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Abstract— In this work, we present RadCloud, a novel real-
time framework for directly obtaining higher-resolution lidar-
like 2D point clouds from low-resolution radar frames on
resource-constrained platforms commonly used in unmanned
aerial and ground vehicles (UAVs and UGVs, respectively);
such point clouds can then be used for accurate environmental
mapping, navigating unknown environments, and other robotics
tasks. While high-resolution sensing using radar data has
been previously reported, existing methods cannot be used
on most UAVs, which have limited computational power and
energy; thus, existing demonstrations focus on offline radar
processing. RadCloud overcomes these challenges by using a
radar configuration with 1/4th of the range resolution and
employing a deep learning model with 2.25× fewer parameters.
Additionally, RadCloud utilizes a novel chirp-based approach
that makes obtained point clouds resilient to rapid movements
(e.g., aggressive turns or spins) that commonly occur during
UAV flights. In real-world experiments, we demonstrate the ac-
curacy and applicability of RadCloud on commercially available
UAVs and UGVs, with off-the-shelf radar platforms on-board.

I. INTRODUCTION

Light detection and ranging (lidar) sensors are often re-

ferred to as the golden standard for applications requiring

highly accurate and dense 3D point clouds [1]. For example,

the common Velodyne VLP-16 Puck has a horizontal angular

resolution of 0.1◦ and a range resolution of 2 mm [2]. Such

high ranging and angular resolutions make lidar sensors par-

ticularly well suited for various applications including map-

ping, navigation, surveying, and advanced driver assistance

systems [3], [4]. However, these sensors also have poor per-

formance in low-visibility environments like fog and smoke.

Additional drawbacks include high cost, large form factors

(i.e., size), and higher power consumption compared to other

ranging sensors on the market. For example, the VLP-16

lidar requires a separate interface box, consumes 8 W of

power during nominal operation, has a mass of 830 g, and

costs $4,600 [2], [5], with drone-mounted sensors costing

even more [6]. Thus, most lidars are ill-suited for resource-

constrained vehicles, such as small to midsize UAVs.

On the other hand, millimeter-wave (mmWave) radio de-

tection and ranging (radar) sensors are cheaper, smaller,
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lighter, and consume far less power while also providing

accurate ranging information even in adverse weather and

lighting conditions [7]–[9]. For example, the commercially

available TI-IWR1443 mmWave radar sensor has a typical

power consumption of 2 W, weighs 245 g, and the full eval-

uation kit costs only $398 [10], [11]. Due to the large signal

bandwidth of up to 4 GHz, mmWave radars can achieve cm-

level range resolutions (e.g., 4 cm for TI-IWR1443 [7], [12]).

However, radars suffer from poor angular resolution. For

example, the TI-IWR1443 has a maximum azimuth resolu-

tion of 30◦ [13]. Thus, our goal is to enable real-time, af-

fordable, and high-resolution sensing on resource constrained

vehicles (e.g., UAVs) by using deep learning to overcome the

traditional resolution limits of radar sensors.

In particular, this work introduces RadCloud, a novel real-
time framework for efficient generation of high-resolution

lidar-like 2D point clouds using low-resolution radar data

for resource-constrained unmanned vehicles (e.g., UAVs and

UGVs). While several recent works have explored high-

resolution sensing and mapping applications using mmWave

radar sensors [14]–[16], [16]–[22], they all have limitations

such as only working on specific applications, relying on

highly accurate position information (e.g., [16]–[20]) or not

working in real-time (i.e., using offline processing). To start,

[23] utilized a deep learning model to better detect real

objects and filter out false radar defections to achieve higher

quality point clouds. Also, [14], [15] focus on generating

accurate 3D bounding boxes from radar data, but can only

identify specific objects (e.g., vehicles) in the environment.

By contrast, RadCloud generates a lidar-like point cloud

from raw radar data for the entire environment, including

stationary objects like walls. Similarly, RadCloud does not

require position information and allows the sensing platform

(i.e., the vehicle) to follow any trajectory.

