
GEO2SIGMAP: High-Fidelity RF Signal Mapping
Using Geographic Databases

Yiming Li, Zeyu Li, Zhihui Gao, Tingjun Chen
Department of Electrical and Computer Engineering, Duke University

Email: {yiming.li416, zeyu.li030, zhihui.gao, tingjun.chen}@duke.edu

Abstract—Radio frequency (RF) signal mapping, which is
the process of analyzing and predicting the RF signal strength
and distribution across specific areas, is crucial for cellular
network planning and deployment. Traditional approaches to
RF signal mapping rely on statistical models constructed based
on measurement data, which offer low complexity but often lack
accuracy, or ray tracing tools, which provide enhanced precision
for the target area but suffer from increased computational
complexity. Recently, machine learning (ML) has emerged as a
data-driven method for modeling RF signal propagation, which
leverages models trained on synthetic datasets to perform RF
signal mapping in “unseen” areas. However, such methods often
require the use of advanced proprietary software for creating
synthetic datasets (e.g., ray tracing), or rely on measurements
collected from the unseen areas to effectively train the models.

In this paper, we present GEO2SIGMAP, an ML-based frame-
work for efficient and high-fidelity RF signal mapping using
geographic databases. First, we develop an automated frame-
work that seamlessly integrates three open-source tools: Open-
StreetMap (geographic databases), Blender (computer graphics),
and Sionna (ray tracing), enabling the efficient generation of
large-scale 3D building maps and ray tracing models. Second,
we propose a cascaded U-Net model, which is pre-trained
on synthetic datasets and employed to generate detailed RF
signal maps, leveraging environmental information and sparse
measurement data. Finally, we evaluate the performance of
GEO2SIGMAP via a real-world measurement campaign, where
three types of user equipment (UE) collect over 45,000 data points
related to cellular information from six LTE cells operating in
the citizens broadband radio service (CBRS) band. Our results
show that GEO2SIGMAP achieves an average root-mean-square-
error (RMSE) of 6.04 dB for predicting the reference signal
received power (RSRP) at the UE, representing an average RMSE
improvement of 3.59 dB compared to existing methods.

I. INTRODUCTION

Radio frequency (RF) signal mapping, which is the process

of analyzing and predicting the RF signal strength and dis-

tribution across specific areas, is crucial for cellular network

planning and deployment [1], [2]. Efficient and accurate RF

signal mapping allows network service providers to optimize

the placement of base stations (BSs) and antennas to provide

the desired coverage and guaranteed quality of service to end

users. It can also facilitate the operation of multiple radio

access technologies and the co-existence of active and passive

users sharing the same or adjacent frequency bands [3]–[7].

Traditional methods for RF signal mapping utilize analytical

or empirical path loss (or path gain) models, such as the Friis

free space model [8], 3GPP urban macro (UMa) model [9],

and Ericsson channel model [10]. These models describe the

path gain (PG) as a function of various system parameters

(e.g., carrier frequency, link distance, and antenna height)

with different coefficients that are specified depending on the

scenarios, such as urban or rural settings. One limitation of

these models is their lack of consideration for the geographic

information, such as the 3D building and terrain maps, which

hinders the accuracy of RF signal mapping across diverse

areas. On the other hand, ray tracing tools [11]–[14], also

known as ray tracers, offer a more sophisticated approach by

simulating the transmission of RF signals through the emission

of millions of rays within a given environment and analyzing

their reflection and diffraction effects. As a result, ray tracing

can provide more accurate RF signal mapping but at the cost

of increased complexity and required computational resources.

In addition, many advanced ray tracing tools are proprietary

and require paid licenses, and thus are not readily available or

open-source to the broader research community.

In recent years, machine learning (ML) has emerged as

a data-driven approach for modeling RF signal propagation,

which leverages models trained on synthetic datasets to facil-

itate RF signal mapping. These synthetic datasets often con-

tain detailed environmental information, such as 3D building

and terrain maps, enabling more accurate radio propagation

modeling through ray tracing and ML, especially for areas

not previously observed. However, these ML-based methods

often require advanced proprietary software for creating syn-

thetic datasets (e.g., for ray tracing [15], [16]), or rely on

collecting comprehensive real-world measurements from the

explored areas to effectively train the models (e.g., [17]–[19]).

Although there exists a number of open-source tools for ray

tracing and creating 3D building maps, the lack of seamless

integration across these tools prevents their use by the research

community. Furthermore, the ML models designed for RF

signal mapping often lack scalability to incorporate additional

real-world information or to adapt to different environments.

