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Abstract: Self-similarities at different time scales embedded within a self-organizing neural manifold 
are well recognized. In this study, we hypothesize that the Hurst fractal dimension (HFD) of the scalp 
electroencephalographic (EEG) signal reveals statistical differences between chronic pain and opioid 
use. We test this hypothesis by using EEG resting state signals acquired from a total of 23 human 
subjects: 14 with chronic pain, 9 with chronic pain taking opioid medications, 5 with chronic pain and 
not taking opioid medications, and 9 healthy controls. Using the multifractal analysis algorithm, the 
HFD for full spectrum EEG and EEG frequency band time series was computed for all groups. Our 
results indicate the HFD varies spatially and temporally across all groups and is of lower magnitude 
in patients not taking opioids as compared to those taking opioids and healthy controls. A global 
decrease in HFD was observed with changes in gamma and beta power in the chronic pain group 
compared to controls and when paired to subject handedness and sex. Our results show the loss of 
complexity representative of brain wide dysfunction and reduced neural processing can be used as 
an EEG biomarker for chronic pain and subsequent opioid use. 
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1. Introduction 

Scalp electroencephalogram (EEG) recordings remain a fundamental tool to under- 
stand and uncover physiological and pathological brain processes and dynamics. Advances 
in mathematical modeling and analysis applied to such signals can shed new light on a 
wide array of neurological disorders including but not limited to epilepsy, neuropsychiatric, 
sleep, and neurovascular (i.e., stroke) disorders to name a few [1–5]. Recently, there has 
been a focus on the on-going opioid crisis, characterized by the widespread misuse, abuse, 
and addiction to opioid drugs, resulting in a significant increase in opioid-related over- 
doses, and ultimately death [6,7]. As the crisis worsens, related overdoses and morbidity 
surge globally, causing significant social and economic consequences including strained 
healthcare systems. 

The analysis and characterization of scalp EEG signals in patients who are actively 
taking opioid medications to manage chronic pain provides new perspectives on substance 
abuse effects and addiction pathways in the brain. In fact, drug addiction and downstream 
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brain effects are suggested to be aligned with reward related behavior and emerge from the 
dynamic interplay between large neural networks as opposed to a single brain structure. 
Investigations into the functional organization of reward and addiction brain areas is 
understood in the context of extended and functionally connected neural systems and the 
key components they form [8]. Fundamental research examining network interactions 
between cortical neuronal assemblies and the effects of substance abuse and addiction can 
be aided by the development of a noninvasive, cost-effective, and reliable biomarker of 
opioid addiction and abuse. 

Advances in mathematical approaches allow us to better understand the inherent 
chaotic nature of the brain using EEG signals, for instance algorithms such as wavelet 
Jensen–Shannon divergence, the Neyman-Pearson criteria with respect to approximate 
entropy, multifractal detrended fluctuation analysis (MFDFA), and the Hausdorff fractal 
dimension to name a few [1,9–13]. Here, we utilize the generalized Hurst fractal dimension 
(HFD) exponent to characterize multifractal patterns in resting state EEG signals of patients 
with chronic pain and opioid dependence, as well as in healthy control subjects. A scale free 
analysis of the EEG signal using the Hurst fractal dimension exponent and computation 
of the q th order moments help to determine its scaling properties. The generalized Hurst 
exponent (GHE) quantifies long-term memory and autocorrelation in the EEG signal at 
varying scales [14–16]. A particular advantage of the GHE approach with respect to EEG 
signals is that at each q scale, an estimate of the Hurst exponent value is made, allowing for 
computational efficiency combined with sensitivity to EEG signal dependency. 

