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Abstract—Deep Brain Stimulation (DBS) stands as an effective
intervention for alleviating the motor symptoms of Parkinson’s
disease (PD). Traditional commercial DBS devices are only able to
deliver fixed-frequency periodic pulses to the basal ganglia (BG)
regions of the brain, i.e., continuous DBS (cDBS). However, they
in general suffer from energy inefficiency and side effects, such
as speech impairment. Recent research has focused on adaptive
DBS (aDBS) to resolve the limitations of cDBS. Specifically, rein-
forcement learning (RL) based approaches have been developed
to adapt the frequencies of the stimuli in order to achieve both
energy efficiency and treatment efficacy. However, RL approaches
in general require significant amount of training data and compu-
tational resources, making it intractable to integrate RL policies
into real-time embedded systems as needed in aDBS. In contrast,
contextual multi-armed bandits (CMAB) in general lead to better
sample efficiency compared to RL. In this study, we propose a
CMAB solution for aDBS. Specifically, we define the context as
the signals capturing irregular neuronal firing activities in the
BG regions (i.e., beta-band power spectral density), while each
‘arm’ signifies the (discretized) pulse frequency of the stimulation.
Moreover, an ε-exploring strategy is introduced on top of the
classic Thompson sampling method, leading to an algorithm
called ε-Neural Thompson sampling (ε-NeuralTS), such that
the learned CMAB policy can better balance exploration and
exploitation of the BG environment. The ε-NeuralTS algorithm
is evaluated using a computation BG model that captures the
neuronal activities in PD patients’ brains. The results show that
our method outperforms both existing cDBS methods, as well as
the baselines that do not use the ε-exploring as introduced by
our method (i.e., the vanilla Thompson sampling method).

Index Terms—Deep Brain Stimulation, Contextual Multi-
armed Bandit, Thompson Sampling

I. INTRODUCTION

Millions of individuals in the U.S. suffer from Parkinson’s

disease (PD), a neurodegenerative disorder causing motor

symptoms such as tremors, muscle stiffness, and bradykine-

sia [1]. Deep brain stimulation (DBS) has become widely used

to treat motor symptoms by delivering electric pulses to the

basal ganglia (BG) region of the brain through implantable

devices [2]–[5] illustrated in Figure 1. DBS system consists of

two main components: the electrode and the pulse generator.

The electrode is a thin and insulated wire implanted in the

brain with its tip positioned within the BG region. The pulse

This work is sponsored in part by the NSF CNS-1837499 award and
the National AI Institute for Edge Computing Leveraging Next Generation
Wireless Networks, Grant CNS-2112562, as well as by NIH UH3 NS103468.

generator is usually placed under the skin near the collarbone

or implanted closer to chest or abdomen. Two components are

connected with an insulated wire passing under the skin of the

head, neck, and shoulder so that the electrical impulses can

be sent from the pulse generator, up along the extension wire

and the electrode, and into the brain for treatment.

DBS can significantly improve patients’ daily life by al-

leviating PD symptoms; however, existing commercial DBS

devices can only provide stimuli with pre-determined and

fixed parameters (e.g., pulse frequency and amplitude) – i.e.,
continuous DBS (cDBS). To facilitate desirable therapeutic

outcomes, the process of determining the parameters is often

time-consuming because the parameters are usually deter-

mined by trial-and-error over multiple clinical visits [6]. In ad-

dition, stimulation with constant high frequency and amplitude

significantly shortens the battery life of the implantable device

and can result in serious side effects [7]. Therefore, there

has been a notable surge in research focused on advancing

the automation of parameter selection for DBS, especially

feedback-based stimulation controllers.

Existing research has primarily focused on developing

adaptive DBS (aDBS) techniques, which automatically ad-

just stimulation parameters using various electrophysiolog-

ical biomarkers as feedback signals [7]–[14]; specifically,

local field potentials (LFPs) from the BG, internal electroen-

cephalography (iEEG), and data from wearable devices such as

electromyography and accelerometers with predefined thresh-

olds established by physicians based on trial data. While the

aforementioned aDBS approaches show promise in reducing

energy consumption and mitigating stimulation-related side ef-

fects [11]–[15], the configuration of aDBS devices to optimize

the balance between stimulation efficacy and battery efficiency

remains a labor-intensive task. To reduce these substantial

efforts, a distributed closed-loop neuromodulation architecture

designed for the automated tuning of Proportional Integral (PI)

controllers in DBS, leveraging Bayesian optimization is further

introduced in [16].

Recent research has explored the application of reinforce-

ment learning (RL) to devise closed-loop controllers for aDBS

in the context of PD. In particular, the studies conducted

by [17] introduce an approach where EEG and LFP sig-

nals are employed to define the state space within the RL

20
24

 A
CM

/IE
EE

 1
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
yb

er
-P

hy
sic

al
 S

ys
te

m
s (

IC
CP

S)
 | 

97
9-

8-
35

03
-6

92
7-

4/
24

/$
31

.0
0 

©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

CP
S6

10
52

.2
02

4.
00

02
7

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 04:11:50 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Deep brain stimulation: the implantable pulse generator is placed in
the patient’s chest; electrodes that can record local field potentials (LFPs) and
deliver stimulation are positioned in the basal ganglia (BG) to stimulate the
subthalamic nucleus or the internal segment of the globus pallidus (GPi).

framework. They employ fitted Q-iteration to synthesize RL

control policies. These policies are geared toward selecting

stimulation frequencies that aim to enhance energy efficiency.