Outside of traditional radar processing methods, [16], [21],

[22] present methods of converting radar data into lidar-

like point clouds for the purposes of indoor mapping. While

[16], [21], [22] post-process radar scans of a particular scene

or indoor environment to create final lidar-like point cloud

mapping, RadCloud directly converts radar data frames into

2D lidar-like point clouds in real-time. Thus, enabling the

use of the generated point clouds for other purposes like

real-time navigation (in addition to mapping) and SLAM.

To the best of our knowledge, only [24] recently presented

a method of directly converting raw radar data into lidar-

like point clouds using a modified U-Net architecture [25].



Fig. 1: Radar Signal Processing Pipeline.

However, the previously recorded radar data, sampled at

the highest resolution for the radar sensor, were processed

offline. On the other hand, we experimentally discovered that

common UAV compute platforms (e.g., Intel NUC) cannot

process the raw data from the radar at sufficient rates to

support the highest resolution radar configurations from [24].

Hence, RadCloud utilizes radar data with 1/4th the maxi-

mum possible range resolution. Moreover, the use of lower-

resolution radar data allows for the use of a model with less

depth and 2.25× fewer parameters than the model from [24],

reducing computational overhead. Despite these constraints

due to the real-time radar processing, we show that RadCloud

model generates sufficiently accurate (non-inferior to [24])

2D lidar-like point clouds with 90% of predictions having

errors <40 cm compared to the ground truth lidar data.

Additionally, [24] utilized the 40 most recent single-chirp

frames to improve the accuracy of the generated point cloud.

Yet, even with high radar sampling rates and offline process-

ing, we find that this approach becomes significantly less ac-

curate during rapid changes in orientation or direction (e.g.,

rapid vehicle turning or spinning). Thus, in contrast to such

frame-based approach using the previous 2 s of sensing data,

we utilize 40 radar chirps collected over a period of 8 ms. In

real-world experiments, deploying RadCloud on a UAV and a

UGV, we demonstrate that this chirp-based approach is much

more resilient to aggressive maneuvers. To the best of our

knowledge, this is the first work to implement a completely

real-time framework for directly converting radar data into

2D lidar-like point clouds on resource-constrained vehicles.

This paper is organized as follows. Sec. II overviews the

employed radar signal processing pipeline. Sec. III describes

the system model, starting with the radar setup, before intro-

ducing the deep learning model used to generate the high-

resolution point clouds. Sec. IV presents the experimental

setup for RadCloud evaluation, followed by evaluation re-

sults (Sec. V), and concluding remarks (Sec. VI). Additional

resources, including code and datasets are available at [26].

II. BACKGROUND: RADAR SIGNAL PROCESSING

We consider a frequency-modulated continuous wave

(FMCW) radar sensor. Here, the radar’s transmitter (Tx)

transmits a specifically constructed signal into the environ-

ment. The signal reflects off objects which are then received

by the radar’s receiver (Rx). While radar sensors can detect

an object’s range, velocity, and angle, in this initial work we

only focus on the range and angle information. The pipeline

we employ is composed of three steps (Fig. 1).

Step 1 : Tx and Rx chirps. For each frame, the radar

transmits a series of “chirps” whose frequency increases

linearly over time. In our framework, we transmit up to 40

chirps per frame (see Sec. III). Here, we use the following

notation: S denotes the chirp slope, fc denotes the chirp
start frequency, and fIF denotes the intermediate frequency
(IF) from mixing the Tx and Rx signals. Thus, the Tx signal

for a single chirp in the radar frame is given by [27]–[29]

x(t) = ej(2πfc·t+πS·t2). (1)

If we assume that the environment is stationary, the time that

it takes for the transmitted signal to propagate to a target at

range of d and back at the speed of light (c) is given by

td = 2d/c. Thus, the received signal can be captured as

y(t) = ARx · ej[2πfc(t−td)+πS(t−td)
2], (2)

where ARx denotes the received signal amplitude.

