EcoRank: Budget-Constrained Text Re-ranking Using Large Language
Models

Muhammad Shihab Rashid, Jannat Ara Meem, Yue Dong, Vagelis Hristidis
University of California, Riverside
{mrash@13, jmeem@@1, yue.dong}@ucr.edu, vagelis@cs.ucr.edu

Abstract

Large Language Models (LLMs) have achieved
state-of-the-art performance in text re-ranking.
This process includes queries and candidate
passages in the prompts, utilizing pointwise,
listwise, and pairwise prompting strategies.
A limitation of these ranking strategies with
LLMs is their cost: the process can become
expensive due to API charges, which are based
on the number of input and output tokens. We
study how to maximize the re-ranking per-
formance given a budget, by navigating the
vast search spaces of prompt choices, LLM
APIs, and budget splits. We propose a suite
of budget-constrained methods to perform text
re-ranking using a set of LLM APIs. Our
most efficient method, called EcoRank, is a
two-layered pipeline that jointly optimizes deci-
sions regarding budget allocation across prompt
strategies and LLM APIs. Our experimental
results on four popular QA and passage rerank-
ing datasets show that EcoRank outperforms
other budget-aware supervised and unsuper-
vised baselines.

1 Introduction

Text re-ranking focuses on ranking N source doc-
uments given a specific query and is crucial for
providing the relevant retrieved context to down-
stream tasks. It serves either as a standalone task
or as an intermediate step for question answering
tasks (Rashid et al., 2024) in a retrieval augmented
setting, where the answer is generated from the
top k relevant passages. Traditional ranking meth-
ods includes BM25 (Lin et al., 2021) and neural
methods like DPR (Karpukhin et al., 2020), Con-
triever (Izacard et al., 2021) etc. Recently, large
language models (LLMs) such as GPT-4 (OpenAl,
2023) have demonstrated dominant performance in
text re-ranking (Sun et al., 2023b).

However, utilizing LLMs often comes at a cost:
the process can be quite expensive, as closed-
source LLMs charge based on the number of tokens.

This expense escalates in text re-ranking due to the
need to input substantial text, proportional to the
number of passages to re-rank. For example, re-
ranking 500 passages for a single query, with each
passage having an average length of 100 tokens,
currently costs at least 5 USD when using GPT-
4 (ope). This cost becomes intractable when busi-
nesses need to handle thousands of queries daily,
making budget the biggest constraint.

Although there are many alternatives such as
TextSynth (tex), AI21 (ai2), Cohere (coh), Repli-
cate (rep), etc., that offer LLM API services
at lower costs, utilizing these commercial APIs
may still not be sustainable with high volumes
of queries. This motivates us to investigate the
trade-off between cost and performance for text
re-ranking. Our aim is to propose a budget-aware
solution for text re-ranking that maximizes per-
formance within the constraints of a given bud-
get. With this goal in mind, we approach budget-
constrained text re-ranking using LL.Ms as a con-
strained optimization problem. Here, we explore
various re-ranking methods with different proper-
ties and optimize for the best strategy for budget-
aware text re-ranking.

Our work contributes to the first efforts in budget-
aware modeling utilizing LLMs for text re-ranking,
to the best of our knowledge. Recent work on cost-
aware applications of LLMs with LLM Cascading
(Chen et al., 2023; Yue et al., 2023; Sakota et al.,
2023) is not applicable to text re-ranking. They ei-
ther focus primarily on QA or reasoning tasks (Yue
et al., 2023), or require a fine-tuned model (with
training data) to assess the generation quality of
LLMs (Chen et al., 2023; Sakota et al., 2023). On
the other hand, works focusing on using LLMs for
text re-ranking primarily aim at performance im-
provement without considering budgets. The three
most common approaches exhibit increasing costs
as the number of tokens inputted into the LL.Ms in-
creases: 1) Pointwise prompts (Sachan et al., 2022),

13049

Findings of the Association for Computational Linguistics: ACL 2024, pages 13049-13063
August 11-16, 2024 ©2024 Association for Computational Linguistics

Budget: %

query

i

Costlier LLM

i

Ps

Unprocessed

p6 passages Pointwise

Ranking

Initial Passage List

v [ps

Intermediate ¢
Ranked List

Final Ranked List

—5_9_) Cheaper LLM
=1

‘ i Pe

: 5 p7

: Pairwise
. Ranking H

Figure 1: An overview of EcoRank with an example of 7 passages. A fraction of budget is spent on 4 passages for
pointwise prompt with a costlier LLM and an intermediate ranked list is generated with unprocessed passages in the
middle. Then, using the rest of the budget we call the cheaper LLM to do pairwise comparisons and create the final

ranked list.

which input a single passage per request and output
calibrated prediction probabilities before sorting;
2) Listwise prompts (Sun et al., 2023b; Ma et al.,
2023), which input multiple passages per request
as lists and ask LLMs to output the lists in order;
3) Pairwise prompts (Qin et al., 2023), which in-
put pairs of passages per query per request and use
a sliding window to sort the top-k passages. Ap-
proximately, the most expensive approach, namely
pairwise prompts, can cost about 2 - k times more
than pointwise prompts where £ is the size of the
sliding window.

In this paper, we propose a suite of budget-
constrained methods to perform text reranking
using a set of LLM APIs. Our most efficient
method, which we refer as EcoRank, is a budget-
constrained LLM-based text re-ranking pipeline,
that jointly optimizes several objectives: 1) which
prompt designs to deploy, 2) which LLM APIs to
call, and 3) how to split budget between multiple
prompts and LLMs. Optimizing all these decisions
jointly is challenging for the following reasons. (a)
The provided budget may not be enough to input
all input texts once to the LLM API. The developed
method must be able to optimize for the top-few
(e.g. top-1) text. (b) Different LLM APIs may have
different strengths and limitations. (c) There is
an exponential number of combinations of prompt
designs and API selections.

Addressing these questions, we first consider
various text re-ranking prompts tailored to accom-
plish the re-ranking task within a budget. Next, we

explore different LLM APIs and their associated
costs for implementing these prompts. We then
introduce a novel two-layer approach, EcoRank
(depicted in Figure 1), which begins by re-ranking
initially ranked passages (e.g., those ranked using
BM25) with pointwise relevance filtering on a high-
accuracy (and consequently expensive) LLM API,
utilizing a fraction of our budget. This initial re-
ranking demotes irrelevant passages, allowing us
to allocate the remaining budget to re-rank rela-
tively relevant passages. In the second layer, we
use a less accurate (and thus cheaper) LLM API,
applying the remaining budget to further re-rank
the passages using pairwise ranking prompting.

We evaluate various single or hybrid (com-
bining more than one) prompt designs for the
text re-ranking problem, for various budgets and
APIs on four popular datasets: Natural Questions
(NQ) (Kwiatkowski et al., 2019), Web Questions
(WQ) (Berant et al., 2013), TREC (Craswell et al.,
2020) DL19, and DL20. Our most efficient method
EcoRank achieves a gain of 14% on MRR and R@ 1
ranking accuracy than baselines.

Our contributions are summarized as follows:

* We introduce the problem of budget-
constrained text re-ranking that considers the
cost of various LLM APIs.

* We propose and compare various ranking
prompt designs and API choices in a budget-
constrained scenario for text re-ranking.

* We further propose a novel two-layer cascad-

13050

ing pipeline EcoRank which optimizes the
budget usage.

* We extensively evaluate and compare vari-
ous prompt designs and API choices on four
datasets. We make our code available to the
research community. !