The work presented in [18], and extended in [12], [13] utilizes

deep actor-critic RL to craft personalized stimulation patterns

tailored to each patient, which improves both energy efficiency

and stimulation efficacy.

Compared with RL methods, contextual multi-armed bandit

(CMAB) algorithms are more sample-efficient, which can

better facilitate real-world DBS applications as data collection

with human participants can be costly [19], [20]. Moreover,

lower computational resources are required for training and

evaluating CMAB policies in general, facilitating better com-

patibility with the latest generation of embedded DBS systems,

which do not provide the functionalities and bandwidth needed

by executing full RL policies in real-time [21].

In this work, we introduce a CMAB approach to adapt the

stimulation frequency of DBS, in response to the contexts

defined as the beta-band (13-35 HZ) power spectral density

(Pβ) [22] of the LFP signals collected from the BG [23],

[24]. Moreover, the bandit arms represent the (discretized)

stimulation frequency from the range of 0 Hz (i.e., turn off
DBS) to 180 Hz (i.e., cDBS). Specifically, we propose an

algorithm called ε-Neural Thompson Sampling (ε-NeuralTS),

which blends deep neural networks with Thompson Sampling

(TS) [25]. It optimizes neural network approximators over

a Bayesian objective, to estimate the posterior return dis-

tribution, normally parametrized as Gaussian, capturing the

expected return of each arm with confidence, e.g., conditional

(co-)variances to quantify the level of uncertainty. In addition,

the arms are selected greedily by directly maximizing the ex-

pected return (i.e., the expectation of the posterior distribution)

with probability 1 − ε, or to sample from the posterior with

probability ε. Here, ε is hyper-parameter that helps balance

exploration and exploitation.

In what follows, a computational Basal Ganglia Model

(BGM) [18] is used as the testbed for training and evaluation

of the CMAB policies, where Pβ and Error Index (EI) [26]

are considered as the Quality-of-Control (QoC) metrics. We

conduct comprehensive hyper-parameter tuning over the ε
value and the reward function of CMAB method followed by

the comparison with existing approaches. The results show

that our method outperforms both existing cDBS methods and

Fig. 2. An illustration of the computational brain model. The DBS stimulation
is deployed to the subthalamic nucleus (STN), propagating to the other sub-
regions. Error index (EI) is computed with the activations passing from
sensorimotor cortex (SMC) to thalamus (TH).

vanilla TS methods, in terms of the two metrics above as well

as energy/time efficiency and robustness.

The main contributions of this work are:

1) We re-formulate the aDBS problem into CMAB, where

the interactions between the BG and the CMAB pol-

icy pertain to an environment with pre-defined feature

contexts, action space, and reward functions.

2) We propose a novel ε-NeuralTS algorithm that is suitable

for deployment over the latest generation of embedded

DBS systems [21]. Moreover, it can trade off exploration

and exploitation during training, leading to improved

sample efficiency. As a result, it lays out the foundation

of next-generation aDBS frameworks.

3) We successfully demonstrate that our method outper-

forms several baselines, including both existing CMAB

baselines and cDBS from the perspective of task perfor-

mance and real-world scenarios.

The paper is organized as follows. Section II introduces a

Basal Ganglia Model (BGM) of the brain, the QoC metrics

used to evaluate DBS control performance and the background

of existing algorithms from MAB to CMAB. Our problem

statement is formulated with the adaption of CMAB to DBS

in Section III. We introduce our proposed ε-NeuralTS in Sec-

tion IV. The experiments and analyses of the results are

elaborated in Section V. This work is concluded with possible

future extensions in Section VI.

II. PRELIMINARIES

In this section, we start by describing the BGM with a

formal definition of the QoC metrics the will be utilized for

evaluating DBS control performance. We refer readers to [23],

[24] for an in-depth review of the model. We then introduce

the background of Multi-armed Bandit (MAB) and extend it

to contextual bandit settings.

A. Computational BGM

The Basal Ganglia (BG) is a prominent cerebral region

composed of three principal sub-regions, namely, the sub-

thalamic nucleus (STN), globus pallidus pars externa (GPe),

and globus pallidus pars interna (GPi). To comprehensively
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capture and quantify the manifestations of Parkinson’s disease

(PD), it is imperative to include not only these sub-regions

but also the thalamic region (TH) and the sensory-motor cortex

(SMC) inputs within the PD-specific brain model, as illustrated

in Figure 2.

Supposing that there exists n neurons in each sub-region,

the state from the computational BGM at each time t can be

succinctly represented as a vector denoting electrical potential,

as delineated below:

vq(t) = [νq1 , ..., ν
q
n]; (1)

here, νqj denotes the value of the jth neuron with the corre-

sponding sub-region q ∈ {STN,GPe,GPi, TH}. The initial

states of these neurons are considered model parameters that

are stochastically determined in our experimental setup. Neu-

rons are interconnected through chemical synapses, forming

BGM structure illustrated in Figure 2. The neural activation of

each neuron at time t is captured by binary events aqj ∈ {0, 1},

which occur when the neuron’s electrical potential νqj exceeds

a predefined threshold hq
j , defined as

aqj(t) = I

(
[vqj (t) > hq

j ] ∧ [∃δ, ∀ε ∈ (0, δ), vqj (t− ε) < hq
j ]

)
.

(2)

We now formally define the two QoC metrics (i.e., Pβ and

EI) in order to evaluate the efficacy of DBS.