Step 2 : Dechirping and IF signal generation. Next, the

IF signal is obtained by mixing the Tx and Rx signals

sIF(t) = x(t) · y∗(t) = AIF · ej2πfIF·t ,̧ (3)

where fIF := 2S·d
c , λ = c/fc is the signal wavelength, and

AIF is the amplitude of the IF signal [29]. Then, the IF

signal is put through a low-pass filter (typically removing all

IF frequencies above 10–20 MHz) and sampled by an analog-

to-digital converter (ADC) at a rate fsamp. For each chirp, a

total of NSamp I-Q samples are recorded.

Step 3 : Range-Azimuth response. Using a fast Fourier

transform (FFT), commonly called the “RangeFFT”, the IF

frequency corresponding to a target is estimated; the target’s

range is determined using dobject = fIF

2S · c. The range

resolution (dres – the minimum distance between two objects

detectable by a radar) and maximum range (dmax) are [13]

dres =
c

2B
, dmax =

fsamp · c

S
. (4)

mmWave radars use multiple receive elements to deter-

mine the angle of an object in the environment. The angular

resolution for objects at boresight is defined as θres = 2/NRx

(radians), where NRx is the number of Rx antennas [13]. By

sampling the IF signal, a 2D FFT can be used to compute a

Range-azimuth response (Fig. 1); e.g., the TI-IWR1443 radar

with 4 Rx elements achieves a maximum θres of 28.6◦.

III. RADCLOUD DESIGN

We designed RadCloud to operate completely in real-time

while also being robust to rapid movements commonly ex-

perienced by UAVs and UGVs. These design goals impacted

our system design in several ways.

A. Radar Setup

Unlike all previous work, which employs offline process-

ing of highest resolution radar data, our system processes the

raw sensor data in real-time. This is an important distinction

as most UAV platforms do not have a high enough com-

putational bandwidth to support the instantaneous data rates

required to process radar sensor data at the highest resolution.

We use the TI-IWR1443 radar sensor to perform sensing,

and the TI-DCA1000 data capture card to send the raw data



Fig. 2: RadCloud framework overview.

to the host [11], [30], [31]. This platform has been used in

most previous works involving mmWave radar (e.g., [16],

[21], [22], [24], [32]). Here, the radar sends complex-valued

samples of the IF signal, sIF(t), captured at rate fsamp, where

each sample is 4-Byte (16-bit integer for real and 16-bit

integer for complex). Thus, operating the radar at the maxi-

mum fsamp of 18.75 MSa/s requires the platforms to support

an instantaneous data rate of 2.4 Gbps [11], [30], [31].

Unfortunately, many UAV platforms do not have suffi-

ciently high computation bandwidth to support data sent at

such high instantaneous rates due to limited computational

resources. Also, radar configurations with NSamp ≥ 90
require multiple packets per chirp (due to the maximum Eth-

ernet packet size of 1462 B [31]). For our platform, we em-

pirically decided to operate the radar with fsamp = 2 MSa/s

(instantaneous data rate of 256 Mbps) and NSamp = 641 to

ensure real-time data processing and avoid packet losses.

Radar Configuration. Given the constraints imposed by

the considered UAV platforms, we selected a radar con-

figuration that maximized the range resolution (dres) while

achieving a maximum range (dmax) of roughly 10 m. Thus,

our final configuration utilized chirps with S =35 MHz/μs,

fsamp =2 MSa/s, and NSamp = 64, achieving a chirp band-

width (B) of 1.12 GHz. From (4), we achieve a dres =
13.3 cm and dmax =8.56 m. Compared with previous works

(e.g., [24] that used the maximum B = 4 GHz with NSamp =
256 to achieve dres = 3.7 cm and dmax = 9.59 m), the real-

time data streaming constraints restrict our system to utilizing

radar data with roughly 1/4th the range resolution. Finally,

we note the radar configuration only performs 2D sensing in

light of the sensor’s 6 dB elevation beamwidth of ±20◦.

