ J=H 2(R, CK). Applying the results from [15, Chapter 2], we infer that Da)z,1 + cI}d,, is also a secto-

rial operator. Since h, and thus V, are bounded functions, from Lemma 2.9 and (4.5), we conclude that f(é’ ) is a sectorial
operator for any ¢ € R™~!, proving the lemma. O

Next, we note that the operator-valued function I has the representation
L&) = 1(0) + Erp(I§*) for any § € R™, (4.17)
where Egp : [0,00) - B (L*(R,CY)), is defined by Exp(a) = —allp.

Remark 4.2. Assuming Hypothesis (RD) from the Introduction and (4.1), from Lemma 4.1 we derive that L(0) satisfies
Hypotheses (H1)-(H2). Hence, it follows from Lemma 3.5 that the semigroup generated by L(0) has a block representation
of the form (3.22) and satisfies the estimate (3.21). We infer that the semigroup generated by L(0) is bounded, that is,
M, =sup,. leX©|| < oo, which implies that

~ M
IR, TO))]| < ﬁ whenever Rel > 0. (4.18)

In many applications, the diffusion rates of various components of the vector-valued function u in (1.8) are close to each
other. In this case, we can prove the Lyapunov linear stability of the front & using the results of Section 3. First, we prove
the following lemma.

Lemma 4.3. Assume Hypothesis (RD) and that the matrix D € CK* is sufficiently close to a diagonal matrix in the sense
that there exists some d > 0 such that for M, from (4.18), one has

ID — dI || < Mi' (4.19)
0

Then, the family of operators Agp(at) := L(0) — allp, a > 0, satisfies Hypotheses (H1)-(H5).
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Proof. Denoting by J = D — dI;, € C*¢, we have ||| < M%. One can readily check that o(J) C D(0, 1\7110)' Since M, =

sup, ||eti(°)|| > 1, we have inf Re o(J) > —d, which implies that inf Re (D) > 0. From Remark 4.2, we conclude that
the linear operator L(0) satisfies Hypotheses (H1) and (H2).

1 11Mq

Next, we study the spectrum of Agp(«). Since — < 1, there exists §, € (0,1) such that 11y

o <a- o). Next, we

fix ¢ > 0 and A4 € C with Red > —§yad. Then, from Hypothesis (RD) we note that 1 + ad € p (f(O)). Moreover, since
D = dIy +J, we have

A cky — Arp(@) = (A + ad) 2 o) — L(0) + all;
= (Iam.cky + all;R(A + ad, £(0)) ) (A + ad)I 2 cx) — L(0)). (4.20)
From (4.18), we obtain

> al /M, _ V1Mo
latt;R (2 + ad, L(0))|| < Reitad = (1= 5 <1-6,<1, (4.21)

which implies that I > ck) + all;R (4 + ad, L(0)) is invertible and

From (4.20) and (4.22), we infer that 1 € p (Agp(a)) and

(In2w.cky + aMlyR (A + ad,f(o)))_lu < 5i. (4.22)
0

IR, Arp(@))|| < [|R(2 + ad, 1(0))

(Izcy + adyR(A + ad, 2(0))) H

My M,

= So(Red + ad) < So(Red + Spad) (4.23)
We conclude that
(Ax(@) €1 € C : Red < —q(@)} and R Axp(@)] € =t (4.24)
do(Red + g(a))
whenever Red > —g(a), where the function g : [0, 00) — [0, o0) is defined by g(a) = Spad. Since lim, ., ”EZ(LOE:‘)” = L%',

Hypothesis (H3) is satisfied. From (4.17), one can readily check that Hypotheses (H4) and (H5) are satisfied.