1) Error Index (EI): EI is defined as the portion of er-

roneous TH neuron activations in response to SMC inputs1

SMCτ at t = τ . Specifically, SMCτ can modulate TH neuron

potentials and is expected to activate all TH neurons exactly

once within a time window of 25ms in healthy brains. In

contrast, in the context of Parkinson’s disease (PD), no such

response or activation should be present within the 25ms
window immediately following the reception of an SMC input.

Formally, EI is defined as

EI(t) =

∑n
i=1

∑t
t=t0

aTH,err
i (t)

n
∣∣∣SMCτ |tt0

∣∣∣ , (3)

where aTH,err
i (t) = 1(or 0) indicates an erroneous (or correct)

TH neuron activation at time t. Intuitively, every neuron in

TH, and
∣∣∣SMCτ |tt0

∣∣∣ is the cumulative number of SMC inputs

received between the initial time t0 and the current step t. Note

that EI is bounded to the range [0, 1] because EI is defined as

a ratio. The goal for the DBS controller is to maintain EI as

low as possible.

2) Beta-band Power Spectral Density (Pβ): In a PD brain,

the GPi region exhibits pathological oscillations of neurons at

frequencies within the 13Hz − 35Hz band (i.e., beta band),

which do not exist in a healthy brain. Pβ is defined as

PGPi
βj =

∫ 2π·35Hz

ω=2π·13Hz

PGPi
j (ω)dω, (4)

1Healthy brains could also respond to SMCτ erroneously with a low
probability (< 0.1%).

where PGPi
j (ω) is the single-sided power spectral density of

the jth neuron’s potential in the GPi region. Therefore, the

beta band power for the entire region with n neurons can be

computed as

Pβ =
1

n

n∑
j=1

PGPi
βj . (5)

Note that EI can directly distinguish healthy brains from PD

ones, but is intractable to be obtained in the real world [18].

On the other hand, Pβ can be noisy and sometimes may not

distinguish healthy and PD brains at the same level of EI [18],

Pβ can be easily obtained by typical DBS systems in clinical

practice [21]; thus, it also serves as an imperative biomarker

to quantify the severity of PD. The details of how we evaluate

the feasibility of Pβ will be described in Section V-A.

B. Multi-armed Bandit (MAB)

We first introduce the basics of MAB, which is necessary

for reviewing the preliminaries of CMAB. The MAB problem

is a sequential game between a bandit learner and the envi-

ronment. The game is played over T rounds2, where T is a

positive integer called the horizon. At each time t ∈ [0, T ],
the bandit learner first chooses an action at from a given

set A, and then the environment receives the corresponding

reward Rt ∈ R. Actions are often called arms, so K-

armed bandits indicate that the cardinality of A is K. The

bandit learner should choose at depending on the history

D = (a1, R1, ..., at−1, Rt−1). The common objective of the

bandit learner is to learn a policy, which is a mapping from

history to the next action, to maximize the cumulative reward

over all T rounds. The final performance is evaluated by regret,
which is defined as follows.

Definition 1 (Regret): [27] The regret of the bandit learner

with respect to a policy π is the difference between the total

expected reward obtained by using policy π for T rounds and

the total expected reward collected by the bandit learner over

T rounds. The regret relative to a set of policies Π is the

maximum regret relative to any policy π ∈ Π in the set.

The main challenge in the bandit problem is addressing

the exploitation-exploration trade-off, which targets reaching

a subtle balance between following the myopically better

arm and choosing an under-sampled worse arm. Existing

algorithms for maximizing the cumulative reward in bandits

problems mainly follow either one of the following two

algorithmic frameworks – upper confidence bound (UCB) and

Thompson sampling (TS), as introduced in Section II-B1 and

Section II-B2, respectively.

1) Upper Confidence Bound: The UCB algorithm leverages

the principle of optimism in the face of uncertainty. The opti-

mal principle means using the data observed so far to assign

to each arm a value (i.e., UCB which with high probability is

an overestimate of the unknown mean). Assuming the upper

confidence bound assigned to the optimal arm is indeed an

2In this work, we alternatively use round, time, and time step according
to the corresponding context but with the same meaning.
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overestimate, then another arm can only be played if its UCB

is larger than that of the optimal arm, which in turn is larger

than the mean of the optimal arm. Then the additional data

provided by playing a suboptimal arm means that the UCB

for this arm will eventually fall below that of the optimal arm.

UCB is defined formally as follows. Let (Rt)
T
t=1 be a

sequence of independent 1-subgaussian random variable with

mean μ and μ̂ = 1
n

∑T
t=1 Rt. Then

P

(
μ ≥ μ̂+

√
2 log(1/δ)

n

)
≤ δ, ∀δ ∈ (0, 1). (6)

When considering its options in time t, the bandit learner has

observed Tk(t− 1) samples from arm k and received rewards

from that arm with an empirical mean of μ̂k(t − 1). Then a

reasonable candidate for the unknown mean of the kth arm as

large as plausibly possible is

UCBk(t− 1, δ) =

{
∞ if Tk(t− 1) = 0

μ̂k(t− 1) +G otherwise,
(7)

where G =
√

2 log(1/δ)
(Tk(t−1)) . The index of UCB is the sum

of the empirical mean of rewards experienced so far and

the exploration bonus (i.e., confidence width). Note that the

exploration bonus has different versions according to different

types of UCB algorithms, such as asymptotic optimality and

minimax optimality. The high-level structure of the UCB-

based algorithm is to start with the inputs of the number of

arms K and the error probability δ. For each time t ∈ [T ], the

bandits leaner choose arm at = argmaxi UCBk(t−1, δ) right

before observing reward Rt and updating UCB. Following this

algorithm, the bandit learner explores arms more often if they

are (a) promising because μ̂k(t − 1) is large or (b) not well

explored because Tk(t− 1) is small.