B. Deep Learning (DL) Model

We develop a DL model based on the U-Net archi-

tecture [25], which takes in a normalized Range-Azimuth

response from the radar (in polar coordinates) and outputs

a quantized grid representing the lidar-like point cloud (in

polar coordinates). The output point cloud is then converted

into the 2D cartesian coordinates that can be used for nav-

igation, mapping, or other point cloud detection algorithms.

Fig. 2 presents an overview of the RadCloud framework.

1Empirical observations showed a significant number of dropped Ethernet
packets for configurations requiring multiple Ethernet packets per chirp.

Model Input. For each radar chirp, we compute a complex-

valued range-azimuth response (Step 3 from Sec. II) with 64

range bins and 64 azimuth bins2. To convert the response

into a format that can be used by a DL model, we start

by taking the magnitude of the complex data, applying a

threshold to filter out very weak reflections3, and normalize

the response to between 0 and 1. While the field of view

of the radar is theoretically ±90◦ due to the Rx element

spacing, we only use parts of the Range-Azimuth response

that are within ±50◦ as this is the horizontal 6 dB beamwidth

of the radar, and the radar’s angular resolution significantly

decreases at angles outside of this field-of-view [13], [30].

Compared to [24], which utilized 2 s worth of previous

frames to improve model accuracy, we empirically decided

to employ 40 chirps from a single radar frame, requiring

only 8 ms of total radar sensing time, i.e., a 250× reduction.

Thus, the final input to the model is a 40×64×484 tensor

corresponding to the 40 normalized range azimuth responses.

Our chirp-based approach is particularly important be-

cause a radar’s view of the environment changes rapidly

when the platform experiences rapid movement (e.g., a vehi-

cle spinning/turning quickly or moving at high speeds). For

the previous frame-based approach [24], this causes the scene

captured in the first few frames to vary drastically compared

to the scene captured in the last few frames. As we show

in Sec. V, the performance of these frame-based models

noticeably degrades when moving rapidly because the sensed

environment can change significantly over several frames in

such cases. Thus, we show that our chirp-based approach

significantly improves robustness to aggressive maneuvers.

Model Output. We take three steps when pre-processing

the ground-truth lidar data used to train and evaluate our

model’s performance. To start, we filter the lidar point cloud

so that it has the same azimuth field of view as the input

radar data. Next, we obtain a 2D lidar point cloud by

only keeping points with −20 cm ≤ z ≤ 10 cm to filter

2The 64 azimuth bins are achieved by zero-padding the azimuth FFT’s
input to 64 bins to increase the smoothness of the generated response. The
resulting azimuth FFT has an FFT bin resolution (different from θres) of
1.8◦ at boresight and 15◦ at 90◦ off of boresight [13], [30].

3We filter out all reflections that are 45 dB less than the maximum
reflected signal power as such reflections are often just noise.

4The reduction of the azimuth dimmension from 64 to 48 occurs due to
the narrowing the radar’s FOV from ± 90◦ to ±50◦.



Fig. 3: UGV and UAV experimental platforms.

out undesired ground detections and in light of the radar

sensor’s 2D configuration. Here, we match the input and

output dimensions by converting the Cartesian point cloud

to polar coordinates and then quantizing the points into a

64×48 polar grid with a horizontal resolution of 2.08◦ and a

range resolution of 13.3 cm. Thus, to obtain a lidar-like point

cloud from the model’s prediction, we convert the prediction

grid into a set of Cartesian points.

Model Architecture. We use a simplified U-net architec-

ture [25] to generate the higher resolution point clouds. The

primary benefit of this architecture is its encoder-decoder

structure. In our case, the encoder progressively downsam-

ples the input data while capturing key context and feature

information from the input radar data. Then, the decoder

outputs the higher resolution point cloud by generating

features from the encoded data while also preserving spatial

information through the use of skip connections [25].