Previously, GHE estimates have been found to be consistent with other scale free 
methods such as multifractal detrended fluctuation analysis (MFDA) [14–17]. As an added 
advantage, results derived from GHE offer a narrower confidence interval, are robust to 
heavier tails [18] and do not underestimate expected values. In addition, utilizing the GHE 
methodology to estimate fractal measures has been effective in characterizing neurological 
disorders such as glioma, neuropsychiatric disorders, and epilepsy [15,19]. Since long 
range temporal correlations exist typically in EEG signals, the GHE method helps describe 
the irregular, nonlinear dynamics present within such signals and allows for an efficient 
estimation of scale free fractals with limited computational burden and high efficiency. We 
anticipate that the GHE method will prove fruitful in computing multi-scale fractals to 
characterize scalp EEG signals in chronic pain and opioid use patients. Here, we implement 
the GHE technique along with robust statistical validation using parametric and non- 
parametric tests as a framework to understand the phenomenology and the information 
content through time in EEG signals from chronic pain opioid dependent patients and 
EEG signals from healthy control subjects. We further correlate our results with subject 
parameters to develop a fractal-based fingerprint of opioid use using scalp EEG signals. 

2. Materials and Methods 
2.1. Chronic Pain Patients 

Fourteen patients with chronic pain (8 M, 6 F median age of 61 ± 2 years) were 
enrolled in this study. Within the chronic pain group, nine patients were taking opioid 
medications (4 M, 5 F median age of 57 ± 1.4 years), and five patients (3 M, 2 F median 
age of 66 ± 1.31 years) with chronic pain were not taking opioid medications. The study 
inclusion criteria were as follows: (1) No history of a chronic neurological disorder that 
limits the use of EEG equipment, including but not limited to epilepsy and chronic seizures, 
(2) No active history of mental disorders, (3) Not actively using a pacemaker or other 
such cardiac pacing device, (4) No metal head implants, (5) No known adverse reaction to 
non-invasive brain recordings, (6) Absence of concurrent and comorbid medical problems 
(e.g., cardiorespiratory impairment, organ failure), (7) Absence of sensory deficits, (8) No 
prior history of substance addiction, (9) No previous history of brain surgery including 
craniotomy, (10) Study participants were not receiving any pharmacological treatment for 
other comorbidities (i.e., cardiovascular disease, kidney disease) at the time of the study. 
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Participant handedness was tested using the Edinburgh Handedness Inventory [20]. Table 1 
below reports study participant demographic data. 

 
Table 1. Study participant demographic data. “C”, “N”, and “O” refer to control patients, patients who 
have chronic pain but not actively taking opioid medications, and patients with chronic pain and are 
actively taking opioid medications respectively. “R” and “L” refer to right and left handedness subjectively. 

 

Participant Age Sex Opioid Status Handedness 
C1 59 F N R 
C2 61 F N R 
C3 60 F N R 
C4 52 F N R 
C5 36 M N R 
C6 25 M N R 
C7 29 F N L 
C8 28 M N R 
C9 32 F N R 
N1 73 M N R 
N2 66 F N R 
N3 55 F N R 
N4 92 F N R 
N5 39 M N R 
O1 58 F Y R 
O2 75 M Y R 
O3 47 F Y R 
O4 39 F Y R 
O5 70 F Y L 
O6 74 F Y L 
O7 64 F Y L 
O8 47 M Y R 
O9 47 F Y R 

 
2.2. Healthy Controls 

The control group consisted of 9 healthy patients (4 M, 5 F median age of 42.22 ± 2 years), 
with no pain, no current or previous history of a relevant neurological or psychiatric disease, 
and no current regimen of any medications known to affect the EEG signal. 

2.3. Experimental Protocol and Data Collection 
The study was approved by the University of Oklahoma Institutional Review Board, 

IRB # 14252. All patients were informed regarding study aims, scope, and were provided 
written informed consent. Patients were seated comfortably in a distraction free room and 
told to maintain alert wakefulness, avoid unnecessary movements including talking over a 
period of 3 min with eyes open. Between recording sessions, EEG equipment was calibrated 
and on a per channel basis, and impedances were maintained below 50 kΩ. On the day of 
recording, patients were advised to abstain caffeine to avoid induced EEG theta frequency 
band power changes [21]. EEG signals were measured with 64 Ag/AgCl surface electrodes, 
fixed within a standard EEG cap according to the 10–20 EEG system [22]. EEG signals 
were registered using the Brainvision EEG system (Neuroscan Compumedics, Houston, 
TX, USA, 16-bit A/D conversion, at a sampling frequency of 5000 Hz, 0.5 Hz–100 Hz band 
pass filter, and 0.2 s time constant) and data was continuously viewed on a PC monitor. 