2) Thompson sampling: TS, also called, posterior sam-

pling, tackles MAB problems using a Bayesian approach. TS

maintains a probability distribution for each arm’s expected

reward, representing their uncertainty about the true reward

distribution. Given the set of history D, TS approach aims to

learn the parameter θ of the true reward distribution. TS starts

with a prior distribution and a posterior distribution of θk for

each arm k ∈ [0,K−1], if we view θ as the concatenation of

θk. This posterior distribution can be acquired by the Bayes

rule, P (θ|D) ∝ P (Rt|at,θ)P (θ), where P (Rt|at,θ) is a

parametric likelihood function.

In the vanilla TS, the algorithm samples from the corre-

sponding posterior distributions θk(t) for all k ∈ [0,K − 1],
and selects the best arm at = argmaxk∈[0,K−1] θk(t) right

before observing reward Rt and updating the corresponding

posterior distribution. We refer to the details of TS in [27].

C. Contextual Bandits

Contextual bandits are a wide class of sequential decision

problems, where the bandit learner makes the decision based

on an observation of an action set consisting of feature

vectors as contexts for different actions. In particular, at time

t ∈ [0, T ], the bandit learner observes the context x consisting

of K context vectors {xt,k ∈ R
d|k ∈ [0,K − 1]}. The

bandit learner then selects an action at ∈ A and receives

the corresponding reward Rt,at
= h(xt,at

,θ) + ξt, where

h : Rd → R and θ ∈ R
d is an unknown weight parameter

for bandit learner; ξt ∈ R is a random noise incurred in

the observation, which is standard in the stochastic bandit

literature [28], [29]. To simplify our notation, we can assume

that the reward is independent of the time t and the noise ξt can

be ignored. We can further formulate our reward function with

the whole context x expressed as R = h(x,θ) by dropping

the subscripts. For instance, we have h(x,θ) = x�θ in linear

contextual bandits [28], [30], [31], and h(x,θ) = μ(x�θ)
for generalized linear bandits [32]–[35], where μ(·) is a link

function. Our work aligns with the neural contextual bandits

[36]–[39] so that h(x,θ) is a neural network, where θ is the

concatenation of all weight parameters and x is the input.

Within the realm of contextual bandit problems, algorithms

grounded in Optimism in the Face of Uncertainty (OFU) are

often required to solve a bi-linear optimization problem, which

makes them computationally expensive to implement outside

of simple problems despite their stronger theoretical guaran-

tees. In contrast, Thompson Sampling (TS) algorithms offer

a more computationally efficient alternative. These methods

only require solving a linear optimization problem on the set

of available arms. This efficiency stems from the fact that the

inherent uncertainty encapsulated within the posterior distri-

bution naturally accommodates exploration in the parameter

space. Moreover, it is noteworthy that TS has been observed

to be empirically competitive with or even superior to OFU-

based algorithms in practical scenarios [40].

III. PROBLEM FORMULATION

We formulate a K-armed CMAB problem for selecting the

frequency of the stimulus for PD in DBS with Pβ as context

inputs. Specifically, the context features st at a discrete round,

which can be defined as a sequence of Pβ at a fixed rate,

m ∈ Z
+, over a window of size Tw. i.e.,

st = [β(t), β(t+m), β(t+2m), ..., β(t+Tw−m)], (8)

where β(·) represents Pβ evaluated at l = Tw/m number of

equally-spaced intervals within the window. The bandit learner

can select its action in time t as at from K arms, where K =
13 in our problem setting. We limit the maximum stimulus

frequency to 180Hz in the computational BGM.

To have a better action mapping strategy, according to each

arm k ∈ [0,K−1], we can have F = 15k (e.g., when k = 12,

the stimulus frequency achieves 180Hz). Then the selected

arm at can be mapped back to the action space for the BGM.

We change the stimulation frequency every Tw steps, so the

mapped action ut that the bandit learner can take at time t is

ut = [u(t), u(t+m), u(t+2m), ..., u(t+Tw−m)], (9)

u(t+j) =

{
1 if a pulse is triggered at time t+ j

0 otherwise,
(10)
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Algorithm 1 ε-Neural Thompson Sampling (ε-NeuralTS))

1: Input: number of rounds T , exploration variance ν, ini-

tialized weight of neural network θ0 with network width

m, regularization parameter λ, exploration probability ε
2: U0 = λI
3: for t = 1, ..., T do
4: for k = 1, ...,K do
5:

Rt,k

{
∼ N (f(xt,k), ν

2σ2
t,k) w.p. ε

= f(xt,k) w.p. 1− ε

6: end for
7: Pull arm at and receive reward Rt,at

, where at =
argmaxk∈[0,K−1] Rt,k

8: Set θt as the output of gradient descent for solving (14)

9: Ut = Ut−1 + g(xt,at
;θt)g(xt,at

;θt)
�/m

10: end for

where j ∈ [0, Tw−m). Finally, we define our reward function

as Rt,k = −s̄t+1−C ·at, where s̄t+1 is the mean of the whole

vector of st+1 in (8) and C · at is the selected action from

the bandit learner multiplied by a constant coefficient C ∈ R.

