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Abstract

We study families of analytic semigroups, acting on a Banach space, and depend-

ing on a parameter, and give sufficient conditions for existence of uniform with

respect to the parameter norm bounds using spectral properties of the respective

semigroup generators. In particular, we use estimates of the resolvent oper-

ators of the generators along vertical segments to estimate the growth/decay

rate of the norm for the family of analytic semigroups. These results are

applied to prove the Lyapunov linear stability of planar traveling waves of sys-

tems of reaction–diffusion equations, and the bidomain equation, important in

electrophysiology.
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1 INTRODUCTION

The problem of finding optimal bounds for the norm of a semigroup of linear operators is very important and wellstud-

ied in the asymptotic theory of semigroups [2, 4–6, 15, 17]. Of particular importance are characterizations that relate

the growth/decay bounds to the spectral properties of the generator of the semigroup. We mention here the celebrated

Gearhard–Prüss Theorem [7, 18], and refer to [2, section 5.7] for further references or to [9, 10, 14] for more recent results.

For families of semigroups depending on a parameter, the problem of finding estimates for their norms that are uniform

with respect to the parameter is significantly less studied. In this paper, we aim to find sufficient conditions that guarantee

uniform with respect to the parameter exponential decay estimates for families of analytic semigroups in Banach spaces.

These results are important in the study of Lyapunov linearized stability of travelingwaves in systems of partial differential

equations. In many instances, such as parabolic systems of partial differential equations, the linearization along the wave

is a sectorial operator, hence it generates an analytic semigroup. In the case when the linearization along a planar wave is a

differential operator on amultidimensional domain, the generator of the semigroup is typically similar to amultiplication

operator by an operator-valued function of certain parameter, the dual variable. The Lyapunov linearized stability problem

is thus equivalent to the existence of uniform with respect to the parameter bounds for a family of analytic semigroups.

We present two specific cases, arising in the theory of reaction–diffusion systems and the bidomain equation, illustrating

these ideas in Section 4 and Section 5.

It is well known that for any strongly continuous semigroup of linear operators {ÿ(ý)}ý≥0 on a Banach space ÿ, there
exist two constants ÿ ≥ 1 and ÿ ∈ ℝ such that

‖ÿ(ý)‖ ≤ ÿÿÿý for any ý ≥ 0. (1.1)
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We recall that the infimum (which might not be the minimum) of all ÿ for which there exists a constant ÿ ≥ 1 such that

(1.1) holds is called the semigroup growth bound, and is denoted ÿ0(ÿ). Moreover, in the case of an analytic semigroup

one has ÿ0(ÿ) = s(ý) ∶= supRe ÿ(ý), where s(ý) is the spectral bound and ÿ(ý) is the spectrum of the generatorý of the

semigroup {ÿ(ý)}ý≥0. We stress that it is much harder to find a direct formula, or even an estimate, for the constant ÿ in
(1.1), unless one imposes additional conditions on the analytic semigroup {ÿ(ý)}ý≥0 or its generator. A classical example of

such condition reads as follows: If ý is the generator of an analytic semigroup {ÿ(ý)}ý≥0 and ý − ÿýÿ is dissipative, then

(1.1) holds for ÿ = 1, cf., for example, [2, Proposition 3.7.16].

In the case of families of semigroups whose generators depend on a parameter ÿ, real or complex, the constants ÿ and

ÿ from (1.1) might depend on ÿ as well. By studying the spectrum of the generator and the properties of its resolvent, one

can find a convenient growth rate. However, even if we usemore advanced results, such as the celebrated Gearhard–Prüss

theorem [7, 18] or later results of Helfer–Sjöstrand [9, 10], the constant ÿ = ÿ(ÿ) is quite often such that supÿ ÿ(ÿ) = ∞.

Usually, one aims at finding the best possible decay rate or the smallest growth rate, that is, the smallest ÿ in (1.1) may

be at the expense of making the constant ÿ large. However, in this paper, studying exponential decay and stability of a

family of semigroups depending on a parameter, we are not necessarily interested in the optimal decay rate, but rather just

in the order of magnitude of the decay rate when the parameter changes. In this context we are willing to give up some

decay to get a constant in front of the exponential term, which is uniform with respect to the parameters in the system. In

a sense, this philosophy is opposite to what has been used in many papers, for example, in [9, 10, 14].

In this paper, we study uniform stability of a family of semigroups of operators, whose generators are bounded

perturbations of a sectorial operator. We start with assumptions on the operator.

Hypothesis (H1). We assume that ý ∶ dom(A) ⊆ ÿ → ÿ is a sectorial linear operator, that is, there exists ÿ ∈ ℝ, ÿ ∈

(
ÿ

2
, ÿ) andý0 > 0 such that

Ωÿ,ÿ ∶= {ÿ ∈ ℂ ∶ ÿ ≠ ÿ, |arg(ÿ) − ÿ| < ÿ} ⊆ ÿ(ý), ‖ý(ÿ, ý)‖ ≤ ý0

|ÿ − ÿ| for any ÿ ∈ Ωÿ,ÿ. (1.2)

We recall that there are several concepts of sectorial operators in the literature. In this paper, we use the spectral conditions

given above in (1.2). See Remark 2.2 for a more detailed discussion.

It is well known that if ý satisfies Hypothesis (H1), then it generates an analytic semigroup that can be evaluated using

contour integration along a counterclockwise oriented path surrounding the spectrum of ý. These formulas allow us to

find estimates of the type (1.1) and find explicit formulas not only for ÿ, but also for ÿ. We revisit several results known in

the literature with the explicit aim of controlling the constant ÿ, which are very useful in the sequel, see Lemma 2.4 and

Remark 2.5. Next, we add to Hypothesis (H1) some more assumptions on ý.

Hypothesis (H2). We assume the following conditions on the spectrum of the operator ý:

(i) sup Re (ÿ(ý) ⧵ {0}) ≤ −ÿ for some ÿ > 0;

(ii) 0 is a semisimple eigenvalue of finite multiplicity of ý.

If the linear operatorý is obtained as the linearization of a partial differential equation (PDE) along a traveling wave, then

Hypothesis (H2) is equivalent to what is sometimes called conditional exponential stability of the wave. This situation is

very common, see examples from Section 4 and Section 5.

Next, we consider a family of operators ýÿ ∶= ý + ý(ÿ), ÿ ≥ 0, where the perturbation ý ∶ [0,∞) → ℬ(ÿ) is such

that ý(0) = 0. We denote by {ÿÿ(ý)}ý≥0 the semigroup of linear operators generated byýÿ, ÿ ≥ 0. We assume the following

conditions on the perturbed family of operators.

Hypothesis (H3). The function ý ∶ [0,∞) → ℬ(ÿ) is continuous in the operator norm topology. Moreover, there exists

an increasing function ÿ ∶ [0,∞) → [0,∞) such that

(i) there existsý1 > 0 independent of ÿ such that ÿ(ýÿ) ⊂ {ÿ ∈ ℂ ∶ Reÿ ≤ −ÿ(ÿ)} and

‖ý(ÿ, ýÿ)‖ ≤ ý1

Reÿ + ÿ(ÿ)
whenever Re ÿ > −ÿ(ÿ), ÿ ≥ 0; (1.3)
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(ii) ÿ(ÿ) = ÿ1ÿ for any ÿ ∈ [0, ÿ2], for some ÿ1, ÿ2 > 0;

(iii) ý ∶= lim sup
ÿ→∞

‖ý(ÿ)‖
ÿ(ÿ)

< ∞.

We note that the estimate (1.3) is necessary for the uniform in ÿ exponential stability of the family of semigroups gener-

ated by ýÿ, ÿ ≥ 0. In Section 4 and Section 5, we present examples of families of operators that satisfy Hypothesis (H3).

Moreover, a condition on the spectrum of the perturbed operatorýÿ, ÿ ≥ 0, is needed to achieve uniform in ÿ exponential

stability of the semigroups {ÿÿ(ý)}ý≥0, ÿ ≥ 0. Indeed, in general the spectrum of the perturbed operator ýÿ might not be

stable, even if the space ÿ is finite dimensional and ý(ÿ) = ÿÿ0, ÿ ≥ 0, whereÿ0 is a constant, bounded, self-adjoint,

uniformly negative definite linear operator. See the Appendix for simple counterexamples.

Assuming Hypotheses (H1)–(H3), we show that the family of operators ýÿ, ÿ ≥ 0, is uniformly sectorial, that is ýÿ,

satisfies (1.2) and all the relevant constants can be chosen independently on ÿ. Using this crucial result, we can prove that

the family of semigroups generated byýÿ is exponentially stable uniformly for ÿ ≥ ÿ, for any ÿ > 0. To prove the uniform

in ÿ exponential estimate for the norm of the semigroup {ÿÿ(ý)}ý≥0 for ÿ in a neighborhood of 0, we first find a spectral
decomposition of the space ÿ into two subspaces invariant under ýÿ. In this decomposition, one spectral subspace is

such that the spectrum of the restriction ýÿ is uniformly bounded away from the imaginary axis, and the other subspace

is finite dimensional. To construct such a decomposition, we use a transformation operator borrowed from the classical

work of Kato [13, Chapter II, section 4.2] and Daletskii–Krein, [5, Chapter 4, section 1]. To ensure that the spectral and

semigroup estimates are uniformly bounded in ÿ, we assume the following.

Hypothesis (H4). The function ý0 ∶ (0,∞) → ℬ(ÿ) defined by ý0(ÿ) =
1

ÿ
ý0(ÿ) has the property

sup
ÿ∈(0,1]

‖ý0(ÿ)‖ < ∞. (1.4)

This hypothesis guarantees that there exists a positive number ÿ0 > 0, independent of ÿ, such that the circle of radius
ÿ

4
centered at the origin is contained in the resolvent set ÿ(ýÿ), for any ÿ ∈ [0, ÿ0], where ÿ > 0was introduced in Hypothe-

sis (H2) (see Lemma 3.6 for more details). This result is essential in finding the desired spectral decomposition of the space

ÿ. Once this step is achieved, we use contour integration and the uniform sectorial property of the family of generators

ýÿ to prove the uniform in ÿ exponential stability of the restriction of the semigroup generated by ýÿ, ÿ ∈ [0, ÿ0], to the

subspace where its spectrum is bounded away from the imaginary axis uniformly in ÿ.

Next, we turn our attention to the restriction ofýÿ, ÿ ∈ [0, ÿ0], to the finite-dimensional subspace where all of its eigen-

values are of order ÿ(ÿ). The most important step here is to find an expansion of this restriction near ÿ = 0, which is so

that all the eigenvalues of the leading order term are with negative real part. Moreover, the remainder of the leading order

term is of order ý(ÿ) and bounded uniformly in ÿ in a neighborhood of 0. To be able to obtain such an expansion, we need

the following additional smoothness assumption on the perturbation.

Hypothesis (H5). There exists ÿ ∶ [0,∞) → [0,∞), a continuous, increasing function such that ÿ(0) = 0, limÿ→∞ ÿ(ÿ) =

∞, and the operator-valued function ý0 defined in (1.4) can be extended continuously at 0 and satisfies the inequality

‖ý0(ÿ) − ý0(0)‖ ≤ ÿ(ÿ) for any ÿ ≥ 0. (1.5)

We note that Hypotheses (H4) and (H5) are automatically satisfied if the perturbation ý is analytic. The first main result

of the paper is the following.

Theorem 1.1. Assume Hypotheses (H1)–(H5). Then, there exists a function ý ∶ (0, 1) → (0,∞), independent of the

perturbation variable ÿ ≥ 0, such that the following estimate holds:

‖ÿÿ(ý)‖ ≤ ý(ÿ)ÿ−ÿÿ(ÿ)ý for any ý ≥ 0, ÿ ≥ 0,ÿ ∈ (0, 1). (1.6)

The functioný depends on the unperturbed operatorý,ý0(0), and the functions‖ý(⋅)‖, ÿ, ÿ, and related constants introduced
in Hypotheses (H3)–(H5). See Equation (3.100) for a precise formula.
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In part, assumption (H3)(i) yields that ÿ0(ÿÿ) = s(ýÿ) ≤ −ÿ(ÿ) as the semigroup {ÿÿ(ý)}ý≥0 is analytic for any ÿ ≥ 0.

Of course, we cannot replace the decay rate −ÿÿ(ÿ), ÿ ∈ (0, 1), in (1.6) by ÿ0(ÿÿ), and thus by −ÿ(ÿ), unless additional

hypotheses are imposed. In many applications, however, we are mostly interested merely in the order of the decay rate,

and (1.6) captures this feature.

Next, we turn our attention to the special case when 0 is a simple eigenvalue of the unperturbed operator ý. The con-

clusion of Theorem 1.1 can be obtained in this case without assuming Hypothesis (H5). Arguing in the same way as in the

general case, we first establish an exponential estimate similar to (1.6) for ÿ away from 0. In addition, when ÿ is close to 0,

we can decompose the spaceÿ in the sum of two invariants forýÿ subspaces: One is such that the spectrum of the restric-

tion ofýÿ to the subspace is away from the imaginary axis, and another is a one-dimensional subspace. A modification of

Hypothesis (H2) is imposed next.

Hypothesis (H2′). We assume the following conditions on the spectrum of the operator ý:

(i) sup Re (ÿ(ý) ⧵ {0}) ≤ −ÿ for some ÿ > 0;

(ii) 0 is a simple eigenvalue of ý.

Theorem 1.2. AssumeHypotheses (H1), (H2′), (H3) and (H4). Then, there exists a functioný ∶ (0, 1) → (0,∞), independent

of the perturbation variable ÿ ≥ 0, such that following estimate holds:

‖ÿÿ(ý)‖ ≤ ý(ÿ)ÿ−ÿÿ(ÿ)ý for any ý ≥ 0, ÿ ≥ 0,ÿ ∈ (0, 1). (1.7)

The function ý depends on the unperturbed operator ý and the functions ‖ý(⋅)‖, ÿ, and related constants introduced in
Hypothesis (H3). See Equation (3.107) for a precise formula.

Next, we present applications of Theorem 1.1 and Theorem 1.2 to Lyapunov linear stability of planar traveling waves

in reaction–diffusion systems and the bidomain equation. The two models are known to exhibit planar traveling waves.

The linearization of each of them along the wave (in the moving frame variables) is similar via the Fourier transform to

a multiplication operator by an operator-valued function of a certain parameter (the dual variable). Thus, the Lyapunov

linear stability of a planar traveling wave can be obtained by studying the stability of a family of analytic semigroups,

which is uniform with respect to the parameter.

The reaction–diffusion system

ÿý = ÿΔýÿ + ý(ÿ), ý ≥ 0, ý = (ý1, … , ýÿ)
T ∈ ℝÿ, ÿ ∈ ℝý, (1.8)

has exponentially localized planar traveling wave solutions, that is, solutions of the form ÿ(ý, ý) = ℎ(ý1 − ýý), under

appropriate conditions on the matrix ÿ ∈ ℂý×ý and the vector-valued function ý ∶ ℝý → ℝý. Considering the equa-

tion in the moving frame variable ÿ = ý − ýýÿÿ, with ÿÿ = (1, 0, … , 0)T ∈ ℝÿ, the linearization along the planar wave

ℎ is given by ℒ = ÿΔÿ + ýýýÿÿ1 +ℳ
ý′(ℎ)

, considered as a densely defined linear operator on ÿ2(ℝÿ, ℂý). Here, ℳ
ý′(ℎ)

denotes the operator of multiplication on ÿ2(ℝÿ, ℂý) by the bounded, matrix-valued function ý′(ℎ(ÿ1)). Taking Fourier

transform in the variables (ÿ2, … , ÿÿ) ∈ ℝÿ−1, the linear operator ℒ is unitary equivalent to ℳÿ̂ the operator of mul-

tiplication on ÿ2
(
ℝÿ−1, ÿ2(ℝ,ℂý)

)
by the operator-valued function ÿ̂ ∶ ℝÿ−1 → ℬ

(
ÿ2(ℝ,ℂý), ÿ2(ℝ,ℂý)

)
, defined by

ÿ̂(ÿ) = ÿÿ2ÿ1 + ýýýÿÿ1 +ℳý(⋅,ÿ), where ý(ÿ1, ÿ) = ý′(ℎ(ÿ1)) − |ÿ|2ÿ. We refer to Section 4 for a more detailed discussion
on this topic. Next, we assume the following hypothesis.

Hypothesis (RD). The spectrum of ÿ̂(0) = ÿÿ2ÿ1 + ýýýÿÿ1 +ℳ
ý′(ℎ(⋅))

, the linearization along the one-dimensional

problem, satisfies the following conditions:

(i) sup Re
(
ÿ(ÿ̂(0)) ⧵ {0}

) ≤ −ÿ for some ÿ > 0;

(ii) 0 is a semisimple eigenvalue of finite multiplicity of ÿ̂(0).

We are now ready to formulate our Lyapunov stability result for the case of reaction–diffusion equations where the

diffusion rates of various components of ÿ in (1.8) are close to each other.
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Proposition 1.3. Assume Hypothesis (RD) and that the diffusion matrix ÿ is sufficiently close to ýýý , for some ý > 0, in the

sense described in Equation (4.19) below. Then the family of semigroups generated by ÿ̂(ÿ) is stable uniformly with respect to

ÿ ∈ ℝÿ−1. In particular, the front ℎ is Lyapunov linearly stable.

Next, we briefly recall the bidomain model in electrophysiology studied by Matano and Mori, see, for example, [16],

⎧⎪«⎪¬

ÿý = ∇ý ⋅ (ýÿ∇ýÿÿ) + ÿ(ÿ)

∇ý ⋅ (ýÿ∇ýÿÿ + ýÿ∇ýÿÿ) = 0,

ÿ = ÿÿ − ÿÿ

ý ≥ 0, ý ∈ ℝ2. (1.9)

Here, the scalar functions ÿÿ and ÿÿ represent the intracellular and extracellular voltages, ýÿ , ýÿ ∈ ℝ2×2 are symmetric,

positive definite matrices. Typically one has

ýÿ =

[
1 + ÿ1 + ÿ2 0

0 1 + ÿ2 − ÿ1

]
, ýÿ =

[
1 − ÿ1 − ÿ2 0

0 1 − ÿ2 + ÿ1

]
, with |ÿ1 ± ÿ2| < 1. (1.10)

The function ÿ is of classÿ3 and of bistable type, for example, 0 and 1 are two stable zeros of ÿ, and there exists a unique

unstable zero of ÿ in the interval (0,1). For a very detailed discussion regarding the applications and importance of the

bidomain Allen–Cahn model to cardiac electrophysiology, we refer to [16] and the references therein.

The bidomain model (1.9) has planar wave solutions of the form

(ÿ, ÿÿ , ÿÿ)(ý, ý) = (ý,ýÿ , ýÿ)(ý1 cos ÿ + ý2 sin ÿ − ýý), ý = (ý1, ý2) ∈ ℝ2, ý ≥ 0, ý, ÿ ∈ ℝ.

