
Test-Time Adaptation for Depth Completion

Hyoungseob Park
Yale Vision Lab

hyoungseob.park@yale.edu

Anjali Gupta
Yale Vision Lab

anjali.gupta@yale.edu

Alex Wong
Yale Vision Lab

alex.wong@yale.edu

Abstract

It is common to observe performance degradation when
transferring models trained on some (source) datasets to tar-
get testing data due to a domain gap between them. Existing
methods for bridging this gap, such as domain adaptation
(DA), may require the source data on which the model was
trained (often not available), while others, i.e., source-free
DA, require many passes through the testing data. We pro-
pose an online test-time adaptation method for depth com-
pletion, the task of inferring a dense depth map from a single
image and associated sparse depth map, that closes the per-
formance gap in a single pass. We first present a study on
how the domain shift in each data modality affects model per-
formance. Based on our observations that the sparse depth
modality exhibits a much smaller covariate shift than the
image, we design an embedding module trained in the source
domain that preserves a mapping from features encoding
only sparse depth to those encoding image and sparse depth.
During test time, sparse depth features are projected using
this map as a proxy for source domain features and are used
as guidance to train a set of auxiliary parameters (i.e., adap-
tation layer) to align image and sparse depth features from
the target test domain to that of the source domain. We eval-
uate our method on indoor and outdoor scenarios and show
that it improves over baselines by an average of 21.1%. Code
available at github.com/seobbro/TTA-depth-completion.

1. Introduction
Reconstructing the 3-dimensional (3D) structure of an envi-

ronment can support a number of spatial tasks, from robotic

navigation and manipulation to augmented and virtual reality.

Most systems addressing these tasks are built for sensor plat-

forms equipped with range (i.e., lidar or radar) or optics (i.e.,

camera or sensors). While range sensors can measure the

3D coordinates of the surrounding space, they often yield

point clouds that are sparse. Likewise, these coordinates

can also be estimated from images by means of Structure-

from-Motion (SfM) or Visual Inertial Odometry (VIO). For

the goal of dense mapping, depth completion is the task of

recovering the dense depth of a 3D scene as observed from

a sparse point cloud, which is often post-processed into a

sparse depth map by projecting the points onto the image

plane, and guided by a synchronized calibrated image.

Training a depth completion model can be done in a su-

pervised (using ground truth) or unsupervised (using SfM)

manner. The former dominates in performance, but requires

expensive annotations that are often unavailable; the latter

uses unannotated images, but they must satisfy SfM assump-

tions between frames, i.e., motion, covisibility, etc. Like

most learning-based methods, models trained under both

paradigms typically experience a performance drop when

tested on a new dataset due to a covariate shift, i.e., domain

gap. As we can only assume that a single pair of image

and sparse depth map is available in the target domain for

the depth completion, models belonging to either learning

paradigms cannot easily be trained or adapted to the new

domain even when given the testing data. We focus on test-

time adaptation (TTA) for depth completion, where one is

given access to the test data in a stream, i.e., one batch at a

time, without being able to revisit previously-seen examples.

The goal is to learn causally and to quickly adapt a set of

pre-existing weights trained on a source domain to a target

test domain, so one can reduce the performance gap.

We begin with some motivating observations on the ef-

fects of the domain gap: (i) Errors in target domain tend

to be higher when feed both the image and sparse depth as

input rather than sparse depth only, as shown in Fig. 1. This

implies that the depth modality exhibits a smaller covariate

shift between the source and target domains than the image

modality, to the extent that forgoing the image altogether

often yields superior results than using either both sparse

depth and image or the image alone. (ii) Yet, when operating

in the source domain, we observe the opposite effect – forgo-

ing the image is detrimental to performance. Naturally, this

begs the question: How should one leverage data modalities

that are less sensitive to the domain shift (e.g., sparse depth)

to support alignment between source and target domains for

modalities that are more sensitive (e.g., RGB image)?

To answer this question, we investigate a test-time adap-

tation approach that learns an embedding for guiding the

1

model parameter update by exploiting the data modality

(sparse depth) that is less sensitive to the domain shift. The

embedding module maps the latent features encoding sparse

depth to the latent features encoding both image and sparse

depth. The mapping is trained in the source domain and

frozen when deployed to the target domain for adaptation.

During test time, sparse depth is first fed through the en-

coder and mapped, through the embedding module, to yield

a proxy for image and sparse depth embeddings from the

source domain – we refer to the embedded sparse depth fea-

tures as proxy embeddings. Note: As the mapping is learned

in the source domain, the proxy embeddings will also follow

the distribution of source image and sparse depth embed-

dings. Next, both image and sparse depth from the target

test domain are fed as input to the encoder. By maximizing

the similarity between test-time input embeddings and the

proxy embeddings, we align the target distribution to that

of the source to reduce the domain gap. In other words, our

method exploits a proxy modality for guiding test-time adap-

tation and we call the approach, ProxyTTA. When used in

conjunction with typical loss functions to penalize discrepan-

cies between predictions and input sparse depth, and abrupt

depth transitions, i.e., Total Variation, the embeddings serve

as regularization to guide the model parameter update and

prevent excessive drift from those trained on the source data.