2.4. EEG Pre-Processing 
Once collected, EEG data was processed in MATLAB R2023a (MathWorks, Natick, 

MA, USA) with custom EEGLAB toolbox scripts to convert data from raw EEG files to 
MATLAB compatible arrays [23]. Subsequently, the matrices were further analyzed using 
custom made MNE Python 3.10.9 scripts [24]. A neutral virtual reference was computed to 
standardize the reference of the EEG recordings via the Reference Electrode Standardization 
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Technique [25]. EEG recordings were band-pass filtered from 1 to 45 Hz. Using the Parks- 
McClellan algorithm, the optimal Chebyshev finite impulse response filters were designed 
with customized order for error minimization pass and stop bands to remove signal 
drift and 60 Hz noise [26]. Physiological noise including heartbeat and respiration was 
removed from the EEG signal with a cutoff frequency of 0.2 Hz. Ocular artifacts including 
eye movement and blinking were removed from the EEG time series using independent 
component analysis (i.e., FastICA algorithm) [27]. Visual inspection of the results was based 
on the topography and time course of the component, and retained component EEG data 
was re-referenced. Spatial ICA components extracted from 1–45 Hz EEG data were applied 
to 1–500 Hz EEG data via the unmixing ICA matrix; components were rendered, visually 
inspected, and removed. Welch’s power spectral density was computed for each EEG 
channel using a heuristically determined time window duration of 8 s and corresponding 
frequency resolution of 0.125 Hz. Logarithmic coordinate plots (i.e., log-power vs. log- 
frequency) were used to estimate brain activity and utilizing the mean of the power spectral 
densities obtained for all channels, the global power spectral density was subsequently 
calculated. Band powers were computed in the following physiological EEG frequency 
bands: delta, theta, alpha, beta, gamma. EEG frequency envelopes were extracted from 
the above data within the following ranges [delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, 
beta: 14–30 Hz, and gamma: 30–100 Hz] using a FIR bandpass filter. 

Using the equation below, we estimated spectral entropy (SE) as: 

SE = − ∑fmax rPS(f) log2 rPS(f) (1) 

where fmin = 0.5 Hz and fmax = 100 Hz. SE provides an index of the amount of relative 
power spectrum (i.e., power spectrum fragmented in frequency components) with respect 
to total power, thereby quantifying the robustness of the spectrum. Specifically, in the EEG 
time series while considering all frequencies, white noise power spectrum is constant with 
maximal entropy and all frequencies have the same weight. 

2.5. Hurst Fractal Dimension Measure 
Recently, nonlinear measures have been developed to further the understanding of the 

human brain’s inherent chaos [28]. One such measure is the Hurst exponent, which can be 
interpreted as a central tendency estimator of a time series [16,29,30]. Typically, local variation 
with respect to global oscillation is viewed through the lens of the Fractal Dimension (FD). 
Other well-known estimators that evaluate the sensitivity of initial conditions time series 
(i.e., Lyapunov exponents), typically do not have linear equivalence, a characteristic unique to 
chaotic systems [31]. As the brain is a complex dynamical system, it remains in a permanent 
state of oscillation between organized and chaotic functional structures [29,32]. 

For a given time series, the Hurst Fractal Dimension (HFD) exponent evaluates the 
degree of self-similarity, based on the comparison of oscillatory structure of the complete 
series with itself divided into successive parts. This formalism leads to a rescaled analysis 
allowing for the approximation of the slope of a log-log time interval plot with values 
varying between zero and unity [16]. Assuming a threshold Hurst exponent value of 0.5, 
series with Hurst exponents falling below this threshold suggest that the time series tends 
toward stability while continuing a state of chaotic steady oscillation around a relatively 
narrow range of values with respect to time [15]. Such time series are categorized as anti- 
persistent or short-memory time series with oscillation around a central attractor value over 
time with homeostatic complex memory [16,30]. Hurst values greater than 0.5 are assumed 
to follow the Hurst Effect [15–17,30,33]. The Hurst Effect describes movement away from 
a centralized stabilizing value, thereby repeating patterns that precede said value, move 
away from, or approach chaos. When values are close to H = 0.5, they represent the 
midpoint between chaos (i.e., random walk or Brownian motion type oscillations; H values 
closer to zero), and order (H values closer to unity) [15,29,34]. In our experiments, the 
HFD exponent was computed for each of the EEG segments and for each EEG channel 
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in 30 s time windows (i.e., 0, 30, 60, 90, 120, 150) as proposed by Hurst [15,17,30,33,35]. 
From each participant, the resulting EEG resting state non-overlapping segments consisted 
of 5.7 × 107 data points per subject (i.e., 63 channels, 5000 Hz, 180 s) for a grand total of 
138 EEG segments (i.e., from chronic pain and healthy control patients). 