In this paper, we present GEO2SIGMAP, a novel framework
designed for high-fidelity and efficient RF signal mapping
using geographic databases and ML. First, we develop an

automated framework that seamlessly integrates three open-

source software tools: OpenStreetMap (OSM) [20], which is

a real-world geographic database, Blender [21], which is a

3D computer graphics tool, and Sionna [13], which is a

next-generation Physical layer research tool that includes a

differentiable ray tracer. This first-of-its-kind integration en-

ables the efficient generation of large-scale 3D building maps
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and ray tracing models. Second, we propose an ML model

based on a cascaded U-Net architecture, which employs two

cascaded U-Nets to learn the RF signal mapping, represented

by the signal strength (SS) map for a given geographical area.

Specifically, the first U-Net generates a PG map that embeds

the environmental information, and the second U-Net further

refines this process and generates the fine-grained SS map

by incorporating directivity and link budget information, as

well as an additional input of a sparsely sampled SS map

sampled across the same area. This cascaded U-Net model is

trained using only synthetic datasets, therefore no real-world

measurements are required during the training phase. When the

pre-trained model is employed to predict the detailed SS map

for a specific area, we incorporate a few field measurements

that serve as the sparse SS map input to the second U-Net.

Such a design effectively streamlines the model’s applicability

across different areas and eliminates the need for retraining the

entire model for different geographical settings.

Finally, we evaluate the performance of GEO2SIGMAP via

a real-world measurement campaign, where three types of user

equipment (UE) collect cellular information from six LTE cells

operating in the citizens broadband radio service (CBRS) band

(3.55–3.7 GHz), deployed on the Duke University West Cam-

pus. Using customized Android apps and Python scripts, we

collect over 45,000 measurements, each including various key

cellular metrics such as the physical cell ID (PCI), reference

signal received power (RSRP), and reference signal received

quality (RSRQ). Our results show that GEO2SIGMAP achieves

an average root-mean-square-error (RMSE) of 6.04 dB for

predicting the RSRP at the UE across the six LTE cells,

representing an average improvement of 3.59 dB compared to

existing RF signal mapping methods that rely on statistical

channel models, ray tracing, and ML approaches.

To summarize, the main contributions of this paper include:

• We develop an automated framework that seamlessly

integrates three open-source tools that specialize in dif-

ferent domains, including geographic databases (OSM),

computer graphics (Blender), and ray tracing (Sionna).

This integration enables the efficient generation of large-

scale 3D building maps and ray tracing models;

• We propose a cascaded U-Net architecture tailored for

high-fidelity RF signal mapping using synthetic building

maps and ray tracing datasets. This novel ML model

employs a two-stage process that leverages both building

maps and link budget information to accurately learn and

predict fine-grained RF signal mapping;

• We comprehensively evaluate the performance of

GEO2SIGMAP through an extensive measurement cam-

paign, where user-side information is collected by differ-

ent UE types across six LTE cells operating in the CBRS

band. We show that the cascaded U-Net model, which

is pre-trained on synthetic datasets, achieves significantly

improved signal strength prediction accuracy compared

to various baseline methods, in real-world scenarios.

Code and datasets for GEO2SIGMAP are open-source [22].

II. RELATED WORK

RF propagation modeling and SS measurements. RF prop-

agation modeling and signal strength (SS) measurements are

essential for commercial cellular networks to ensure desired

coverage and guaranteed quality of service to the end users

in both the sub-7 GHz and millimeter-wave band [23]–[27].

Recent works have reported extensive LTE/5G measurements

and analysis in the wild [28], including in urban areas and

considering the CBRS band [29], [30], with a focus on the

co-existence between different services and activities [3]–[5].

Ray tracing tools. A diverse range of commercial licensed
ray tracing software is available, with examples such as

WinProp [11], iBwave Design [31], Wireless Insite [32],

Volcano [12], and MATLAB [33], each offering specialized

features for advanced signal propagation simulation. On the

other hand, open-source alternatives such as Sionna [13] and

Opal [14] present a more accessible option, but often with a

more limited range of features and potentially lower accuracy.

RF signal mapping and SS prediction. There are two

main categories of RF signal mapping in the context of SS

prediction at the point-level [17], [34]–[38] and the map-
level [16], [19], [39]–[45]. Point-level SS prediction aims to

predicts the SS at a given location at a time. Such predictions

can be achieved using analytial/statistical channels models,

ray tracing tools, or by random forest [34] and ML models

that take the input of satellite maps [17] and public urban

data [35]. More advanced ML approaches based on variational

autoencoder (VAE) [36], [37] and transfer learning targeting

at the CBRS band [38] have also been studied. Map-level SS

prediction, closer to our work, aims to predict the SS map

of an entire area. Recent works for map-level SS prediction

have employed ML models based on convolutional neural

networks (CNNs) [39], [40] and U-Net [16], [19], [41], [46].

The input to the ML model includes various features such

as the building/satellite maps [42], [43], population and road

map [43], and sparse SS measurements [39], [44], [46].