Next, we pass to the moving frame coordinate system (ÿ1, ÿ2) ∈ ℝ2, where the new axes are chosen such that the wave

travels in the direction of ÿ1. Moreover, we note that last two equations of the system (1.9) are linear. Linearizing the system

along the traveling wave solution and eliminating the variables ÿÿ and ÿÿ, we obtain that the linearization is given byý =

−ℒÿ + ýÿÿ1 +ℳÿ′(ý). The linear operator ℒÿ ∶ ÿ2(ℝ2) → ÿ2(ℝ2) is given as the Fourier multiplier ℒÿ = ℱ−1ℳýÿ
ℱ.

The function ýÿ is a rational function whose coefficients depend on ÿ1, ÿ2, and ÿ only. Moreover, it can be represented as

follows:

ýÿ(ÿ1, ÿ2) =

⎧
⎪«⎪¬

ÿ22

(
ý

(
ÿ1
ÿ2

)
+ ý

(
ÿ1
ÿ2

))
, ÿ1 ∈ ℝ, ÿ2 ∈ ℝ ⧵ {0},

ý2
0ÿ

2
1 , ÿ1 ∈ ℝ, ÿ2 = 0,

where (1.11)

ý(ý) = ý2
0(ý − ÿ1)

2 + ÿ0, ý(ý) =
ÿ1ý + ÿ0
ý2 + 1

. (1.12)

The constantsý0, ÿ0, ÿ1, ÿ0, and ÿ1 depend on ÿ1 and ÿ2 and ÿ only. Taking Fourier transformℱ2 with respect to ÿ2 ∈ ℝ,

we note that the linear operator ý is unitary equivalent to ℳý̂, the operator of multiplication on ÿ2
(
ℝ, ÿ2(ℝ)

)
by the

operator-valued function ý̂ ∶ ℝ → ℬ
(
ÿ2(ℝ), ÿ2(ℝ)

)
, ý̂(ÿ2) = −ℱ−1

1 ℳýÿ(⋅,ÿ2)ℱ1 + ýÿÿ1 +ℳÿ′(ý). Here, ℱ1 denotes the

Fourier transform with respect to the variable ÿ1 ∈ ℝ. For more details, we refer to Section 5 and [16].

From (1.11) and (1.12), it follows that ý̂(0) is a second-order differential operator and there existsýb > 0 such that

‖‖ý
(
ÿ, ý̂(0)

)‖‖ ≤ ýb

|ÿ| whenever Re ÿ ≥ 0, ÿ ≠ 0. (1.13)

We recall the following result from [16, Corollary 3.3]:

ý is spectrally stable provided that ÿ0 > ýbýΔ − ý. (1.14)
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Here, ýinf = inf ý∈ℝ ý(ý), ýsup = supý∈ℝ ý(ý), ý =
ýinf+ýsup

2
, ýΔ =

ýsup−ýinf

2
, while ÿ0 was introduced in (1.12) and ýb was

introduced in (1.13). In [16], the authors show that (1.14) is met for certain values of the parameters. In this paper, we prove

that the sufficient condition of (1.14) guarantees that the planar front ý is Lyapunov linearly stable.

Proposition 1.4. Assume that ÿ0 > ýbýΔ − ý. Then, the family of semigroups generated by ý̂(ÿ2) is stable uniformly with

respect to ÿ2 ∈ ℝ. In particular, the front ý is Lyapunov linearly stable.

Plan of the paper. The paper is organized as follows. In Section 2, we discuss the two most common concepts of

sectorial operators, and analyze several exponential bounds for analytic semigroups. In Section 3, we prove Theorem 1.1

and Theorem 1.2. Proposition 1.3 and Proposition 1.4 are proved in Section 4 and Section 5, respectively.

A glossary of notation. ÿý(ℝÿ, ÿ), ý ≥ 1, denotes the usual Lebesgue space on ℝÿ with values in a Banach spaceÿ,

associated with the Lebesgue measure dý onℝÿ.ÿý(ℝÿ, ÿ), ý > 0, is the usual Sobolev space ofÿ-valued functions. The

open disc in ℂ centered at ÿ of radius ÿ > 0 is denoted by ÿ(ÿ, ÿ). The identity operator on a Banach space ÿ is denoted

by ýÿ. The set of bounded linear operators from a Banach space ÿ to itself is denoted by ℬ(ÿ). For an operator ý on a

Banach space ÿ, we use dom(ý), ker ý, imý, ÿ(ý), and ý|ÿ to denote the domain, kernel, range, spectrum, adjoint, and

the restriction of ý to a subspaceÿ of ÿ. In the case when the space is a Hilbert space, ý∗ denotes the adjoint operator.

We denote by ÿdisc(ý) the set of isolated eigenvalues of finite algebraic multiplicity of the linear operator ý, and by ÿess(ý)

its complement in the spectrum of ý. The direct sum of two subspacesÿ1 andÿ2 is denoted byÿ1 ⊕ÿ2. The operator

of multiplication by a function ý is denoted by ℳý. We use ÿ0(ÿ) or ÿ0(ý) to denote the growth bound of a semigroup

{ÿ(ý)}ý≥0 with generator ý. The spectral bound of the generator ý is defined by s(ý) = supRe ÿ(ý).

2 NORM ESTIMATES OF SEMIGROUPS GENERATED BY SECTORIAL OPERATORS

In this section,we assume thatÿ is a Banach space andý ∶ dom(A) ⊆ ÿ → ÿ is a sectorial operator generating an analytic

semigroup of linear operators denoted {ÿ(ý)}ý≥0. There are various concepts of sectorial operators relevant to our setup that
we are going to briefly discuss below.

First, we recall that for any ÿ ∈ ℝ and ÿ ∈ (
ÿ

2
, ÿ), we defined the sector with vertex at ÿ of angle ÿ the set

Ωÿ,ÿ = {ÿ ∈ ℂ ∶ ÿ ≠ ÿ, |arg(ÿ) − ÿ| < ÿ}. (2.1)

One can readily check that

ℂ ⧵ Ωÿ,ÿ = {ÿ ∈ ℂ ∶ Reÿ ≤ ÿ, |Imÿ| ≤ (Reÿ − ÿ) tan ÿ}. (2.2)

In the literature on semigroup of linear operators (see, e.g., [6, 15, 17]), the definition of a sectorial operator is given using

its spectral properties, see (1.2). In the case of linear operators on a Hilbert space, in particular differential operators,

several classical texts [20] define sectorial operators using the numerical range. We recall that if ℍ is a Hilbert space and

ý ∶ dom(ý) ⊆ ℍ → ℍ is a closed, densely defined linear operator, the numerical range of ý is defined by

ÿ(ý) = {ïýℎ, ℎð ∶ ℎ ∈ dom(ý), ‖ℎ‖ = 1}. (2.3)

Definition 2.1. The operator ý ∶ dom(ý) ⊆ ℍ → ℍ is said to be numerical range sectorial if there exists ÿ ∈ ℝ, ÿ ∈ (
ÿ

2
, ÿ)

such thatÿ(ý) ⊆ ℂ ⧵ Ωÿ,ÿ.

Remark 2.2. From [3, Theorem 1.4], one can readily check that any numerical range sectorial operator is sectorial, but

not vice versa. Indeed, if ÿ(ý) ⊆ ℂ ⧵ Ωÿ,ÿ for some ÿ ∈ ℝ and ÿ ∈ (
ÿ

2
, ÿ), since Ωÿ,ÿ is open, we have ÿ(ý) ⊆ ÿ(ý) ⊆

ℂ ⧵ Ωÿ,ÿ. In addition,

‖ý(ÿ, ý)‖ ≤ 1

dist(ÿ, ÿÿ,ÿ)
=

1

dist(ÿ − ÿ, ÿ0,ÿ)
. (2.4)
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Another simple computation shows that

dist(ÿ, ÿ0,ÿ) =

{|ÿ|, |argÿ| < ÿ −
ÿ

2
,

|ÿ| sin (ÿ − |argÿ|), ÿ −
ÿ

2
≤ |argÿ| < ÿ,

(2.5)

for any ÿ ∈ Ω0,ÿ. From (2.4) and (2.5), we infer that

‖ý(ÿ, ý)‖ ≤ csc (ÿ − ÿ)

|ÿ − ÿ| for any ÿ ∈ Ωÿ,ÿ and any ÿ ∈
(ÿ
2
, ÿ

)
, (2.6)

and so ý is sectorial.

It is well known that if the linear operator ý ∶ dom(ý) ⊆ ÿ → ÿ satisfies Hypothesis (H1), then ‖ÿ(ý)‖ ≤ ÿÿÿý for any

ý ≥ 0, for some ÿ > 0. Our first task is to revisit the proof of this result and for each ÿ ∈ (
ÿ

2
, ÿ) find a constant ÿ = ÿ(ÿ),

not necessarily optimal, satisfying the estimate that depends only on ÿ andý0.

Lemma 2.3. Assume Hypothesis (H1). Then,

‖ÿ(ý)‖ ≤ ý0(ÿÿ − sec ÿ)

ÿ
ÿÿý for any ý ≥ 0 and any ÿ ∈

(ÿ
2
, ÿ

)
. (2.7)

Proof. We fix ÿ ∈ (
ÿ

2
, ÿ), ý > 0, and ÿ > 0. We introduce the curves in the complex plane given by

Λ±
ÿ,ÿ,ÿ = {ÿ ∈ ℂ ∶ arg(ÿ − ÿ) = ±ÿ, |ÿ − ÿ| ≥ ÿ} = {ÿ + ýÿ±iÿ ∶ ý ≥ ÿ},

Λc
ÿ,ÿ,ÿ = {ÿ ∈ ℂ ∶ |arg(ÿ − ÿ)| ≤ ÿ, |ÿ − ÿ| = ÿ} = {ÿ + ÿÿiÿ ∶ −ÿ ≤ ÿ ≤ ÿ}. (2.8)

The pathΛÿ,ÿ,ÿ is defined as the unionΛ
−
ÿ,ÿ,ÿ ∪ Λc

ÿ,ÿ,ÿ ∪ Λ+
ÿ,ÿ,ÿ oriented counterclockwise. SinceΛÿ,ÿ,

ÿ

ý

⊆ Ωÿ,ÿ for any ý > 0

and ÿ > 0, we have (see [15, Chapter 2])

ÿ(ý) =
1

2ÿi ∫Λ
ÿ,ÿ,

ÿ
ý

ÿÿýý(ÿ, ý)dÿ for any ý > 0, ÿ > 0. (2.9)

Next, we estimate the contour integrals above using (1.2). Changing variables we have

∫
Λ±

ÿ,ÿ,
ÿ
ý

ÿÿýý(ÿ, ý)dÿ = ∫
∞

ÿ

ý

ÿ(ÿ+ýÿ
±iÿ)ýý(ÿ + ýÿ±iÿ, ý) ÿ±iÿdý

=
ÿÿý±iÿ

ý ∫
∞

ÿ

ÿÿÿ
±iÿ

ý

(
ÿ +

ÿ

ý
ÿ±iÿ, ý

)
dÿ. (2.10)

Since Λ±

ÿ,ÿ,
ÿ

ý

⊆ Ωÿ,ÿ for any ý > 0 and ÿ > 0, from (1.2) and (2.10), we obtain that

‖‖‖∫
Λ±

ÿ,ÿ,
ÿ
ý

ÿÿýý(ÿ, ý)dÿ
‖‖‖ ≤ ÿÿý

ý ∫
∞

ÿ

ÿÿ cos ÿ
ý0

| ÿ
ý
ÿ±iÿ|

dÿ = ý0ÿ
ÿý ∫

∞

ÿ

ÿÿ cos ÿ

ÿ
dÿ. (2.11)

Similarly, since Λc

ÿ,ÿ,
ÿ

ý

⊆ Ωÿ,ÿ for any ý > 0 and ÿ > 0, one can readily check that

‖‖‖∫
Λc

ÿ,ÿ,
ÿ
ý

ÿÿýý(ÿ, ý)dÿ
‖‖‖ =

‖‖‖
ÿiÿÿý

ý ∫
ÿ

−ÿ

ÿÿÿ
iÿ
ý(ÿ +

ÿ

ý
ÿiÿ , ý)dÿ

‖‖‖ ≤ ý0ÿ
ÿý ∫

ÿ

−ÿ

ÿÿ cos ÿdÿ. (2.12)
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From (2.9), (2.11), and (2.12) we conclude that

‖ÿ(ý)‖ ≤ ý0ÿ0(ÿ)ÿ
ÿý for any ý ≥ 0, where ÿ0(ÿ) ∶=

1

ÿ
inf
ÿ>0

(
∫

∞

ÿ

ÿÿ cos ÿ

ÿ
dÿ +

1

2 ∫
ÿ

−ÿ

ÿÿ cos ÿdÿ

)
. (2.13)

Finally, we note that

ÿ0(ÿ) ≤ 1

ÿ

(
∫

∞

1

ÿÿ cos ÿ

ÿ
dÿ +

1

2 ∫
ÿ

−ÿ

ÿcos ÿdÿ

)
≤ 1

ÿ

(
∫

∞

1

ÿÿ cos ÿdÿ + ÿÿ

)
=

ÿÿ − sec ÿ

ÿ
, (2.14)

proving the lemma. □

Next, we discuss how to improve estimate (2.7), provided that the sectorial semigroup generator ý is such that

supRe ÿ(ý) < ÿ, where ÿ is the vertex of the sector. Such an estimate is important since for many second-order ellip-

tic differential operators, one can immediately prove they are sectorial using Gårding inequality, but typically the vertex

is positive. To formulate our result, we introduce the operator-valued function

ýý ∶ (0,∞) × (s(ý),∞) ×
(ÿ
2
, ÿ

)
→ ℬ(ÿ), ýý(ý, ÿ, ÿ) = ∫

(ÿ−ÿ)| tanÿ|

−(ÿ−ÿ)| tanÿ|
ÿiýýý(ÿ + iý, ý)dý. (2.15)

Lemma 2.4. Assume Hypothesis (H1) and that the vertex ÿ from (1.2) is such that ÿ > s(ý) = supRe ÿ(ý). Then,

‖ÿ(ý)‖ ≤ ý0ÿ
ÿý

ÿ(ÿ − ÿ)ý
+

ÿÿý

2ÿ
sup
ý>0

‖ýý(ý, ÿ, ÿ)‖ for any ý > 0, ÿ ∈ (s(ý), ÿ), ÿ ∈
(ÿ
2
, ÿ

)
. (2.16)

Proof. The proof uses the typical contour integral representation for sectorial operators. First we fix ÿ > ý(ý) and ÿ ∈

(
ÿ

2
, ÿ) and set ÿ = (ÿ − ÿ)| tan ÿ| and ý = (ÿ − ÿ)| sec ÿ|. Next, we introduce the curves in the complex plane given by

Γ±ÿ,ÿ,ÿ = {ÿ + ýÿ±iÿ ∶ ý ≥ ý}, Γcÿ,ÿ,ÿ = {ÿ + iý ∶ −ÿ ≤ ý ≤ ÿ}. (2.17)

The pathΓÿ,ÿ,ÿ is defined as the unionΓ
−
ÿ,ÿ,ÿ ∪ Γcÿ,ÿ,ÿ ∪ Γ+ÿ,ÿ,ÿ oriented counterclockwise.Wenote that this path is contained

in the resolvent set of ý and surrounds, the spectrum of ý counterclockwise. It follows that (see, e.g., [15, Chapter 2])

ÿ(ý) =
1

2ÿi ∫Γÿ,ÿ,ÿ
ÿÿýý(ÿ, ý)dÿ for any ý > 0. (2.18)

Since Γcÿ,ÿ,ÿ ⊆ Ωÿ,ÿ, ÿ = ÿ − ý cos ÿ from (1.2) and (2.17) (Figure 1), we obtain that

‖‖‖‖‖‖∫Γ±ÿ,ÿ,ÿ
ÿÿýý(ÿ, ý)dÿ

‖‖‖‖‖‖
=

‖‖‖‖‖∫
∞

ý

ÿ(ÿ+ýÿ
±iÿ)ýý(ÿ + ýÿ±iÿ, ý) ÿ±iÿdý

‖‖‖‖‖
≤ ∫

∞

ý

ÿ(ÿ+ý cos ÿ)ý
ý0

ý
dý

= ∫
∞

ý

ÿ(ÿ+(ý−ý) cos ÿ)ý
ý0

ý
dý = ý0ÿ

ÿý ∫
∞

ý

ÿ(ý−ý) cos ÿý

ý
dý

= ý0ÿ
ÿý ∫

∞

0

ÿ−ÿý| sec ÿ|
ý + | sec ÿ|ÿ dÿ = ý0ÿ

ÿý ∫
∞

0

ÿ−ÿý

ÿ − ÿ + ÿ
dÿ

≤ ý0ÿ
ÿý ∫

∞

0

ÿ−ÿý

ÿ − ÿ
dÿ =

ý0ÿ
ÿý

(ÿ − ÿ)ý
. (2.19)
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F IGURE 1 A plot of the spectrum of ý, the sector Ωÿ,ÿ , and the path Γÿ,ÿ,ÿ in the case when the vertex ÿ is positive.

Unlike Λc
ÿ,ÿ,ÿ used in Lemma 2.3 above, Γ

c
ÿ,ÿ,ÿ is not contained in the sector Ωÿ,ÿ. To finish the proof of the lemma, we

note that

‖‖‖‖‖‖∫Γcÿ,ÿ,ÿ
ÿÿýý(ÿ, ý)dÿ

‖‖‖‖‖‖
=

‖‖‖‖‖
iÿÿý ∫

ÿ

−ÿ

ÿiýýý(ÿ + iý, ý)dý
‖‖‖‖‖
≤ ÿÿý sup

ý>0
‖ýý(ý, ÿ, ÿ)‖. (2.20)

The estimate (2.16) follows shortly from (2.18), (2.19), and (2.20). □

We note that surprisingly the estimate (2.16) is more useful in the case when ÿ > 0. The main reason is that if ÿ > 0 and

ÿ = −ÿÿ(ÿ), with the function ÿ as in Hypothesis (H3) and ÿ ∈ (0, 1), then the constant
ý0

ÿ(ÿ−ÿ)
from (2.16) is uniformly

bounded by
ý0

ÿÿ
. If ÿ = 0 and ÿ = −ÿÿ(ÿ)with ÿ close to 0, the constant ý0

ÿ(ÿ−ÿ)
is of orderÿ(

1

ÿ
), making the estimate (2.16)

not that useful.

Remark 2.5. Assuming Hypothesis (H1) and that ÿ > s(ý), one can readily check that

sup
ý>0

‖ýý(ý, ÿ, ÿ)‖ ≤ 2(ÿ − ÿ)| tan ÿ| sup{‖ý(ÿ + iý, ý)‖ ∶ |ý| ≤ (ÿ − ÿ)| tan ÿ|} < ∞ (2.21)

for any ÿ ∈ (ý(ý), ÿ) and ÿ ∈ (
ÿ

2
, ÿ). From Lemma 2.4, it follows that

‖ÿ(ý)‖ ≤ ý0ÿ
ÿý

ÿ(ÿ − ÿ)ý
+

(ÿ − ÿ)| tan ÿ|ÿÿý
ÿ

sup{‖ý(ÿ + iý, ý)‖ ∶ |ý| ≤ (ÿ − ÿ)| tan ÿ|} (2.22)

for any ý > 0 and any ÿ > s(ý), ÿ ∈ (
ÿ

2
, ÿ). This result for the special case of analytic semigroups on Banach spaces resem-

bles the famous Gearhart–Prüss result for semigroups on Hilbert spaces [7, 18], which was optimized by Helffer and

Sjöstrand [9, 10]. Indeed, the Gearhart–Prüss theorem says that a strongly continuous semigroup is exponentially stable

provided its generator has no spectrum in the right half plane and its resolvent operator is bounded along the whole

imaginary axis. In case of analytic semigroups, however, it is enough to estimate in (2.22) the resolvent operator of ý
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along a bounded vertical segment, not the entire vertical line as it is needed for ÿ0-semigroups that are not necessarily

analytic.