We are now ready to prove the main result of this section, Proposition 1.3, assuming that D € C** is sufficiently close
to dI} in the sense that ||D — dI;|| < Mi
0

Proof of Proposition 1.3. First, we recall that M, = Sup;-.o ||e‘f(0) [|l. From Lemma 4.3 and Theorem 1.1, it follows that the
family of semigroups generated by Agp(a), a > 0, is uniformly stable. Setting »x = % in Theorem 1.1, we obtain that there

exists a constant M, > 0 such that

. _Soxd
lleARD@|| < Me 2 ' forany ¢ >0, a > 0. (4.25)

Using the identity L(§) = Agp(|€2|) for any € € R, from (4.25), we infer that

SolelPd

||etf(§)|| < Mge ™ 2 " for any t > 0, £ € R™L, (4.26)
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Since &, the linearization along the front h, is unitary equivalent to /;, from (4.26) we see that the semigroup generated
by & is bounded, proving that the planar front his Lyapunov linearly stable. O

5 | APPLICATIONS TO LINEAR STABILITY OF PLANAR FRONTS IN THE BIDOMAIN
EQUATION

In this section, we give yet another application of our results to the Lypunov linear stability of planar traveling waves
(fronts) in the bidomain Allen-Cahn model (1.9). In [16], the authors show that the model has spectrally stable planar
traveling waves (fronts). Our goal is to show that the same condition also guarantees the Lyapunov linear stability of such
fronts. Following [16], we consider Equation (1.9) on R2. It is well known that (1.9) has planar traveling waves, that is,
solutions of the form

(u, u;, u,)(x, 1) = (W, w;, w,)(x; cosy + x, siny —ct), x = (x1,x,) € R, t > 0, (5.1

for some ¢,y € R. Moreover, the profile w can be chosen such that
w is decreasing, lim e Po(w(s) — 1) = lim ef*w(s) = 0, for some p, > 0. (5.2)

S§—>—00 S—00

Making in (1.9) the change of variables

Y1 X1 ct cosy —siny
= =R — s h R,=1]". S .
Y (y2> = <x2> < 0 > where - &y [smy cosy ] 53

we obtain the system
u =V, - (A, Vyu) +cdy u+ fu),

Vy - (A Vyu; + A, Vyu,) = 0, t>0,yeR. (54)

U=1u; — U,.
Here, the symmetric, positive definite matrices A; , and A, , are defined by

Ai,y = R}'AiR—}/’ Ae,y = R},AeR_y. (SS)

In the new coordinate system, the front (w, w;, w,) travels along the y;-axis and it is a standing wave solution of (5.4)
depending only on y; . In addition, the second and third equations of (5.4) are linear equations. Therefore, the linearization
of (5.4) along the front (w, w;, w,) is given by

v =V (A, Vyu) +cdy v+ (),
Vy - (A, Vv + A, V,0,) = 0, t>0,y eR? (5.6)

U = V; — U,.

Following [16], we consider this system in L*(R?, C*). Taking Fourier transform in y = (y;,y,), denoted by &, we can
eliminate the variables v; and v, from (5.6) to obtain the following equation:

v, =dv, t >0, where o =-L,+cdy, + M. (5.7)
The linear operator &£, : H*(R?) — L*(R?) is defined as the Fourier multiplier

Qi,y(g)Qe,y(g)

2, =5 Mo T, Q) = G o

Qi/e,y(g) = gT : Ai/e,yga f € R (5-8)

We recall that the wave w is called Lyapunov linearly stable if the semigroup generated by ¢ is bounded.
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Taking Fourier transform with respect to y, € R, denoted by %,, we note that the linear operator ¢ is unitary equivalent
to /L 3, the operator of multiplication on L? (R, L(R)) by the operator-valued function

AR - B(HYR),LXR)), AEy) = —F; Mo (.enF1 + By, + M. (5.9)

Here, %, denotes the Fourier transform with respect to the variable y; € R. For more details, we refer to [16, section 2].
To study the Lyapunov linear stability of the front w, we study the family of semigroups generated by A(E,), &, € R. We
recall that the function Q, has the representation:

E(r(2) +e(2)). ereerio

Nggz’ §1 € IR? §2 =0,

where

Q51,8 =

Bis + Bo

p(s) = Ng(s —=m)* +mo, 8(s) = 211

as pointed out in (1.11) and (1.12). Also, we recall that the constants Ny, 8, 81, 7, and 7; depend on vy, v,, and y only. For
the exact formulas, we refer to [16, Formula (2.20)]. From (1.11), one can readily check that

A(0) = N283 +cd,, + M s1g)- (5.10)

The linear operator A(0) is a second-order differential operator, therefore we can determine the properties of its spectrum,
see, for instance, [12, 19, 20, 23]. In the next lemma, we summarize the most relevant properties of the spectrum of A\(O)
given in [16].

Lemma 5.1 [16, Proposition 3.1]. The operator A(0) satisfies the following properties:

(i) There exists v > 0 such that sup Re (a(ﬁ(o)) \ {0}) < —v;

(i) 0is a simple eigenvalue of A(0). Moreover, Ker A(0) = Span{wl};
(iii) There exists My, > 0 such that

||R</1,ﬁ(0)>|| < ﬁ_l; whenever Rel > 0,1 # 0.

Remark 5.2. From Lemma 2.8 and Lemma 5.1(ii) and (iii), we infer that A(0) is a sectorial operator, hence A\(O) satisfies
Hypothesis (H1). Moreover, from Lemma 5.1(i) and (ii), it follows that A\(O) satisfies Hypothesis (H2").

We recall the following notation needed to formulate (1.14), a sufficient condition for spectral stability of the planar
front w,

Gint = inf g(5), guup = SUPE(S), § = e B g B ~ 8t (5.11)
seR sER 2 2
A crucial ingredient in the proof of (1.14) is the identity
A(E) = ./%61771;24(21\(0) + H(&3)) M i, ¢, for any &, € R, (5.12)

where H : R — % (L*(R)) is defined by

(5.13)

—EF MMy 1y F1 — &5 — cimE 2wy, & € R\ {0},
H(,) = &
0, 52 =0.
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Remark 5.3. From [16, Lemma 4.1], we see that the operator-valued function H is continuous on R in % (LZ(IR))-norm.
Moreover, assuming that , > Mg — g and using the same argument as in [16, Theorem 3.2], we can prove that

a(fx(O) + H(fz)) C{A€C : Red < (g — Myg, +§)E2} forany £, € R; (5.14)
My
Red + (o — Myga + 8)&;

||R(A\(O) + H(§2)) || < whenever Rel > —(1y — Mpga + 8)&5. (5.15)

To check the two properties above, we first define H : R — % (LZ([R)) by

H(&) :=HE) + (o + §)§§ = cin, &) I (w).- (5.16)

We note that (5.14) and (5.15) hold true if €, = 0. Next, we fix §, € R \ {0}and 1 € C such that ReA > —(1y — Mpgs + )&
andwesetd :=4+ (), + §)§§ — cin, &,. Using (5.11), one can readily check that

R = Red + (g0 + DEE > Mugad? > 0and I < &3 g —s( 4 )| < &l 517
2 o0
~ “ ~ My _ M o
From (5.17) and Lemma 5.1, we have 1 € p (A(O)) and ||R (/I,A(O)) | £ = < —=, which implies
|1 Rel
P _ N . M,
[|H(EDRA, A(0)|| < IHE)I ||R(A, AO))]| < gngR_/T <1 (5.18)
e

Using elementary spectral theory, from (5.18) we obtain that lep (2(0) +P~I(§2)), hence 1 € p (ﬁ(o) +H(§2)>.
Moreover,

. N IR, A
RALA©) + HE)| = [|RA A©) + AE)|| « — =1
I D= NS T ARG Aoy
Mb Mb

S o~ = —_— 9’
Rel — Mygpé?  Red + (1o — Mpga +8)65

(5.19)

proving (5.14) and (5.15).