2 Problem Definition

We focus on optimizing passage re-ranking under
budget constraints, ranking top-k passages from
a pre-ranked list. These lists are often obtained
from a retriever in response to a natural language
query. Given a budget (3, a query ¢, and a list of pre-
ranked N passages pg - - - py With respect to g, the
task is to re-rank the passages using available LLM
APIs and retrieve top-k passages. For instance,
in question answering tasks, BM25 is commonly
used to produce the initial ranking, and then the
main focus is typically on the top re-ranked passage
(i.e. kK = 1). The following designs are critical for
budget-aware text re-ranking.

API choice. Assume there are M different LLM
APIs available, denoted as £ - - - Ljs. Each API £
takes a prompt p and generates an output ©. Asso-
ciated with calling each APl is a cost C, defined in
Equation 1:

C=cp-len(p) +co-len(O) + ¢ (1)

where ¢, represents the cost per input or prompt
token, c, is the cost determined by the number of
tokens generated by £, and occasionally, a fixed
API call cost ¢y applies.

Choice of ranking prompt. The other key de-
sign choice is the set of prompts p € T for a text
re-ranking task. Specifically, given the passages
po - - - pn and query g, we need to generate a se-
quence of prompts, where each prompt includes
the query and one or more of the input passages.
For example, a prompt can ask if a passage is rel-
evant or ask to compare two passages. As input
tokens determines the cost to generate an output,
choosing the right prompt(s) is very crucial.

Split of budget. Our experimental setup also
accounts for scenarios where multiple prompts or
rounds of iterations are required. In such cases,
there is an additional factor in budget considera-
tions: the budget 3 can be divided and allocated

lhttps ://github.com/shihabrashid-ucr/EcoRank

across multiple prompts p, 32 32+ ---+ By
where the coefficients z 4+ --- +y =1

Budget-aware optimization. Given the problem
setups described above, the task of budget-aware
text re-ranking essentially becomes an optimization
task. The objective is to maximize the re-ranking
performance, denoted as [, subject to a given bud-
get 5. This optimization occurs within the search
spaces of prompts, APIs, and budget allocations,
E,plc(L, p)] < B, where ¢(L, p) is the associated
cost for processing query g with prompt p and LLM
L. Given the vast range of available APIs, prompts,
and permutations of budget splits, this optimization
presents non-trivial and unique challenges.

3 Budget-Aware Ranking Prompt Designs

(a) Pointwise (b) Pairwise

Given a query {{query}} which of the
following two passages is more related?
Passage A: { {passagel}}

Passage B: { {passage2}}

Output Passage A or Passage B.

Is the following passage
related to the query?
Passage: { {passage}}

Query: {{query}}

(c) Listwise

(Passage A /Passage B]

The following are passages related to query {{query}}

[1] {{passage1}}
[2] {{passage2}}

Rank these passages based on their relevance to query.

(21>111>13] ...]

Figure 2: Different prompt strategies for text re-ranking.

We build on previous works on ranking prompt
designs. Our key contribution is making these de-
signs budget-constrained. The different designs are
depicted in Figure 2.

3.1 Pointwise Methods

Pointwise approaches process the passages one by
one along with the query as a prompt. We define
three types of prompts within pointwise methods.

Query generation. Sachan et al. (2022) pro-
posed an unsupervised pipeline UPR to re-rank
passages by asking the LLM to generate a query ¢’
given each passage p; from the initial ranked list
of passages. Their approach is not applicable to
generation-only LLMs like GPT-3 or GPT-4 which
do not score the outputs. For budget constrained
scenarios, we adapt their approach to generation
only LLMs by asking the LLM to generate a query
given a passage and measure the token-level F1
score between the newly generated query ¢’ and

13051

https://github.com/shihabrashid-ucr/EcoRank

original query ¢ and sort the passages based on
this score. We start from the top of the list and go
down until we exhaust the budget, and keep the
rest in their original ranking positions. We call this
approach B-UPR.

Binary Classification. We propose another type
of budget-aware pointwise prompt design inspired
from Liang et al. (2022) where we ask the LLM
to predict Yes or No given each passage from the
initial list whether it is relevant to the query q. We
ask the LLM to output only "Yes" or "No" which
restricts the number of output tokens to be 1. This
method can be categorized as a coarse-grained
strategy where we group the passages based on
relevance but each individual passage ranking relies
on the initial score.

Likert Classification. Instead of classifying each
passage in a binary fashion, we also introduce a
design to categorically classify each passage into
a 3-point Likert scale, inspired from Zhuang et al.
(2023a), where we ask the LLM to classify a pas-
sage into either of the following three groups: Very
related, Somewhat related or Unrelated. For more
details on how we rank the passages using point-
wise, please refer to A.

3.2 Listwise Methods

In this strategy, passages po - - - py are put through
the LLMs with identifiers such as ([1], [2], etc.)
as a list along with the query ¢. The LLM is then
asked to give the relative ordering of the passages
as an output (i.e. [2] > [1] ---). Recent works
like RankGPT (Sun et al., 2023b), LRL (Ma et al.,
2023) introduce a sliding window strategy to com-
bat token limitation challenge in LLMs, where a
sliding window of size w with a step of s is used.
For a budget-constrained scenario, we approximate
the number of passages that can be given as input
to the prompt. We call this B-RankGPT.

However, as the prompt of listwise method is
rather complicated (LLMs have to understand the
ordering of multiple passages and have to give an
output in a structured format), most LLM APIs face
issues in giving the correct output. Qin et al. (2023)
show that medium-sized LLM APIs like FLAN-TS5-
XL (Chung et al., 2022) are inconsistent and not
able to understand the prompt correctly and pro-
vide irrelevant results. Only big-sized commercial
LLMs like GPT-4 and GPT-3.5 are able to utilize
this approach correctly. Further, it is highly sensi-

tive to input ordering, meaning the output depends
heavily on the order of the passages in the prompt.

3.3 Pairwise Methods

This is a fine-grained strategy where each passage
is compared with each other similar to bubble-sort
and their ranking is modified. Given two passages
Di» pj, and one query ¢, the LLM is asked to choose
one passage which is more relevant to the query.
This ensures the relative ordering among the pas-
sages. Qin et al. (2023) proposed various pairwise
ranking prompts (PRP). Among them, PRP-Sliding,
which does k rounds of bubble-sort pass that en-
sures the top-k ranking performs best.

However, all the approaches, even sliding-k are
quite expensive. To get top-k ranking, N - k API
calls need to be made with each call having approx-
imately twice the number of tokens (because two
passages per prompt) compared to pointwise meth-
ods, which need to make NN calls with each call
having less tokens. In contrast, PRP methods can
achieve fine-grained ranking accuracy. We adapt
this strategy to a budget-constrained one by approx-
imating the number of calls that could be made
within the budget. If 7 such calls can be made, we
start at [= min(k, 7)-th positioned passage in the
initial ranked list and move the passage up the list.
We continue iterating until 7 = 0. For passages
that could not be processed, we take their initial
ranking position. We call this approach B-PRP.

4 EcoRank

In this section, we present our novel most effi-
cient budget-aware approach shown in Figure 1.
Both listwise and pairwise methods can achieve
accurate rankings but they suffer from high cost.
Listwise methods only work with very expensive
LLMs hence we put our focus on pairwise ap-
proach. While constrained within a budget, the
number of passages that can be processed by LLMs
impacts the final ranking accuracy. Cheaper LLMs
are able to process more passages but they lack
quality. Therefore, there are two key challenges
that needs to be solved: 1) how to ensure quality 2)
how to ensure quantity. With no budget constraint,
pairwise methods may be an obvious choice due
to their fine-grained accuracy but they have several
limitations. We solve the challenges of pairwise
designs in a budget-constrained scenario in a two-
staged fashion as shown in Figure 1.