SS maps can also be estimated using compressive sensing

techniques leveraging spatial and temporal continuity. For

example, Bayesian compressive sensing has been used for

estimating the indoor SS map in Wi-Fi networks [47].

Most relevant to this work is PLNet [15], which is a state-

of-the-art ML-based method that leverages detailed environ-

mental data and cell specifications to accurately predict SS

maps. In particular, PLNet uses a single U-Net architecture,

whose input features include building, terrain, and clutter

maps as well as antenna height, orientation, and beam pattern

information. The U-Net model is trained using synthetic SS

maps generated by the licensed Siradel SAS software [12] for

accurate signal propagation modeling.

To the best of our knowledge, this is the first work that: (i)
develops an automated framework integrating open-source ge-
ographic databases, computer graphics, and ray tracing tools,
and (ii) integrates a novel cascaded U-Net architecture that
achieves significantly improved SS map prediction accuracy
compared to various baseline methods.
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Fig. 1: (a) An example 512 m×512 m area on the Duke West campus,
(b) the corresponding building map generated by OSM and rendered
by Blender, (c) an example building object in the 3D mesh used as
input to Sionna, and (d) the simulated path gain (PG) map with an
antenna placed at the center of the map with a height of 24 m, 160◦

azimuth orientation, and 10◦ downtilt.

III. SYSTEM DESIGN

In this section, we present the design of GEO2SIGMAP,

which is composed of three key modules. The first module

is responsible for generating building maps and 3D meshes

generation using OSM and Blender for accurate spatial rep-

resentation of the physical environment. The second module

is dedicated to generating the path gain (PG) maps generation

using Sionna, an open-source ray tracing tool. The final mod-

ule integrates an ML engine based on the U-Net architecture

tailored for efficient and precise RF signal mapping.

A. Building Maps and 3D Meshes

For a given geographical area A with dimension Lx(m) ×
Ly(m), we first generate a building map and a 3D mesh that

will be used for the ML model and ray tracing simulation.

In particular, the building map is represented by a 1-channel

image, B ∈ R
Nx×Ny , with a resolution of Lx/Nx = Ly/Ny =

r(m). As a result, the value of each pixel in a building

map represents the height of a physical area with dimension

r(m)×r(m). We denote the generated synthetic building map

dataset by B. Fig. 1 shows the process to generate the building

maps using OSM [20], which is an open geographic database,

and Blender [21], which is an open-source 3D computer

graphics software tool. First, we use OSM to extract the

geographic information of a physical area, including the class

of the objects (e.g., building, forest) with their corresponding

locations and shapes. The extracted information is stored using

key-value pairs in the OSM XML format (.osm) [48], where

the key describes the context of the location (e.g., buildings

or highways) and the value contains the detailed information

TABLE I: Ray tracing parameters employed by Sionna.

Parameter Setting/Value
Carrier frequency, f 3.66 GHz
Area dimension 512 m×512 m
Spatial resolution, r 4 m
Reflection Enabled
Diffraction Enabled
Maximum # of reflections/diffractions 8 bounces
Total # of rays 7,000,000
BS antenna height (area-specific) max(B) + 5(m)
BS antenna type Isotropic, Directional
BS antenna polarization Dual-polarized (VH)
UE antenan height 2 m
UE antenna type Isotropic
UE antenna polarization Dual-polarized (VH)

about the key (e.g., shape and height of a building). We

convert the GPS coordinates (EPSG:4326) used by OSM

to Cartesian coordinates that describe the building locations

within each area. Then, based on the building layer data in

the exported OSM XML file, we use Blender to model the

buildings into 3D objects, which are saved as a 3D mesh in

the Polygon File Format (.ply). We also use the Mitsuba

XML format (.xml) to record the material properties of each

3D mesh, such as bricks and glasses. These properties include

the objects’ relative permittivity and conductivity, from which

the reflection/diffraction coefficients are derived and used in

the ray tracing process, described next.

B. Ray Tracing-based Path Gain (PG) Maps

For each area A, we employ Sionna [13] to generate PG

maps for each area based on the 3D mesh. Similar to the

building map, B, the PG map is represented by a 1-channel

image, P ∈ R
Nx×Ny , whose pixel values correspond to the PG

values in the dB scale. For each area, we assume that a BS is

located at the center of the area at a height of max(B)+5(m),
e.g., the BS antenna is 5 m above the highest point of the

building map. To generate the synthetic PG datasets using

realistic building maps, we consider two types of antennas

employed by the BS: (i) an isotropic antenna with 0 dBi

gain in all directions, and (ii) a directional antenna with a

boresight gain of 6.3 dBi and a horizontal/vertical half-power

beamwidth (HPBW) of 65◦/8◦, which are typical parameters

for directional cellular antennas (e.g., Airspan AirSpeed 1030

in the CBRS band [49]). For the directional antenna, we

consider four orientations randomly selected in the azimuth

plane. Since our focus is in the CBRS band, we use Sionna to

generate the PG maps, Piso and Pdir, with a carrier frequency

at 3.66 GHz and other parameters summarized in Table I. In

particular, the pixels in each PG map corresponding to the

buildings in the area are excluded since we focus on RF signal

mapping in outdoor areas. Overall, five PG maps (one Piso

and four Pdir) are generated with respect to each building map

B that corresponds to an area A. We denote the generated

synthetic PG map datasets by Piso and Pdir, respectively.