2.6. Statistical Analysis 
We implemented statistical analyses to determine statistical differences of HFD values 

between chronic pain and healthy control patients in all EEG channels. Data was cate- 
gorized in the following groups: full frequency EEG signals and EEG frequency bands. 
Subgroups from each group represent healthy control patients, and chronic pain patients. 
Fractal dimension values associated with EEG frequency bands and corresponding spectral 
characteristics were correlated between groups. The Wilcoxon Signed-Rank test (p < 0.05), 
the Kruskal–Wallis test, and repeated measure n-way ANOVA testing were implemented to 
determine inter and intra-group HFD statistical differences. Mean Hurst exponent values 
from all prefrontal cortex EEG channels were calculated and are shown in Figure 1. The 
Pearson’s correlation for HFD and EEG band power was computed and when appropriate, 
Bonferroni correction for multiple comparisons was applied, see Figures 2 and A1–A5. 
Due to the power distribution of the EEG alpha band, we ignore analysis in the 8–13 Hz 
range. To further test the reliability of our results, we randomized the EEG time series via 
k-fold shuffling (k = 10) and computed the Hurst fractal measure and tests for statistical 
significance as described above [36]. Specifically, all data was randomly divided into ten 
equal size groups. One group was retained for validation testing and the remaining nine 
groups were used for determining the HFD. This procedure was repeated ten times and 
the testing group was used only once. The HFD was evaluated by averaging the results 
from the ten testing groups. 

 

Figure 1. Mean Hurst exponent indices for prefrontal EEG electrodes across all groups using full 
spectrum EEG signals. “C”, “N”, and “O” refer to control patients, patients who have chronic pain 
but not actively taking opioid medications, and patients with chronic pain and are actively taking 
opioid medications respectively. For each window start time, note the patients with chronic pain but 
not taking opioid medications (N1-N5) have similar Hurst exponent values compared to the other two 
groups. In the “C”, control group, the mean Hurst exponent is 1.1671, range: 0.9913–1.3875, standard 
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deviation 0.0902. In the “N”, non-opioid group, the mean Hurst exponent is 1.0745, range: 0.9922–
1.1405, standard deviation 0.0446, and in the “O”, opioid group, the mean Hurst exponent is 1.1804, 
range: 1.022–1.338, standard deviation 0.0748. The mean Hurst exponent value corresponding to the 
“N”, non-opioid group suggests lower chaos as compared to other groups. There is statistical 
significance (p < 0.05) between the “C” and “O” groups suggesting that the opioid group has 
dissimilar chaos as compared to the control group. 

 

Figure 2. The topographic plots of mean values of the Hurst exponent across groups are shown. 
The circles within the plots represent the EEG electrodes. In the opioid and control groups, similar 
patterns emerge for HFE values across the brain. HFE values increase in EEG electrodes representing 
the frontal and parietal lobes of the brain and decrease in the temporal and occipital lobes. The 
control topographic plot shows higher HFE values in the prefrontal cortex as compared to other 
brain regions. 