13052

. Methods (MRR) Methods (R@1)

LLM Parameters | Cost' | Provided By Pointwise =~ PRP Listwise || Pointwise | PRP | Listwise
FLAN T5-XL 3B 1x Replicate 42.08 46.54 NA 334 39.5 NA
FLAN T5-L 800M %X Replicate 37.91 38.03 NA 27.4 29.2 NA
Llama2 7B 1x TextSynth 30.24 21.18 NA 20.2 10.6 NA
Falcon 7B 1x TextSynth 30.8 23.44 NA 20.6 12.8 NA
GPT-curie 6.7B 5x OpenAl 30.61 19.52 NA 20.8 9.40 NA
GPT-3.5-turbo 175B 10x OpenAl 34.41 43.82 42.3 23.9 36.60 34.3

Table 1: Different LLMs’ performance with various strategies on a subset of NQ dataset for top-20 passages. ¥ Cost
is measured as a unit here as the pricing may vary with time.

First stage. Only the first few passages can be
compared by pairwise with a limited budget. How-
ever, as the initial ranked list is not that good, valu-
able tokens may be spent on irrelevant passages.
Thus in the first stage, we intelligently pick the
passages to do pairwise comparison on.

We split our budget S into two fractions x and y
and use x amount to filter the passages using binary
classification approach from the pointwise prompt-
ing group. We use a stronger and comparatively
expensive LLM £ with cost C; to generate a rele-
vance for the passages in the form of "Yes" or "No"
and create an intermediate ranked list as per the bi-
nary classification strategy mentioned above. This
coarse-grained strategy ensures quality as we are
using a strong LLM to put more relevant passages
at the top for the next stage and push irrelevant
ones to the bottom of the list.

Second stage. We spend the rest ¥y amount us-
ing pairwise prompting design to compare two
passages at a time. To ensure quantity, we use
a cheaper LLM API L5 with cost Cs to do the com-
parisons. As the passages have already been filtered
by a stronger LLLM, a cheaper LLM does not hinder
the quality that much rather it can process (C1/Ca)x
the number of passages than the expensive variant
for a fixed budget. Further, as there are much fewer
"Yes" passages compared to "No", the unprocessed
passages from first stage can be processed at this
stage.

While further stages can be added to the pipeline,
we see diminishing results as we add more stages
as discussed in Appendix C.2. Thus we choose
two.

Choosing the LLMs. As seen in Table 1, LLMs’
performance is not proportional to their cost. Some
expensive API (i.e. GPT-curie or GPT-3.5) may
be less effective in zero-shot text re-ranking tasks
than comparatively cheaper LLM (i.e. T5-L or T5-
XL). Further, same-priced LLMs may not give the

same performance. A key optimization here is to
choose the appropriate LLM which will perform
the task accurately without much cost. As the T5
LLMs perform significantly better with reasonable
cost, we choose Flan T5-XL as the costlier API £
and Flan T5-L as the cheaper API L7 in EcoRank.
There is an opportunity to automatically choose the
appropriate LLM which we discuss in Appendix D.

Optimization of budget split. Another key chal-
lenge here is the split of budget = and y. Putting
more budget in the first stage will ensure more
quality filtering whereas putting more budget on
the second stage will do more pairwise but on less
relevant passages. We hypothesize that both stages
contribute equally to the pipeline and choose an
equal split of = and y. We experiment on various
splits on two datasets and confirm our hypothesis
in Section 5.

S Experimental Evaluation

5.1 Setup

Implementation Details. We host the LLMs of-
fline (except for GPT3.5) and define the budget
in terms of number of tokens. The GPU instance
we use is g5.4xlarge. The prices of LLMs change
with time frequently so we make a standard ap-
proximation of the costs of each LLM shown in
Table 1. For example, T5-L is approximated as 3x
cheaper than T5-XL and GPT-3.5 is 10x costlier
than T5-XL based on the pricing page of different
services (ope; rep; tex).

To implement the supervised models, we load
the available pre-trained versions in our GPU and
use them to generate embeddings of the passages
and queries. We use PyGaggle 2 to re-rank the
passages with the loaded model.

To implement InPars, We use GPT-3.5 to gen-
erate synthetic data d fully using our budget B1,

Zhttps://github.com/castorini/pygaggle

13053

Category | Cost | T5-XL | T5-L | GPT-3.5

B1 0.57c¢ | 20000 | 60000 2000
B2 0.11c | 4000 12000 400
B3 0.05¢ | 2000 6000 200

Table 2: Budget categories for different LLMs.

B2, B3. Using B1 we could generate around 50K,
using B2 10K, and using B3 5K questions. Thus
we have three sets of training data dp;, dpo, and
dp3. We randomly sampled passages from the cor-
pus and asked GPT-3.5 to generate a new question.
These are our positive examples. To get the nega-
tive examples, we use BM25 to retrieve 5 relevant
passages. The passages that are not gold passages
are considered as negative examples. We trained
the T5-large 3 models for three budget categories
with 156 steps and the same training arguments as
InPars. We use the corresponding trained model to
generate embeddings of the passages and re-rank.

Datasets. Following previous work on passage
retrieval, we choose the popular benchmark
datasets Natural Questions (NQ) (Kwiatkowski
et al., 2019), Web Questions (WQ) (Berant et al.,
2013), TREC (Craswell et al., 2020) DL19, and
DL20. There are total of 3610 questions on NQ,
2032 on WQ, 30 on DL19, and 44 on DL20 test
splits. For TREC datasets, there are multiple rele-
vant passages per query contrary to NQ and WQ.
To ensure fairness among datasets, we consider the
passages with a score of 3 to be the relevant ones
for TREC.

Budget categories. We experiment with three
budget categories. Budgets are represented as token
limits per question. The number of tokens that
can be processed with each LLM is mentioned in
Table 2. We choose a relatively higher budget B1
which can process most passages with pointwise
and complete one pass with pairwise, and lower
budgets B2, B3 where only some passages can be
processed to show the efficacy of our solutions. For
more details on the selection process, please refer
to Appendix C.4.

Baselines. On top of the budget-constrained
methods introduced above, we show comparisons
with state-of-the-art supervised and unsupervised
baselines. The supervised baselines are: 1)
monoBERT (Nogueira and Cho, 2019): A cross-
encoder reranker trained on BERT-large, trained on

*https://huggingface.co/google-t5/t5-large

MSMARCO, 2) monoTS5 (Nogueira et al., 2020):
A sequence-to-sequence reranker based on TS5,
and 3) TART (Asai et al., 2022): A supervised
instruction-tuned passage reranker based on FLAN-
T5-XL

For unsupervised approach, we consider In-
Pars (Bonifacio et al., 2022), where we generate
synthetic training data using GPT-3 and use them
to train a T5-large model. For each budget category,
we spend all our budget to generate synthetic data
and infer the trained model in a zero-shot approach.
We also consider OpenAl fext-ada-002 embedding
model as a reranker baseline.

We assume zero cost for the supervised baselines
and no inference cost for InPars as no paid API is
used. In reality, supervised models can have some
costs regarding time and computing resources. For
more details, please refer to B.