The final model architecture is shown in Fig. 2. To ensure

our model’s real-time performance on resource constrained

platforms, we implemented a simplified model architecture

with fewer layers and less depth compared to the model

from [24]; our model utilizes ∼7.7 M parameters compared

to the ∼17.5 M parameters used by [24], demonstrating a

2.25× reduction in the number of parameters. As we show

in the following sections, this simpler model allows us to

achieve real-time frame rates, even on CPU-only machines.

Loss Function. As shown in [24], utilizing a combination of

Binary Cross Entropy (BCE) loss and Dice loss is particu-

larly effective when converting radar data to lidar-like point

clouds. Here, the BCE loss seeks to force each predicted

pixel to be as close to the actual value as possible while the

added Dice loss helps to make the predicted features sharper.

Similar to [24], we weighted the BCE loss to be 0.9 while

weighting the Dice loss by a factor of 0.1.

IV. EXPERIMENTS

A. Experimental Platform

We demonstrate the real-world capability of RadCloud by

implementing it on a common vehicle platform.

Radar. We utilize the commercially available TI-IWR1443

radar to sense the environment and the TI-DCA1000 data

capture card to stream the raw radar data to the edge compute

platform in real-time [11], [30], [31]. Here, we implemented

a ROS-compatible real-time streaming interface in Python to

obtain data from the TI-IWR1443 via the TI-DCA1000.

Lidar. To obtain ground truth information, we use the

popular VLP-16 Puck lidar sensor [2], [5]. Here, we ensure

Fig. 4: Training and Testing Environments.

a consistent extrinsic calibration between the radar and lidar

sensors by mounting the radar sensor 7 cm below and 10 cm

in front of the lidar sensor, enabling the model to ‘learn’ the

relative position of the radar with respect to the lidar.

Vehicle Computer. We implement our entire real-time

framework on the NUC7i5BNH as our vehicle computing

platform [33]. Unlike previous works (e.g., [24]), which use

powerful Jetson platforms with an integrated GPU, our plat-

form only has a dual-core 3.4 GHz Intel i5 CPU and no GPU.

We highlight that we are the first to implement a completely
real-time system, including streaming data from radar to
the NUC7i5BNH, range-azimuth response computation, and
generating high-resolution 2D lidar-like point clouds. While

we operate our system at 10 frames per second, we achieved

average frame rates above 15 frames per second when testing

our full pipeline on the NUC7i5BNH. Overall, the full ROS-

compatible framework is implemented in over 7,000 lines of

code, which is responsible for the real-time capturing of radar

data and its conversion into lidar-like 2D point clouds.

Robotic Platforms. We mount the RadCloud platform on a

Kobuki ground vehicle and a DJI Matrice 100 drone [34],

[35] (Fig. 3). While we were able to mount the VLP-16 lidar

onto the ground vehicle, we were unable to mount it on the

drone due to the size and weight limitations on the drone.

Thus, we utilize the ground vehicle platform to assess model

performance and the drone-based platform to demonstrate the

feasibility of our framework in airborne environments.

B. Experimental Setup

Training, Validation, and Test Datasets. For training, vali-

dation, and initial testing of the RadCloud model, we capture

time-synchronized radar and lidar frames, sampled at a frame

rate of 10 Hz, across 7 different environments including labo-

ratories, corridors, and building lobbies (Fig. 4). To improve

model robustness, we also drive the ground vehicle along

various trajectories including turns, spinning, and straight-

line movement at a range of angular and linear velocities. We

recorded a total of 87,476 samples for training, validation,

and testing; we used 66,609 samples for training, 11,755

samples for validation and parameter tuning, and 9,112 sam-

ples for testing. The test dataset was recorded independently

from the training and validation datasets, and it included

unique trajectories. Thus, we were able to assess our model’s

performance when operating in the “same” environment.



Unseen Environment Test Dataset. In addition to the 7

environments used for training, validation, and initial testing,

we also recorded an additional 4,767 samples in 3 unseen

environments that the model had not previously been trained

on. We used the results of this “unseen environment” dataset

to assess the model’s performance when operating in unfa-

miliar environments, similar to how a UAV or a UGV may

be used to map or navigate in unknown environments.