 
3. Results 
3.1. HFD in the Frontal Cortex 

Using multifractal analysis and particularly the GHE method, we reveal nonlinear 
and complex dynamics in resting state EEG recordings of chronic pain patients actively 
taking opioid medications and those not taking opioid medications. Results from this 
analysis help to better understand phenomenology and enhanced distinctions between 
signals from healthy, chronic pain, and opioid dependent patients. It is well known that 
the prefrontal cortex of the human brain plays a significant role in pain processing and 
addiction [37]. Activity from left, right and sagittal (midline) areas of the prefrontal cortex 
were analyzed to examine brain wide scale free fractal activity from full spectrum EEG. 
We computed the mean Hurst exponent for each window (0, 30, 60, 90, 120, 150). We 
note clear evidence of multifractality in both EEG signals of healthy patients and opioid 
dependent patients across sensors and similar patterns of fractal activity persist across 
groups. The mean Hurst exponent values are shown in Figure 1 from all prefrontal cortex 
EEG channels as an illustrative example of pain processing and fractal spatial sensitivity. 
The values are calculated from all subjects representing all groups, i.e., the control group, 
the opioid group, and the non-opioid group. The mean Hurst exponent across the control 
and opioid dependent groups shows heterogeneity as compared to the non-opioid group. 
This suggests that the non-opioid group is less persistent compared to both the control and 
opioid groups and has similar characteristic values independent of the scale at which the 
time series is examined. Hurst exponent values corresponding to the “N” group in Figure 1 
show this feature, suggesting persistence as the data structure preserves statistical integrity 
even if modified. 

3.2. Group Parameters and HFD 
Multifractal analysis and determination of the Hurst fractal dimension revealed to- 

pographic specificity across and within groups of EEG signals. Statistical analysis via the 
Kruskal–Wallis test, Wilcoxon sign ranked test, n-way ANOVA and paired t-test suggested 
statistical significance across groups, sex, handedness, and EEG frequency bands. A strong 
correlation was found between full EEG frequency signals and HFD in the chronic opioid 
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groups as compared to healthy controls. Similar comparisons between the computed 
Hurst exponent values and all EEG frequency bands are shown in Figures A1–A5 in the 
Appendix A. Figure 2 shows the topography of the Hurst fractal exponent across all groups 
and full frequency EEG signals. Statistical analysis of group population parameters includ- 
ing sex and handedness with respect to full spectrum and specific EEG frequency bands 
was computed. Statistical results are shown in Table 2 below. Figure A6 in the Appendix A 
shows the confidence intervals from our n-way ANOVA (n = 5). We perform statistical 
analysis of the HFD for the combinations of groups, handedness, EEG frequency content, 
sex, and sensor location, and note that there is a strong relationship between HFE values 
and group parameters derived from opioid and control groups in full spectrum and higher 
EEG frequency signals. Table A1 in the Appendix A shows N-way ANOVA interactions 
and statistical significance values between all combinations. 

 

 
 
 
 

Statistical 
Analysis 

Table 2. Statistical analyses of groups, group parameters, and EEG frequency bands. Results show 
statistical significance for control, non-opioid, and opioid groups as well as tested group parameters 
and EEG frequency bands. 

 
Parameter 

 
 
 
 

n-way ANOVA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Discussion 
Clinically, the EEG remains an essential tool for the diagnosis of neurological disorders 

and mathematical approaches utilizing multifractal analysis can help characterize com- 
plexity in brain disorders. In this work, the complexity of EEG recordings collected from 
23 patients consisting of two groups; chronic pain and healthy controls (and subgroups: 
one taking opioid medications and one not taking opioid medications) were evaluated by 
means of multifractal analysis, and computation of the Hurst exponent. An explicit purpose 
of our study was to determine a non-invasive reliable fingerprint to distinguish opioid use 
from healthy control EEG signals. The derived Hurst exponent values provide motivation 
on the underlying memory present in such signals, providing effective discrimination 
between EEG signals belonging to healthy control subjects and opioid dependent chronic 
pain patients. 

 
Group Handedness Sex Sensor 

Localization 
EEG Frequency 

Band 
 p-value p-value p-value p-value p-value 
 8.8130 × 10−46 1.2406 × 10−11 0.0479 5.9527 × 10−10 0 
 F-statistic F-statistic F-statistic F-statistic F-statistic 
 103.9907 45.9308 3.913 21.2524 4.4963 × 104 

 p-value p-value p-value p-value p-value 
 N/A 4.2005 × 10−13 1.7936 × 10−4 N/A N/A 