In Section IV, we describe the details of the generated PG

datasets used for model training.
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Fig. 2: GEO2SIGMAP achieves efficient and precise RF signal mapping via a proposed cascaded U-Net architecture, which is composed of
U-Net-Iso and U-Net-Dir for generating coarse path gain (PG) maps and fine-grained signal strengh (SS) maps, respectively.

C. Cascaded U-Net for RF Signal Mapping
At the core of GEO2SIGMAP is an ML engine for high-

fidelity RF signal mapping from geographic databases. In

this work, we focus on the reconstruction of signal strength

(SS) maps, but the proposed framework can also be extended

to predicting other metrics in a given area, such as signal

coverage and signal-to-interference-plus-noise ratio (SINR).

The key insight toward the design of the ML model is a two-

stage process that turns a building map into a SS map using

two cascaded U-Nets, as shown in Fig. 2. In particular, the

first U-Net (U-Net-Iso) takes inputs of a building map, B, and

its PG map based on the UMa model, PUMa, and generates the

coarse PG map, Piso, assuming an isotropic antenna is used

at the BS. The second fine-grained U-Net (U-Net-Dir) takes

inputs of the building map, B, the coarse PG map, Piso, and

a sparse SS map, S↓, and generates the full SS map for the

entire area, S. In essence, U-Net-Iso learns Piso by adding the

knowledge of the building map information to the PG map

based on the UMa model, while U-Net-Dir further learns S
by incorporating directivity and link budget information.

The first U-Net, named U-Net-Iso, takes a 2-channel im-

age [B;PUMa] ∈ R
Nx×Ny×2 as the input and generates the

isotropic PG map Piso, where PUMa denotes a lightweight

PG map based on the 3GPP UMa channel model [9]. This

2-channel input allows for U-Net-Iso to learn the residual

between PUMa and Piso when taking into account the specific

building map for the area, therefore facilitating the training

process. We consider a U-Net model consisting of 9 con-

volutional blocks and 4 downsample/upsample layers. Each

convolutional block includes two 2D convolutional layers with

a kernel size of 3×3 and a padding size of 1×1, which ensures

that the dimensions of input and output remain consistent,

and is followed by a 2D batch normalization (BN) layer with

ReLU serving as the activation function. In the contracting

path (left side), downsampling is achieved by a 2×2 max

pooling operation, whereas in the expansive path (right side),

upsampling is achieved by a 2D transposed convolutional

layer with 2×2 stride and 2×2 kernel size. The number of

input/output channels of the convolutional layers is doubled

(64→128→256→512→1,024) as the image size decreases by

a half (128→64→32→16→8). Moreover, the output of each

convolutional block in the contracting path is copied and

concatenated to the input to the corresponding convolutional

block in the expansive path. This copy and concatenation

operation mitigates the potential vanishing/exploding gradients

issue. We denote the set of (trainable) parameters in U-Net-Iso

across the 2D convolutional layers and BN layers as θiso.
The second U-Net, named U-Net-Dir, employs an identical

architecture as U-Net-Iso but with different input and output,

as shown in Fig. 2. In particular, U-Net-Dir takes a 3-channel

image, [B;Piso; S↓] ∈ R
Nx×Ny×3 as the input, whose 3 chan-

nels correspond to the building map, the PG map generated

by U-Net-Iso, and a sparse SS map, S↓, that includes a small

number of SS values sparsely sampled across the area.
The output of U-Net-Dir is the full SS map of the entire

area, denoted by S ∈ R
Nx×Ny . We apply the following link

budget equation (in the dB scale) between a transmitter (TX)

and receiver (RX) to generate a diverse range of synthetic SS

maps based on the directional PG maps, Pdir,

S [dBm] =PTX [dBm] + GTX [dB] + Pdir [dB]