Next, we collect a couple of other properties of the operator-valued functionýý. In particular, we are interested to find

an alternative formula involving convolutions.

Remark 2.6. Setting ÿ = (ÿ − ÿ)| tan ÿ| and using the fact that the resolvent operator ofý is the Laplace Transform of the

analytic semigroup {ÿ(ý)}ý≥0, it follows that

ýý(ý, ÿ, ÿ) = ∫
ÿ

−ÿ

ÿiýý ∫
∞

0

ÿ−(ÿ+iý)ÿÿ(ÿ)dÿdý = ∫
ÿ

−ÿ
∫

∞

0

ÿi(ý−ÿ)ýÿ−ÿÿÿ(ÿ)dÿdý

= ∫
∞

0

(
∫

ÿ

−ÿ

ÿi(ý−ÿ)ýdý

)
ÿ−ÿÿÿ(ÿ)dÿ = ∫

∞

0

sin ((ÿ − ÿ)(ý − ÿ)| tan ÿ|)
ý − ÿ

ÿ−ÿÿÿ(ÿ)dÿ (2.23)

for any ÿ > ý(ý) and ÿ ∈ (
ÿ

2
, ÿ). This representation as a convolution shows that the estimate (2.16) is somewhat similar

to convolution-type results of Latushkin and Yurov for the case of general semigroups on Banach spaces [14, Theorem 1.2].

Remark 2.7. From Hypothesis (H2)(ii) we infer that 0 is a pole of order 1 of ý(⋅, ý), hence limÿ→0 ÿý(ÿ, ý) does exist in

the operator norm. We infer that the operator-valued function

ÿ → ÿý(ÿ, ý) ∶ Ωÿ,ÿ ∪ {ÿ ∈ ℂ ∶ Reÿ > −ÿ} ⧵ {0} → ℬ(ÿ) (2.24)

can be extended analytically toΩÿ,ÿ ∪ {ÿ ∈ ℂ ∶ Reÿ > −ÿ}. For simplicity, we will use the same notation for this function

and set (ÿý(ÿ, ý))|ÿ=0 = limÿ→0 ÿý(ÿ, ý).

Next, we recall a sufficient condition that guarantees that a linear operator is sectorial due to A. Lunardi [15].

Lemma 2.8. Assume that ý ∶ dom(ý) ⊆ ÿ → ÿ is a linear operator and ÿ ∈ ℝ such that

{ÿ ∈ ℂ ∶ Reÿ ≥ ÿ} ⊆ ÿ(ý) and ‖ÿý(ÿ, ý)‖ ≤ ý0 whenever Reÿ ≥ ÿ. (2.25)

Then, the operator ý is sectorial. More precisely,

Ωÿ,ÿ ⊆ ÿ(ý) and ‖ý(ÿ, ý)‖ ≤
√

4ý2
0 + 1

|ÿ − ÿ| for any ÿ ∈ Ωÿ,ÿ, (2.26)

where ÿ = ÿ − arctan(2ý0).

It is well known that any bounded perturbation of a sectorial operator is also sectorial. To finish this section, we discuss

a sufficient condition that guarantees that the angle of the sector remains the same.

Lemma 2.9. Assume Hypothesis (H1) andÿ ∈ ℬ(ÿ). Then,

Ωÿ,ÿ ⊆ ÿ(ý +ÿ), ‖ý(ÿ, ý +ÿ)‖ ≤ 2ý0(1 + csc ÿ)

|ÿ − ÿ| for any ÿ ∈ Ωÿ,ÿ, (2.27)

where ÿ = ÿ + 2ý0‖ÿ‖ csc ÿ.

Proof. Fix ÿ ∈ Ωÿ,ÿ. Since ÿ > ÿ, we have ÿ ∈ Ωÿ,ÿ ⊆ ÿ(ý). Moreover, from Hypothesis (H1) we obtain that

|ÿ − ÿ| ≥ dist(ÿ,Ωÿ,ÿ) = (ÿ − ÿ) sin ÿ = 2ý‖ÿ‖, and thus ‖ÿý(ÿ,ý)‖ ≤ ý0‖ÿ‖
|ÿ − ÿ| ≤ 1

2
. (2.28)
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It follows that ýÿ −ÿý(ÿ,ý) is invertible with bounded inverse and ‖ (ýÿ −ÿý(ÿ,ý))
−1 ‖ ≤ 2. Since ÿýÿ − ý −ÿ =

(ýÿ −ÿý(ÿ,ý)) (ÿýÿ − ý), from (2.28) we infer that ÿ ∈ ÿ(ý +ÿ) and

‖ý(ÿ, ý +ÿ)‖ ≤ ‖ý(ÿ, ý)‖‖(ýÿ −ÿý(ÿ,ý))
−1‖ ≤ 2ý0

|ÿ − ÿ| =
2ý0

||ÿ − ÿ − 2ý0‖ÿ‖ csc ÿ||
|ÿ − ÿ| |ÿ − ÿ|

≤ 2ý0

|ÿ − ÿ|
(
1 +

2ý0‖ÿ‖ csc ÿ
|ÿ − ÿ|

)
≤ 2ý0(1 + csc ÿ)

|ÿ − ÿ| , (2.29)

proving the lemma. □

3 NORM ESTIMATES OF FAMILIES OF ANALYTIC SEMIGROUPS

In this section, we discuss the uniform exponential stability of families of analytic semigroups whose generators are

bounded perturbations of a sectorial operator satisfying Hypotheses (H1) and (H2). Throughout this section, we assume

that ý ∶ [0,∞) → ℬ(ÿ) is such that ý(0) = 0, and the family of operators denoted by ýÿ ∶= ý + ý(ÿ), ÿ ≥ 0, satisfies

Hypothesis (H3). In addition, we recall that {ÿÿ(ý)}ý≥0 denotes the semigroup of linear operators generated by ýÿ, ÿ ≥ 0.

3.1 Basic properties of families of analytic semigroups

First, we will show that the operator ýÿ, ÿ ≥ 0, is sectorial and all the constants from (1.2) can be chosen independent of

ÿ.

Lemma 3.1. AssumeHypotheses (H1)–(H3). Then, there exist ÿ̃ > 0, ÿ̃ ∈ (
ÿ

2
, ÿ), and ý̃ > 0, independent of ÿ ≥ 0, such that

Ωÿ̃,ÿ̃ ⊆ ÿ(ýÿ), ‖ý(ÿ, ýÿ)‖ ≤ ý̃

|ÿ − ÿ̃| for any ÿ ∈ Ωÿ̃,ÿ̃, ÿ ≥ 0. (3.1)

The constants ÿ̃, ÿ̃, and ý̃ depend on the unperturbed operator ý and the functions ‖ý(⋅)‖ and ÿ and related constants in

Hypotheses (H3).

Proof. Without loss of generality we can assume that ÿ > 0, where ÿ is the vertex of the sector fromHypothesis (H1). From

Hypothesis (H3)(iii) we have there exists ÿ0 > 0 such that ‖ý(ÿ)‖ ≤ (ý + 1)ÿ(ÿ) for any ÿ ≥ ÿ0. From Hypotheses (H2)

and (H3), respectively, it is clear that {ÿ ∈ ℂ ∶ Reÿ ≥ ÿ + 1} ⊆ ÿ(ý) ∩ ÿ(ýÿ) for any ÿ ≥ ÿ0. Moreover,

ý(ÿ, ýÿ) − ý(ÿ, ý) = ý(ÿ, ýÿ)ý(ÿ)ý(ÿ, ý) whenever Reÿ ≥ ÿ + 1, ÿ ≥ ÿ0. (3.2)

From (3.2), Hypothesis (H1), and Hypothesis (H3)(i), we obtain that

‖ÿý(ÿ, ýÿ)‖ ≤ ‖ÿý(ÿ, ý)‖ + ‖ý(ÿ, ýÿ)‖ ‖ý(ÿ)‖ ‖ÿý(ÿ, ý)‖ ≤ ý0|ÿ|
|ÿ − ÿ|

(
1 +

ý1‖ý(ÿ)‖
Reÿ + ÿ(ÿ)

)

≤ ý0|ÿ|
|ÿ − ÿ|

(
1 +

ý1‖ý(ÿ)‖
ÿ(ÿ)

)
≤ |ÿ|

|ÿ − ÿ|ý0(1 + ý1(ý + 1))

≤ ý0(1 + ý1(ý + 1))

(
1 +

ÿ

|ÿ − ÿ|
)

≤ ý0(1 + ÿ)(1 +ý1(ý + 1)) (3.3)

whenever Reÿ ≥ ÿ + 1 and ÿ ≥ ÿ0. From Hypothesis (H3), we infer that supÿ∈[0,ÿ0] ‖ý(ÿ)‖ < ∞. Lemma 2.9 yields

Ωÿ1,ÿ ⊆ ÿ(ýÿ), ‖ý(ÿ, ýÿ)‖ ≤ 2ý0(1 + csc ÿ)

|ÿ − ÿ1| for any ÿ ∈ Ωÿ1,ÿ, ÿ ∈ [0, ÿ0], (3.4)
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where ÿ1 = ÿ + 2ý0 supÿ∈[0,ÿ0] ‖ý(ÿ)‖ csc ÿ ≥ ÿ. It follows that {ÿ ∈ ℂ ∶ Reÿ ≥ ÿ1 + 1} ⊆ ÿ(ýÿ) for any ÿ ∈ [0, ÿ0] and

‖ÿý(ÿ, ýÿ)‖ ≤ 2ý0(1 + csc ÿ)|ÿ|
|ÿ − ÿ1| ≤ 2ý0(1 + csc ÿ)

(
1 +

ÿ1
|ÿ − ÿ1|

)
≤ 2ý0(1 + csc ÿ)(1 + ÿ1) (3.5)

whenever Reÿ ≥ ÿ1 + 1 and ÿ ∈ [0, ÿ0]. Since ÿ1 ≥ ÿ from (3.3) and (3.5), it follows that {ÿ ∈ ℂ ∶ Reÿ ≥ ÿ1 + 1} ⊆ ÿ(ýÿ)

for any ÿ ≥ 0 and

‖ÿý(ÿ, ýÿ)‖ ≤ ý0(1 + ÿ1)(1 + max{csc ÿ,ý1(ý + 1)}) whenever Reÿ ≥ ÿ1 + 1, ÿ ≥ 0. (3.6)

Setting ÿ̃ = ÿ1 + 1, ý̃ = ý0(1 + ÿ1)(1 + max{csc ÿ,ý1(ý + 1)}), ý̃ =
√
4ý̃2 + 1, and ÿ̃ = ÿ − arctan(2ý̃), from

Lemma 2.8 and (3.6), we infer that

Ωÿ̃,ÿ̃ = Ωÿ1+1,ÿ̃
⊆ ÿ(ýÿ) and ‖ý(ÿ, ýÿ)‖ ≤

√
4ý̃2 + 1

|ÿ − ÿ1 − 1| =
ý̃

|ÿ − ÿ̃| for any ÿ ∈ Ωÿ̃,ÿ̃, ÿ ≥ 0, (3.7)

proving the lemma. □

In the next lemma, we apply Lemma 2.4 to estimate the norm of the semigroup {ÿÿ(ý)}ý≥0 for ÿ away from 0.

Lemma 3.2. Assume Hypotheses (H1)–(H3). Then the following estimate holds,

‖ÿÿ(ý)‖ ≤ ý(ÿ, ÿ)ÿ−ÿÿ(ÿ)ý for any ý ≥ 0, ÿ > 0, ÿ ∈ (0, 1). (3.8)

Here the functioný ∶ (0, 1) × (0,∞) → (0,∞) is defined by

ý(ÿ, ÿ) = 1

ÿ
max

⎧⎪⎪«⎪⎪¬

ý̃ÿ(ÿ)

ÿ̃ + ÿÿ(ÿ) +
ý1(ÿ̃ + ÿÿ(ÿ)) |||||tan

(
ÿ̃

2
+

ÿ

4

)|||||
(1 − ÿ)ÿ(ÿ) ,

ý̃

(
ÿ(2ÿ̃ + ÿ) − 4 sec

(
ÿ̃

2
+

ÿ

4

))

4
ÿ

ÿ̃

ÿ(ÿ)
+1

«⎪⎪¬⎪⎪­

.

(3.9)

In particular, for any ÿ > 0 the family of semigroups {ÿÿ(ý)}ý≥0 is exponentially stable uniformly for ÿ ≥ ÿ.

Proof. Fixÿ ∈ (0, 1),ÿ > 0, and letÿ = −ÿÿ(ÿ).We setÿ =
ÿ̃

2
+

ÿ

4
∈ (

ÿ

2
, ÿ̃) and ÿ̃ = (ÿ̃ − ÿ)| tan ÿ|. FromHypothesis (H3),

we have ÿ > s(Aα) and

‖ý(ÿ + iý, ýÿ)‖ ≤ ý1

Re(ÿ + iý) + ÿ(ÿ)
=

ý1

ÿ + ÿ(ÿ)
=

ý1

(1 − ÿ)ÿ(ÿ) for any ý ∈ ℝ. (3.10)

Using definition (2.15) leads to

‖ýýÿ
(ý, ÿ, ÿ)‖ =

‖‖‖‖‖‖∫
ÿ̃

−ÿ̃

ÿiýýý(ÿ + iý, ýÿ)dý

‖‖‖‖‖‖
≤ 2ý1ÿ̃

(1 − ÿ)ÿ(ÿ) =
2ý1(ÿ̃ − ÿ)

|||||
tan

(
ÿ̃

2
+

ÿ

4

)|||||
(1 − ÿ)ÿ(ÿ) (3.11)
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for any ý > 0. From (3.1), (3.11), and Lemma 2.4, it follows that

‖ÿÿ(ý)‖ ≤ ý̃ÿÿý

ÿ(ÿ̃ − ÿ)ý
+

ÿÿý

2ÿ
⋅

2ý1(ÿ̃ − ÿ)
|||||
tan

(
ÿ̃

2
+

ÿ

4

)|||||
(1 − ÿ)ÿ(ÿ)

=
ÿ−ÿÿ(ÿ)ý

ÿ

»
¼¼¼¼½

ý̃

(ÿ̃ + ÿÿ(ÿ))ý +
ý1(ÿ̃ + ÿÿ(ÿ)) |||||tan

(
ÿ̃

2
+

ÿ

4

)|||||
(1 − ÿ)ÿ(ÿ)

¾
¿¿¿¿À
for any ý > 0. (3.12)

If ý ≥ 1

ÿ(ÿ)
, then (ÿ̃ + ÿÿ(ÿ))ý ≥ ÿ̃

ÿ(ÿ)
+ ÿ, thus from (3.12), we have

‖ÿÿ(ý)‖ ≤ ÿ−ÿÿ(ÿ)ý
ÿ

»
¼¼¼¼½

ý̃ÿ(ÿ)

ÿ̃ + ÿÿ(ÿ) +
ý1(ÿ̃ + ÿÿ(ÿ)) |||||tan

(
ÿ̃

2
+

ÿ

4

)|||||
(1 − ÿ)ÿ(ÿ)

¾
¿¿¿¿À
for any ý ≥ 1

ÿ(ÿ)
. (3.13)

From Lemma 2.3 and Lemma 3.1, we infer

‖ÿÿ(ý)‖ ≤ ý̃(ÿÿ − sec ÿ)

ÿ
ÿÿ̃ý =

ý̃

(
ÿ(2ÿ̃ + ÿ) − 4 sec

(
ÿ̃

2
+

ÿ

4

))

4ÿ
ÿ(ÿ̃+ÿÿ(ÿ))ýÿ−ÿÿ(ÿ)ý

≤
ý̃

(
ÿ(2ÿ̃ + ÿ) − 4 sec

(
ÿ̃

2
+

ÿ

4

))

4ÿ
ÿ

ÿ̃

ÿ(ÿ)
+1
ÿ−ÿÿ(ÿ)ý (3.14)

for any ý ∈
[
0,

1

ÿ(ÿ)

)
. The estimate (3.8) follows from (3.13) and (3.14), withý(ÿ, ÿ) given by (3.9). One can readily check

that

ý(ÿ, ÿ) ≤ 1

ÿ
max

⎧⎪⎪«⎪⎪¬

ý̃

ÿ +

ý1

|||||
tan

(
ÿ̃

2
+

ÿ

4

)|||||
(

ÿ̃

ÿ(ÿ)
+ ÿ)

(1 − ÿ) ,

ý̃

(
ÿ(2ÿ̃ + ÿ) − 4 sec

(
ÿ̃

2
+

ÿ

4

))

4
ÿ

ÿ̃

ÿ(ÿ)
+1

«⎪⎪¬⎪⎪­

. (3.15)

Since infÿ≥ÿ ÿ(ÿ) = ÿ(ÿ) > 0 for any ÿ > 0, by Hypothesis (H3), from (3.8) and (3.15), it follows that for any ÿ > 0 the

family of semigroups {ÿÿ(ý)}ý≥0 is exponentially stable uniformly for ÿ ≥ ÿ. □

Remark 3.3. In the case when the spaceÿ is aHilbert space, one can use the results of B. Helfer and J. Sjöstrand [9, 10] to

obtain an estimate similar to (3.8). Indeed, from Lemma 2.3 and Lemma 3.1, it follows that

‖ÿÿ(ý)‖ ≤
ý̃

(
ÿ(2ÿ̃ + ÿ) − 4 sec

(
ÿ̃

2
+

ÿ

4

))

4ÿ
ÿÿ̃ý for any ý > 0, ÿ > 0. (3.16)

From Hypothesis (H3)(i), we have

sup
Reÿ≥−ÿÿ(ÿ)

‖ý(ÿ, ýÿ)‖ ≤ sup
Reÿ≥−ÿÿ(ÿ)

ý1

Reÿ + ÿ(ÿ)
≤ ý1

(1 − ÿ)ÿ(ÿ) for any ÿ > 0, ÿ ∈ (0, 1). (3.17)
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From [9, Proposition 2.1], we obtain that

‖ÿÿ(ý)‖ ≤ ý(ÿ, ÿ)ÿ−ÿÿ(ÿ)ý for any ý > 0, ÿ > 0, (3.18)

where the function ý ∶ (0, 1) × (0,∞) → ℝ is defined by

ý(ÿ, ÿ) =
ý̃

(
ÿ(2ÿ̃ + ÿ) − 4 sec

(
ÿ̃

2
+

ÿ

4

))

4ÿ

»
¼¼¼¼½
1 +

ý̃

(
ÿ(2ÿ̃ + ÿ) − 4 sec

(
ÿ̃

2
+

ÿ

4

))

2ÿ

(
1 +

ý1(ÿ̃ + ÿÿ(ÿ)
(1 − ÿ)ÿ(ÿ)

)¾
¿¿¿¿À
. (3.19)

Here ý̃, ÿ̃, and ÿ̃ are obtained in Lemma 3.1 andý1 is taken fromHypothesis (H3)(i). We note thatý(ÿ, ÿ) = ÿ(
1

ÿ(ÿ)
) and

ý(ÿ, ÿ) = ÿ(
1

ÿ(ÿ)
) as ÿ → 0, which shows that regardless of what approach is used one can conclude uniform exponential

stability of the family of semigroups {ÿÿ(ý)}ý≥0 for ÿ ≥ ÿ, for any ÿ > 0, but not for ÿ ≥ 0. Also, from (3.19) we note that

supÿ≥0ý(ÿ, ÿ) < ∞ only if ÿ̃ = 0, which occurs only when the family of semigroups {ÿÿ(ý)}ý≥0, ÿ ≥ 0, is bounded uni-

formly in ÿ ≥ 0, a property which is as difficult to establish as the result of exponential decay of the family of semigroups

with uniform in ÿ constants.