Paired t-test t-statistic t-statistic t-statistic t-statistic t-statistic 
 N/A 7.2512 3.7468 N/A N/A 
 p-value p-value p-value p-value p-value 
 7.6782 × 10−37 1.5328 × 10−15 7.0521 × 10−5 7.0059 × 10−8 0 

Kruskal-Wallis Chi-square Chi-square Chi-square Chi-square Chi-square 
 166.3145 63.5891 15.7968 32.9479 1.5035 × 104 

 p-value p-value p-value p-value p-value 

Wilcoxon Signed N/A 1.5328 × 10−15 7.0521 × 10−5 N/A N/A 
Rank Test z-statistic z-statistic z-statistic z-statistic z-statistic 

 N/A 7.9743 3.9745 N/A N/A 
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Using parametric and non-parametric statistical tests, we determine if the obtained 
robust estimates of the generalized Hurst exponent between groups are statistically signifi- 
cantly different. Our battery of statistical tests shows evidence of statistical significance 
between generalized Hurst exponent estimates obtained from EEG records of control and 
chronic pain patients, as shown in Table 2. Furthermore, the estimated Hurst exponents 
from healthy patients are of lower magnitude as compared to the chronic pain groups with 
or without the use of opioid medications, across time windows. Therefore, short term 
and longer-term dynamics in healthy EEG signals show similar persistence to EEG signals 
in opioid using patients. Our findings suggest that multifractal analysis particularly the 
computation of GHE aids in understanding short and long variations in EEG signals as 
neural activity engages nonlinear dynamic mechanisms of unique synchronous brain elec- 
trical impulses in opioid dependence. The GHE provides information regarding improved 
assessment of long-term autocorrelation (i.e., memory) in EEG signals associated with 
opioid dependence. Higher EEG frequency bands show GHE-based multifractal estimates 
to be more robust and appropriate signal patterns that can be used to characterize brain 
dynamics in healthy controls and in opioid dependent groups as compared to other EEG 
frequency bands. 

When comparing Hurst values for all EEG frequencies, values greater than the estab- 
lished threshold, T (i.e., 0.5), correspond to gamma band frequencies between 30–90 Hz in 
the ‘N’ and ‘O’ groups. Hurst values of the beta EEG frequency band predominate with 
Hurst values greater than those corresponding to the healthy control group, suggesting 
the impact of the Hurst effect globally to execute cyclic, regular, predictable, and persis- 
tent functions in the short and mid-term of the time series [1,11,13]. Figure 2 shows the 
mean Hurst exponent indices for prefrontal EEG electrodes across all groups using full 
spectrum EEG signals. In basal resting conditions, the H-values of the beta and gamma 
bands predominate the others. In the relative short medium term, H > 0.5 confers to the 
whole brain, the Hurst effect necessary to perform cyclic, regular, and persistent functions, 
accepting a certain degree of predictability. For other bands, lower Hurst values indicate 
anti-persistent processes in early windows and suggest persistent stability in later windows 
(Figures A1–A5). This accounts for resorting a central tendency value, suggesting fast 
information storage, and processing in response to opioid dependence [38,39]. 