Again, here the value of at is k ∈ [0,K − 1].
Therefore, C · at can be viewed as a penalty on the

frequency value, which can encourage the bandit learner to

reduce the Pβ defined in st+1 as well as to consume less

energy, resulting in energy efficiency and relatively mild side

effects, which is highly relevant to safety issues and therapy

effectiveness [41], [42]. Typically the goal in CMAB is to

choose actions that maximize the cumulative reward over T
steps, which is equivalent to minimizing the cumulative regret

r(T ), defined as the difference between the maximum possible

context-dependent reward and the actually received reward

r(T ) = E

[ T∑
t=1

(R∗
t,k∗ −Rt,k)

]
, (11)

where R∗
t,k∗ is the reward with optimal action at = k∗ and

k∗ ∈ argmaxk E[Rt,k]. However, note that EI is the oracle

(ground truth) to evaluate the severity of PD symptoms and

the optimal value of EI can be minimized to be closer to 0.

With the property of EI, we can introduce EI as our regret for

the final evaluation3 and we quantify the task performance of

different algorithms by comparing each cumulative regret.

Finally, besides evaluating the task performance, our goal

is to also extract the energy consumption component from the

reward function as the evaluation of energy efficiency.

IV. ε-NEURALTS

NeuralTS is a CMAB method designed to harness the

potential of deep neural networks for both exploration and

exploitation [37]. Central to this algorithm is an innovative

3Note that the EI is not involved in the reward function and the context
feature during learning.

approach to modeling the posterior distribution of rewards.

Specifically, compared to the typical ways of implementing

TS with neural network sampling the weight parameters,

NeuralTS samples from the posterior distribution of the scalar

reward with the mean determined by the neural network

approximator and the variance constructed based on the neural

tangent features associated with the corresponding neural

network. Therefore, NeuralTS is simpler and more efficient

because the number of parameters can be large in practice.
During learning, the reward function is unknown to the

bandit learner. To estimate the unknown reward given a

contextual vector x, we build a fully connected neural network

f(x,θ) for approximation [37], defined recursively by

f1 = W1x,

fl = WlReLU(fl−1), 2 ≤ l ≤ L,

f(x,θ) =
√
mfL, (12)

where ReLU(x) := max{x, 0}, m is the width of the

neural network, and Wi denotes as the weight parameters

of ith layer in the full neural network. Therefore, θ =(
vec(W1); ...; vec(WL)

)
is the collection of parameters of the

whole neural network. Finally, g(x;θ) = ∇θf(x,θ) is the

gradient of f(x,θ) w.r.t θ.
We summarize our ε-NeuralTS in Algorithm 1. We firstly

input the number of rounds T , exploration variance ν > 0,

initialized neural network, regularization parameter λ, and

exploration probability ε. Then we initialize a covariance

matrix U0 = λI , where I is an identity matrix.
Inspired by the recent work ε-TS [43], [44] for non-

contextual and weight parameter sampling, our novel ε-
NeuralTS builds upon NeuralTS with ε exploring. Specifically,

for each time t ∈ [0, T ], we estimate the reward for each

arm k ∈ [0,K − 1]. When selecting an arm, it only explores

with sampling the reward from its posterior distribution with

probability ε while the arm is played based on empirical mean

rewards with probability 1 − ε, where ε ∈ (0, 1) is a user-

defined parameter in Line 5 in Algorithm 1. Note that the

σt,k in N (f(xt,k), ν
2σ2

t,k) is calculated by

σ2
t,k = λg�(xt,k;θt−1)U

−1
t−1g(xt,k;θt−1)/m. (13)

Therefore, ε-NeuralTS can improve both sample and com-

putational efficiency by reducing the number of calculations.

Then the bandit learner pulls the arm with the maximum

estimated reward in Line 7. Once the reward is observed, it

updates the posterior (Lines 8 & 9). The mean of the posterior

distribution is set to the output of the neural network, whose

parameter is the solution to the following l2-regularized square

loss minimization problem:

min
θ

L(θ) =

t∑
i=1

[f(xi,ai
,θ)−Ri,ai

]2/2 +mλ‖θ − θ0‖22/2,
(14)

where the regularization term centers at the randomly initial-

ized network parameter θ0.
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V. EXPERIMENTS

In this section, we evaluate our proposed ε-NeuralTS against

other contextual bandits algorithms and the controller with

periodic stimulation patterns that are employed in [6], [45],

[17] over computational BGM. For a fair comparison, we

set up the sampling duration l = Tw = 2 seconds for all

contextual bandits algorithms, indicating that the effect of

every arm will last within this duration.

Recall that our context feature st is defined as a sequence

of Pβ sampled at a fixed rate m over a window size Tw.

Since the context feature is shared among all arms, we

follow [33], [36] to construct context vectors x for different

arms in the following way: given a context feature s ∈ R
d

(i.e., d = Tw), we transform it into K contextual vectors

x = [x(1); ...;x(K)] ∈ R
Kd (e.g., x(1) = (s, 0, ..., 0) and

x(K) = (0, ..., 0, s)). We learn the parameters θ of the neural

network, discussed in Section IV, with x as inputs for our

ε-NeuralTS. Specifically, we build a fully connected neural

network with a sequence of 3 layers (32 neurons per layer)

followed by the ReLU activation function.

All our experiments are run on Nvidia RTX A5000 with

24GB RAM. In particular, our experiments focused on the

following tasks:

1) To evaluate the feasibility of using Pβ as a PD biomarker

during learning for context feature and reward function,

we conduct an experiment to find the correlation be-

tween Pβ and EI.

2) We tune the coefficient of the penalty term in the reward

function and the ε value of ε-NeuralTS.