3.2 Norm estimates of {ÿÿ(ý)}ý≥ÿ when ÿ is in a neighborhood of 0

To estimate the norm of the semigroup {ÿÿ(ý)}ý≥0 when ÿ is in a neighborhood of 0, we need a different approach. The

key part of the argument is to find a spectral decomposition of the Banach space ÿ, into a sum of two closed subspaces

invariant under the semigroup {ÿÿ(ý)}ý≥0, such that the spectrum of the restriction of ýÿ to the two subspaces is either

away from the imaginary axis or made up entirely of eigenvalues. We first look for such a decomposition of the linear

operator ý. From Hypothesis (H2) we have the spectrum of ý has two disjoint parts, separated by the circle ÿÿ(0,
ÿ

2
). We

define ÿ0 ∈ ℬ(ÿ) as the spectral projection relative to the spectral subset {0} of ÿ(ý), given by the formula

ÿ0 =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ý(ÿ, ý)dÿ. (3.20)

Remark 3.4. We collect several well-known properties of the spectral projection ÿ0, see, for example, [6, 15, 17]:

(i) Imÿ0 ⊂ dom(ý);

(ii) Imÿ0 and Kerÿ0 are invariant under ý and ÿ(ý) for any ý ≥ 0;

(iii) the linear operator ý̃ ∶= ý|dom(ý)∩Kerÿ0 is the generator of the semigroup {ÿ̃(ý)}ý≥0 = {ÿ(ý)|Kerÿ0 }ý≥0 on Kerÿ0;

(iv) ÿ(ý̃) = ÿ(ý) ⧵ {0}.

In the next lemma, we aim to refine the properties of ÿ0 by making use of Hypotheses (H1)–(H2).

Lemma 3.5. Assume Hypotheses (H1)–(H2). Then, the following assertions hold true:

(i) dim Imÿ0 < ∞ and ý|Imÿ0 ≡ 0;

(ii) The operator ý̃ is sectorial, and thus it generates an analytic semigroup. Moreover, there existsý2 > 0 such that1

‖ÿ̃(ý)‖ ≤ ý2ÿ
−

7ÿ

8
ý

for any ý > 0; (3.21)

(iii) The linear operators ý and ÿ(ý), ý ≥ 0, respectively, have the representations

ý =

[
0 0

0 ý̃

]
, ÿ(ý) =

[
ýImÿ0 0

0 ÿ̃(ý)

]
, ý ≥ 0, (3.22)

with respect to the decompositionÿ = Imÿ0 ⊕Kerÿ0 (direct sum, not necessarily orthogonal).
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Proof. (i) Since 0 is a semisimple eigenvalue of finite multiplicity of ý we infer that dim Imÿ0 < ∞. Moreover, from

Remark 3.4(i) and since ý is a closed linear operator, we have

ýÿ0 =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ýý(ÿ,ý)dÿ =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

(ÿý(ÿ, ý) − ýÿ)dÿ. (3.23)

By Remark 2.7 we know that the function ÿ → ÿý(ÿ, ý) ∶ Ωÿ,ÿ ∪ {ÿ ∈ ℂ ∶ Reÿ > −ÿ} ⧵ {0} → ℬ(ÿ) can be extended

analytically to Ωÿ,ÿ ∪ {ÿ ∈ ℂ ∶ Reÿ > −ÿ}, therefore from (3.23), we obtain that ýÿ0 ≡ 0, hence ý|Imÿ0 ≡ 0.

(ii) From Remark 3.4(iv) and Hypothesis (H1), we have Ωÿ,ÿ ⊂ ÿ(ý) ⊂ ÿ(ý̃) and ý(ÿ, ý̃) = ý(ÿ, ý)|Kerÿ0 for any ÿ ∈

Ωÿ,ÿ, hence

‖ý(ÿ, ý̃)‖ ≤ ‖ý(ÿ, ý)‖ ≤ ý

|ÿ − ÿ| for any ÿ ∈ Ωÿ,ÿ. (3.24)

We conclude that the linear operator ý̃ is sectorial, therefore the semigroup {ÿ̃(ý)}ý≥0 is analytic. FromHypothesis (H2)(i),

it follows that

ÿ0(ý̃) = supReÿ(ý̃) = supRe(ÿ(ý) ⧵ {0}) ≤ −ÿ < −
7ÿ

8
. (3.25)

From the definition of the growth rate of a semigroup, one immediately concludes that

ý2 = sup
ý≥0

(
ÿ
7ÿ

8
ý‖ÿ̃(ý)‖

)
< ∞, (3.26)

proving (ii). Assertion (iii) follows shortly from (i) and Remark 3.4(ii) and (iii). □

To construct a representation of ýÿ similar to (3.22) for the case when ÿ is in the neighborhood of 0, we utilize the

standard transformation/conjugation operators, see [13, Chapter II, section 4.2] and [5, Chapter 4, section 1]. First, we

need to show that the circle ÿÿ(0,
ÿ

2
) separates ÿ(ýÿ) into two disjoint spectral subsets for any ÿ in a neighborhood of 0.

For the remainder of the section, we need to assumeHypothesis (H4) in order to ensure that all the spectral and semigroup

bounds are ÿ-independent. Moreover, we recall that from (1.4) and Hypothesis (H3), we can immediately infer that ý0 is

continuous on (0,∞) inℬ(ÿ).

Lemma 3.6. Assume Hypotheses (H1)–(H4). Then,

ℰÿ ∶=

{
ÿ ∈ ℂ ∶ Reÿ ≥ −

3ÿ

4
, |ÿ| ≥ ÿ

4

}
⊂ ÿ(ýÿ) and ‖ý(ÿ, ýÿ)‖ ≤ 16ý2

ÿ
(3.27)

for any ÿ ∈ ℰÿ, ÿ ∈ [0, ÿ0], where

ÿ0 ∶= min

{
ÿ

16ý2 supÿ∈[0,1] ‖ý0(ÿ)‖ + 1
, 1

}
(3.28)

andý2 is defined in (3.26).

Proof. First, we collect some properties of the linear operator ý̃. From Remark 3.4(iv) and Lemma 3.5(ii), respectively, we

have

ÿ(ý̃) ⊂ {ÿ ∈ ℂ ∶ Reÿ ≤ −ÿ} and ‖ý(ÿ, ý̃)‖ ≤ ý2

Reÿ +
7ÿ

8

whenever Reÿ > −
7ÿ

8
. (3.29)
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In addition, from Lemma 3.5(iii) it follows that the resolvent operator of ý has the representation

ý(ÿ, ý) =

[
1

ÿ
ýImÿ0 0

0 ý(ÿ, ý̃)

]
whenever Reÿ > −ÿ, ÿ ≠ 0 (3.30)

with respect to the decompositionÿ = Imÿ0 ⊕Kerÿ0. From (3.29) and (3.30), it follows that

‖ý(ÿ, ý)‖ ≤ max

⎧⎪«⎪¬

1

|ÿ| ,
ý2

Reÿ +
7ÿ

8

«⎪¬⎪­
≤ max

{
4

ÿ
,
8ý2

ÿ

}
=

8ý2

ÿ
for any ÿ ∈ ℰÿ. (3.31)

Fix ÿ ∈ ℰÿ and ÿ ∈ [0, ÿ0], where ÿ0 is defined in (3.28). Then,

ÿýÿ − ýÿ = ÿýÿ − ý − ý(ÿ) = (ýÿ − ý(ÿ)ý(ÿ, ý))(ÿýÿ − ý). (3.32)

Moreover, from (1.4) and (3.31), we obtain that

‖ý(ÿ)ý(ÿ, ý)‖ ≤ 8ý2ÿ

ÿ
‖ý0(ÿ)‖ ≤ 8ý2ÿ0

ÿ
sup

ÿ∈[0,ÿ0]
‖ý0(ÿ)‖ ≤ 1

2
, (3.33)

which implies that ýÿ − ý(ÿ)ý(ÿ, ý) is invertible and
‖‖‖ (ýÿ − ý(ÿ)ý(ÿ, ý))

−1 ‖‖‖ ≤ 2. From (3.31) and (3.32), we infer that

ℰÿ ⊂ ÿ(ýÿ) and ‖ý(ÿ, ýÿ)‖ ≤ 16ý2

ÿ
for any ÿ ∈ ℰÿ, ÿ ∈ [0, ÿ0],

proving the lemma. □

Next, we note that assertion (3.27) allows us to define the spectral projection

ÿÿ =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ý(ÿ, ýÿ)dÿ, ÿ ∈ [0, ÿ0]. (3.34)

Remark 3.7. Clearly, ÿÿ satisfies the following properties:

(i) Imÿÿ and Kerÿÿ are invariant under ýÿ and ÿÿ(ý) for any ý ≥ 0, ÿ ∈ [0, ÿ0];

(ii) Imÿÿ ⊂ dom(ý) for any ÿ ∈ [0, ÿ0];

(iii) The linear operator ý̃ÿ ∶= (ýÿ)|dom(ý)∩Kerÿÿ is the generator of the semigroup {ÿ̃ÿ(ý)}ý≥0 = {ÿ(ý)|Kerÿÿ }ý≥0 on Kerÿÿ
for any ÿ ∈ [0, ÿ0];

(iv) ÿ(ý̃ÿ) = ÿ(ýÿ) ⧵ ÿ(0,
ÿ

2
) for any ÿ ∈ [0, ÿ0].

In the next lemma, we show that the family of spectral projections {ÿÿ}ÿ∈[0,ÿ0] is continuous in the operator norm.

Lemma 3.8. Assume Hypotheses (H1)–(H4). Then, the function ÿ → ÿÿ ∶ [0, ÿ0] → ℬ(ÿ) is continuous in the operator

norm. Moreover, the following estimate holds:

‖ÿÿ1 − ÿÿ2‖ ≤ 128ý2
2

ÿ
‖ý(ÿ1) − ý(ÿ2)‖ for any ÿ1, ÿ2 ∈ [0, ÿ0]. (3.35)

Proof. Since ýÿ = ý + ý(ÿ) for any ÿ ≥ 0, from (3.27), we immediately infer that

ý(ÿ, ýÿ1) − ý(ÿ, ýÿ2) = ý(ÿ, ýÿ1)(ý(ÿ1) − ý(ÿ2))ý(ÿ, ýÿ2) (3.36)
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for any ÿ ∈ ℰÿ, ÿ1, ÿ2 ∈ [0, ÿ0]. From (3.27), (3.34), and (3.36), it follows that

‖ÿÿ1 − ÿÿ2‖ =
1

2ÿ

‖‖‖‖‖‖∫ÿÿ(0, ÿ2 )
ý(ÿ, ýÿ1)(ý(ÿ1) − ý(ÿ2))ý(ÿ, ýÿ2)dÿ

‖‖‖‖‖‖

≤
length

(
ÿÿ(0,

ÿ

2
)
)

2ÿ
sup
|ÿ|= ÿ

2

‖ý(ÿ, ýÿ1)‖ ‖ý(ÿ1) − ý(ÿ2)‖ sup
|ÿ|= ÿ

2

‖ý(ÿ, ýÿ2)‖

≤ 128ý2
2

ÿ
‖ý(ÿ1) − ý(ÿ2)‖ for any ÿ1, ÿ2 ∈ [0, ÿ0]. (3.37)

The lemma follows shortly from (3.37) and since ý is continuous on [0,∞) inℬ(ÿ). □

Following [5, Chapter 4], we introduce the operator transformation/conjugation function associated to the family of

projections {ÿÿ}ÿ∈[0,ÿ0] as follows:

ý ∶ [0, ÿ0] → ℬ(ÿ), ý(ÿ) = ÿÿÿ0 + (ýÿ − ÿÿ)(ýÿ − ÿ0). (3.38)

The properties of the operator transformation/conjugation functioný defined above are collected in the following lemma.

Lemma 3.9. Assume Hypotheses (H1)–(H4). Then, the following assertions hold true:

(i) The functioný is continuous on [0, ÿ0] in theℬ(ÿ) operator norm;

(ii) ý(ÿ) is an invertible operator for any ÿ ∈ [0, ÿ1], where

ÿ1 ∶= min

{
ÿ

256ý2
2(16ý2 + 1) supÿ∈[0,1] ‖ý0(ÿ)‖ + 1

, 1

}
(3.39)

andý2 is defined in (3.26);

(iii) The functioný(⋅)−1 is continuous on [0, ÿ1] in theℬ(ÿ) operator norm;

(iv) ÿÿ = ý(ÿ)ÿ0ý(ÿ)−1 for any ÿ ∈ [0, ÿ1].

Proof. Assertion (i) follows immediately from (3.38) and Lemma 3.8.

(ii) Since ÿ0 is a projection, one can readily check that

ý(ÿ) = ýÿ + ÿÿÿ0 + (ýÿ − ÿÿ)(ýÿ − ÿ0) − ÿ20 − (ýÿ − ÿ0)
2

= ýÿ + (ÿÿ − ÿ0)ÿ0 + ((ýÿ − ÿÿ) − (ýÿ − ÿ0))(ýÿ − ÿ0)

= ýÿ + (ÿÿ − ÿ0)(2ÿ0 − ýÿ) for any ÿ ∈ [0, ÿ0]. (3.40)

Moreover, from (3.20) and Lemma 3.6, we have

‖ÿÿ‖ =
1

2ÿ

‖‖‖‖‖‖∫ÿÿ(0, ÿ2 )
ý(ÿ, ýÿ)dÿ

‖‖‖‖‖‖
≤

length
(
ÿÿ

(
0,

ÿ

2

))

2ÿ
sup
|ÿ|= ÿ

2

‖ý(ÿ, ýÿ)‖ ≤ 8ý2 (3.41)

for any ÿ ∈ [0, ÿ0]. Since ý(0) = 0 and ÿ1 ≤ 1 from (1.4), (3.35), and (3.41), we obtain that

‖(ÿÿ − ÿ0)(2ÿ0 − ýÿ)‖ ≤ 128ý2
2

ÿ
(16ý2 + 1)‖ý(ÿ)‖ ≤ ÿ

128ý2
2(16ý2 + 1)

ÿ
sup

ÿ∈[0,1]
‖ý0(ÿ)‖ ≤ 1

2
(3.42)
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for any ÿ ∈ [0, ÿ1]. From (3.40) and (3.42), we obtain that ý(ÿ) is invertible for any ÿ ∈ [0, ÿ0]. Moreover,

‖ý(ÿ)‖ ≤ 3

2
, ‖ý(ÿ)−1‖ ≤ 2 for any ÿ ∈ [0, ÿ1]. (3.43)

(iii) From (3.43), we immediately infer that

‖ý(ÿ1)
−1 −ý(ÿ2)

−1‖ ≤ ‖ý(ÿ1)
−1‖ ‖ý(ÿ1) − ý(ÿ2)‖ ‖ý(ÿ2)

−1‖ ≤ 4‖ý(ÿ1) − ý(ÿ2)‖ (3.44)

for any ÿ1, ÿ2 ∈ [0, ÿ1]. Assertion (iii) follows from (i) and (3.44).

(iv) Since ÿÿ is a projection for any ÿ ∈ [0, ÿ1] from (3.38), we have

ý(ÿ)ÿ0 = ÿÿÿ0 = ÿÿý(ÿ) for any ÿ ∈ [0, ÿ1]. (3.45)

Assertion (iv) follows from (iii) and (3.45). □

When ÿ is a Hilbert space, the operator transformation/conjugation function ý can be chosen such that ý(ÿ) is an

unitary operator, see [13, Formula (4.18), p. 102]. In this case, the estimates (3.43) are simpler. However, since our goal is to

find uniform bounds, not necessarily optimal bounds, not havingý(ÿ) and its inverse of norm 1 is not an inconvenience.

We introduce the linear operators ýÿ ∶ dom(ýÿ) ⊆ ÿ → ÿ, ÿ ∈ [0, ÿ1] by

dom(ýÿ) = ý(ÿ)−1dom(ý), ýÿ = ý(ÿ)−1ýÿý(ÿ), ÿ ∈ [0, ÿ1]. (3.46)

Next, we collect some of the properties of the family of linear operators ýÿ, ÿ ∈ [0, ÿ1].

Remark 3.10. Since ý(ÿ) is invertible by Lemma 3.9(ii) for any ÿ ∈ [0, ÿ1] from (3.46), we infer that

ÿ(ýÿ) = ÿ(ýÿ), ÿdisc(ýÿ) = ÿdisc(ýÿ) for any ÿ ∈ [0, ÿ1]. (3.47)

Therefore, the circle ÿÿ(0,
ÿ

2
) separates ÿ(ýÿ) into two disjoint spectral subsets for any ÿ ∈ [0, ÿ1]. Moreover, from (3.46),

we have

ý(ÿ, ýÿ) = ý(ÿ)−1ý(ÿ, ýÿ)ý(ÿ) for any ÿ ∈ ÿ(ýÿ) = ÿ(ýÿ), ÿ ∈ [0, ÿ1]. (3.48)

From Lemma 3.1, (3.47), and (3.48), we obtain

Ωÿ̃,ÿ̃ ⊆ ÿ(ýÿ), ‖ý(ÿ, ýÿ)‖ ≤ ‖ý(ÿ)−1‖ ‖ý(ÿ, ýÿ)‖ ‖ý(ÿ)‖ ≤ 3ý̃

|ÿ − ÿ̃| (3.49)

for any ÿ ∈ Ωÿ̃,ÿ̃, ÿ ∈ [0, ÿ1].

Lemma 3.11. Assume Hypotheses (H1)–(H4). Then, the following assertions hold true:

(i) ÿ0 is the spectral projection of ýÿ associated to the spectral subset of ÿ(ýÿ) contained in ÿ(0,
ÿ

2
) for any ÿ ∈ [0, ÿ1].

(ii) Imÿ0 ⊆ dom(ýÿ) for any ÿ ∈ [0, ÿ1].

(iii) Imÿ0 and Ker ÿ0 are invariant under ýÿ for any ÿ ∈ [0, ÿ1].