5.2 Main Results

We show our main evaluation results for differ-
ent budgets and ranking strategies in Table 3 for
N = 50 passages. We choose the popular Mean
Reciprocal Rank (MRR) and Recall @k as our eval-
uation metrics following previous work. All LLM-
based approaches increase the initial ranking sig-
nificantly except for B-UPR. We see that, overall,
for all budget categories, EcoRank surpasses all
other approaches, even the supervised ones. For
TREC DL 20 dataset, as there are many relevant
passages given a query, B-PRP performs a little
better for budget B1 and ours performs similarly.
B-RankGPT is promising but it can only work with
a high budget (i.e. B1) as GPT-3.5 is expensive.

Supervised vs Unsupervised. We see that su-
pervised models sometimes perform better than
EcoRank in some datasets in B3. As we assume
zero cost for supervised models, budget is not di-
rectly applicable. They can process all the passages
while budget-aware approaches can process only a
few in B3. Even with this limitation, our methods
perform better than supervised models in B1 and
B2. Further, supervised models have the follow-
ing restrictions: 1) training data may either not be
available or be very difficult to collect, especially
if the domain is niche, and 2) training data may
incur high annotation costs. In real life systems,
they are expected to perform worse. Unsupervised
fine-tuning based approaches like InPars also do
not perform as well as ours.

13054

NQ wQ TREC DL 19 TREC DL 20
Method ‘ Strategy ‘ LLM MRR R@l | MRR R@I | MRR R@I | MRR Re@I
BM25 \ - - \ 32.49 \ 22.10 \ 29.69 \ 18.89 \ 48.15 \ 30.00 \ 69.67 \ 56.86
Supervised Models
monot5-base - T5-base 48.01 | 39.11 | 43.15 | 33.21 | 74.57 | 66.66 | 79.94 | 68.18
monot5-3B - T5-3B 50.47 | 41.66 | 44.88 | 35.23 | 72775 | 63.33 | 79.49 | 659
monoBERT - BERT 4731 | 38.25 | 43.63 | 33.8 73.68 | 66.66 | 81.06 | 70.45
TART - T5-XL 46.42 | 37.47 | 42.65 | 33.07 | 73.13 | 60.00 | 68.03 | 52.28
Unsupervised: B1 - 0.57 cents per question
InPars - T5-large 42773 | 32.43 | 41.49 | 31.05 | 59.63 | 46.66 | 74.72 | 61.36
Binary Point T5-XL 46.77 | 37.36 | 42.09 | 31.54 | 64.86 | 50.00 | 70.67 | 54.54
Binary Point GPT-3.5 36.10 | 25.80 | 34.06 | 22.58 | 53.76 | 40.00 | 59.99 | 45.45
Likert Point T5-XL 39.49 | 28.25 | 39.81 | 28.44 | 59.86 | 43.33 | 63.85 | 50.00
B-UPR Point T5-XL 27.37 | 17.10 | 29.69 | 18.89 | 26.17 | 10.00 | 36.12 | 25.00
B-PRP Pair T5-XL 51.85 | 45.04 | 48.11 | 41.14 | 65.40 | 56.66 | 78.97 | 68.18
B-PRP Pair GPT-3.5 36.68 | 29.00 | 37.25 | 30.01 | 63.85 | 53.33 | 66.4 54.54
B-RankGPT List GPT-3.5 45.05 | 37.83 | 42.01 | 34.10 | 66.82 | 56.66 | 72.23 | 63.63
EcoRank' Hybr. T5-XL 52.76 | 45.87 | 48.94 | 41.58 | 78.87 | 67.44 | 80.63 | 70.45
Unsupervised: B2 - (.11 cents per question
OpenAl Embedding | - text-ada-002 | 32.37 | 22.10 | 29.69 | 18.89 | 48.15 | 30.00 | 58.67 | 45.45
InPars - T5-large 43.92 | 33.57 | 42.11 | 31.39 | 60.39 | 46.66 | 72.59 | 54.54
Binary Point T5-XL 44.88 | 36.06 | 40.84 | 30.56 | 64.66 | 50.00 | 70.67 | 54.54
Likert Point T5-XL 38.96 | 28.00 | 39.17 | 27.95 | 59.86 | 43.33 | 63.78 | 50.00
B-UPR Point T5-XL 28.03 | 17.45 | 29.69 | 18.89 | 25.62 | 10.00 | 35.96 | 25.00
B-PRP Pair T5-XL 4597 | 40.30 | 42.79 | 36.71 | 65.33 | 56.66 | 74.44 | 59.09
EcoRank-w/o-casc. | Hybr. T5-XL 48.56 | 42.63 | 44.87 | 38.09 | 63.13 | 50.00 | 74.06 | 59.09
EcoRank Hybr. T5-XL+L 50.72 | 44.34 | 47.05 | 40.55 | 65.58 | 53.33 | 80.22 | 70.45
Unsupervised: B3 - 0.05 cents per question
InPars - T5-large 44.49 | 34779 | 42.63 | 32.72 | 59.84 | 46.66 | 74.3 61.36
Binary Point T5-XL 43.06 | 34.59 | 39.20 | 29.42 | 62.97 | 50.00 | 70.67 | 54.54
Likert Point T5-XL 38.31 | 27.83 | 37.65 | 2691 | 59.79 | 43.33 | 63.58 | 50.00
B-UPR Point T5-XL 29.53 | 18.55 | 30.10 | 19.43 | 33.2 16.66 | 40.52 | 25.00
B-PRP Pair T5-XL 42.81 | 36.98 | 39.45 | 32.66 | 64.02 | 53.33 | 78.93 | 68.18
EcoRank-w/o-casc. | Hybr. T5-XL 44.13 | 37.89 | 40.66 | 33.85 | 63.13 | 50.00 | 77.1 67.81
EcoRank Hybr. T5-XL+L 46.83 | 40.33 | 43.86 | 37.00 | 66.92 | 56.66 | 78.76 | 70.45

Table 3: Results (MRR and R@1) on all datasets for 50 passages. Best performing in all categories are marked bold.
For B2 and B3, the budget is too low for B-RankGPT to have any impact hence it is omitted. ¥ For high budget B1,
all 50 passages can be processed with T5-XL hence cascade of APIs is not needed in EcoRank.

High to low budget analysis. Among budget-
aware methods, for higher budget (B1, B2), we
see B-PRP method performing better than point-
wise methods like binary classification in MRR
and R@1 metrics. As we decrease our budget (B3),
due to pairwise methods not processing enough
passages, they perform worse than binary method
in MRR. EcoRank achieves the best results in all
budget categories, proving the efficiency of this
approach. The gain of EcoRank with the second
best approach increases from an average of 2% for
higher budget to 12% for lower budget for R@1.
This shows with lower budget constraint, our most
efficient approach can perform really well.

5.3 Analysis of our chosen parameters

For EcoRank we have made some decisions regard-
ing three sets of parameters: 1) The choices of
prompting strategies, 2) The choices of expensive
and cheap LLMs L1, L2, and 3) The choices of bud-
get split between the prompts x and y. We chose
pointwise and pairwise strategies due to their cost-
to-performance ratio as seen in Table 1. We choose
an expensive LLM for the first stage and a cheap
LLM for the second stage with equal budget split
x = 0.5, y = 0.5. The justification being that an
expensive LLM is needed in the first stage to filter
the important passages for the pairwise approach to
focus on the second stage. As both stages play an
equal part, an equal budget split is the appropriate
choice.

13055

—@— exp-cheap

-@- cheap-exp

A exp-exp 4+ cheap-cheap

40

38

(1,0) (0.2, 0.8)(0.3,0.7)(0.4, 0.6)(0.5, 0.5)(0.6, 0.4)(0.7, 0.3)(0.8, 0.2) (0, 1)
Budget Split

(a) Dataset NQ

(1,0) (0.2,0.8)(0.3,0.7)(0.4, 0.6)(0.5, 0.5)(0.6, 0.4)(0.7, 0.3)(0.8, 0.2) (0, 1)
Budget Split

(b) Dataset WQ

Figure 3: (a) and (b) subgraphs show the impact of our parameter choices in EcoRank for budget B2.