To prove uniform estimates for the family of semigroups generated by 2(5 1), &5 € R, we introduce the operator-valued
functions E, : [0, 00) > % (L*(R)) defined by

E.(a) := H(xVa) F cin Va2 g)- (5.20)

Lemma 5.4. Assume that no > Myga — 8. Then, the family of operators ;L_,(oc) :=ﬁ(0)+EJ_,(oc), a > 0, satisfies
Hypotheses (H3) and (H4).

Proof. From Remark 5.3 and (5.20), we immediately conclude that the operator-valued function E., is continuous on [0, c0)
in % (L*(R))-norm. It follows from (5.20) that

o(A(0) + Eo(a)) = o(A(0) + H(x/a)) F cimy v,

R(L,A®0) + E(a)) = R</1 +in, v/, A0) + H(x \/E)) (5.21)
foranya > 0and any 1 € p(A\(O) + E, («)). From (5.14), (5.15), and (5.21), we infer that
o(A(0) + E (o)) C{A € C : Red < —(ny — Mpga + gat} for any a > 0; (5.22)
My,

IRCA(0) + EL ()| <

—— whenever Red > —(1g — Mpga + ). (5.23)
Red + (1o — Mpgs + 8)a
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Letq : [0, 00) — [0, o) be the function defined by q(«) = () — Mpga + g)a. From (5.22) and (5.23), we see that conditions
(i) and (ii) of Hypothesis (H3) are satisfied. Since g € L*(R), by (1.12), from (5.13) and (5.20), we obtain

IE.L (Il < a(|lglle + 1o) for any a > 0, (5.24)

which implies that lim sup % < llglles + 1o < 0. Hence, condition (iii) of Hypothesis (H3) is satisfied. Finally, it
a— o0

follows from (5.24) that Hypothesis (H4) is satisfied, proving the lemma. O

We are now ready to prove the main result of this section, the Lyapunov linear stability of the planar front w.

Proof of Proposition 1.4. From Remark 5.2 and Lemma 5.4, the family of operators Zi(oc) = A(0) + E, (a), a > 0, satisfies
Hypotheses (H1), (H2), (H3), and (H4). Hence, from Theorem 1.2 we conclude that the family of analytic semigroups
generated by gi(oc) is uniformly exponentially stable for o > 0. Setting »x = % in Theorem 1.2, we see that there exists a

constant My, > 0 such that

~ — _ (n—Mpga+g)
letA+@)|| < Mye 2 forany t > 0, a > 0. (5.25)

From (5.20), we have

+, =0,
H(&,) = Eg(£3) + cim &1z for any &, € R, where o = { §2 <0 (5.26)
-, & <o.

From (5.12) and (5.26) one can readily check that

n t( A(0)+H(&,) ; A (2
oA = M i, € ( = )‘/”e—imiz' = ecmlgzt‘/ﬂeimiz etAU(gz)'/%e‘i’ilb' (5.27)
for any ¢t > 0 and &, € R. From (5.25) and (5.27), we conclude that

i __oMyeatDE
et AC)|| < Mye 2 foranyt >0, &, € R. (5.28)

Since o, the linearization along the front w, is unitary equivalent to ./ 3, from (5.28), we see that the semigroup generated
by of is bounded, proving that the front w is Lyapunov linearly stable. O
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ENDNOTE
Tn (3.21), we can replace —% by —xv for any x € (0, 1), but not by —v. However, such a change would not enhance our main result, cf.

Theorem 1.1, since for a close to 0 under Hypothesis (H3), the decay rate —% is stronger than —xq(a), the decay rate in the main result.
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APPENDIX: SOME EXAMPLES

In this section, we give two examples to show that by perturbing an operator satisfying Hypotheses (H1) and (H2), we
might have unstable spectrum, even if the space is finite dimensional and the perturbation is a self-adjoint, bounded,
uniformly negative definite operator.