Proof. (i) Since ÿÿ(0,
ÿ

2
) ⊂ ℰÿ ⊂ ÿ(ýÿ) = ÿ(ýÿ) for any ÿ ∈ [0, ÿ1] ⊂ [0, ÿ0] by Lemma 3.6, from (3.48) and Lemma 3.9(iv),

it follows that the spectral projection of ýÿ associated to the spectral subset of ÿ(ýÿ) contained in ÿ(0,
ÿ

2
) is given by

1

2ÿi ∫ÿÿ(0, ÿ
2
)

ý(ÿ, ýÿ)dÿ =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ý(ÿ)−1ý(ÿ, ýÿ)ý(ÿ)dÿ = ý(ÿ)−1ÿÿý(ÿ) = ÿ0 (3.50)

for any ÿ ∈ [0, ÿ1]. Assertions (ii) and (iii) follow shortly, cf. [6, 15, 17]. □
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We define the linear operators ý̃ÿ ∶ dom(ý̃ÿ) ⊆ Ker ÿ0 → Ker ÿ0 and ÿÿ ∶ Imÿ0 → Imÿ0 by

dom(ý̃ÿ) = dom(ýÿ) ∩ Kerÿ0, ý̃ÿ = (ýÿ)|dom(ýÿ)∩Kerÿ0 , ÿÿ = (ýÿ)|Imÿ0 , ÿ ∈ [0, ÿ1]. (3.51)

In addition, we denote by {ÿÿ(ý)}ý≥0 and {ÿ̃ÿ(ý)}ý≥0 the semigroups generated by ýÿ and ý̃ÿ, ÿ ∈ [0, ÿ1], respectively. The

advantage of working with the family of operators ýÿ, ÿ ∈ [0, ÿ1], is that its spectral projection ÿ0 associated to the spectral

subset of ÿ(ýÿ) contained in ÿ(0,
ÿ

2
) is independent on ÿ ∈ [0, ÿ1]. From (3.49) we see that the semigroups {ÿÿ(ý)}ý≥0 and

{ÿ̃ÿ(ý)}ý≥0 are analytic, moreover, the following representation holds:

ÿÿ(ý) = ý(ÿ)ÿÿ(ý)ý(ÿ)−1, ÿÿ(ý) =

[
ÿýÿÿ 0

0 ÿ̃ÿ(ý)

]
, for any ý ≥ 0, ÿ ∈ [0, ÿ1], (3.52)

with respect to the decompositionÿ = Imÿ0 ⊕Kerÿ0.

In the next lemma, we study the spectrum of the linear operator ý̃ÿ, in particular, we estimate supReÿ(ý̃ÿ) for ÿ ∈

[0, ÿ1].

Lemma 3.12. Assume Hypotheses (H1)–(H4). Then, the following assertions hold true:

(i) ÿ(ý̃ÿ) ⊆ {ÿ ∈ ℂ ∶ Reÿ ≤ −
ÿ

2
} for any ÿ ∈ [0, ÿ1];

(ii) ‖ý(ÿ, ý̃ÿ)‖ ≤ 96ý2

ÿ
whenever Reÿ ≥ −

ÿ

2
, ÿ ∈ [0, ÿ1].

Proof. (i) From Lemma 3.6, Lemma 3.11, (3.51), and (3.47), we have

ÿ(ý̃ÿ) = ÿ(ýÿ) ⧵ ÿ
(
0,
ÿ

2

)
= ÿ(ýÿ) ⧵ ÿ

(
0,
ÿ

2

)
⊆ (ℂ ⧵ ℰÿ) ⧵ ÿ

(
0,
ÿ

2

)
⊆

{
ÿ ∈ ℂ ∶ Reÿ ≤ −

ÿ

2

}
. (3.53)

for any ÿ ∈ [0, ÿ1], proving (i).

(ii) First, we note that from Lemma 3.6, (3.43), and (3.48), it follows that

‖ý(ÿ, ý̃ÿ)‖ ≤ ‖ý(ÿ, ýÿ)‖ = ‖ý(ÿ)−1ý(ÿ, ýÿ)ý(ÿ)‖ ≤ 3‖ý(ÿ, ýÿ)‖ ≤ 48ý2

ÿ
(3.54)

for any ÿ ∈ ℰÿ, ÿ ∈ [0, ÿ1]. To prove the lemma, we need to prove the estimate from (ii) for the case when ÿ ∈ ÿ(0,
ÿ

4
).

From Lemma 3.9(iv), one can readily check that

Kerÿÿ = ý(ÿ)Kerÿ0 for any ÿ ∈ [0, ÿ1]. (3.55)

We infer that the linear operator ý̃(ÿ) ∶= ý(ÿ)|Kerÿ0 is bounded, invertible from Kerÿ0 to Kerÿÿ, with bounded inverse

ý̃(ÿ)−1 = ý(ÿ)−1|Kerÿÿ , for any ÿ ∈ [0, ÿ1]. From Lemma 3.9(i), (3.46), and (3.55), we obtain that

ý(ÿ)(dom(ýÿ) ∩ Kerÿ0) = dom(ýÿ) ∩ Kerÿÿ = dom(ý) ∩ Kerÿÿ for any ÿ ∈ [0, ÿ1], (3.56)

which implies that

ý̃ÿ = ý̃(ÿ)−1ý̃ÿý̃(ÿ) for any ÿ ∈ [0, ÿ1]. (3.57)

Moreover, from (3.43) and (3.57), we have

‖ý(ÿ, ý̃ÿ) = ‖ý̃(ÿ)−1ý(ÿ, ý̃ÿ)ý̃(ÿ)‖ ≤ ‖ý(ÿ)−1|Kerÿÿ‖ ‖ý(ÿ, ý̃ÿ)‖ ‖ý(ÿ)|Kerÿ0‖
≤ ‖ý(ÿ)−1‖ ‖ý(ÿ, ý̃ÿ)‖ ‖ý(ÿ)‖ ≤ 3‖ý(ÿ, ý̃ÿ)‖ (3.58)
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for any ÿ ∈ ÿ(ý̃ÿ) = ÿ(ý̃ÿ) andÿ ∈ [0, ÿ1]. To estimate ‖ý(ÿ, ý̃ÿ)‖ for ÿ ∈ ÿ(0,
ÿ

4
) andÿ ∈ [0, ÿ1], we need to find a contour

integral representation of ý(ÿ, ý̃ÿ). We consider the function ý̃ ∶ ℂ ⧵ ÿÿ(0,
ÿ

2
) × [0, ÿ1] → ℬ(ÿ) defined by

ý̃(ÿ, ÿ) ∶=
1

2ÿi ∫ÿÿ(0, ÿ
2
)

1

ÿ − ÿ
ý(ÿ, ýÿ)dÿ, (3.59)

cf. [13, section III.6.5]. From Remark 3.7(i), we have ÿÿý(ÿ, ýÿ) = ý(ÿ, ýÿ)ÿÿ for any ÿ ∈ ÿÿ(0,
ÿ

2
) and ÿ ∈ [0, ÿ1], which

implies that

ÿÿý̃(ÿ, ÿ) = ý̃(ÿ, ÿ)ÿÿ for any ÿ ∈ ℂ ⧵ ÿÿ(0,
ÿ

2
), ÿ ∈ [0, ÿ1]. (3.60)

Since ýÿý(ÿ, ýÿ) = ÿý(ÿ, ýÿ) − ýÿ for any ÿ ∈ ÿÿ(0,
ÿ

2
) and ýÿ is a closed linear operator, we obtain that Im ý̃(ÿ, ÿ) ⊆

dom(ýÿ) and

ýÿý̃(ÿ, ÿ) =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

1

ÿ − ÿ
(ÿý(ÿ, ýÿ) − ýÿ)dÿ

=
1

2ÿi ∫ÿÿ(0, ÿ
2
)

(
ÿ

ÿ − ÿ
− 1

)
ý(ÿ, ýÿ)dÿ +

1

2ÿi

(
∫
ÿÿ(0,

ÿ

2
)

dÿ

ÿ − ÿ

)
ýÿ

= ÿý̃(ÿ, ÿ) − ÿÿ +
1

2ÿi

(
∫
ÿÿ(0,

ÿ

2
)

dÿ

ÿ − ÿ

)
ýÿ (3.61)

for any ÿ ∈ ℂ ⧵ ÿÿ(0,
ÿ

2
) and ÿ ∈ [0, ÿ1]. From (3.60) and (3.61), it follows that ý̃(ÿ, ÿ)Kerÿÿ ⊆ (dom(ýÿ) ∩ Kerÿÿ) =

dom(ý̃ÿ) and

ý̃ÿý̃(ÿ, ÿ)ý = ýÿý̃(ÿ, ÿ)ý = ÿý̃(ÿ, ÿ)ý − ÿÿý +
1

2ÿi

(
∫
ÿÿ(0,

ÿ

2
)

dÿ

ÿ − ÿ

)
ý = ÿý̃(ÿ, ÿ)ý + ý (3.62)

for any ý ∈ Kerÿÿ, ÿ ∈ ÿ(0,
ÿ

4
), and ÿ ∈ [0, ÿ1]. Since ÿ(0,

ÿ

4
) ⊂ ÿ(0,

ÿ

2
) ⊆ ÿ(ý̃ÿ) for any ÿ ∈ [0, ÿ1], by Remark 3.7(iv), we

conclude that ý(ÿ, ý̃ÿ) = −ý̃(ÿ, ýÿ)|Kerÿÿ for any ÿ ∈ ÿ(0,
ÿ

4
) and ÿ ∈ [0, ÿ1]. Sinceÿ(0,

ÿ

2
) ⊂ ℰÿ and |ÿ − ÿ| ≥ |ÿ| − |ÿ| ≥

ÿ

4
for any ÿ ∈ ÿ(0,

ÿ

4
) and ÿ ∈ ÿÿ(0,

ÿ

2
), from Lemma 3.6 and (3.59), we infer that

‖ý(ÿ, ý̃ÿ)‖ = ‖ý̃(ÿ, ýÿ)|Kerÿÿ‖ ≤ ‖ý̃(ÿ, ÿ)‖ =

‖‖‖‖‖‖
1

2ÿi ∫ÿÿ(0, ÿ
2
)

1

ÿ − ÿ
ý(ÿ, ýÿ)dÿ

‖‖‖‖‖‖

≤
length

(
ÿÿ

(
0,

ÿ

2

))

2ÿ
sup
|ÿ|= ÿ

2

‖ý(ÿ, ýÿ)‖ sup
|ÿ|= ÿ

2

1

|ÿ − ÿ| ≤
32ý2

ÿ
(3.63)

for any ÿ ∈ ÿ(0,
ÿ

4
) and ÿ ∈ [0, ÿ1]. Finally, from (3.58) and (3.63), we conclude that

‖ý(ÿ, ý̃ÿ)‖ ≤ 96ý2

ÿ
for any ÿ ∈ ÿ

(
0,
ÿ

4

)
, ÿ ∈ [0, ÿ1], (3.64)

proving the lemma. □

We are now ready to prove that the semigroup {ÿ̃ÿ(ý)}ý≥0, generated by ý̃ÿ, is uniformly exponentially stable for ÿ ∈

[0, ÿ1].
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Lemma 3.13. Assume Hypotheses (H1)–(H4). Then, the following estimate holds:

‖ÿ̃ÿ(ý)‖ ≤ ý3ÿ
−

ÿ

2
ý

for any ý ≥ 0, ÿ ∈ [0, ÿ1], where (3.65)

ý3 = max

⎧
⎪⎪«⎪⎪¬

(
3ý̃

ÿÿ̃
+

96ý2

ÿÿ

(
ÿ̃ +

ÿ

2

) |||||
tan

(
ÿ̃

2
+

ÿ

4

)|||||

)
,

ý̃

(
ÿ(6ÿ̃ + 3ÿ) − 12 sec

(
ÿ̃

2
+

ÿ

4

))

4ÿ
ÿ
(ÿ̃+

ÿ

2
)

«
⎪⎪¬⎪⎪­

, (3.66)

andý2 is defined in (3.26).

Proof. The proof of the lemma is similar to the proof of Lemma 3.2, the main tool is the estimate (2.16) of Lemma 2.4. We

fix ÿ ∈ [0, ÿ1] and ÿ ∈ (−
ÿ

2
, 0). Hence, ÿ > s(ý̃ÿ) by Lemma 3.12. Also, we set ÿ =

ÿ̃

2
+

ÿ

4
∈ (

ÿ

2
, ÿ̃) and ÿ̃ = (ÿ̃ − ÿ)| tan ÿ|.

First, from (3.49) and (3.51), we immediately conclude that ý̃ÿ is sectorial, moreover

Ωÿ̃,ÿ̃ ⊆ ÿ(ýÿ) ⊆ ÿ(ý̃ÿ), ‖ý(ÿ, ý̃ÿ)‖ ≤ ‖ý(ÿ, ýÿ)‖ ≤ 3ý̃

|ÿ − ÿ̃| for any ÿ ∈ Ωÿ̃,ÿ̃. (3.67)

In addition, from (2.15) and Lemma 3.12(ii), we obtain

‖ýý̃ÿ
(ý, ÿ, ÿ)‖ =

‖‖‖‖‖‖∫
ÿ̃

−ÿ̃

ÿiýýý(ÿ + iý, ý̃ÿ)dý

‖‖‖‖‖‖
≤ 192ý2ÿ̃

ÿ
=

192ý2(ÿ̃ − ÿ)
|||||
tan

(
ÿ̃

2
+

ÿ

4

)|||||
ÿ

(3.68)

for any ý > 0. Applying Lemma 2.4, from (3.67) and (3.68), we infer that

‖ÿ̃ÿ(ý)‖ ≤ 3ý̃ÿÿý

ÿ(ÿ̃ − ÿ)ý
+

96ý2(ÿ̃ − ÿ)
|||||
tan

(
ÿ̃

2
+

ÿ

4

)|||||
ÿÿý

ÿÿ
≤

(
3ý̃

ÿÿ̃
+

96ý2

ÿÿ

(
ÿ̃ +

ÿ

2

) |||||
tan

(
ÿ̃

2
+

ÿ

4

)|||||

)
ÿÿý (3.69)

for any ý ≥ 1. From Lemma 2.3, Lemma 3.1, (3.43), and (3.52), it follows that

‖ÿ̃ÿ(ý)‖ ≤ ‖ÿÿ(ý)‖ = ‖ý(ÿ)−1ÿÿ(ý)ý(ÿ)‖ ≤ ‖ý(ÿ)−1‖ ‖‖ÿÿ(ý)‖ ‖ý(ÿ)‖ ≤ 3‖ÿÿ(ý)‖

≤ 3ý̃(ÿÿ − sec ÿ)

ÿ
ÿÿ̃ý =

ý̃

(
ÿ(6ÿ̃ + 3ÿ) − 12 sec

(
ÿ̃

2
+

ÿ

4

))

4ÿ
ÿ
(ÿ̃+

ÿ

2
)ý
ÿ
−ý

ÿ

2

≤
ý̃

(
ÿ(6ÿ̃ + 3ÿ) − 12 sec

(
ÿ̃

2
+

ÿ

4

))

4ÿ
ÿ
(ÿ̃+

ÿ

2
)
ÿ
−ý

ÿ

2 for any ý ∈ [0, 1]. (3.70)

Passing to the limit as ÿ → −
ÿ

2
in (3.69), we obtain the estimate (3.65) from (3.69) and (3.70). □

Next, we focus our attention on the family of operators ÿÿ = (ýÿ)|Imÿ0 , ÿ ∈ [0, ÿ1]. First, we show that it depends

continuously on ÿ ∈ [0, ÿ1]. Moreover, we look for a representation of ÿÿ in a neighborhood of 0.

Lemma 3.14. Assume Hypotheses (H1)–(H4). Then, the following assertions hold true:

(i) The operator-valued function ÿ → ÿÿ ∶ [0, ÿ1] → ℬ(Imÿ0) is continuous;
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(ii) ÿÿ = ÿ
(
ÿ0ý(ÿ)−1ÿ(ÿ)ý(ÿ)

)
|Imÿ0

for any ÿ ∈ [0, ÿ1], where ÿ ∶ [0, ÿ1] → ℬ(ÿ) defined by

ÿ(ÿ) =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ÿý(ÿ, ýÿ)ý0(ÿ)ý(ÿ, ý)dÿ; (3.71)

(iii) The function ÿ is bounded. Moreover,

‖ÿ(ÿ)‖ ≤ 64ý2
2 sup
ÿ∈[0,1]

‖ý0(ÿ)‖ for any ÿ ∈ [0, ÿ1]. (3.72)

Proof. (i) From Lemma 3.9(iv) and (3.51), we have

ÿÿý = ÿ0ÿÿý = ÿ0ý(ÿ)−1ýÿý(ÿ)ý = ÿ0ý(ÿ)−1ýÿý(ÿ)ÿ0ý = ÿ0ý(ÿ)−1ýÿÿÿý(ÿ)ý (3.73)

for any ý ∈ Imÿ0 and ÿ ∈ [0, ÿ1]. Since ýÿý(ÿ, ýÿ) = ÿý(ÿ, ýÿ) − ýÿ for any ÿ ∈ ÿ(ýÿ), Imÿÿ ⊂ dom(ýÿ), by

Remark 3.7(ii), from (3.34), we obtain that

ýÿÿÿ =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ýÿý(ÿ, ýÿ)dÿ =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

(ÿý(ÿ, ýÿ) − ýÿ)dÿ

=
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ÿý(ÿ, ýÿ)dÿ (3.74)

for any ÿ ∈ [0, ÿ1]. Since the operator-valued function ý is continuous on [0, ÿ1], by Hypothesis (H3), from Lemma 3.6, we

infer that the function

(ÿ, ÿ) → ý(ÿ, ýÿ) ∶ ℰÿ × [0, ÿ1] → ℬ(ÿ) is continuous. (3.75)

Since ÿÿ(0,
ÿ

2
) ⊂ ℰÿ, by (3.27), from (3.74) and (3.75), we conclude that

ÿ → ýÿÿÿ ∶ [0, ÿ1] → ℬ(ÿ) is continuous. (3.76)

Assertion (i) follows shortly from Lemma 3.9(i) and (iii), (3.73), and (3.76).

(ii) We recall that from Lemma 3.5(i) and (3.23), we have

0 = ýÿ0 =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

(ÿý(ÿ, ý) − ýÿ)dÿ =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ÿý(ÿ, ý)dÿ. (3.77)

From (1.4), (3.74), and (3.77), it follows that

ýÿÿÿ =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ÿý(ÿ, ýÿ)dÿ =
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ÿ(ý(ÿ, ýÿ) − ý(ÿ, ý))dÿ

=
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ÿý(ÿ, ýÿ)ý(ÿ)ý(ÿ, ý)dÿ =
ÿ

2ÿi ∫ÿÿ(0, ÿ
2
)

ÿý(ÿ, ýÿ)ý0(ÿ)ý(ÿ, ý)dÿ (3.78)

for any ÿ ∈ [0, ÿ1], proving (ii).
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(iii) From (3.27), one can readily check that

‖ÿ(ÿ)‖ =

‖‖‖‖‖‖
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ÿý(ÿ, ýÿ)ý0(ÿ)ý(ÿ, ý)dÿ

‖‖‖‖‖‖

≤
length

(
ÿÿ

(
0,

ÿ

2

))

2ÿ
sup
|ÿ|= ÿ

2

‖ÿý(ÿ, ýÿ)‖ sup
ÿ∈[0,1]

‖ý0(ÿ)‖ sup
|ÿ|= ÿ

2

‖ý(ÿ, ý)‖;

≤ 64ý2
2 sup
ÿ∈[0,1]

‖ý0(ÿ)‖ for any ÿ ∈ [0, ÿ1], (3.79)

proving the lemma. □

The previous lemma shows thatÿÿ is of orderÿ(ÿ) in a neighborhood of 0. In addition, we note that the operator-valued

function ÿ is not necessarily continuous at 0. Therefore, to prove our main result, we assume Hypothesis (H5).