+ GRX [dB] − IL [dB], ∀A, (1)

where PTX, GTX, GRX, and IL denote the TX power and gain at

the BS, RX gain at the UE, and potential insertion loss of the

link, respectively. For each area of the synthetic dataset, the

values of PTX, GTX, GRX, and IL are independently drawn from

a specified random distribution (described in Section IV-A),

which are then used to generate the SS map for the same area

based on (1). This approach simulates a wide range of BS

and UE specifications, alongside other influential factors not

accounted for by Piso, such as shadowing, obstructions, and UE

orientation. In essence, U-Net-Dir is designed to predict the

full SS map of a given area based on a few SS values sampled

across the area, together with the building map and the PG

map produced by U-Net-Iso. We denote the set of (trainable)

parameters in U-Net-Iso across the 2D convolutional layers

and BN layers as θiso.
The cascaded U-Net is trained in a 2-stage procedure using

the synthetic datasets B, Piso, and Pdir. In the first stage, the

parameters of U-Net-Iso, θiso, are trained using the synthetic

isotropic PG dataset, Piso, with a loss function given by the

mean squared error (MSE) between the predicted PG map,

4
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Fig. 3: A 6.41 million km2 area in North America (left), from which
a total number of 27,176 512 m×512 m areas with a building-to-
land ratio of at least 20% are selected to generate the building map
and PG map datasets used to train the cascaded U-Net model in
GEO2SIGMAP. The trained model is evaluated using measurements
conducted on the Duke University campus (right).

P̂iso, and the synthetic PG map, Piso, i.e.,

L(B,θiso) =
1

NxNy
· ∣∣∣∣Piso − P̂iso(B,θiso)

∣∣∣∣2
F
, (2)

where ||X||F denotes the Frobenius norm of a matrix given

by ||X||F =
√∑

i,j |Xi,j |2. In the second stage, θiso is frozen

and the parameters of U-Net-Dir, θdir, are trained using the

synthetic directional PG dataset, Pdir. Similarly, we use a loss

function given by the MSE between the predicted SS map, Ŝ,

and ground truth SS map, S, i.e.,

L(B, S↓,θdir) =
1

NxNy
· ∣∣∣∣S − Ŝ(B, S↓,θdir)

∣∣∣∣2
F
. (3)

In Section IV-A, we provide details on the dataset generation

and process to train the model parameters (θiso,θdir).

IV. IMPLEMENTATION AND MEASUREMENTS

A. Dataset Generation and Cascaded U-Net Model Training

We generate large-scale synthetic building maps and ray

tracing datasets used to train the ML model in GEO2SIGMAP.

We consider a 6.41 million km2 area in North America, as

shown in Fig. 3, which is divided into 24.46 million non-

overlapping areas with the same dimension of 512 m×512 m

(Lx = Ly = 512m). Note that the number of areas is larger at

lower latitudes. Since we focus on RF signal mapping in urban

and suburban areas, we select the areas with a building-to-land

ratio of at least 0.2, i.e., at least 20% of the area is covered

by building footprints. As a result, a total number of 27,176

areas are selected, covering a total landscape of 7,124 km2.

The dataset generation is implemented on Sionna 0.15.1 and

Blender 3.3.1, and the code is open-source at [22]. For each

selected area, we generate one building map (B) together with

its corresponding 3D mesh, one PG map based on the UMa

channel model (PUMa), and five PG maps based on Sionna

(one Piso and four Pdir), following the process described in

Section III. Each map is represented by a 1-channel 128×128

TABLE II: Specifications of six CBRS LTE cells (PCI A–F).

PCI Carrier
Frequency Bandwidth Height Azimuth

Orientation Downtilt

A 3.69 GHz 20 MHz 84.6 ft 216◦ 10◦

B 3.64 GHz 20 MHz 84.6 ft 216◦ 10◦

C 3.58 GHz 20 MHz 99.6 ft 30◦ 18◦

D 3.56 GHz 20 MHz 99.6 ft 30◦ 18◦

E 3.69 GHz 20 MHz 99.6 ft 212◦ 16◦

F 3.64 GHz 20 MHz 99.6 ft 212◦ 16◦

TABLE III: Total number of measurements collected by each UE
type from different cells used for performance evaluation.

PCI A B C D E F
Galaxy A42 4,297 3,461 1,599 1,436 529 970

Pixel 5 1,352 1,148 971 898 922 1,121
RPi w/ LTE HAT 4,110 8,469 3,741 4,425 1,792 3,915

Total # of Meas. 9,759 13,078 6,311 6,759 3,243 6,006

image (Nx = Ny = 128) with a spatial resolution of 4 m,

and the parameters used by Sionna are summarized in Table I.

Overall, the synthetic dataset consists of 27,176 building maps

generated by OSM and 135,880 PG maps generated by Sionna.

To obtain the synthetic SS maps, S used by U-Net-Dir, we

consider the following uniform distributions in the dB scale to

generate the parameters to be used by the link budget equation

(1) with the PG maps, Pdir: PTX ∼ Unif(+10, +35) dBm,

GTX,GRX ∼ Unif(10, 20) dB, and IL ∼ Unif(−10, +10) dB.