3) We compare our proposed ε-NeuralTS against existing

CMAB methods and classical periodic controllers. Note

that we do not explicitly compare our methods with

other aDBS approaches because our environment setups

are mostly not the same. In addition, although our ex-

periment shares similar computational BGM with [18],

we only consider Pβ as the input state, which contains

less information but be more realistic.

4) We evaluate the impact of different ε on the running time

ε-NeuralTS algorithm.

5) Finally, we evaluate ε-NeuralTS on the robustness to

delayed rewards.

A. Feasibility of Pβ as a PD Biomarker

To evaluate the feasibility of using Pβ as the PD biomarker

during learning for context feature and reward function, we

firstly experiment to find the correlation between Pβ and EI.

In particular, we randomly deploy 9 pulses within 200ms
on the computational BGM and collect the corresponding Pβ

and EI. The distribution is shown in Figure 3 with Pearson’s

Correlation Coefficient = 0.866. With the high correlation

between Pβ and EI (closer to 1.0), Pβ can be seen as an

indicator of PD symptoms with noises. Therefore, we adopt

Pβ for the feature context and reward function as described

in Section III.

Fig. 3. Correlation between two QoC (i.e., Pβ and EI) with Pearson’s
Correlation Coefficient: 0.866.

Fig. 4. Learning curve with different penalty coefficients using NeuralTS
(lower EI is better).

TABLE I
AVERAGE FREQUENCY WITH DIFFERENT PENALTY COEFFICIENT AFTER

THRESHOLD LINE FOR NEURALTS.

Penalty Coefficient C 0.08 0.10 0.14 0.20 0.25 0.30 0.33 0.50

Average Arm k 8.6 8.1 8.0 9.0 8.9 7.9 4.1 0.6

B. Hyper-parameter Tuning of Penalty Coefficient

Recall that our reward function is defined as Rt,k =
−s̄t+1 − C · at, where s̄t+1 is the mean of the whole vector

of st+1 in (8) and C · at is the penalty of the stimulus

with higher frequency accompanied by a constant coefficient

C ∈ R. Note that in [18], the reward function is designed

with 4 discrete categories according to the values of Pβ and

EI, which requires access to EI and more engineering work

on deciding the reward values for 4 different categories. Our

penalty coefficient C can be tuned within a smaller search

space. Since the value of penalty coefficient C will influence

the reward function and EI can serve as the final evaluation,

we aim to find a suitable C so that the learned policy can

maintain a low EI (< 0.1) and lower stimulation frequency

with less energy consumption and side effects.

Intuitively, higher stimulation frequency can be more effec-

tive in suppressing PD symptoms and larger C will discourage
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(a) Reward (b) Cumulative Regret

Fig. 5. Task Performance for ε-NeuralTS with different ε averaged over
10 seeds. Shaded areas denote the standard error: (a) task reward (higher is
better), (b) cumulative regret (lower is better).

the policy from selecting a higher simulation frequency. Thus,

a trade-off exists between the task and safety (e.g., side effects)

performance. Task performance is our priority condition before

we select the lowest average stimulation frequency.

To have a fair comparison, we consider our strong

baseline NeuralTS [37] for hyper-parameter tuning. Fig-

ure 4 shows the EI values with different coefficients C =
[0.08, 0.10, 0.14, 0.20, 0.25, 0.30, 0.33, 0.50]. We observe that

most of the settings have EI values smaller than 0.1 after t =
50 rounds (i.e., threshold line) while C = [0.30, 0.33, 0.50]
cannot converge even with longer rounds. We average the

frequency after the threshold line for all the settings, resulting

in C = 0.14 the lowest average frequency (i.e., stimulation

frequency F = 15i, where k ∈ [0,K−1]) with low EI (< 0.1)

in Table I; here, K = 13. Hence, we adopt C = 0.14 in our

reward function for the remaining experiments.

The results for the average frequency are reported in Table I.

C. Hyper-parameter Tuning of ε for ε-NeuralTS

Before comparing with other CMAB methods, we investi-

gate the optimal ε via our reward function, which has already

been decided as a better trade-off between task performance

(i.e., Pβ) and penalty on frequency value with coefficient.

Note that NeuralTS can be viewed as the special case of ε-
NeuralTS with ε = 1.0, so we also include it in comparison.

We conduct all the setups with different ε for 10 random

trials to represent 10 different patients. We record the task

reward and cumulative regret (i.e., cumulative EI) with differ-

ent ε in Figure 5. We observe that worse performance does

happen with insufficient exploration when ε < 0.8 in our

task. However, when ε = 0.8, we reduce by 20% the number

of sampling and calculations with gradient descent as well

as speed up the convergence with competitive performance

compared with vanilla NeuralTS (i.e., ε = 1.0). On the other

hand, we realize that the cumulative regret diverges when

ε = 0.0, which is reasonable due to the extreme imbalance

between exploration and exploitation. However, ε = 0.2
results in the minimum cumulative regret, showing that the

suppression of PD with only 20% computational resource has

minimum EI.

Since we do not utilize any information from EI during

learning, we believe that the mismatching between the reward

(a) Reward (b) Cumulative Regret

Fig. 6. Task Performance for ε-NeuralTS against other methods averaged over
10 seeds. Shaded areas denote the standard error: (a) task reward (higher is
better), (b) cumulative regret (lower is better).

and cumulative regret comes from two reasons: (i) the cor-

relation between Pβ and EI is not completely perfect, and

(ii) the designed reward function considers the regularization

of the frequency values. This mismatching appears mainly

with the extremely lower ε, which is acceptable. In addition,

ε-NeuralTS with ε = 0.8 still receives a lower cumulative

regret versus NeuralTS, demonstrating the consistency of

performance improvement on ε-NeuralTS via less exploration.