Lemma 3.15. Assume Hypotheses (H1)–(H5). Then, the following assertions hold true:

(i) The operator-valued function ÿ defined in (3.71) is continuous in theℬ(ÿ) operator norm;

(ii) ÿ0ÿ(0)|Imÿ0 = ÿ0ý0(0)|Imÿ0 .

(iii) ‖ÿÿ − ÿÿ0ý0(0)|Imÿ0‖ ≤ 8ý2ÿ

ÿ21
ÿ2 + 768ý2

2ÿÿ(ÿ) for any ÿ ∈ [0, ÿ1].

Proof. From (1.4) and (1.5) and since ý is continuous in theℬ(ÿ) operator norm by Hypothesis (H3), we infer that ý0 is

continuous on [0,∞) in theℬ(ÿ) operator norm.Moreover,ý andý−1 are continuous on [0, ÿ1], by Lemma 3.9. Assertion

(i) follows shortly from (3.73) and (3.76).

(ii) First, we note that from Lemma 3.5(iii) we have (ý(ÿ, ý))|Imÿ0
=

1

ÿ
ýImÿ0 for any ÿ ∈ ÿÿ(0,

ÿ

2
). Hence, from (3.71), it

follows that

ÿ0ÿ(0)|Imÿ0 =
1

2ÿi
ÿ0 ∫

ÿÿ(0,
ÿ

2
)

ý(ÿ, ý)ý0(0)
(
ÿý(ÿ, ý)|Imÿ0

)
dÿ

=
1

2ÿi
ÿ0 ∫

ÿÿ(0,
ÿ

2
)

ý(ÿ, ý)ý0(0)|Imÿ0dÿ = ÿ0ý0(0)|Imÿ0 . (3.80)

To prove (iii), we need a long but standard series of estimates of all the functions involved in formula (3.71). For

completeness we give the details below. Since ý(0) = 0 from (1.4), (3.27), (3.36), and (3.39), we have

‖ý(ÿ, ýÿ) − ý(ÿ, ý)‖ ≤ ‖ý(ÿ, ýÿ)‖ ‖ý(ÿ)‖ ‖ý(ÿ, ý)‖ ≤ ÿ
128ý2

2

ÿ2
sup

ÿ∈[0,1]
‖ý0(ÿ)‖ ≤ ÿ

2ÿ1ÿ
(3.81)

for any ÿ ∈ ℰÿ, ÿ ∈ [0, ÿ1]. From (1.5), (3.27), and (3.81), we obtain

‖ý(ÿ, ýÿ)ý0(ÿ) − ý(ÿ, ý)ý0(0)‖ ≤ ‖(ý(ÿ, ýÿ) − ý(ÿ, ý))ý0(ÿ)‖ + ‖ý(ÿ, ý)(ý0(ÿ) − ý0(0))‖

≤ ÿ

2ÿ1ÿ
sup

ÿ∈[0,1]
‖ý0(ÿ)‖ + 16ý2

ÿ
ÿ(ÿ) (3.82)
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for any ÿ ∈ ℰÿ, ÿ ∈ [0, ÿ1]. Using again (3.27), from (3.71) and (3.82), it follows that

‖ÿ(ÿ) − ÿ(0)‖ =

‖‖‖‖‖‖
1

2ÿi ∫ÿÿ(0, ÿ
2
)

ÿ(ý(ÿ, ýÿ)ý0(ÿ) − ý(ÿ, ý)ý0(0))ý(ÿ, ý)dÿ

‖‖‖‖‖‖

≤
length

(
ÿÿ(0,

ÿ

2
)
)

2ÿ
sup
|ÿ|= ÿ

2

‖ÿý(ÿ, ý)‖ sup
|ÿ|= ÿ

2

‖ý(ÿ, ýÿ)ý0(ÿ) − ý(ÿ, ý)ý0(0)‖

≤ 2ý2ÿ

ÿ1
sup

ÿ∈[0,1]
‖ý0(ÿ)‖ + 64ý2

2ÿ(ÿ) for any ÿ ∈ [0, ÿ1]. (3.83)

Moreover, from (3.40), (3.42), and (3.44), we have

‖ý(ÿ) − ýÿ‖ = ‖(ÿÿ − ÿ0)(2ÿ0 − ýÿ)‖ ≤ ÿ
128ý2

2(16ý2 + 1)

ÿ
sup

ÿ∈[0,1]
‖ý0(ÿ)‖ ≤ ÿ

2ÿ1

‖ý(ÿ)−1 − ýÿ‖ ≤ 2‖ý(ÿ) − ýÿ‖ ≤ ÿ

ÿ1
for any ÿ ∈ [0, ÿ1]. (3.84)

From (3.39), (3.43), (3.79), and (3.81)–(3.84), we infer that

‖ý(ÿ)−1ÿ(ÿ)ý(ÿ) − ÿ(0)‖ ≤ ‖‖‖
(
ý(ÿ)−1 − ýÿ

)
ÿ(ÿ)ý(ÿ)

‖‖‖ + ‖ÿ(ÿ)ý(ÿ) − ÿ(0)‖

≤ 96ý2
2ÿ

ÿ1
sup

ÿ∈[0,1]
‖ý0(ÿ)‖ + ‖(ÿ(ÿ) − ÿ(0))ý(ÿ)‖ + ‖ÿ(0)(ý(ÿ) − ýÿ)‖

≤ 96ý2
2ÿ

ÿ1
sup

ÿ∈[0,1]
‖ý0(ÿ)‖ + 3ý2ÿ

ÿ1
sup

ÿ∈[0,1]
‖ý0(ÿ)‖ + 96ý2

2ÿ(ÿ) +
32ý2

2ÿ

ÿ1
sup

ÿ∈[0,1]
‖ý0(ÿ)‖

= ÿ
128ý2

2 + 3ý2

ÿ1
sup

ÿ∈[0,1]
‖ý0(ÿ)‖ + 96ý2

2ÿ(ÿ) ≤ ÿÿ

ÿ21
+ 96ý2

2ÿ(ÿ) for any ÿ ∈ [0, ÿ1]. (3.85)

Assertion (iii) follows from (i), (3.41), (3.80), and (3.85). □

Lemma 3.16. Assume Hypotheses (H1)–(H5). Then,

supReÿ(ÿ0ý0(0)|Imÿ0) ≤ −ÿ1, (3.86)

where the constant ÿ1 > 0 was introduced in Hypothesis (H3)(ii).

Proof. We denote by ÿ0 ∶ [0, ÿ1] → ℬ(Imÿ0) the function defined by

ÿ0(ÿ) =
(
ÿ0ý(ÿ)−1ÿ(ÿ)ý(ÿ)

)
|Imÿ0

, (3.87)

and introduced in Lemma 3.15(i). Fix ÿ0 ∈ ÿ(ÿ0ý0(0)|Imÿ0). From Lemma 3.15(ii), we have ÿ0 ∈ ÿ(ÿ0ÿ(0)|Imÿ0) =

ÿ(ÿ0(0)). Since ÿ is continuous on [0, ÿ1], we conclude that ÿ0 is continuous on [0, ÿ1]. Using the semicontinuity property

of the spectrum of bounded linear operators in finite-dimensional spaces, there exist two sequences {ÿÿ}ÿ≥1 and {ÿ̃ÿ}ÿ≥1
such that

ÿÿ → 0, ÿ̃ÿ → ÿ0 as ÿ → ∞, ÿÿ ∈ (0, ÿ1), ÿ̃ÿ ∈ ÿ(ÿ0(ÿÿ)) for any ÿ ≥ 1. (3.88)
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Since ÿÿ = ÿÿ0(ÿ) for any ÿ ∈ [0, ÿ1], by Lemma 3.15(i), from Hypothesis (H3)(i), (3.47), (3.51), and (3.88), it follows that

ÿÿÿ̃ÿ ∈ ÿ(ÿÿÿ ) ⊆ ÿ(ýÿÿ ) = ÿ(ýÿÿ ) ⊂ {ÿ ∈ ℂ ∶ Reÿ ≤ −ÿ(ÿÿ)} for any ÿ ≥ 1. (3.89)

From (3.88), we have there exists ÿ0 ≥ 1 such that ÿÿ ∈ (0, ÿ2) for any ÿ ≥ ÿ0. Since ÿ(ÿ) = ÿ1ÿ for any ÿ ∈ [0, ÿ2], from

(3.89), we obtain

Reÿ̃ÿ ≤ −ÿ1 for any ÿ ≥ ÿ0. (3.90)

Passing to the limit as ÿ → ∞ yields Reÿ0 ≤ −ÿ1, proving the lemma. □

We are now ready to estimate the norm of the semigroup generated by ÿÿ for ÿ in a neighborhood of 0. To formulate

the result, we need to point out a couple of immediate consequences of Hypothesis (H5) and Lemma 3.16.

Remark 3.17. We assumed in Hypothesis (H5) that the function ÿ ∶ [0,∞) → [0,∞) is continuous, increasing, and ÿ(0) =

0. Hence, it is one-to-one and its inverse ÿ−1 ∶ [0,∞) → [0,∞) is continuous and increasing. Moreover, since ÿ0(0) =

ÿ0ý0(0)|Imÿ0 ∈ ℬ(Imÿ0) by (3.80) and (3.87), from Lemma 3.15(iii), it follows that

ÿ0(ÿ0(0)) = supReÿ(ÿ0(0)) ≤ −ÿ1. (3.91)

By the definition of the growth rate of a semigroup, one may defineý4 ∶ (0, 1) → [1,∞) such that

ý4(ÿ) = sup
ý≥0

(
ÿ
1+ÿ
2

ÿ1ý‖ÿýÿ0(0)‖
)
< ∞. (3.92)

Lemma 3.18. Assume Hypotheses (H1)–(H5). Then the following estimates hold true,

(i) ‖‖ÿýÿÿ‖‖ ≤ ý4(ÿ)ÿ−ÿÿ(ÿ)ý for any ý ≥ 0, ÿ ∈ [0, ÿ2(ÿ)], ÿ ∈ (0, 1), where ÿ2 ∶ (0, 1) → (0,∞) is the function defined by

ÿ2(ÿ) ∶= min

{
ÿ1, ÿ2,

(1 − ÿ)ÿ1ÿ21
32ý2ÿ

, ÿ−1

(
(1 − ÿ)ÿ1
3072ý2

2

)}
> 0. (3.93)

(ii) ‖‖ÿÿ(ý)‖‖ ≤ 3(8ý2 + 1)(ý3 +ý4(ÿ))ÿ−ÿÿ(ÿ)ý for any ý ≥ 0, ÿ ∈ [0, ÿ3(ÿ)], ÿ ∈ (0, 1), where ÿ3 ∶ (0, 1) → (0,∞) is the

function defined by

ÿ3(ÿ) ∶= min

{
ÿ2(ÿ), ÿ

2ÿ1

}
= min

{
ÿ1, ÿ2,

ÿ

2ÿ1
,
(1 − ÿ)ÿ1ÿ21
32ý2ÿ

, ÿ−1

(
(1 − ÿ)ÿ1
3072ý2

2

)}
> 0, (3.94)

and the constantý3 and the functioný4 are defined in (3.66) and (3.92), respectively.

Proof. (i) Fix ÿ ∈ (0, 1). First, we note that the estimate from Lemma 3.15(ii) is equivalent to

‖ÿ0(ÿ) − ÿ0(0)‖ ≤ 8ý2ÿ

ÿ21
ÿ + 768ý2

2ÿ(ÿ) for any ÿ ∈ [0, ÿ1]. (3.95)

From Remark 3.17, (3.92), Gronwall’s inequality, and since ÿ ≤ (1−ÿ)ÿ1ÿ21
32ý2ÿ

and ÿ(ÿ) ≤ (1−ÿ)ÿ1
3072ý2

2

for any ÿ ∈ [0, ÿ2(ÿ)], we infer
that

‖‖ÿýÿ0(ÿ)‖‖ ≤ ý4(ÿ)ÿ
(−

1+ÿ
2

ÿ1+
8ý2ÿ

ÿ2
1

ÿ+768ý2
2ÿ(ÿ))ý ≤ ý4(ÿ)ÿ(−

1+ÿ
2

ÿ1+
1−ÿ
2

ÿ1)ý = ý4(ÿ)ÿ−ÿÿ1ý (3.96)
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for any ý ≥ 0, ÿ ∈ [0, ÿ2(ÿ)]. Since ÿÿ = ÿÿ0(ÿ) by Lemma 3.14 and ÿ(ÿ) = ÿ1ÿ for any ÿ ∈ [0, ÿ2(ÿ)] by Hypothesis (H3),
using Lemma 3.15(i), we conclude from (3.96) that

‖‖ÿýÿÿ‖‖ = ‖‖ÿ(ýÿ)ÿ0(ÿ)‖‖ ≤ ý4(ÿ)ÿ−ÿÿ1ÿý = ý4(ÿ)ÿ−ÿÿ(ÿ)ý for any ý ≥ 0, ÿ ∈ [0, ÿ2(ÿ)]. (3.97)

(ii) Fix again ÿ ∈ (0, 1). From Lemma 3.13 and ÿ3(ÿ) ≤ min{ÿ2,
ÿ

2ÿ1
}, so that ÿ(ÿ) = ÿ1ÿ for any ÿ ∈ [0, ÿ3(ÿ)], we have

‖ÿ̃ÿ(ý)‖ ≤ ý3ÿ
−

ÿ

2
ý
= ý3ÿ

(−
ÿ

2
+ÿ1ÿ)ýÿ−ÿ(ÿ)ý ≤ ý3ÿ

−ÿ(ÿ)ý for any ý ≥ 0, ÿ ∈ [0, ÿ3(ÿ)]. (3.98)

From (3.41), (3.52), (3.98), and (i) we conclude that

‖ÿÿ(ý)‖ = ‖ý(ÿ)ÿÿ(ý)ý(ÿ)−1‖ ≤ ‖ý(ÿ)‖ ‖ÿÿ(ý)‖ ‖ý(ÿ)−1‖ ≤ 3‖ÿÿ(ý)‖
≤ 3

(‖‖ÿýÿÿ‖‖ ‖ÿ0‖ + ‖ÿ̃ÿ(ý)‖ ‖ýÿ − ÿ0‖
) ≤ 3(8ý2 + 1)(ý3 +ý4(ÿ))ÿ−ÿÿ(ÿ)ý (3.99)

for any ý ≥ 0, ÿ ∈ [0, ÿ3(ÿ)], proving the lemma. □

We conclude this subsection by proving one of our main results, the uniform in ÿ exponential stability of the family of

semigroups {ÿÿ(ý)}ý≥0, ÿ ≥ 0.

Proof of Theorem 1.1. From Lemma 3.2 and Lemma 3.18(ii), we derive

‖‖ÿÿ(ý)‖‖ ≤ max{ý(ÿ, ÿ3(ÿ)), 3(8ý2 + 1)(ý3 +ý4(ÿ))}ÿ−ÿÿ(ÿ)ý (3.100)

for any ý ≥ 0, ÿ ≥ 0, ÿ ∈ (0, 1). Here,ý(⋅, ⋅),ý2,ý3,ý4(⋅), and ÿ3(⋅) are defined in (3.9), (3.26), (3.66), (3.92), and (3.94),

respectively. Tracing back the dependence of each of these quantities, we conclude that estimate (1.6) holds and that the

functioný depends on the unperturbed operator ý, ý0(0), and the functions ‖ý(⋅)‖, ÿ and ÿ, and the relevant constants
in Hypotheses (H3)–(H5). □

3.3 The special case when 0 is a simple eigenvalue

In this subsection, we show that in the case when 0 is a simple eigenvalue, we can prove themain estimate (3.100) without

usingHypothesis (H5). Throughout this subsection, we assumeHypotheses (H1), (H3), (H4), andHypothesis (H2′). In this

case, dim Imÿ0 = 1. This fact makes estimating ‖ÿýÿÿ‖ significantly simpler. In particular, the functioný4 in Lemma 3.18

can be replaced by 1, see (3.104) below.

Lemma 3.19. Assume Hypotheses (H1), (H2′), (H3) and (H4). Then,

‖‖ÿÿ(ý)‖‖ ≤ 3(ý3 + 1)(8ý2 + 1)ÿ−ÿ(ÿ)ý for any ý ≥ 0, ÿ ∈ [0, ÿ4], (3.101)

where ÿ4 ∶= min
{
ÿ1, ÿ2,

ÿ

2ÿ1

}
,ý3 is taken from Lemma 3.13, ÿ1 from Lemma 3.9, ÿ1 and ÿ2 from Hypothesis (H3).

Proof. Since dim Imÿ0 = 1, there exists a function ý ∶ [0, ÿ1] → ℂ such that

ÿÿ = ý(ÿ)ýImÿ0 for any ÿ ∈ [0, ÿ1]. (3.102)

Since ÿÿ = (ýÿ)|Imÿ0 , from (3.47), (3.51), and (3.102), it follows that ý(ÿ) ∈ ÿ(ýÿ) = ÿ(ýÿ) for any ÿ ∈ [0, ÿ1]. From

Hypothesis (H3)(i), we infer that

Re ý(ÿ) ≤ −ÿ(ÿ) for any ÿ ∈ [0, ÿ1]. (3.103)
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From (3.102) and (3.103), we immediately conclude that

‖ÿýÿÿ‖ = ÿRe ý(ÿ)ý ≤ ÿ−ýÿ(ÿ) for any ý ≥ 0, ÿ ∈ [0, ÿ1]. (3.104)

Since ÿ4 ≤ min
{
ÿ2,

ÿ

2ÿ1

}
, and so ÿ(ÿ) = ÿ1ÿ for any ÿ ∈ [0, ÿ4], it follows from Lemma 3.13 that

‖ÿ̃ÿ(ý)‖ ≤ ý3ÿ
−

ÿ

2
ý
= ý3ÿ

(−
ÿ

2
+ÿ1ÿ)ýÿ−ÿ(ÿ)ý ≤ ý3ÿ

−ÿ(ÿ)ý for any ý ≥ 0, ÿ ∈ [0, ÿ4]. (3.105)

From Lemma 3.13, (3.52), and (3.104), we infer

‖ÿÿ(ý)‖ = ‖ý(ÿ)ÿÿ(ý)ý(ÿ)−1‖ ≤ ‖ý(ÿ)‖ ‖ÿÿ(ý)‖ ‖ý(ÿ)−1‖ ≤ 3‖ÿÿ(ý)‖
≤ 3

(‖‖ÿýÿÿ‖‖ ‖ÿ0‖ + ‖ÿ̃ÿ(ý)‖ ‖ýÿ − ÿ0‖
) ≤ 3(ý3 + 1)(8ý2 + 1)ÿ−ÿ(ÿ)ý (3.106)

for any ý ≥ 0, ÿ ∈ [0, ÿ1], proving the lemma. □

Proof of Theorem 1.2. From Lemma 3.2 and Lemma 3.19, it follows that

‖‖ÿÿ(ý)‖‖ ≤ max{ý(ÿ, ÿ4), 3(ý3 + 1)(8ý2 + 1)}ÿ−ÿÿ(ÿ)ý for any ý ≥ 0, ÿ ≥ 0, ÿ ∈ (0, 1). (3.107)

Here,ý(⋅),ý2,ý3, and ÿ1 are defined in (3.9), (3.26), (3.66), and Lemma 3.19, respectively. Arguing the sameway as in the

proof of Theorem 1.1, we conclude that estimate (1.7) holds and that the functioný depends on the unperturbed operator

ý and the functions ‖ý(⋅)‖ and ÿ and the relevant constants in Hypotheses (H3)–(H4). □

4 APPLICATIONS TO LINEAR STABILITY OF PLANAR TRAVELINGWAVES IN
REACTION–DIFFUSION SYSTEMS

In this section, we give an application of our results to the case of families of analytic semigroups obtained by linearizing a

reaction–diffusion system along a planar traveling wave (front). In particular, we give sufficient conditions for Lyapunov

linear stability of such fronts, proving Proposition 1.3. First, we recall the reaction–diffusion system (1.8), which reads as

follows:

ÿý = ÿΔýÿ + ý(ÿ), ý ≥ 0, ý = (ý1, … , ýÿ)
T ∈ ℝÿ.