We accompany our choices with an extensive
evaluation performed on two datasets with all com-
binations of budget splits and LLM choices shown
in Figure 3. The blue line shows the results if we
use the cheaper LLM in the first stage. We see a
declining performance than choosing an expensive
LLM (shown in red) in stage one. As we move
closer to an equal split, the performance keeps in-
creasing till it reaches a peak and declines again
as we move away. For detailed results on chosen
parameters, please refer to appendix C.1.

5.4 Ablation studies of EcoRank

In EcoRank, there are two main choices that impact
the performance.

1) Hybrid prompt design. We use a combination
of pointwise and pairwise methods. If we consider
the intermediate ranked list (from Figure 1) that is
generated after the first stage as the final ranking,
the performance decreases as only half budget is
used. Further, if we only use one ranking prompt
design (either Binary or B-PRP in Table 3) using
full budget we also see a significant decrease in
performance than EcoRank. Hybrid prompt design
is crucial to get the maximum performance in a
budget-constrained scenario.

2) Cascading of LLMs. We show the results of
a variant of EcoRank where we do not cascade
LLMs but keep the hybrid prompt design. We call
this approach EcoRank-w/o-cascade. Only the ex-
pensive LLM is queried in both stages. Although
an expensive LLM is more accurate, we see from
Table 3 that, this variant falls short of EcoRank.
It still performs better than other methods. Us-
ing a cheaper LLM in the second stage can enable
processing more passages resulting in better perfor-

mance. Cascading of cheap and expensive LLMs
is impactful to getting the maximum performance.

6 Related Work

To the best of our knowledge, we are the first to
work on budget-constrained text re-ranking prob-
lem with LLMs. We divide the related work into
LLMs in text re-ranking and Cost aware LLMs.

LLMs in text re-ranking. There are three main
zero-shot prompting strategies to re-rank initially
ranked passages. They are pointwise (Liang et al.,
2022; Sachan et al., 2022; Zhuang et al., 2023a),
listwise (Sun et al., 2023b; Ma et al., 2023; Tang
et al., 2023), and pairwise (Qin et al., 2023), which
we covered in details in Section 3. Each strat-
egy has their own strengths and may not work
with all types of LLMs. Very recently another
prompting strategy has been introduced called set-
wise (Zhuang et al., 2023b), which is an improve-
ment over listwise approach where instead of out-
putting an ordered list of documents, a single docu-
ment which is the most relevant is given as output.
Although this reduces the computational overhead
of listwise and pairwise methods, it works best with
LLMs which can output scores of generation. Other
works like distillation (Sun et al., 2023a), RankVi-
cuna (Pradeep et al., 2023a), RankZephyr (Pradeep
et al., 2023b) train an open source model with
training data to improve listwise approaches. All
these approaches do not consider the cost of LLMs
and do not try to optimize the performance of text
rankers with a budget constrain. Prior to recent
efforts with LLMs in text re-ranking, most works
focused on the supervised ranking problem using
monoT5 (Nogueira et al., 2020) or BERT (Zhuang
et al., 2021) where they trained a pre-trained LM
(PLM) for re-ranking tasks. Other supervised meth-

13056

ods focus on generating data to train PLMs like
InPars (Bonifacio et al., 2022), Promptagator (Dai
et al., 2022), ExaRanker (Ferraretto et al., 2023),
SPTAR (Peng et al., 2023), HyDE (Gao et al., 2022)
etc. They mainly use LLMs as an auxiliary tool
to support the training of PLMs and thus different
from the scope of this paper.

Cost-aware LLMs. There are some works which
focus on cost-aware applications of LLMs but
in other areas than text re-ranking. Frugal-
GPT (Chen et al., 2023) uses LLM cascading to
reduce the cost of API calls but they require a
trained model to score the generation quality sim-
ilar to FORC (Sakota et al., 2023) which uses
a trained meta-model to predict performance of
LLMs. These trained models require fine-tuning
data which may be difficult to obtain. MoT (Yue
et al., 2023) uses answer sampling strategy which
is not applicable in text re-ranking as LLMs output
fixed tokens instead of open-ended. Other works
focus on optimizing API calls by using a neural
caching system with a student model (Ramirez
et al., 2023). None of these apply to our problem
statement as we aim to optimize the performance
in text re-ranking in a fully unsupervised fashion.

7 Conclusion

We contribute to the first efforts of budget-
constrained text re-ranking with LLMs and have
identified that existing works fail to consider budget
while optimizing performance in text re-ranking.
We propose a suite of budget-constrained methods
with various ranking prompt designs and LL.Ms
and extensively evaluate them on four datasets.
Our most efficient method EcoRank, which is a
two-layered pipeline that optimizes vast spaces of
decisions, achieves a gain of 14% on MRR and
R@1 than other approaches.

Limitations

The first limitation is that we do not consider all
possible LLM APIs or open source models. We
pick a representative subset of them. Also, given
the combinatorial cost, we consider limited combi-
nations of re-ranking prompts in building EcoRank.
We employ pointwise and pairwise, as they per-
form best in cost-to-performance ratio. Some of
our design choices are discrete (i.e. choosing the
LLMs in a static way). We also contribute to the
first efforts towards automating our pipeline. The
experiments are provided in Appendix D. Further,
we experiment with 50 passages per query and thus
set lower budget categories due to the high cost of
conducting the experiments. Ideally, more passages
can be considered (i.e. 1000) with budget limits in-
creasing proportionally. However, this choice does
not impact the efficacy of our budget-constrained
solutions.

Another limitation is about the optimization of
evaluation metrics. We optimize for R@1 as in QA
task we typically care about the top few re-ranked
passages. We see some prompting strategies (i.e.
likert) performing best for R@10 but not R@1.
Users may have preference to optimize for R@ 10
but we do not take that into consideration and leave
for future work.

Ethics Statement

Although our work involves the usage of LLMs,
which are known to hallucinate, it does not create
any ethical concerns. We use LLMs to re-rank an
already ranked list hence possible hallucinations
do not provide any harmful effect. We adhere to
the Code of Ethics with our work. No personal or
restricted data were collected from any source or
subject.

Acknowledgements

This work was partially supported by NSF grants
1IS-2227669 and 11S-1901379.

References

Ai21 - differentiate your product with generative text ai.
https://www.ai21.com/studio. Accessed: 2023-
12-10.

Cohere - the leading ai platform for enterprise. https:
//cohere.com/. Accessed: 2023-12-10.

Openai api pricing. https://openai.com/pricing.
Accessed: 2023-11-07.

13057

https://www.ai21.com/studio
https://cohere.com/
https://cohere.com/
https://openai.com/pricing

Predicting time and cost on mturk.
https://www.cloudresearch.com/resources/blog/a-
simple-formula-for-predicting-the-time-to-
complete-a-study-on-mechanical-turk/. Accessed:
2024-02-14.

Replicate - run open source machine learning models.
https://replicate.com/. Accessed: 2023-11-20.

Textsynth - api pricing. https://textsynth.com/
pricing.html. Accessed: 2023-12-06.

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen-tau Yih. 2022. Task-aware retrieval
with instructions. arXiv preprint arXiv:2211.09260.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533—-1544.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and
Rodrigo Nogueira. 2022. Inpars: Data augmentation
for information retrieval using large language models.
arXiv preprint arXiv:2202.05144.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023.
Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv
preprint arXiv:2305.05176.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M Voorhees. 2020. Overview
of the trec 2019 deep learning track. arXiv preprint
arXiv:2003.07820.

Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith B
Hall, and Ming-Wei Chang. 2022. Promptagator:
Few-shot dense retrieval from 8 examples. arXiv
preprint arXiv:2209.11755.

Fernando Ferraretto, Thiago Laitz, Roberto Lotufo,
and Rodrigo Nogueira. 2023. Exaranker:
Explanation-augmented neural ranker. arXiv
preprint arXiv:2301.10521.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2022. Precise zero-shot dense retrieval without rele-
vance labels. arXiv preprint arXiv:2212.10496.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense infor-
mation retrieval with contrastive learning.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453—
466.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 2356—
2362.

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and
Jimmy Lin. 2023. Zero-shot listwise document
reranking with a large language model. arXiv
preprint arXiv:2305.02156.

Jannat Ara Meem, Muhammad Shihab Rashid, Yue
Dong, and Vagelis Hristidis. 2024. Pat-questions:
A self-updating benchmark for present-anchored
temporal question-answering. arXiv preprint
arXiv:2402.11034.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2020.
Document ranking with a pretrained sequence-to-
sequence model. arXiv preprint arXiv:2003.06713.

R OpenAl. 2023. Gpt-4 technical report. arxiv
2303.08774. View in Article.

Zhiyuan Peng, Xuyang Wu, and Yi Fang. 2023.
Soft prompt tuning for augmenting dense retrieval
with large language models. arXiv preprint
arXiv:2307.08303.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy
Lin. 2023a. Rankvicuna: Zero-shot listwise doc-
ument reranking with open-source large language
models. arXiv preprint arXiv:2309.15088.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy
Lin. 2023b. Rankzephyr: Effective and robust zero-
shot listwise reranking is a breeze! arXiv preprint
arXiv:2312.02724.

13058

https://replicate.com/
https://textsynth.com/pricing.html
https://textsynth.com/pricing.html
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.48550/ARXIV.2112.09118

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Jiaming Shen, Tianqgi Liu, Jialu Liu,
Donald Metzler, Xuanhui Wang, et al. 2023.
Large language models are effective text rankers
with pairwise ranking prompting. arXiv preprint
arXiv:2306.17563.

Guillem Ramirez, Matthias Lindemann, Alexandra
Birch, and Ivan Titov. 2023. Cache & distil: Op-
timising api calls to large language models. arXiv
preprint arXiv:2310.13561.

Muhammad Shihab Rashid, Fuad Jamour, and Vagelis
Hristidis. 2021. Quax: Mining the web for high-
utility faq. In Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge
Management, pages 1518-1527.

Muhammad Shihab Rashid, Jannat Ara Meem, and
Vagelis Hristidis. 2024. Normy: Non-uniform history
modeling for open retrieval conversational question
answering. arXiv preprint arXiv:2402.04548.

Devendra Singh Sachan, Mike Lewis, Mandar Joshi,
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and
Luke Zettlemoyer. 2022. Improving passage retrieval
with zero-shot question generation. arXiv preprint
arXiv:2204.07496.

Marija Sakota, Maxime Peyrard, and Robert West.
2023. Fly-swat or cannon? cost-effective language

model choice via meta-modeling. arXiv preprint
arXiv:2308.06077.

Weiwei Sun, Zheng Chen, Xinyu Ma, Lingyong Yan,
Shuaigiang Wang, Pengjie Ren, Zhumin Chen,
Dawei Yin, and Zhaochun Ren. 2023a. Instruction
distillation makes large language models efficient
zero-shot rankers. arXiv preprint arXiv:2311.01555.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie
Ren, Dawei Yin, and Zhaochun Ren. 2023b. Is
chatgpt good at search? investigating large lan-
guage models as re-ranking agent. arXiv preprint
arXiv:2304.09542.

Raphael Tang, Xinyu Zhang, Xueguang Ma, Jimmy
Lin, and Ferhan Ture. 2023. Found in the mid-
dle: Permutation self-consistency improves listwise
ranking in large language models. arXiv preprint
arXiv:2310.07712.

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu
Yao. 2023. Large language model cascades with
mixture of thoughts representations for cost-efficient
reasoning. arXiv preprint arXiv:2310.03094.

Honglei Zhuang, Zhen Qin, Shuguang Han, Xuanhui
Wang, Michael Bendersky, and Marc Najork. 2021.
Ensemble distillation for bert-based ranking mod-
els. In Proceedings of the 2021 ACM SIGIR Interna-
tional Conference on Theory of Information Retrieval,
pages 131-136.

Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan,
Xuanhui Wang, and Michael Berdersky. 2023a. Be-
yond yes and no: Improving zero-shot llm rankers via
scoring fine-grained relevance labels. arXiv preprint
arXiv:2310.14122.

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman,
and Guido Zuccon. 2023b. A setwise approach
for effective and highly efficient zero-shot rank-
ing with large language models. arXiv preprint
arXiv:2310.09497.

A Pointwise Methods Ranking

Binary Classification. We ask the LLM to pre-
dict Yes or No given each passage from the initial
list whether it is relevant to the query gq. Multi-
ple passages may get the output of "Yes" as the
passages are initially retrieved by a retriever like
BM25. For a passage, if the output is not parseable
or we exhaust the budget, we fall back to the initial
ranking. This results in a list of re-ranked pas-
sages where all the "Yes" passages are grouped
together at the top sorted by the initial ordering,
unprocessed passages at the middle, and "No" pas-
sages at the bottom. More passages can be pro-
cessed with LLMs as they require less number of
tokens as input and output than other methods.

Likert Classification. We ask the LLM to clas-
sify a passage into either of the following three
groups: Very related, Somewhat related or Unre-
lated. This is an attempt to fine-grain the passages
a little bit more with the same number of tokens.
However, it may be difficult for an LLM to differ-
entiate between Very related and Somewhat related.
Similar to the previous method, we group the Very
related passages at the top, then Somewhat related,
then unprocessed passages, and Unrelated passages
at the bottom.

B Cost Estimation of Baselines

Our goal is to find the best performing system
in passage re-ranking in a budget-constrained sce-
nario. We define budget as a financial unit, where
we estimate the prices for different paid APIs. For
supervised models in our baseline, it becomes ex-
tremely challenging to estimate the budget in terms
of financial units as the models are hosted offline.
They are not typically hosted by organizations
where users can pay for the service. Thus, the
costs between supervised and unsupervised meth-
ods are not directly comparable. For simplicity,
in this work, we assume zero cost for supervised
models. However, there are other costs exclusive

13059

Method | Approach | Data Costs | Training Time Costs | Computing Costs | Inference Costs
monoT5 Supervised High 30 Hours v 0
monoBERT Supervised High 160 Hours v 0
InPars Unsupervised Low 5 Mins v 0
EcoRank | Unsupervised | 0 | 0 | 0 | v

Table 4: Cost comparison of different methods.

to supervised models that are not negligible. These
costs are likely to worsen the performance of these
systems in real life. For example:

1) Data collection and annotation costs. It is
difficult to find good-quality training data for any
task. It becomes especially challenging for niche
domains where there are not enough training data.
The time to find such data can be costly. Further,
the training data needs gold labels. Annotating
labels can be very expensive. For example, it may
cost up to 10 USD to annotate 50 data points using
Amazon MTurk (mtu).

2) Training time costs. Supervised models are
trained with huge amounts of data. The training
time can be very costly. For example, monoT5
takes 30 hours (Nogueira et al., 2020) while
monoBERT takes 160 hours (Nogueira and Cho,
2019). For unsupervised non-LLM based approach
InPars, it also has some amount of training time.