We further analyzed localization of HFE values across the brain spatially in all groups. 
Figure 2 shows the topographic representation of mean values of the Hurst exponent across 
all groups. We note that in the opioid and control groups, similar patterns emerge for HFE 
values across the brain. HFE values increase in EEG electrodes representing the frontal and 
parietal lobes of the brain and decrease in the temporal and occipital lobes. The control 
topographic plot (Figure 2) shows higher HFE values in the prefrontal cortex as compared 
to other brain regions, confirming localization of addictive potential in the brain [8,12,37]. 
It can be postulated that chronic pain and opioid use provides an impetus for neural circuit 
reorganization and in these situations, the presence of scale free patterns changes with brain 
reorganization [17,33,40,41]. Finally, we computed HFE values for each EEG frequency 
band with respect to group population parameters (sex and handedness). Figure A6 
shows the distribution of confidence intervals corresponding to the statistical analysis of 
the combinations between subject groups, subject handedness, EEG frequency content, 
sex, and EEG sensor location. Previous neuroimaging pain studies have determined 
the existence of a distributed pain matrix across hemispheres with typical cortical pain 
processing lateralizing toward the right hemisphere [42]. Our results show that subject 
handedness impacts pain processing as there is a significant difference in HFE values for 
patients who are righthanded versus lefthanded, consistent across sensor location, sex, 
and frequency band (i.e., combinations: [non-opioid group, right-handed, male] and [non- 
opioid group, left-handed, male]) in Figure A6. Furthermore, preferential hemispheric 
activation leads to bilateral or contralateral activation of the pain matrix. Spatial localization 
of brain regions remains consistent with the prevailing paradigm that pain stimuli is alerted 
by a preferred lateralization attention system [42]. Our results in Figure A2 suggest lower 
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HFD values correspond to low frequency oscillations (i.e., delta EEG frequency band) 
possibly representing trivial unchanging oscillations over time and higher EEG frequency 
bands (i.e., gamma) correspond to higher HFD values (Figures A3–A5). In addition, the 
HFD index of localized brain activity corresponding to the frontal lobe (i.e., pain processing 
center) is of higher magnitude as compared to other brain areas (i.e., temporal, and occipital 
brain lobes) when examining the full EEG frequency spectrum (Figure A1). By examining 
the self-similarity of the EEG signal in distinct frequency bands with diverse amplitude-time 
characteristics, the fractal dimension aids in quantifying the correlation between frequency 
range and brain activity in pain. The multifractal analysis approach aids in quantifying 
the characteristics of the EEG in opioid use. The analogous processes corresponding to 
non-opioid use can be determined, whereby this similarity can be explained by scale 
invariance. Results here show that self-similar behavior in full spectrum, low and high EEG 
frequency bands allow for the determination of the dimensionless ratio characterized by its 
fractal dimension (i.e., Hurst dimension). The proposed methodology can be leveraged 
within other mathematical, or machine learning approaches in future work as scale free 
fractal properties are expected to help characterize the high dimensional nature of neural 
dynamics associated with efficient brain signal processing. 
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Appendix A 
The mean of the computed HFD is shown in the following figures for full EEG fre- 

quencies and specific EEG frequencies. In all figures we note the behavior of the mean HFD 
is heterogenous across EEG frequency bands, implying a multifractal nature in each band. 
For each time window, there are clear differences between HFD. We observe that HFD 
values are relatively lower for full frequency signals in all groups as compared to all other 
bands (1.0 to 1.25), as shown in Figure A1 below. In the lower bands (delta, theta) similar 
distribution of the HFD is seen in control and opioid groups in the frontal and temporal 
areas, whereas in higher bands (beta, gamma) a similar pattern is seen in non-opioid group 
and controls after the 90 s time window (Figures A2–A5). 

The short-term dynamics in the healthy control show that the full frequency and 
enveloped EEG signals have increased persistence compared to opioid dependent and 
non-opioid dependent chronic pain groups. For time windows below 90 s, the full spectrum 
EEG signals from both chronic pain groups (opioid and non-opioid dependent) exhibit 
identical dynamics. For instance, at higher time windows (120, 150 s) the distribution of 
the Hurst exponent changes across all groups, while remaining in the same range. In other 
words, long term dynamics in EEG signals across the control and non-opioid dependent 
brain are temporally and spatially persistent, while long term dynamics in opioid EEG 
signals are temporally and spatially anti-persistent [4,14,43]. 
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The mean HFD is spatially distributed and is different among healthy and chronic pain 
patients is further confirmed by visual inspection as well as from our battery of statistical 
tests: Kruskal–Wallis test, Wilcoxon sign ranked test, paired t-test, and n-way ANOVA. 
The null hypothesis associated with each statistical test is rejected (p value < 0.05), and 
we conclude that healthy EEG signals have a unique fractal as compared to chronic pain 
opioid free and opioid dependent groups. 

 

 
Figure A1. The mean Hurst exponent for all chronic pain patients taking opioids, chronic pain 
patients not taking opioids, and healthy control patients across all time windows and EEG sensors 
using full frequency spectrum EEG data is shown. Note that HFD values are relatively lower for full 
frequency signals in all groups as compared to all other bands (1.0 to 1.25). 