The generated synthetic dataset is split into training and

validation sets with a split ratio of 0.8:0.2, and used to train

the cascaded U-Net model following the procedure described

in Section III-C, with Adam optimizer of learning rate 1e-3

and batch size of 64. The sparse SS maps are generated as

follows to be used during the training phase. For each area in

an epoch, we randomly select Nsparse points from the outdoor

area of the full SS map, S, to form the sparse SS map S↓,

where Nsparse is drawn from the distribution Unif[1, 200].

The model is trained using an NVIDIA A100 GPU over

200 epochs, during which the model parameters (θiso,θdir)
with the lowest loss on the validation set are selected. We

also apply data augmentation in the training phase by rotating

(0◦/90◦/180◦/270◦) and mirroring both the input and output

maps (images), which enlarges the dataset by 8×. Overall, the

cascaded U-Net model trained using only synthetic datasets

consists of 31.04 million parameters.

B. Real-World Measurements

To evaluate the performance and generalizability of our

proposed framework GEO2SIGMAP, we conducted a large-

scale measurement campaign between 07/2023–11/2023, dur-

ing which we collected user-side cellular data from six LTE

cells operating in the CBRS band (3.55–3.7 GHz) deployed on

the Duke University West Campus. Table II summarizes the in-

formation about these LTE cells associated with (anonymized)

PCI A through PCI F. As shown in Fig. 4(a), two cells (PCI

A/B) are deployed on top of the Davison Building at a height

of 84.6 ft, and four cells (PCI C/D/E/F) are deployed on top of

the Crowell Quad House at a height of 99.6 ft. We select two

512 m×512 m areas with PCI A/B and PCI C/D/E/F located

at the center, respectively, as shown in Fig. 4(b). One building

map and 3D mesh are generated for each area, which are used
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Fig. 4: (a) Six LTE cells operating in the CBRS band deployed on the Duke University West Campus (detailed cell information in Table II).
(b) Sample RSRP measurements collected by the UE when served by two cells (PCIs A and F) within the corresponding 512 m×512 m area.

by Sionna to obtain the ray tracing-based SS maps. Note that
these two areas are not included in the training set (see Fig. 3),

We use three types of devices serving as the UE, including

three Samsung Galaxy A42 phones, one Google Pixel 5 phone,

and one Raspberry Pi (RPi) 4B with an LTE HAT based on

the Quectel EM060K-GL module. For the mobile phones,

we develop a customized Android app to record the BS-

side and user-side information including GPS coordinates,

PCI, and reference signal receive power (RSRP), with a

time resolution of 2 seconds. For the RPi setup, we develop

customized Python-based scripts using AT commands [50]

to record similar information, with a time resolution of 0.5

seconds. Table III summarizes the total number of collected

measurements for each UE type when served by different cells,

and Fig. 4(b) shows two examples of the collected RSRP

measurements when the UE is served by two cells (PCI A/F).

We focus on the RSRP information collected by the UE

when served by different cells (PCIs), which indicates the

received SS observed by the UE at different locations. We

average all the measurements within an area of r(m)× r(m)
to obtain the RSRP value corresponding to the pixel in the SS

map, and the pixels without any measurements are excluded

when calculating the prediction errors. We denote by Sr the

RSRP map obtained from real-world measurements, and by

S↓
r as the sparse RSRP map, which contain a subset of RSRP

measurement points in Sr. Using S↓
r , B, and PUMa as the inputs

to the cascaded U-Net model, which is pre-trained using only

the synthetic datasets, GEO2SIGMAP will predict the RSRP

map for the entire area, Ŝr.

C. Baseline Methods

We evaluate the performance of GEO2SIGMAP against five

baseline methods, including three analytical/statistical channel

models, a ray tracing model utilizing Sionna, and PLNet [15],

which is an ML-based radio propagation model based on

CNNs. We convert the path loss values generated by these

models into PG values by applying a multiplication factor of

−1. Below, we provide details about each baseline method.

Friis free space model. The Friis transmission equation [8]

is a fundamental formula that estimates the path gain,

PGFriis (dB), as a function of the link distance, d (km), and

the carrier frequency, f (MHz), given by

PGFriis [dB] = −[
32.45 + 20 log10(d) + 20 log10(f)

]
. (4)

3GPP urban macro (UMa) model. We also consider the

urban marco (UMa) model specified by 3GPP TR38.901 [9],

which includes both the line-of-sight (LOS) and the non-line-

of-sight (NLOS) scenarios. For the LOS case, the path gain,

PGUMa-LOS, as a function of the link distance, d (m), and carrier

frequency, f (GHz), is given by

PGUMa-LOS [dB] =⎧⎪⎨
⎪⎩
−[

28.0 + 22 log10(d) + 20 log10(f)
]
, if d < dBP,

−[
28.0 + 40 log10(d) + 20 log10(f)

−9 log10((dBP)
2 + (hTX − hRX)

2)
]
, if d ≥ dBP,

(5)

where dBP = 4(hTX−1)(hRX−1) ·f/c denotes the breakpoint

distance and c is the speed of light. For the NLOS case, the

path gain PGUMa-NLOS is given by

PGUMa-NLOS [dB] = min{PGUMa-LOS, PG′
UMa-NLOS}, (6)

where the second term is given by PG′
UMa-NLOS [dB] =

−[
13.45 + 39.08 log10(d) + 20 log10(f)− 0.6(hRX − 1.5)

]
.