Rapid Movement Test Dataset. Finally, we record a third

dataset specifically to evaluate our model’s resiliency to rapid

movements (e.g., spinning, fast turns, and high speed move-

ments) commonly encountered by UAVs and UAGs. While

both the training and test set do include some aggressive

movements, the majority of radar and lidar frames were

recorded at relatively slower speeds. Thus, we recorded an

additional 784 samples while driving the UGV along differ-

ent trajectories at maximum speed and rotational velocity, to

enable evaluating the model’s performance in such situations.

C. Evaluation Metrics

We utilize the commonly used Chamfer and Modified

Hausdorff metrics to evaluate the accuracy of RadCloud

model’s predicted point cloud compared to the ground truth

point cloud obtained from the lidar [36]–[38]. Here, we

define the Chamfer distance (CD) as

CD(S1, S2) =
1

2|S1| Σ
x∈S1

min
y∈S2

d(x, y) +
1

2|S2| Σ
y∈S2

min
x∈S1

d(x, y),

(5)

and Modified Hausdorff distance (MHD) as

MHD(S1, S2) = max

{
med
x∈S1

min
y∈S2

d(x, y), med
y∈S2

min
x∈S1

d(x, y)

}
,

where d(x, y) denotes the Euclidean distance i.e., ||x− y||22.

D. Comparison to Baseline

We were unable to compare our model’s performance

with the model from [24] as the input and output data

dimensions for RadCloud model are different than the one

used by [24]. Thus, we train two additional models that

utilize the previous frame-based approach to compare our

model with such a ‘baseline’. Specifically, we train a model

that uses the previous 20 (single-chirp) frames and another

model that uses the previous 40 (single-chirp) frames.

V. RESULTS

In this section, we present the results from our experimen-

tal evaluations, comparing our with the baseline models.

A. Performance in Same and Unseen Environments

Fig. 5 presents the CDFs of the CD and MHD for the Rad-

Cloud model and the two baseline models, operating in the

previously seen (e.g., same as training) environments and

unseen environments. Table I and Table II summarize the key

metrics for each distribution. The results show that our chirp-

based approach is nearly as good as the previous frame-based

approaches at generating high-resolution point clouds from

low-resolution radar data. This is further supported by Fig. 6

showing a predicted point cloud from the RadCloud model.

RadCloud
Significantly

Better

(b) (c)(a)

Same Environment Unseen Environment Rapid Movement

Fig. 5: Error distributions for (a) same environment, (b)

unseen environments, and (c) during rapid movements

TABLE I: Error Comparison - Same Environment

Metric Units RadCloud 20 frames 40 frames

Cham. (Mean) m 0.20 0.18 0.18
Cham. (Median) m 0.14 0.13 0.14
Cham. (90%) m 0.40 0.36 0.38
MHaus. (Mean) m 0.12 0.11 0.11
MHaus. (Median) m 0.09 0.09 0.09
MHaus. (90%) m 0.23 0.20 0.23

TABLE II: Error Comparison - Unseen Environment

Metric Units RadCloud 20 frames 40 frames

Cham. (Mean) m 0.27 0.27 0.26
Cham. (Median) m 0.26 0.24 0.24
Cham. (90%) m 0.46 0.45 0.45
MHaus. (Mean) m 0.22 0.19 0.20
MHaus. (Median) m 0.15 0.09 0.14
MHaus. (90%) m 0.41 0.40 0.40

TABLE III: Error Comparison - Aggressive Maneuvers

Metric Units RadCloud 20 frames 40 frames

Cham. (Mean) m 0.26 0.35 0.37
Cham. (Median) m 0.20 0.24 0.31
Cham. (90%) m 0.53 0.83 0.81
MHaus. (Mean) m 0.17 0.32 0.34
MHaus. (Median) m 0.13 0.13 0.17
MHaus. (90%) m 0.39 0.82 0.87

As shown, our model’s output is almost identical to

the ground truth lidar point cloud, demonstrating that the

RadCloud model is well suited for converting low-resolution

radar range-azimuth responses to high-resolution lidar-like

2D point clouds. We also highlight how our model does a

good job of capturing complex shapes in the environment

like various corner shapes. The results also show that the

RadCloud model still generates accurate point clouds even in

unseen environments, enabling its use on UAVs and UAGs to

map or navigate unseen environments. Finally, we highlight

the accuracy of our model’s predictions with over 90% of

generated point clouds having a CD less than 46 cm and a

MHD less than 41 cm when compared to the ground truth

lidar point cloud, even in unseen environments.