Overall, most of the settings except for ε = 0.0 can converge

below the dashed line, indicating that they can alleviate

PD symptoms successfully because the dashed line is with

cumulative regret r(100) = 0.1(EI)×100(rounds); note that the

healthy brains are with EI < 0.1. This observation effectively

shows that we can consider less exploration carefully to

achieve an improvement of NeuralTS. Therefore, we will

further compare ε-NeuralTS with ε = 0.8 with other methods.

D. ε-NeuralTS against CMAB Algorithms

In addition to considering the vanilla NeuralTS as our

baseline, we also perform comparison to other existing CMAB

algorithms, including linear bandit (e.g., LinUCB [31] and

LinTS [28]), generalized linear bandits (e.g., UCB-GLM [46]),

and neural bandits (e.g., NeuralUCB [38] and Neural ε-greedy

[47]). Note that the ε in Neural ε-greedy is not the same as

the role of our ε in ε-NeuralTS. Instead, ε in Neural ε-greedy

is for deriving a probability for randomly selecting action as

exploration. Also, this probability for exploration will keep de-

creasing with increasing rounds so that the learning converges.

In Figure 6, we report the mean and the standard error of

the cumulative regret of different algorithms over 10 runs.

We demonstrate that our ε-NeuralTS with ε = 0.8 is still

competitive compared to the other algorithms. The results for

linear bandit-based approaches (i.e., LinUCB and LinTS) are

the worst in both the reward and cumulative regret. UCB-GLM

and vanilla NeuralTS perform well with high rewards while

they receive relatively worse cumulative regrets, reflecting

higher EI. We notice that NeuralUCB is the strongest baseline

for our task, demonstrating similar reward and cumulative

regret as ε-NeuralTS with ε = 0.8 does.

We emphasize our contribution to improving the task per-

formance of the vanilla NeuralTS using ε-exploring strategy

so that the branch of NeuralTS can be competitive with
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Fig. 7. Running time comparison of different ε for our ε-NeuralTS versus
NeuralTS and NeuralUCB. Each trial takes 100 rounds of interaction with
the computational BGM.

Fig. 8. Error Index (EI) over time in model PD brains without and with
various types of stimulation, as well as model healthy brains.

NeuralUCB in this task. Also, less exploration means that we

reduce the risk of searching for unknown scenarios, which is

critical for medical devices and procedures in the real world.

E. Relative Computation Time of ε-NeuralTS

Since the sampling with exploration in the vanilla NeuralTS

requires computation including additional taking gradient de-

scent w.r.t θ: g(x;θ) = ∇θf(x,θ), which is described in (13),

exploration reduction can also reduce the computation time

during learning. We compare the running time of each trial

under different ε against the vanilla NeuralTS and NeuralUCB;

the results are summarized in Figure 7. Specifically, each trial

takes 100 rounds of interaction with the computational BGM.

We notice that NeuralTS runtime is smaller than NeuralUCB

with the same number of rounds, which is consistent with the

mathematical perspectives mentioned in Section II-C.

Also, reducing ε, the ε-NeuralTS run time will decrease.

Since our best setting in the task of suppressing PD symptoms

is with ε = 0.8. We report that the running time is about

10% less than the standard NeuralTS with ε = 1.0. Note that

the interaction with computational BGM also occupies a huge

portion of running time, which is the same for all algorithms.

F. ε-NeuralTS against Classical Controllers

In addition to comparing with existing CMAB methods,

we compared our ε-NeuralTS (ε = 0.8) with the periodic

controllers for which the stimulation pulses are equally spaced

in terms of time steps. We firstly calculate the average stim-

ulation frequency of ε-NeuralTS (ε = 0.8) after convergence

as about k = 6, i.e., 90Hz, which is smaller than the best

Fig. 9. Beta power spectral density (Pβ ) over time in model PD brains
without and with various types of stimulation, as well as in healthy brains

Fig. 10. Activity of model neurons in TH and GPi. The effects of patho-
physiological patterns can be reduced using our ε-NeuralTS with an average
frequency of 90 Hz (bottom row).

setting of the vanilla NeuralTS in Table I. In other words,

less exploration can also help reduce the frequency of the

stimulation, improving energy efficiency and reducing side

effects. To have a fair comparison, we mainly compared our

CMAB-based controller with periodic cDBS at 90Hz.

In Figure 8 and Figure 9, we evaluate the performance of our

ε-NeuralTS controller online after learning. Specifically, the

whole evaluation period is divided by a dashed line, indicating

that all DBS controllers will be turned on to output their

corresponding execution after 4000 rounds. Therefore, except

for the healthy brain, all the other controllers start from the

same oscillation with a higher EI and Pβ .

We observe that 90Hz frequency is still high and effective

enough for periodic cDBS, so periodic DBS at 90Hz can

easily reduce EI from the PD brain w/o DBS (purple curve)

and even reaches a similar EI value as the periodic DBS at

180Hz (i.e., maximum value in our setting). Therefore, the

difference between our method (orange) and periodic DBS at

90Hz (blue) is not significant enough in Figure 8. However,

we do improve Pβ in Figure 9 compared with the periodic

cDBS at 90Hz. Our method can successfully achieve a similar

Pβ value as the healthy brain has, supporting that having

varying stimulation frequency according to different observed

context features can have better mitigation of PD symptoms

even though the overall average frequency is the same.