Ericsson channel model. Another well-known and widely

used channel model is the Ericsson model [10], which is devel-

oped by Ericsson based on the modified Okumura-Hata model

and supports varying parameters according to the propagation

environment. The path gain under this model, PGEric (dB),

as a function of the link distance, d (km), carrier frequency,

f (MHz), TX antenna height, hTX (m), and RX antenna height,

hRX (m), is given by

PGEric [dB] = −[
a0 + a1 log10(d) + a2 log10(hTX)

+ a3 log10(hTX) · log10(d)
− 3.2(log10(11.75hRX)

2) + g(f)
]
, (7)

where g(f) = 44.49 log10(f) − 4.78(log10(f))
2. Since we

focus on urban environments, the coefficients a0, a1, a2, and

a3 are set as 36.2, 30.2, 12, and 0.1, respectively [10].
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Fig. 5: Root-mean-square error (RMSE) of the RSRP values predicted
by GEO2SIGMAP with varying number of measurement points in the
sparse map for different PCIs (left) and device types (right).

Ray tracing model utilizing Sionna. We implement an-

other baseline method based on pure ray tracing employing

Sionna 0.15.1. In particular, we follow the procedure described

in Sections III-A and III-B with the ray tracing parameters in

Table I and the cell information in Table II to generate the

PG map. Then, the SS map can be obtained by plugging the

antenna parameters into the link budget equation (1).

PLNet. PLNet [15] is a state-of-the-art ML-based method that

leverages detailed environmental data and cell specifications

to accurately predict SS maps. In particular, PLNet uses

a single U-Net architecture, whose input features include

building, terrain, and clutter maps as well as antenna height,

orientation, and beam pattern information. The U-Net model

is trained using synthetic SS maps generated by the Siradel

SAS software [12], which is a commercial licensed ray tracing

tool for accurate signal propagation modeling. Due to the

proprietary nature of Siradel SAS, our implementation of

PLNet utilizes the synthetic directional PG datasets generated

by Sionna and the same U-Net model architecture as described

in [15], where the terrain and clutter maps are excluded from

the input features.

Model calibration. We convert the PG values generated by

each baseline method into their respective SS maps based on

(1). To compensate for uncertain system parameters, such as

the UE orientation and antenna gain, we introduce a constant

offset when calculating the SS maps for each baseline. These

offsets are optimized using 100 data points collected from our

measurement campaign, which enable calibration and fine-

tuning of each baseline and ensure fair comparison across

different methods. The performance of each calibrated method

is then evaluated using real-world measurement data.

V. EVALUATION

We evaluate the performance of GEO2SIGMAP using real-

world measurements and compare it with various baseline

methods. We focus on the RSRP values recorded by the UE

serving as the SS maps, and our proposed framework can also

be extended to mapping other key metrics such as SINR and

RSSI, as described in Section III.

Selecting the sparse SS map size. We first explore the answer

to the following question: How many RSRP measurement

points from a given area are sufficient for the cascaded U-Net

model, pre-trained using only synthetic datasets, to accurately

Fig. 6: RMSE of the predicted RSRP maps for individual PCIs
achieved by GEO2SIGMAP compared to the baselines.

predict the full RSRP map for the entire area? Fig. 5 shows

the root-mean-square error (RMSE) of the predicted SS map

for the entire area, Ŝr, compared to the ground truth SS map,

Sr, with varying sparse SS map sizes, i.e., sparse SS maps

comprising different numbers of measurement points are used

to predict the full SS map.

The results show that with only 50 measurement points,

GEO2SIGMAP achieves an average RMSE of 7.79 dB across

all PCIs and UE types. The RMSE is further improved to

6.50 dB and 5.64 dB with 100 and 200 measurement points,

respectively. Based on these results, we empirically select to

use sparse SS maps with 100 measurement points for the

prediction of the full SS maps to evaluate the performance of

GEO2SIGMAP and its comparison to other baseline methods.