3) Computing resources. Supervised models
need high computing resources such as GPUs or
TPUs. Although they are considered a one-time
cost, they can be significant for a small to mid-
size organization. InPars also needs computing
resources to host the fine-tuned models.

We summarize and compare the different costs
for supervised and unsupervised systems with
EcoRank in Table 4.

C Additional Evaluation

C.1 Results on various budget splits and LLM
choices

We present various combinations of budget splits
and LLM choices on the two stages of EcoRank in
Table 5. We see that, our design choice of an equal
budget split with expensive LLM on the first stage
and cheaper LLLM on the second stage provides the
best results.

C.2 EcoRank with n-stages

In this subsection, we show the results of EcoRank
with three and four stages in Table 6. We choose

an equal budget split as this has been shown to
perform the best in Table 5. We consider the com-
binations of pointwise and pairwise strategies as
listwise strategy has been shown to provide worse
results in Table 1. Please also note the following
constraints on a pipeline with more than two stages:

* Consecutive stages should not have the same
prompting strategy. For example, in pointwise
-> pointwise -> pairwise, as the passages have
already been processed once, using the same
strategy again will not be productive.

Subsequent strategies should only use a more
expensive LLM. Applying a cheaper LLM on
a prompting strategy after applying an expen-
sive LLM on the same strategy will deteriorate
the performance. For example, pointwise(exp)
-> pairwise(cheap) -> pointwise(cheap).

Keeping these constraints, we experiment with
three and four-stage pipelines. Due to exponen-
tially high computational and resource costs, we
do not show all permutations of budgets and LLM
choices.

Three stages. For the three stages, we choose
pointwise -> pairwise -> pointwise strategy. For
LLM choices, we consider the first stage to use
cheap LLM and show combinations in the second
and third. We see a diminishing return as we add
more stages.

Four stages. We choose pointwise -> pairwise ->
pointwise -> pairwise strategy. For LLM choices,
we use different combinations. Here we also see
that the performance is not as good as EcoRank
with two stages. Adding extra stages to our pipeline
incurs less budget in each individual stage, result-
ing in only the top few passages being processed
over and over again.

C.3 R@10 results

In QA (Rashid et al., 2021; Meem et al., 2024)
or text re-ranking pipelines, typically only the top
few passages are considered. In most cases, we

13060

. LLM Choice NQ WwQ
Budget Splits (x.y) First stage - Second stage | MRR R@1 R@10 | MRR R@1 R@10
10 exp, _ 44.88 | 36.06 | 60.72 | 40.84 | 30.56 | 59.64
’ cheap, _ 41.39 | 30.19 | 63.65 | 39.00 | 27.36 | 61.90
02.08 exp, cheap 43.56 | 3490 | 58.44 | 4045 | 31.74 | 57.08
- cheap, exp 49.42 | 4296 | 61.38 | 46.09 | 39.17 | 60.08
03.0.7 exp, cheap 4426 | 35.65 | 58.58 | 41.32 | 32.52 | 57.67
T cheap, exp 50.30 | 43.52 | 61.57 | 46.67 | 39.71 | 61.12
04.06 exp, cheap 44.66 | 36.17 | 59.35 | 41.85 | 32.92 | 58.02
T cheap, exp 50.62 | 44.07 | 62.13 | 46.50 | 39.27 | 61.36
0505 exp, cheap 50.72 | 44.34 | 62.46 | 47.05 | 40.55 | 60.33
B cheap, exp 50.37 | 43.51 | 63.60 | 46.02 | 38.28 | 62.05
0.6.0.4 exp, cheap 45.34 | 36.53 | 60.02 | 42.22 | 33.16 | 58.36
T cheap, exp 49.19 | 42.07 | 63.65 | 45.56 | 37.84 | 61.86
07.03 exp, cheap 45.67 | 37.03 | 60.08 | 42.50 | 33.36 | 59.10
T cheap, exp 48.76 | 41.71 | 63.65 | 45.07 | 37.30 | 61.86
08.02 exp, cheap 45.81 | 37.28 | 59.52 | 42.42 | 32.92 | 59.30
B cheap, exp 46.10 | 38.50 | 63.65 | 43.30 | 34.94 | 61.86
0.1 _, cheap 40.96 | 33.01 | 58.03 | 37.66 | 29.42 | 55.06
’ _, exp 45.87 | 40.30 | 57.72 | 42.79 | 36.71 | 55.65

Table 5: Results of various budget splits and LLM choices on the stages of EcoRank for budget B2.

. NQ wQ
Method Num. Stages | LLM Choice MRR R@l R@I10 | MRR R@1 R@10
EcoRank | 2 exp, cheap 50.72 | 44.34 | 62.46 | 47.05 | 40.55 | 60.33
EcoRank | 2 cheap, exp 50.37 | 43.51 | 63.60 | 46.02 | 38.28 | 62.05
EcoRank | 3 cheap, cheap, exp 4751 | 39.88 | 60.08 | 42.95 | 33.9 59.05
EcoRank | 3 cheap, exp, exp 47.87 | 41.02 | 60.41 44.02 | 36.41 | 59.25
EcoRank | 4 cheap, cheap, exp, exp | 46.06 | 38.06 | 59.72 | 42.72 | 33.85 | 58.21
EcoRank | 4 exp, cheap, cheap, exp | 49.1 43.7 61.82 | 46.96 | 39.96 | 60.58

Table 6: Results of EcoRank with 3 and 4 stages on NQ and WQ datasets for budget B2 for equal budget split.

only need one good passage to answer a query, and
hence R@1 is the most important. Nevertheless,
we also show R@10 results for completeness in
Table 8.

Optimizing R@1 vs R@10. Among the unsuper-
vised LLM-based approaches, pairwise methods
focus more on R@1 as usually only one pass of the
sorting algorithm can be performed with a limited
budget. Pointwise methods, as they are coarse-
grained, focus more on R@k where £ > 1. Thus
we can see that pointwise methods score higher
than pairwise in all budget categories in R@10.
Overall, InPars, which is an unsupervised fine-
tuned model, performs best in R@10 for lower
budget categories. It is mostly because it can pro-
cess all of the passages as inference does not cost
anything.

C.4 Selecting budget categories

For our evaluation, we have selected three budget
categories, a higher budget (0.57c) so that most of
the passages (among 50 total) can be processed, a
medium budget (0.11c), and a low budget(0.05¢) so

NQ
Method MRR R@]
EcoRank | 46.83 | 40.33
EcoRank - Autol | 43.71 | 36.42
EcoRank - Auto2 | 44.56 | 37.06

Table 7: Results of automated LLM choosing ap-
proaches for NQ dataset for budget B3 with equal bud-
get split.

that only a few passages can be processed. These
are the steps that we took to come up with the
budget and number of tokens:

* First we chose the best performing LLM from
Table 1, which is Flan T5-XL.

* We calculated the total number of tokens re-
quired to process ~80% of the passages using
Flan T5-XL using pointwise method to come
up with a high budget. We determined this
value to be 20000 for T5-XL.