B. Rapid Movement Performance

Fig. 5(c) presents the CDFs of the CD and MHD for

our model and the two baseline models during aggressive

maneuvers, whereas Table III summarizes the key metrics

for each distribution. Compared to the other scenarios, the

performance of the frame-based models noticeably degrades



Fig. 6: Input radar data, ground truth point cloud, and

predicted point cloud for nominal operation. The bottom row

shows the format at the inputs/outputs of the model. The top

row shows the data in a Cartesian format.

Fig. 7: Generated point clouds during rapid movements.

in cases of fast movements. For example, the 20 frames

model went from 90% of predictions having a CD less than

36 cm and an MHD less than 20 cm, to 90% of predictions

having a CD less than 83 cm and an MHD less than 82 cm.

By contrast, RadCloud only experiences slight increases in

both CD and MHD while also performing noticeably better

than the previous frame-based models.

As presented in Fig. 7, RadCloud’s model still manages

to detect the main features of the environment while the 40

frames model fails to detect large features in the environment

due to the rapid movements. Overall, these results show that

our model is significantly more resilient to aggressive ma-

neuvers compared to the previous frame-based approaches.

C. UAV Case Study
As discussed in Sec. IV, we mounted the radar and a NUC

platform onto a commercially available DJI Matrice 100

drone [35]. While we were not able to obtain ground truth

information due to the size and weight of the lidar sensor, this

case study demonstrates the feasibility and practicality of the

RadCloud real-time framework. We flew the drone inside the

Fig. 8: Performance on a Drone Based Platform.

environment pictured in Fig. 8. Here, we highlight that the

model was not trained on this environment nor did we train

the model on a drone platform. This is particularly notable

as the radar experiences different dynamics (e.g., vibrations)

on the drone, and the drone’s propellers also add additional

noise and interference to the radar data.

Thus, this case study also demonstrates the RadCloud

model’s performance in unseen environments and on dif-

ferent platforms. Fig. 8 presents one of the predicted point

clouds generated using our model (a more complete video

is available at [26]).As shown, our system still does a

good job of identifying the major features (e.g., walls and

corners of the room), even in unseen environments and

on different platforms. Combined, these results demonstrate

the feasibility and practicality of the RadCloud platform.

Thus, we demonstrate a real-time framework for directly
converting low resolution radar data to 2D lidar-like point
clouds, which can be used for mapping, navigation, and
other purposes on UAVs.

VI. CONCLUSION

In this work, we have presented RadCloud a real-time
framework for directly deriving high-resolution lidar-like 2D

point clouds from low-resolution radar frames on resource-

constrained platforms commonly used in unmanned aerial

and ground vehicles; the high-resolution of the point clouds

enables their use in accurate environmental mapping, navi-

gation in unknown environments, as well as other robotics

tasks. Since existing methods for high-resolution sensing

from radar data cannot be used on resource-constrained plat-

forms, RadCloud has overcome the challenges presented by

these platforms by utilizing a radar configuration with 1/4th

the range resolution and deep learning model with 2.25×
fewer parameters. Further, we have utilized a novel chirp-

based approach making generated point clouds more re-

silient to aggressive turns, spins, and other rapid movements

commonly experienced during UAV and UGV operations.

Finally, we have demonstrated the accuracy and applicability

of RadCloud on commonly used UAVs and UGVs with com-

mercially available radar platforms on board, where we have

achieved average frame rates of 15fps even when operating

on CPU-only platforms with limited computational power.
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