Here, ý ∶ ℝý → ℝý is a function of class at least ÿ3 and ÿ ∈ ℂý×ý is a matrix satisfying the condition

inf Re ÿ(ÿ) > 0. (4.1)

We recall that a planar traveling wave of (1.8) is a solution of (1.8) of the form ÿ(ý, ý) = ℎ(ý1 − ýý), where ý ∈ ℝ and

ℎ ∶ ℝ → ℝý is a smooth function exponentially convergent at ±∞ to the limit values ℎ±. One can readily check that the

profile ℎ satisfies the nonlinear system of equations

ÿℎ
′′
+ ýℎ

′
+ ý(ℎ) = 0. (4.2)

Making the change of variables ÿ = ý − ýýÿÿ, where ÿÿ = (1, 0, … , 0)T ∈ ℝÿ, we notice that Equation (1.8) is equivalent to

ÿý = ÿΔÿÿ + ýÿÿ1ÿ + ý(ÿ), ý ≥ 0, ÿ = (ÿ1, … , ÿÿ) ∈ ℝÿ. (4.3)
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Wenote that ℎ is a standing wave solution of (4.3) depending only on ÿ1. The linearization of (4.3) along ℎ reads as follows,

ÿý = ℒÿ, ý ≥ 0, where ℒ = ÿΔÿ + ýýýÿÿ1 +ℳ
ý′(ℎ)

. (4.4)

We recall that ℳ
ý′(ℎ)

denotes the operator of multiplication on ÿ2(ℝÿ, ℂý) by the bounded, matrix-valued function

ý′(ℎ(ÿ1)), while ℒ is considered as a closed, densely defined linear operator on ÿ2(ℝÿ, ℂý) with domain ÿ2(ℝÿ, ℂý).

Moreover, as mentioned in the introduction, by taking Fourier transform in the variables (ÿ2, … , ÿÿ) ∈ ℝÿ−1, we infer

that the linear operatorℒ is unitary equivalent toℳÿ̂, the operator of multiplication acting on ÿ2
(
ℝÿ−1, ÿ2(ℝ,ℂý)

)
by

the operator-valued function

ÿ̂ ∶ ℝÿ−1 → ℬ
(
ÿ2(ℝ,ℂý), ÿ2(ℝ,ℂý)

)
, ÿ̂(ÿ) = ÿÿ2ÿ1 + ýýýÿÿ1 +ℳý(⋅,ÿ), (4.5)

where ý ∶ ℝÿ → ℝý is defined by

ý(ÿ1, ÿ) = ý′(ℎ(ÿ1)) − |ÿ|2ÿ. (4.6)

For any ÿ ∈ ℝÿ−1 the linear operator ÿ̂(ÿ) can be considered as a closed, densely defined linear operator on ÿ2(ℝ,ℂý)

with domainÿ2(ℝ,ℂý).

It is well known that elliptic operators generate analytic semigroups, see, for example, [1, 2, 11, 15, 17, 21, 22]. In the next

lemma, we show that condition (4.1) is enough to infer the analyticity of the semigroup generated by ÿ̂(0).

Lemma 4.1. If inf Re ÿ(ÿ) > 0, then the linear operator ÿ̂(ÿ), defined in (4.5), is sectorial, for any ÿ ∈ ℝÿ−1, hence it

generates an analytic semigroup. In particular, ÿ̂(0) satisfies Hypothesis (H1).

Proof. Let ý0 = inf Re ÿ(ÿ) > 0. First, we show that the linear operator ÿÿ2ÿ1 is sectorial. Denoting by ℱ1 the Fourier

transform with respect to the variable ÿ1 ∈ ℝ, one can readily check that

ÿÿ2ÿ1 = ℱ−1
1 ýÿ̂ℱ1, where ÿ̂ ∶ ℝ → ℂý×ý is defined by ÿ̂(ÿ1) = −ÿ21ÿ. (4.7)

Since ÿ ∈ ℂý×ý, we have

ÿ0(−ÿ) = supRe ÿ(−ÿ) = − inf Re ÿ(ÿ) = −ý0 < 0. (4.8)

From the definition of the growth rate of a semigroup, we obtain that there exists ÿ0 > 0 such that

‖ÿ−ýÿ‖ ≤ ÿ0ÿ
−

ý0
2
ý

for any ý ≥ 0. (4.9)

Since {ÿ ∈ ℂ ∶ Re ÿ ≥ −
ý0

2
} ⊂ ÿ(−ÿ), we have

ÿ(ÿýý + ÿ)−1 = ýý − ÿ(ÿýý + ÿ)−1 = ýý − ÿ ∫
∞

0

ÿ−ÿýÿ−ýÿdý whenever Re ÿ > −
ý0
2
. (4.10)

Therefore, from (4.9) and (4.10), we immediately obtain

sup
Re ÿ≥0

‖ÿ(ÿýý + ÿ)−1‖ ≤ 1 +
2‖ÿ‖ÿ0

ý0
< ∞. (4.11)

From Lemma 2.8, it follows that there exists ÿ̃0 ≥ 1 and ÿ0 ∈ (
ÿ

2
, ÿ) such that

Ω0,ÿ0 ⊂ ÿ(−ÿ), ‖(ÿýý + ÿ)−1‖ ≤ ÿ̃0

|ÿ| for any ÿ ∈ Ω0,ÿ0 . (4.12)



LATUSHKIN and POGAN 29

Since
ÿ

ÿ21
∈ Ω0,ÿ0 for any ÿ ∈ Ω0,ÿ0 and ÿ1 ∈ ℝ ⧵ {0}, from (4.7) and (4.12), we conclude that

Ω0,ÿ0 ⊂ ÿ
(
ÿ̂(ÿ1)

)
, ‖‖

(
ÿýý − ÿ̂(ÿ1)

)−1‖‖ ≤ ÿ̃0

|ÿ| for any ÿ ∈ Ω0,ÿ0 , ÿ1 ∈ ℝ, (4.13)

which is equivalent to

Ω0,ÿ0 ⊂ ÿ(ýÿ̂), ‖ý(ÿ,ýÿ̂)‖ ≤ ÿ̃0

|ÿ| for any ÿ ∈ Ω0,ÿ0 . (4.14)

From (4.14), we infer that the linear operatorýÿ̂ , and hence ÿÿ
2
ÿ1
, is a sectorial operator. Since ÿ ∈ ℂý×ý is an invertible

matrix, one can readily check that

‖ÿÿ1ÿ‖22 = −ïÿ2ÿ1ÿ, ÿðÿ2(ℝ,ℂý)
= −ïÿÿ2ÿ1ÿ, (ÿ−1)∗ÿð

ÿ2(ℝ,ℂý)
≤ ‖ÿ−1‖ ‖ÿÿ2ÿ1ÿ‖2 ‖ÿ‖2 (4.15)

for any ÿ ∈ ÿ2(ℝ,ℂý), which implies that

‖ÿÿ1ÿ‖2 ≤ ‖ÿ−1‖1∕2 ‖ÿÿ2ÿ1ÿ‖1∕22 ‖ÿ‖1∕22 ≤ ‖ÿ−1‖1∕2 ‖ÿ‖1∕2
dom(ÿÿ2ÿ1 )

‖ÿ‖1∕22 (4.16)

for any ÿ ∈ dom(ÿÿ2ÿ1) = ÿ2(ℝ,ℂý). Applying the results from [15, Chapter 2], we infer that ÿÿ2ÿ1 + ýýýÿÿ1 is also a secto-

rial operator. Since ℎ, and thus ý, are bounded functions, from Lemma 2.9 and (4.5), we conclude that ÿ̂(ÿ) is a sectorial

operator for any ÿ ∈ ℝÿ−1, proving the lemma. □

Next, we note that the operator-valued function ÿ̂ has the representation

ÿ̂(ÿ) = ÿ̂(0) + ýRD(|ÿ|2) for any ÿ ∈ ℝÿ−1, (4.17)

where ýRD ∶ [0,∞) → ℬ
(
ÿ2(ℝ,ℂý)

)
, is defined by ýRD(ÿ) = −ÿℳÿ .

Remark 4.2. Assuming Hypothesis (RD) from the Introduction and (4.1), from Lemma 4.1 we derive that ÿ̂(0) satisfies

Hypotheses (H1)–(H2). Hence, it follows from Lemma 3.5 that the semigroup generated by ÿ̂(0) has a block representation

of the form (3.22) and satisfies the estimate (3.21). We infer that the semigroup generated by ÿ̂(0) is bounded, that is,

ý̃0 = supý≥0 ‖ÿýÿ̂(0)‖ < ∞, which implies that

‖ý(ÿ, ÿ̂(0))‖ ≤ ý̃0

Re ÿ
whenever Re ÿ > 0. (4.18)

In many applications, the diffusion rates of various components of the vector-valued function ÿ in (1.8) are close to each

other. In this case, we can prove the Lyapunov linear stability of the front ℎ using the results of Section 3. First, we prove

the following lemma.

Lemma 4.3. Assume Hypothesis (RD) and that the matrix ÿ ∈ ℂý×ý is sufficiently close to a diagonal matrix in the sense

that there exists some ý > 0 such that for ý̃0 from (4.18), one has

‖ÿ − ýýý‖ <
ý

ý̃0

. (4.19)

Then, the family of operators ýRD(ÿ) ∶= ÿ̂(0) − ÿℳÿ , ÿ ≥ 0, satisfies Hypotheses (H1)–(H5).
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Proof. Denoting by ý = ÿ − ýýý ∈ ℂý×ý, we have ‖ý‖ <
ý

ý̃0
. One can readily check that ÿ(ý) ⊂ ÿ(0,

ý

ý̃0
). Since ý̃0 =

supý≥0 ‖ÿýÿ̂(0)‖ ≥ 1, we have inf Re ÿ(ý) > −ý, which implies that inf Re ÿ(ÿ) > 0. From Remark 4.2, we conclude that

the linear operator ÿ̂(0) satisfies Hypotheses (H1) and (H2).

Next, we study the spectrum of ýRD(ÿ). Since
‖ý‖ý̃0

ý
< 1, there exists ÿ0 ∈ (0, 1) such that

‖ý‖ý̃0

ý
< (1 − ÿ0)

2. Next, we

fix ÿ ≥ 0 and ÿ ∈ ℂ with Reÿ > −ÿ0ÿý. Then, from Hypothesis (RD) we note that ÿ + ÿý ∈ ÿ
(
ÿ̂(0)

)
. Moreover, since

ÿ = ýýý + ý, we have

ÿýÿ2(ℝ,ℂý) − ýRD(ÿ) = (ÿ + ÿý)ýÿ2(ℝ,ℂý) − ÿ̂(0) + ÿℳý

=
(
ýÿ2(ℝ,ℂý) + ÿℳýý

(
ÿ + ÿý, ÿ̂(0)

))(
(ÿ + ÿý)ýÿ2(ℝ,ℂý) − ÿ̂(0)

)
. (4.20)

From (4.18), we obtain

‖‖ÿℳýý
(
ÿ + ÿý, ÿ̂(0)

)‖‖ ≤ ÿ‖ý‖ý̃0

Reÿ + ÿý
≤ ‖ý‖ý̃0

(1 − ÿ0)ý
≤ 1 − ÿ0 < 1, (4.21)

which implies that ýÿ2(ℝ,ℂý) + ÿℳýý
(
ÿ + ÿý, ÿ̂(0)

)
is invertible and

‖‖‖‖
(
ýÿ2(ℝ,ℂý) + ÿℳýý

(
ÿ + ÿý, ÿ̂(0)

))−1‖‖‖‖ ≤ 1

ÿ0
. (4.22)

From (4.20) and (4.22), we infer that ÿ ∈ ÿ (ýRD(ÿ)) and

‖‖ý(ÿ, ýRD(ÿ))‖‖ ≤ ‖‖ý
(
ÿ + ÿý, ÿ̂(0)

)‖‖
‖‖‖‖
(
ýÿ2(ℝ,ℂý) + ÿℳýý

(
ÿ + ÿý, ÿ̂(0)

))−1‖‖‖‖

≤ ý̃0

ÿ0(Reÿ + ÿý)
≤ ý̃0

ÿ0(Reÿ + ÿ0ÿý)
. (4.23)

We conclude that

ÿ(ýRD(ÿ)) ⊆ {ÿ ∈ ℂ ∶ Reÿ ≤ −ÿ(ÿ)} and ‖‖ý(ÿ, ýRD(ÿ))‖‖ ≤ ý̃0

ÿ0(Reÿ + ÿ(ÿ))
(4.24)

wheneverReÿ > −ÿ(ÿ), where the function ÿ ∶ [0,∞) → [0,∞) is defined by ÿ(ÿ) = ÿ0ÿý. Since limÿ→∞
‖ýRD(ÿ)‖

ÿ(ÿ)
=

‖ÿ‖
ÿ0ý

,

Hypothesis (H3) is satisfied. From (4.17), one can readily check that Hypotheses (H4) and (H5) are satisfied. □

We are now ready to prove the main result of this section, Proposition 1.3, assuming that ÿ ∈ ℂý×ý is sufficiently close

to ýýý in the sense that ‖ÿ − ýýý‖ <
ý

ý̃0

Proof of Proposition 1.3. First, we recall that ý̃0 = supý≥0 ‖ÿýÿ̂(0)‖. From Lemma 4.3 and Theorem 1.1, it follows that the

family of semigroups generated by ýRD(ÿ), ÿ ≥ 0, is uniformly stable. Setting ÿ =
1

2
in Theorem 1.1, we obtain that there

exists a constant ý̂0 > 0 such that

‖ÿýýRD(ÿ)‖ ≤ ý̂0ÿ
−

ÿ0ÿý

2
ý
for any ý ≥ 0, ÿ ≥ 0. (4.25)

Using the identity ÿ̂(ÿ) = ýRD(|ÿ2|) for any ÿ ∈ ℝÿ−1, from (4.25), we infer that

‖ÿýÿ̂(ÿ)‖ ≤ ý̂0ÿ
−

ÿ0|ÿ|2ý
2

ý
for any ý ≥ 0, ÿ ∈ ℝÿ−1. (4.26)
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Sinceℒ, the linearization along the front ℎ, is unitary equivalent toℳÿ̂, from (4.26) we see that the semigroup generated

byℒ is bounded, proving that the planar front ℎ is Lyapunov linearly stable. □

5 APPLICATIONS TO LINEAR STABILITY OF PLANAR FRONTS IN THE BIDOMAIN
EQUATION

In this section, we give yet another application of our results to the Lypunov linear stability of planar traveling waves

(fronts) in the bidomain Allen–Cahn model (1.9). In [16], the authors show that the model has spectrally stable planar

traveling waves (fronts). Our goal is to show that the same condition also guarantees the Lyapunov linear stability of such

fronts. Following [16], we consider Equation (1.9) on ℝ2. It is well known that (1.9) has planar traveling waves, that is,

solutions of the form

(ÿ, ÿÿ , ÿÿ)(ý, ý) = (ý,ýÿ , ýÿ)(ý1 cos ÿ + ý2 sin ÿ − ýý), ý = (ý1, ý2) ∈ ℝ2, ý ≥ 0, (5.1)

for some ý, ÿ ∈ ℝ. Moreover, the profile ý can be chosen such that

ý is decreasing, lim
ý→−∞

ÿ−ÿ0ý(ý(ý) − 1) = lim
ý→∞

ÿÿ0ýý(ý) = 0, for some ÿ0 > 0. (5.2)

Making in (1.9) the change of variables

ÿ =

(
ÿ1
ÿ2

)
∶= ý−ÿ

(
ý1
ý2

)
−

(
ýý

0

)
, where ýÿ =

[
cos ÿ − sin ÿ

sin ÿ cos ÿ

]
, (5.3)

we obtain the system

⎧⎪«⎪¬

ÿý = ∇ÿ ⋅ (ýÿ,ÿ∇ÿÿÿ) + ýÿÿ1ÿ + ÿ(ÿ),

∇ÿ ⋅ (ýÿ,ÿ∇ÿÿÿ + ýÿ,ÿ∇ÿÿÿ) = 0,

ÿ = ÿÿ − ÿÿ.

ý ≥ 0, ÿ ∈ ℝ2. (5.4)

Here, the symmetric, positive definite matrices ýÿ,ÿ and ýÿ,ÿ are defined by

ýÿ,ÿ = ýÿýÿý−ÿ, ýÿ,ÿ = ýÿýÿý−ÿ. (5.5)

In the new coordinate system, the front (ý,ýÿ , ýÿ) travels along the ÿ1-axis and it is a standing wave solution of (5.4)

depending only on ÿ1. In addition, the second and third equations of (5.4) are linear equations. Therefore, the linearization

of (5.4) along the front (ý,ýÿ , ýÿ) is given by

⎧⎪«⎪¬

ÿý = ∇ÿ ⋅ (ýÿ,ÿ∇ÿÿÿ) + ýÿÿ1ÿ + ÿ′(ý(ÿ1))ÿ,

∇ÿ ⋅ (ýÿ,ÿ∇ÿÿÿ + ýÿ,ÿ∇ÿÿÿ) = 0,

ÿ = ÿÿ − ÿÿ.