* We came up with the medium budget B2 and
B3 by dividing the high budget (20000) by

13061

NQ wQ DL 19 | DL 20
Method ‘ Strategy ‘ LLM ‘ R@10 | R@10 | R@10 | R@10
BM25 | - - | 5445 | 52.16 | 93.33 | 92.15
Supervised Models
monot5-base - T5-base 64.65 | 62.94 | 96.66 100.0
monot5-3B - T5-3B 66.59 | 63.97 | 100.0 | 100.0
monoBERT - BERT 65.18 | 62.94 | 96.66 | 100.0
TART - T5-XL 64.37 | 62.64 | 100.0 | 97.72
B1 (unsup)
InPars - T5-large 62.40 | 61.95 86.66 | 97.72
Binary Point T5-XL 64.37 | 61.76 | 90.00 | 95.45
Binary Point GPT-3.5 58.19 | 56.74 | 96.66 | 90.9
Likert Point T5-XL 63.07 | 62.05 | 9333 | 93.18
B-UPR Point T5-XL 4845 | 52.16 | 63.33 | 59.09
B-PRP Pair T5-XL 63.71 | 60.53 | 96.66 | 95.45
B-PRP Pair GPT-3.5 52.00 | 52.16 | 93.33 | 86.36
B-RankGPT List GPT-3.5 5833 | 56.88 | 90.00 | 90.9
EcoRank Hybr. T5-XL 65.45 | 63.58 | 9534 | 9545
B2 (unsup)
InPars - T5-large 63.51 | 61.66 | 83.33 | 100.0
Binary Point T5-XL 60.72 | 59.64 | 86.66 | 9545
Likert Point T5-XL 61.57 | 60.92 | 93.33 | 93.18
B-UPR Point T5-XL 49.55 | 52.16 | 60.00 | 61.36
B-PRP Pair T5-XL 5772 | 55.65 | 96.66 | 9545
EcoRank-w/o-casc. | Hybr. T5-XL 58.31 56.79 | 83.33 | 9545
EcoRank Hybr. T5-XL+L | 62.46 | 60.33 | 86.66 | 95.45
B3 (unsup)
InPars - T5-large 63.24 | 62.25 | 83.33 | 97.72
Binary Point T5-XL 5831 | 57.08 | 83.33 | 9545
Likert Point T5-XL 59.11 | 57.77 | 93.33 | 90.9
B-UPR Point T5-XL 53.51 54.80 | 83.33 | 77.27
B-PRP Pair T5-XL 54.45 | 53.65 | 96.66 | 95.45
EcoRank-w/o-casc. | Hybr. T5-XL 56.28 | 55.21 | 86.66 | 90.9
EcoRank Hybr. T5-XL+L | 57.72 | 56.69 | 86.66 | 90.9

Table 8: Results (R@10) for all datasets.

half. Low-budget B3 can only process ~20%
of the passages.

¢ For other LLMSs such as T5-L, GPT-3.5, etc.,
we determined the token values using the cost
estimate from Table 1. For example, If Flan
T5-XL can process 20000 tokens, then GPT-
3.5 can process 2000 tokens as it is 10 times
more expensive. These cost estimates are
taken from the pricing web pages.

* Finally, we converted the number of tokens
into USD using the pricing webpages of LLM
API services such as OpenAl, TextSynth. We
show these numbers in Table 2.

C.5 Results on LLMs with lower cost

Table 9 shows evaluation results of different strate-
gies with different budgets on a cheaper LLM. For
a cheaper LLM we consider T5-large which is ap-

proximately 3x cheaper than T5-XL. However, as
we saw with GPT vs T5-XL where T5-XL was the
cheaper LLM, still it produced better results, this is
not the case here. T5-L produces worse results than
T5-XL but still comparable as they are trained in a
similar fashion. We see that EcoRank has the best
results than other budget-constrained approaches.

D Automating Discrete Choices

In EcoRank, we made some static decisions like
using an expensive LLM in the first stage, choosing
pointwise in the first stage etc. As first efforts
towards automating the pipeline, we pursued two
ideas and performed experiments to automate the
choosing of LLLMs decision. Below we describe
the setup and results.

Approach 1: Assess question difficulty through
pointwise. The idea is to assess the difficulty of

13062

NQ wQ

Method ‘ Strategy ‘ LLM | \IRR R@l R@I0 | MRR R@1 R@I0
BM25 - - | 3249 | 22.10 | 54.45 | 29.69 | 18.89 | 52.16
B2 - (.11 cents per question
Binary Pointwise | TS5-large | 41.39 | 30.19 | 63.65 39.00 | 27.36 | 61.90
Likert Pointwise | T5-large | 40.20 | 29.22 | 61.66 | 38.81 | 27.70 | 61.17
B-UPR Pointwise | T5-large | 26.01 | 15.90 | 48.75 | 29.55 | 19.09 | 52.01
B-PRP Pairwise T5-large | 40.96 | 33.01 | 58.03 37.66 | 29.42 | 55.06
EcoRank-w/o-cascade | Hybrid T5-large | 46.08 | 36.56 | 64.48 | 43.22 | 33.16 | 62.79
B3 - 0.05 cents per question
Binary Pointwise | T5-large | 41.21 | 30.08 | 63.60 | 39.00 | 27.36 | 61.90
Likert Pointwise | TS5-large | 39.99 | 29.08 | 61.46 | 38.71 | 27.41 | 61.81
B-UPR Pointwise | T5-large | 26.01 | 15.87 | 48.78 | 29.65 | 19.14 | 52.31
B-PRP Pairwise T5-large | 42.10 | 33.82 | 58.94 | 38.18 | 28.54 | 56.25
EcoRank-w/o-cascade | Hybrid T5-large | 44.57 | 35.62 | 61.08 | 41.63 | 31.84 | 60.28
B4 - 0.025 cents per question
Binary Pointwise | T5-large | 40.38 | 29.83 | 60.30 | 38.08 | 26.91 | 59.84
Likert Pointwise | T5-large | 39.5 2891 | 59.14 | 37.68 | 27.06 | 58.02
B-UPR Pointwise | TS5-large | 32.37 | 22.10 | 5445 | 29.69 | 18.89 | 52.16
B-PRP Pairwise T5-large | 38.77 | 30.83 | 5542 | 35.30 | 26.72 | 53.05
EcoRank-w/o-cascade | Hybrid T5-large | 41.87 | 32.90 | 58.06 | 39.57 | 30.36 | 56.69

Table 9: Results (MRR and R@K) on NQ and WQ datasets for T5-large. Best performing are marked bold.

the question. The intuition being, that an expensive
LLM is needed if the question is difficult other-
wise we use a cheaper LLM if it is a simpler ques-
tion. To assess the question’s difficulty, we first use
pointwise promting strategy to process the top-m
passages. If the number of "Yes" generated by the
LLM is greater than a threshold ¢, we classify the
question to be difficult. Once a question has been
classified as difficult, we will continue using an ex-
pensive LLM for both stages and not use a cheaper
LLM at all. If it is not a difficult question, we will
switch to a cheaper LLM and keep using it for the
rest of the passages for both stages. We call this
approach EcoRank-Auto1. For our experiment, we
usem = 8and ¢t = 4.

Approach 2: Assess question difficulty through
BM25 scores. The intuition is, that for a diffi-
cult question, the standard deviation of the BM25
scores of the passages will be greater than a not-
difficult question. If a question is difficult, the
scores of the passages retrieved by BM25 will be
very close, resulting in smaller stdev. We call
this approach EcoRank-Auto2. We set a thresh-
old st = 1.5, if it is less than this the question is
difficult.

We set the parameters manually as these are ini-
tial experiments and the goal is to see the potential
of the ideas. A validation set can be used to fix the
parameters.

Results. We show the results in Table 7. While
the approaches did not surpass EcoRank, it still
performs better than other budget-aware methods
like B-PRP, Binary, etc. We understand this is
not a fully automated system. These experiments
show that there is good potential for us and other
researchers to automate EcoRank in the future.

13063