The TH neuron activations and the firing pattern in GPi

in BGM will be different between healthy brain and a PD

brain without DBS [18]. In a healthy brain, the neuron
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(a) Reward (5 steps) (b) Cumulative Regret (5 steps)

Fig. 11. Comparison of ε-NeuralTS with NeuralTS and NeuralUCB under 5
steps of delay. Left: rewards (higher is better) and Right: cumulative regret
(lower is better) The total regret measures cumulative EI. Results are averaged
over 10 runs with standard errors shown as shaded areas.

(a) Reward (10 steps) (b) Cumulative Regret (10 step)

Fig. 12. Comparison of ε-NeuralTS with NeuralTS and NeuralUCB under 10
steps of delay. Left: rewards (higher is better) and Right: cumulative regret
(lower is better) The total regret measures cumulative EI. Results are averaged
over 10 runs with standard errors shown as shaded areas.

activations of GPi and TH follow sporadic spiking at a stable

firing rate. However, the brain affected by PD will result in

pathological neuron activations within TH and GPi, which

can be captured by reduced triggering potentials and clustered

spiking, respectively. Therefore, in Figure 10, we visualize the

activity of model neurons in TH and GPi with a healthy brain,

a PD brain without DBS, and a PD brain stimulated with our

CMAB (i.e., ε-NeuralTS). We demonstrate that substantial

pathophysiological patterns in the PD brain without DBS

stimulation in the middle row of Figure 10 can be mitigated

by our ε-NeuralTS, which makes the pattern of the activity in

both GPi and TH much similar to that of the healthy brain.

G. Robustness of ε-NeuralTS (Reward Delay)

Although data-driven approaches for decision-making (e.g.,

RL and CMAB) can demonstrate impressive performance

in the training environment, they may not always provide

a robust solution to internal conditions and external distur-

bances [48], [49]. Specifically, this experiment is inspired by

practical scenarios where the reward signals are delayed, due

to various constraints when the algorithms are deployed in

the real world [40]. We study the robustness of the two most

competitive CMAB from Section V-D (i.e., ε-NeuralTS and

NeuralUCB) when the rewards are delayed. Particularly, the

bandit learner will not receive the reward right after taking an

action. Instead, the rewards will arrive in batches when the

algorithm updates its model.

In this evaluation, we only vary the batch size, which is

the amount of the reward delay, considering 5 and 10 steps.

Since Neural-TS is an instance of our ε-NeuralTS, we also

include its results for comparison. We report the reward and

cumulative regret of three methods in Figure 11 and Figure 12.

We firstly observe that NeuralTS outperforms NeuralUCB,

which differs the standard setting without the reward delay.

We notice that the gap between the vanilla NeuralTS and

NeuralUCB in the standard task is small. Then according

to [37], the core method for TS using randomized explo-

ration encourages exploration between batches. Moreover, less

exploration in ε-NeuralTS also reduces delayed explorative

information, leading to a better performance in both the task

reward and cumulative regret. Specifically, the increase in the

cumulative regret with 5 steps reward delay is not obvious for

ε-NeuralTS. When the amount of the reward delay is increased

up to 10 steps, all of the learning rewards start to fluctuate,

indicating that the reward delay does influence the learning

process for all methods. Nevertheless, our ε-NeuralTS still has

a relatively smaller cumulative regret (below the dashed line)

in Figure 12 compared to the other two approaches.

VI. CONCLUSION

Existing commercial DBS devices only support pre-defined

periodic stimulation with fixed high frequency. To address this

limitation, RL-based approaches have been proposed to search

for a flexible and efficient stimulation frequency according to

the status of the brain. Yet, in general, the use of RL requires

a huge amount of training data. In addition, the required

computational resources for learning RL policies in the real

world also serves as an obstacle for deployment. Thus, in

this work, we formulate the treatment of PD symptoms using

DBS as a CMAB problem so that we only consider single-

step decision-making, getting rid of the heavy computation

required for RL training. We then propose a novel method

using ε-exploring strategy to reach more energy, sampling, and

computationally efficient learning. Our method outperforms

the existing CMAB baselines and results in a lower Pβ com-

pared to the periodic DBS with the same average stimulation

frequency. The potential future direction is to investigate a

better approximation of the mapping between Pβ and the

oracle EI so that the bandit learner will tend to select the

action with much lower frequency but with efficiency without

access to EI. In addition, how to adapt our proposed method

to real patient data will also be an avenue for future work.
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TABLE II
THE NOTATION USED IN THE PAPER.

Symbol Description

n number of neurons in each sub-region q in the brain

νqj jth neuron’s electrical potential with the corresponding sub-region q ∈ {STN,GPe,GPi, TH}
vq(t) vector of electrical potential with the corresponding sub-region q ∈ {STN,GPe,GPi, TH} at time t

EI Error Index: portion of erroneous TH neuron activations in response to SMC inputs
Pβ Beta-band Power Spectral Density
T maximum number of rounds defined as a horizon in multi-armed bandit problem
K number of arms
A action set
at action in time t in multi-armed bandit problem
ut mapped action from at to computational BGM at time t
st context feature in time t
xt context vector transformed from st in time t
π policy

Rt,at reward in time t corresponding to at
D history storing a sequence of tuple (at, Rt)
Tw window of size
r(T ) cumulative regret up to time T
ν > 0 exploration variance
λ regularization parameter
ε exploration probability

APPENDIX

To improve readability of the paper, we provide a summary of the employed notation in Table II.
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