 

 
Figure A2. EEG delta frequency band and the Hurst exponent value across all groups. Fractal 
distribution pattern is similar across control and opioid groups in the frontal and temporal areas. 
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Figure A3. EEG theta frequency band and the Hurst exponent value across all groups. Fractal 
distribution pattern is similar across control and opioid groups in the frontal and temporal areas. 

 

 
Figure A4. EEG beta frequency band and the Hurst exponent value across all groups. Higher EEG 
frequency bands (beta, gamma), demonstrate a similar pattern in non-opioid group and controls. 
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Figure A5. EEG gamma frequency band and the Hurst exponent value across all groups. EEG 
beta frequency band and the Hurst exponent value across all groups. The gamma frequency band 
demonstrates a similar pattern in non-opioid group and controls. 

 

Figure A6. Confidence intervals derived from n-way ANOVA statistical testing with multiple 
comparison correction using the Bonferroni method. The blue circles and corresponding number 
value represent the mean and range of the HFD. There are 60 combinations consisting of full spectrum 
EEG and individual EEG frequency bands with group, sex, and handedness, as derived from the 
Edinburgh Handedness Inventory are shown. ‘FS’ refers to full spectrum EEG signals. Note that 
lower EEG frequency bands are anti-persistent and higher EEG frequency bands (i.e., beta and gamma 
bands) correspond to a higher HFD value suggesting that they have higher tendencies to regress to 
the mean (i.e., anti-persistent). 
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Table A1. N-way ANOVA interactions between all combinations are shown in the table. Group refers 
to C”, “N”, “O”; handedness refers to left and right handedness, Sex refers to male, female, sensor 
location refers to the left, right, and midline regions of the brain, and frequency band refers to full 
spectrum and delta, theta, beta, and gamma frequency band. 

 

Source d.f. F-Value p-Value 
Group 2 103.99072 8.81304 × 10−46 

Handedness 1 45.930828 1.24062 × 10−11 
Sex 1 3.9130327 0.047919367 
Sensor Location 2 21.252392 5.9527 × 10−10 
Frequency Band 4 4496.2684 0 
Group: Handedness 2 9.0744042 0.000114778 
Group: Sex 2 48.19405 1.23817 × 10−21 
Group: Sensor Location 4 11.963476 1.02468 × 10−9 
Group: Frequency Band 8 133.03556 1.1238 × 10−221 
Handedness: Sex 1 116.09799 4.8946 × 10−27 
Handedness: Sensor Location 2 11.930848 6.60574 × 10−6 
Handedness: Frequency Band 4 129.95736 1.5922 × 10−110 
Sex: Sensor location 2 9.4308948 8.03718 × 10−5 
Sex: Frequency Band 4 109.93517 2.1452 × 10−93 
Sensor Location: Frequency Band 8 166.06096 3.1492 × 10−277 
Group: Handedness: Sex 2 119.86895 1.21567 × 10−52 
Group: Handedness: Sensor Location 4 25.04814 9.4611 × 10−21 
Group: Handedness: Frequency Band 8 105.34079 6.7935 × 10−175 
Group: Sex: Sensor Location 4 3.2394849 0.011491284 
Group: Sex: Frequency Band 8 114.83201 6.0527 × 10−191 
Group: Sensor Location: Frequency Band 16 93.512548 7.8574 × 10−304 
Handedness: Sex: Sensor Location 2 94.353797 1.29266 × 10−41 
Handedness: Sex: Frequency Band 4 74.442126 5.41974 × 10−63 
Handedness: Sensor Location: Frequency Band 8 5.8322719 1.79865 × 10−7 
Sex: Sensor Location: Frequency Band 8 47.625371 4.83496 × 10−77 
Group: Handedness: Sex: Sensor Location 4 22.371579 1.76906 × 10−18 
Group: Handedness: Sex: Frequency Band 8 139.54489 1.2061 × 10−232 
Group: Handedness: Sensor Location: Frequency Band 16 92.127707 3.1792 × 10−299 
Group: Sex: Sensor Location: Frequency Band 16 92.937352 6.4236 × 10−302 
Handedness: Sex: Sensor Location: Frequency Band 8 356.1026 0 
Group: Handedness: Sex: Sensor Location: Frequency Band 16 143.17433 0 
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