ý ≥ 0, ÿ ∈ ℝ2 (5.6)

Following [16], we consider this system in ÿ2(ℝ2, ℂ3). Taking Fourier transform in ÿ = (ÿ1, ÿ2), denoted by ℱ, we can

eliminate the variables ÿÿ and ÿÿ from (5.6) to obtain the following equation:

ÿý = ýÿ, ý ≥ 0, where ý = −ℒÿ + ýÿÿ1 +ℳÿ′(ý). (5.7)

The linear operatorℒÿ ∶ ÿ2(ℝ2) → ÿ2(ℝ2) is defined as the Fourier multiplier

ℒÿ = ℱ−1ℳýÿ
ℱ, ýÿ(ÿ) =

ýÿ,ÿ(ÿ)ýÿ,ÿ(ÿ)

ýÿ,ÿ(ÿ) + ýÿ,ÿ(ÿ)
, ýÿ∕ÿ,ÿ(ÿ) = ÿT ⋅ ýÿ∕ÿ,ÿÿ, ÿ ∈ ℝ2. (5.8)

We recall that the wave ý is called Lyapunov linearly stable if the semigroup generated byý is bounded.
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Taking Fourier transformwith respect to ÿ2 ∈ ℝ, denoted byℱ2, we note that the linear operatorý is unitary equivalent

toℳý̂, the operator of multiplication on ÿ2
(
ℝ, ÿ2(ℝ)

)
by the operator-valued function

ý̂ ∶ ℝ → ℬ
(
ÿ2(ℝ), ÿ2(ℝ)

)
, ý̂(ÿ2) = −ℱ−1

1 ℳýÿ(⋅,ÿ2)ℱ1 + ýÿÿ1 +ℳÿ′(ý). (5.9)

Here,ℱ1 denotes the Fourier transform with respect to the variable ÿ1 ∈ ℝ. For more details, we refer to [16, section 2].

To study the Lyapunov linear stability of the frontý, we study the family of semigroups generated by ý̂(ÿ2), ÿ2 ∈ ℝ. We

recall that the function ýÿ has the representation:

ýÿ(ÿ1, ÿ2) =

⎧⎪«⎪¬

ÿ22

(
ý
(
ÿ1

ÿ2

)
+ ý

(
ÿ1

ÿ2

))
, ÿ1 ∈ ℝ, ÿ2 ∈ ℝ ⧵ {0},

ý2
0ÿ

2
1 , ÿ1 ∈ ℝ, ÿ2 = 0,

where

ý(ý) = ý2
0(ý − ÿ1)

2 + ÿ0, ý(ý) =
ÿ1ý + ÿ0
ý2 + 1

as pointed out in (1.11) and (1.12). Also, we recall that the constantsý0, ÿ0, ÿ1, ÿ0, and ÿ1 depend on ÿ1, ÿ2, and ÿ only. For

the exact formulas, we refer to [16, Formula (2.20)]. From (1.11), one can readily check that

ý̂(0) = ý2
0ÿ

2
ÿ1
+ ýÿÿ1 +ℳÿ′(ý). (5.10)

The linear operator ý̂(0) is a second-order differential operator, therefore we can determine the properties of its spectrum,

see, for instance, [12, 19, 20, 23]. In the next lemma, we summarize the most relevant properties of the spectrum of ý̂(0)

given in [16].

Lemma 5.1 [16, Proposition 3.1]. The operator ý̂(0) satisfies the following properties:

(i) There exists ÿ > 0 such that sup Re
(
ÿ(ý̂(0)) ⧵ {0}

) ≤ −ÿ;

(ii) 0 is a simple eigenvalue of ý̂(0). Moreover, Ker ý̂(0) = Span{ý
′
};

(iii) There existsýb > 0 such that

‖‖ý
(
ÿ, ý̂(0)

)‖‖ ≤ ýb

|ÿ| whenever Re ÿ ≥ 0, ÿ ≠ 0.

Remark 5.2. From Lemma 2.8 and Lemma 5.1(ii) and (iii), we infer that ý̂(0) is a sectorial operator, hence ý̂(0) satisfies

Hypothesis (H1). Moreover, from Lemma 5.1(i) and (ii), it follows that ý̂(0) satisfies Hypothesis (H2′).

We recall the following notation needed to formulate (1.14), a sufficient condition for spectral stability of the planar

front ý,

ýinf = inf
ý∈ℝ

ý(ý), ýsup = sup
ý∈ℝ

ý(ý), ý =
ýinf + ýsup

2
, ýΔ =

ýsup − ýinf

2
. (5.11)

A crucial ingredient in the proof of (1.14) is the identity

ý̂(ÿ2) = ℳÿiÿ1ÿ2⋅(ý̂(0) + ÿ(ÿ2))ℳÿ−iÿ1ÿ2⋅ for any ÿ2 ∈ ℝ, (5.12)

whereÿ ∶ ℝ → ℬ
(
ÿ2(ℝ)

)
is defined by

ÿ(ÿ2) =

{
−ÿ22ℱ

−1
1 ℳý(

⋅

ÿ2
+ÿ1)

ℱ1 − (ÿ0ÿ
2
2 − ýiÿ1ÿ2)ýÿ2(ℝ), ÿ2 ∈ ℝ ⧵ {0},

0, ÿ2 = 0.
(5.13)
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Remark 5.3. From [16, Lemma 4.1], we see that the operator-valued function ÿ is continuous on ℝ inℬ
(
ÿ2(ℝ)

)
-norm.

Moreover, assuming that ÿ0 > ýbýΔ − ý and using the same argument as in [16, Theorem 3.2], we can prove that

ÿ
(
ý̂(0) + ÿ(ÿ2)

)
⊆ {ÿ ∈ ℂ ∶ Reÿ ≤ −(ÿ0 −ýbýΔ + ý)ÿ22 } for any ÿ2 ∈ ℝ; (5.14)

‖ý
(
ý̂(0) + ÿ(ÿ2)

)
‖ ≤ ýb

Reÿ + (ÿ0 −ýbýΔ + ý)ÿ22
whenever Reÿ > −(ÿ0 −ýbýΔ + ý)ÿ22 . (5.15)

To check the two properties above, we first define ÿ̃ ∶ ℝ → ℬ
(
ÿ2(ℝ)

)
by

ÿ̃(ÿ2) ∶= ÿ(ÿ2) +
(
(ÿ0 + ý)ÿ22 − ýiÿ1ÿ2

)
ýÿ2(ℝ). (5.16)

We note that (5.14) and (5.15) hold true if ÿ2 = 0. Next, we fix ÿ2 ∈ ℝ ⧵ {0} and ÿ ∈ ℂ such that Reÿ > −(ÿ0 −ýbýΔ + ý)ÿ22
and we set ÿ̃ ∶= ÿ + (ÿ0 + ý)ÿ22 − ýiÿ1ÿ2. Using (5.11), one can readily check that

Reÿ̃ = Reÿ + (ÿ0 + ý)ÿ22 > ýbýΔÿ
2
2 > 0 and ‖ÿ̃(ÿ2)‖ ≤ ÿ22

‖‖‖‖‖
ý − ý

(
⋅

ÿ2
+ ÿ1

)‖‖‖‖‖∞
≤ ÿ22ýΔ. (5.17)

From (5.17) and Lemma 5.1, we have ÿ̃ ∈ ÿ
(
ý̂(0)

)
and ‖‖ý

(
ÿ̃, ý̂(0)

)‖‖ ≤ ýb

|ÿ̃| ≤ ýb

Reÿ̃
, which implies

‖‖ÿ̃(ÿ2)ý(ÿ̃, ý̂(0))‖‖ ≤ ‖ÿ̃(ÿ2)‖ ‖‖ý(ÿ̃, ý̂(0))‖‖ ≤ ÿ22ýΔ
ýb

Reÿ̃
< 1. (5.18)

Using elementary spectral theory, from (5.18) we obtain that ÿ̃ ∈ ÿ
(
ý̂(0) + ÿ̃(ÿ2)

)
, hence ÿ ∈ ÿ

(
ý̂(0) + ÿ(ÿ2)

)
.

Moreover,

‖‖ý(ÿ, ý̂(0) + ÿ(ÿ2))‖‖ = ‖‖ý(ÿ̃, ý̂(0) + ÿ̃(ÿ2))‖‖ ≤ ‖‖ý(ÿ̃, ý̂(0))‖‖
1 − ‖‖ÿ̃(ÿ2)ý(ÿ̃, ý̂(0))‖‖

≤ ýb

Reÿ̃ − ýbýΔÿ
2
2

=
ýb

Reÿ + (ÿ0 −ýbýΔ + ý)ÿ22
, (5.19)

proving (5.14) and (5.15).

To prove uniform estimates for the family of semigroups generated by ý̂(ÿ2), ÿ2 ∈ ℝ, we introduce the operator-valued

functions ý± ∶ [0,∞) → ℬ
(
ÿ2(ℝ)

)
defined by

ý±(ÿ) ∶= ÿ(±
√
ÿ) ∓ ýiÿ1

√
ÿýÿ2(ℝ). (5.20)

Lemma 5.4. Assume that ÿ0 > ýbýΔ − ý. Then, the family of operators ý̃±(ÿ) ∶= ý̂(0) + ý±(ÿ), ÿ ≥ 0, satisfies

Hypotheses (H3) and (H4).

Proof. FromRemark 5.3 and (5.20), we immediately conclude that the operator-valued functioný± is continuous on [0,∞)

inℬ
(
ÿ2(ℝ)

)
-norm. It follows from (5.20) that

ÿ(ý̂(0) + ý±(ÿ)) = ÿ(ý̂(0) + ÿ(±
√
ÿ)) ∓ ýiÿ1

√
ÿ,

ý(ÿ, ý̂(0) + ý±(ÿ)) = ý
(
ÿ ± iÿ1

√
ÿ, ý̂(0) + ÿ(±

√
ÿ)

)
(5.21)

for any ÿ ≥ 0 and any ÿ ∈ ÿ(ý̂(0) + ý±(ÿ)). From (5.14), (5.15), and (5.21), we infer that

ÿ(ý̂(0) + ý±(ÿ)) ⊆ {ÿ ∈ ℂ ∶ Reÿ ≤ −(ÿ0 −ýbýΔ + ý)ÿ} for any ÿ ≥ 0; (5.22)

‖ý(ý̂(0) + ý±(ÿ))‖ ≤ ýb

Reÿ + (ÿ0 −ýbýΔ + ý)ÿ
whenever Reÿ > −(ÿ0 −ýbýΔ + ý)ÿ. (5.23)
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Let ÿ ∶ [0,∞) → [0,∞) be the function defined by ÿ(ÿ) = (ÿ0 −ýbýΔ + ý)ÿ. From (5.22) and (5.23), we see that conditions

(i) and (ii) of Hypothesis (H3) are satisfied. Since ý ∈ ÿ∞(ℝ), by (1.12), from (5.13) and (5.20), we obtain

‖ý±(ÿ)‖ ≤ ÿ(‖ý‖∞ + ÿ0) for any ÿ ≥ 0, (5.24)

which implies that lim sup
ÿ→∞

‖ý±(ÿ)‖
ÿ(ÿ)

≤ ‖ý‖∞ + ÿ0 < ∞. Hence, condition (iii) of Hypothesis (H3) is satisfied. Finally, it

follows from (5.24) that Hypothesis (H4) is satisfied, proving the lemma. □

We are now ready to prove the main result of this section, the Lyapunov linear stability of the planar front ý.

Proof of Proposition 1.4. From Remark 5.2 and Lemma 5.4, the family of operators ý̃±(ÿ) = ý̂(0) + ý±(ÿ), ÿ ≥ 0, satisfies

Hypotheses (H1), (H2′), (H3), and (H4). Hence, from Theorem 1.2 we conclude that the family of analytic semigroups

generated by ý̃±(ÿ) is uniformly exponentially stable for ÿ ≥ 0. Setting ÿ =
1

2
in Theorem 1.2, we see that there exists a

constant ý̃b > 0 such that

‖ÿýý̃±(ÿ)‖ ≤ ý̃bÿ
−

(ÿ0−ýbýΔ+ý)ÿ

2
ý
for any ý ≥ 0, ÿ ≥ 0. (5.25)

From (5.20), we have

ÿ(ÿ2) = ýÿ(ÿ
2
2) + ýiÿ1ÿ2ýÿ2(ℝ) for any ÿ2 ∈ ℝ, where ÿ =

{
+, ÿ2 ≥ 0,

−, ÿ2 < 0.
(5.26)

From (5.12) and (5.26) one can readily check that

ÿýý̂(ÿ2) = ℳÿiÿ1ÿ2⋅ ÿ
ý
(
ý̂(0)+ÿ(ÿ2)

)
ℳÿ−iÿ1ÿ2⋅ = ÿýiÿ1ÿ2ýℳÿiÿ1ÿ2⋅ ÿ

ýý̃ÿ(ÿ
2
2 )ℳÿ−iÿ1ÿ2⋅ (5.27)

for any ý ≥ 0 and ÿ2 ∈ ℝ. From (5.25) and (5.27), we conclude that

‖ÿýý̂(ÿ2)‖ ≤ ý̃bÿ
−

(ÿ0−ýbýΔ+ý)ÿ
2
2

2
ý
for any ý ≥ 0, ÿ2 ∈ ℝ. (5.28)

Sinceý, the linearization along the frontý, is unitary equivalent toℳý̂, from (5.28), we see that the semigroup generated

byý is bounded, proving that the front ý is Lyapunov linearly stable. □
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ENDNOTE
1 In (3.21), we can replace −

7ÿ

8
by −ÿÿ for any ÿ ∈ (0, 1), but not by −ÿ. However, such a change would not enhance our main result, cf.

Theorem 1.1, since for ÿ close to 0 under Hypothesis (H3), the decay rate −
7ÿ

8
is stronger than −ÿÿ(ÿ), the decay rate in the main result.
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APPENDIX: SOME EXAMPLES

In this section, we give two examples to show that by perturbing an operator satisfying Hypotheses (H1) and (H2), we

might have unstable spectrum, even if the space is finite dimensional and the perturbation is a self-adjoint, bounded,

uniformly negative definite operator.

Example A.1. Let ý0 =

[
0 1

0 0

]
and ý0 =

[
1 ÿ0
ÿ0

1

4

]
with ÿ0 ∈

(
−

1

2
,
1−

√
2

2

)
. One can readily check that

ï
ý0

(
ÿ

ÿ

)
,

(
ÿ

ÿ

)ð

ℂ2

= |ÿ|2 + 2ÿ0Re(ÿÿ) +
1

4
|ÿ|2 ≥ (|ÿ| − ÿ0|ÿ|)2 +

(
1

4
− ÿ20

)
|ÿ|2 for any ÿ, ÿ ∈ ℂ. (A.1)

From (A.1), we infer thatý0 is a symmetric, positive definitematrix. Since ÿ0 ∈

(
−

1

2
,
1−

√
2

2

)
, a simple computation shows

that ÿ(ý0 − ý0) = {ÿ∗0 , ÿ
∗
0 }, where ÿ

∗
0 = −

5

8
−

√
25

64
− (1 + 4ÿ0 − 4ÿ20) < 0 and ÿ∗0 = −

5

8
+

√
25

64
− (1 + 4ÿ0 − 4ÿ20) > 0. We

obtain

ÿ1 ∶=
1

4
min{ÿ∗0 , ÿ0} > 0, where ÿ0 = min

⎧⎪«⎪¬

|||||
ý

1

2
0

(
ÿ

ÿ

)|||||

2

∶

||||||

(
ÿ

ÿ

)
|= 1} . (A.2)

It follows that ÿ(ý0 − ÿ1ý2) = {−ÿ1} is stable, ý0 ∶= ÿ1ý2 − ý0 is a symmetric, uniformly negative definite matrix, and

ÿ∗0 ∈ ÿ(ý0 − ÿ1ý2 + ý0) = ÿ(ý0 − ý0). We introduce the matrices

ý0 =
£¤¤¥

−ÿ1 1 0

0 −ÿ1 0

0 0 0

¦§§̈ andÿ0 =

£
¤¤¤¥

ÿ1 − 1 −ÿ0 0

−ÿ0 ÿ1 −
1

4
0

0 0 −1

¦
§§§̈
. (A.3)
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One can readily check that 0 is a simple eigenvalue ofý0 and thatÿ(ý0) = {0, −ÿ1}. Since any bounded operator is sectorial,

we immediately infer that ý0 defined in (A.3) satisfies Hypotheses (H1) and (H2). Since ÿ0 = ý0 ⊕−1, we have ÿ0 is

a symmetric, uniform negative definite matrix. However, ý0 +ÿ0 = (ý0 − ý0) ⊕ −1, which shows that ÿ(ý0 +ÿ0) =

(ý0 − ý0) ∪ {−1}, hence ÿ∗0 ∈ ÿ(ý0 +ÿ0) ∩ (0,∞).

This example shows that by perturbing an operator that satisfies Hypotheses (H1) and (H2) wemight generate unstable

point spectrum, even if the perturbation is symmetric, negative definite. Using a similar argument, one can see that the

essential spectrum can become unstable under the same type of perturbation.

Example A.2. We set ℍ = ÿ2([1, 2], ℂ2) ⊕ ℂ and let ý̃0, ÿ̃0 ∶ ℍ → ℍ be the bounded linear operators defined by

ý̃0 = ℳý1 ⊕ 0, ÿ̃0 = ℳý1
⊕−1, (A.4)

where ℳý1 and ℳý1
are the multiplication operators on ÿ2([1, 2], ℂ2) by the matrix-valued functions ý1, ý1 ∶ [1, 2] →

ℂ2×2 defined by ý1(ý) = ý(ý0 − ÿ1ý2) and ý1(ý) = ýý0 = ý(ÿ1ý2 − ý0). Here, the matrices ý0, ý0, and ý0 were introduced in

Example A.1 above. We recall that ÿ(ý0 − ÿ1ý2) = {−ÿ1} and ÿ(ý0 − ý0) = {ÿ∗0 , ÿ
∗
0 }, with ÿ∗0 < 0 < ÿ∗0 .

Since thematrixý0 is symmetric, uniform negative definite, we immediately infer thatℳý1
is self-adjoint, uniform neg-

ative definite on ÿ2([1, 2], ℂ2). Hence, ÿ̃0 is self-adjoint, uniformly negative definite on ℍ. Moreover, since the functions

ý1 and ý1 are continuous by [8], it follows that

ÿ(ℳý1) = ÿess(ℳý1) =
⋃

ý∈[1,2]

ÿ(ý1(ý)) = [−2ÿ1, −ÿ1],

ÿ(ℳý1+ý1
) = ÿess(ℳý1+ý1

) =
⋃

ý∈[1,2]

ýÿ(ý0 − ý0) = [−2ÿ∗0 , −ÿ
∗
0] ∪ [ÿ∗0 , 2ÿ

∗
0]. (A.5)

Since the linear operator ý0 is bounded on ℍ we have it is sectorial. Moreover, from (A.4) and (A.5), we infer that 0

is a simple eigenvalue of ý̃0 and ÿ(ý̃0) ⧵ {0} = ÿ(ℳý1) = [−2ÿ1, −ÿ1], thus sup Re
(
ÿ(ý̃0) ⧵ {0}

)
= −ÿ1 < 0. Hence, ý̃0

satisfiesHypotheses (H1) and (H2). Even if ÿ̃0 is self-adjoint, uniformnegative definite onℍ, from (A.5) we have ÿess(ý̃0 +

ÿ̃0) = ÿess(ℳý1+ý1
) = [−2ÿ∗0 , −ÿ

∗
0] ∪ [ÿ∗0 , 2ÿ

∗
0], which shows that ÿess(ý̃0 + ÿ̃0) ∩ (0,∞) = [ÿ∗0 , 2ÿ

∗
0] is nonempty.
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