1 1 bo| . 1 1-42 .
and Z, = b L with by € > ) One can readily check that
0 -

0
Example A.1. LetJ, = [
4

<ZO<Z>’ <u>> = |u|? + 2byRe(uD) + %|v|2 > (lu| = bg|v])* + (% - bg) |v|? forany u,v € C. (A1)
CZ

v

From (A.1), we infer that Z,, is a symmetric, positive definite matrix. Since b, € <— % —1_2\&) , asimple computation shows
s g 5 25 2 5 25 5
that'O'(Jo —Zy) = {uy, A5}, where | = -5~ \/a — (1 +4by —4b]) <0and A5 = -5t \/6—4 — (1 +4b, — 4b;) > 0. We
obtain
) 2
N P . 2(u\| .| (U
b, := y min{4gj, mg} > 0, where m = min« (Z v i |=1}. (A.2)

It follows that o(J, — b;I,) = {—b;} is stable, Y, := b;I, — Z; is a symmetric, uniformly negative definite matrix, and
Ay € o(Jy — bl +Yy) = 0c(Jy — Z;). We introduce the matrices

_b1 1 0 bl -1 —bo 0
AO = 0 _bl 0 and WO = —bo bl - = o0 1. (A3)
0 0 O 0 0 -1
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One can readily check that 0 is a simple eigenvalue of A, and that g(A,) = {0, —b;}. Since any bounded operator is sectorial,
we immediately infer that A, defined in (A.3) satisfies Hypotheses (H1) and (H2). Since W, = Y, @ —1, we have W, is
a symmetric, uniform negative definite matrix. However, Aq + W, = (Jy — Z,) @ —1, which shows that o(4, + W) =
(Jo = Zp) U{~1}, hence 1 € a(Ay + Wj) N (0, c0).

This example shows that by perturbing an operator that satisfies Hypotheses (H1) and (H2) we might generate unstable
point spectrum, even if the perturbation is symmetric, negative definite. Using a similar argument, one can see that the
essential spectrum can become unstable under the same type of perturbation.

Example A.2. We set H = L2([1,2],C?) & C and let Ay, W,, : H — H be the bounded linear operators defined by
ZO = ./%_[1 @ O, WO = '/%Yl @ —1, (A4)

where J;, and Jly, are the multiplication operators on L?([1,2],C?) by the matrix-valued functions J;,Y; : [1,2] —
C?*? defined by J;(s) = s(J, — b;I,) and Y;(s) = sY,, = s(b;I, — Z,). Here, the matrices J,, Z,, and Y,, were introduced in
Example A.1 above. We recall that o(Jy — by1,) = {=b;} and a(Jy — Zy)) = {i;, 4}, with uy <0 < 4.

Since the matrix Y, is symmetric, uniform negative definite, we immediately infer that J/y is self-adjoint, uniform neg-
ative definite on L?([1, 2], C?). Hence, WO is self-adjoint, uniformly negative definite on H. Moreover, since the functions
J; and Y are continuous by [8], it follows that

o(lly,) = Oess(My) = | ] oU1(s)) = [=2by,—by],

s€[1,2]

(Mg +y,) = Cess(My +y,) = U sa(Jo — Zy) = [—2uy, —Hy] U [45,245]. (A.5)
s€[1,2]

Since the linear operator A, is bounded on H we have it is sectorial. Moreover, from (A.4) and (A.5), we infer that 0
is a simple eigenvalue of A, and o(A) \ {0} = o(My,) = [-2by,—b,], thus sup Re (o(ﬁo) \ {0}) = —b,; < 0. Hence, A,
satisfies Hypotheses (H1) and (H2). Even if W, is self-adjoint, uniform negative definite on H, from (A.5) we have g..(Ag +
Wo) = Oegs (M 74v,) = [=205, —p5] U [A5, 245 ], which shows that Tess(Ag + W) N (0, 0) = [45,24;] is nonempty.
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