RMSE of predicted RSRP maps. We then evaluate the

performance of GEO2SIGMAP in terms of the predicted

RSRP maps and compare it with five baselines, including

three statistical channel models (Friis, UMa, and Ericsson),

Sionna-based ray tracing, and PLNet, as described in Sec-

tion IV-C. Note that the analytical/statistical channel models

and Sionna-based ray tracing models are calibrated with an

offset optimized using 100 measurement points. In contrast,

PLNet and GEO2SIGMAP are trained using only synthetic

datasets. Fig. 6 shows the RMSE of the RSRP maps predicted

for individual PCIs by GEO2SIGMAP and various baseline

methods, where the measurements collected across all UE

types are aggregated for each PCI. In general, the RMSE

values achieved by different methods exhibit similarity for

each pair of two PCIs sharing the same configurations (i.e.,

PCI A/B, C/D, and E/F, see Table II). The results show that

GEO2SIGMAP consistently outperforms all baseline methods

without relying on any measurements: it achieves an RMSE

between 4.39–7.74 dB across the six PCIs, representing an

average RMSE improvement of 3.59 dB compared to the next

best performing method.

Error distribution of predicted RSRP maps. Fig. 7 presents

the absolute error of the RSRP maps predicted for individual

PCIs by GEO2SIGMAP and the baseline methods, displayed

in the standard boxplot format and categorized by three

UE types. The results show that GEO2SIGMAP achieves

significantly improved prediction accuracy in both median

and tail performance metrics. Specifically, GEO2SIGMAP

achieves an average median absolute error of the predicted

RSRP maps between 3.77/3.69/3.31 dB across the six PCIs
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(a) Samsung Galaxy A42

(b) Google Pixel 5

(c) Raspberry Pi with LTE HAT.

Fig. 7: Absolute error of the predicted RSRP maps for individual
PCIs achieved by GEO2SIGMAP compared to the baseline methods
and categorized by three UE types.

for the Galaxy A42, Pixel 5, and RPi UE type, respectively.

This represents an average improvement of 4.62/3.34/5.14 dB

compared to the second best baseline method. In addition,

compared to the baseline methods, GEO2SIGMAP achieves a

much smaller average interquartile range (IQR) of the absolute

error of 5.06/5.04/4.58 dB across the six PCIs for the three

UE types, respectively, which is 5.38/4.78/4.49 dB lower than

that of the closest competing baseline method. Furthermore,

Fig. 8 shows the probability distribution functions (PDFs)

of the RSRP prediction errors achieved by GEO2SIGMAP,

aggregated across six PCIs and categorized by the three UE

types. The results reveal that our proposed method achieves

a more focused error distribution with smaller variations,

outperforming all the baseline methods.

VI. DISCUSSIONS AND LIMITATIONS

Impact of other environmental factors. In addition to

3D buildings, PG can be affected by other environmental

factors, such as the terrain profile, foliage condition, and

human/vehicle blockage. Therefore, there is room for im-

provement by incorporating a more diverse set of objects into

the ray tracing tool, which can provide more accurate results

for ray tracing. Fortunately, Google has recently released the

“3D Tile API” [51] on Google I/O 2023, which includes

not only building maps but also foliage condition and terrain

profiles. Currently, this API covers over 2,500 cities across 49

countries worldwide. We plan to investigate the integration of

this API into our developed pipeline to further improve the

environmental awareness during the ray tracing process.

(a) Samsung Galaxy A42 (b) Google Pixel 5 (c) RPi w/ LTE HAT

Fig. 8: Error distribution of the predicted RSRP maps achieved by
GEO2SIGMAP compared to the baseline methods.

Model adaptation on different geographic and network
settings. So far, our synthetic dataset generation, model train-

ing, and performance evaluation focus on the CBRS band

(3.55–3.7 GHz) with an area dimension of 512 m×512 m. As

a result, our model may exhibit degraded performance with

different area sizes (e.g., 1,024 m×1,024 m) and at different

carrier frequency bands used by commercial cellular networks.

To address these challenges, we can generate a dedicated syn-

thesized dataset that accounts for these factors and investigate

transfer learning techniques to generalize pre-trained cascaded

U-Net model to different scenarios.

VII. CONCLUSION

We presented the design of GEO2SIGMAP, an efficient

framework for high-fidelity RF signal mapping leveraging

geographic databases and a novel cascaded U-Net model.

We first developed an automated pipeline that efficiently

generates 3D building and path gain maps via the integration

of a suite of open-sourced tools, including OSM, Blender

and Sionna. Then, the cascaded U-Net model pre-trained

on synthetic datasets utilizes the building map and sparse

SS map as input to predict the full SS map for the target

(unseen) area. We extensively evaluated the performance of

GEO2SIGMAP using large-scale field measurement collected

using three UE types across six CBRS LTE cells deployed on

the Duke University West Campus. Our results showed that

GEO2SIGMAP achieves significantly improved RMSE of the

SS map prediction compared to existing baseline methods.
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