Following test-time adaptation conventions, we assume

limited computational resources, and that inputs arrive in a

stream of small batches and must be processed within a time

budget without access to the past data. To ensure fast model

updates under these constraints, we deploy auxiliary parame-

ters, or an adaptation layer, to be updated while freezing the

rest of the network – thus achieving low-cost adaptation. We

demonstrate our method in both indoor (VIO) and outdoor

(lidar) settings across six datasets, where we not only target

typical adaptation scenarios where the shift exists between

real and synthetic data domains with similar scenes, i.e. from

KITTI [45] to Virtual KITTI [12], but also between differ-

ent scene layouts, i.e., from VOID [51] to NYUv2 [30] and

SceneNet [29]. Our proxy embeddings consistently improve

over baselines by an average of 21.09% across all methods

and datasets. To the best of our knowledge, we are the first

to introduce test-time adaptation for depth completion.

2. Related work
Test Time Adaptation (TTA) aims to adapt a given model,

pretrained on source data, to test data without access to the

source training data. Related fields along this vein include

unsupervised domain adaptation [13, 32], which utilizes

source domain data (in practice, this may not be available) for

adaptation, and source-free domain adaptation [22], which

does not assume access to source data, but allows access

to test data on multiple passes. In contrast, we focus on

test-time adaptation where we do not have access to source

data and must adapt to test data in a single pass.

Previous studies have proposed strategies to select the

source model’s component to be preserved, such as the class

prototypes extracted from the source data [5, 26, 37], the

subset of source model parameters [19, 48], and the discrim-

inative feature from the self-supervised learning (SSL) [5].

For instance, [48] proposes TENT, a simple but effective

batch-norm layer adaptation with entropy minimization for

fully test-time adaptation. TTT [44] performs classification-

layer adaptation by updating the last linear layer of the

source model; [26] extends this with TTT++ and utilizes

joint task-specific and model-specific information based on

self-supervised learning. [19] presents T3A, an optimization-

free classifier adjustment module. [5] uses shift-agnostic

weight regularization (SWR) to prevent an effect from the

erroneous signal in test time, jointly with the nearest source

prototype classifier and a self-supervised proxy task. [2]

proposes a contrastive learning with an online pseudo-label

refinement while [37] proposes pseudo-label refinement and

momentum update for 3D point cloud segmentation. [49]

proposes continual test-time adaptation based on stochastic

restoration and weight-averaged pseudo-labels. [41] uses

efficient residual modules to realign the pretrained weights.

The above methods largely focus on single-image-based

tasks, i.e., classification [2, 5, 26] and semantic segmenta-

tion [37], and rely on entropy constraints from [48].

Unlike prior work on classification [26, 44] and segmen-

tation [37], depth completion is a regression problem; hence,

existing methods using entropy-based objectives [48], which

operate on logits, are not applicable in this task. Instead,

we propose to minimize sparse depth reconstruction and lo-

cal smoothness objectives – similar to that of some existing

unsupervised methods [50, 51] – and to maximize cosine

similarity between the proxy embeddings and the test time

image and sparse depth embeddings.

Depth Completion aims to output dense depth from a

single image and synchronized point cloud, i.e., from lidar

or tracked by VIO, projected onto a sparse depth map, by

multimodal fusion [8, 51, 56–58].

Unsupervised depth completion approaches rely on

Structure-from-Motion (SfM) for training and require ac-

cess to an auxiliary training dataset containing stereo image

pairs [38] or monocular videos [25, 28, 51–54] with synchro-

nized sparse depth maps. Typically, they minimize a linear

combination of photometric reprojection consistency, sparse

depth reconstruction error, and local smoothness [28, 51–53].

These methods can support online training, but are limited

by the need for stereo or monocular videos with sufficient

parallax and co-visibility. In contrast, our approach does not

rely on SfM and can be used in more general scenarios.

Supervised depth completion trains the model by mini-

mizing a loss with respect to ground truth. [3, 18] focus

on network operations and designs to effectively deal with

2

Figure 1. Model sensitivity to input modalities. While utilizing both sparse depth and image as input, the best performance is achieved in the

source domain (VOID). Yet, forgoing the image in the test domain (NYUv2) often yields lower error than using both as input.

sparse inputs. [20, 28, 59] propose early and late fusion of

image and depth encoder features while [17] uses separate

networks for each. [23] proposes a multi-scale cascaded

hourglass network to enhance the depth encoder with im-

age features. [4] proposes convolutional spatial propagation

network; [31] extends it to non-local spatial propagation to

refine an initial depth map based on confidence and learnable

affinity; [24] further extends it to dynamic spatial propaga-

tion. [9, 10, 34, 35] learn uncertainty of the depth estimates.

[47] utilizes confidence maps to combine depth predictions

while [33, 55, 61] use the surface normals to guide depth

prediction. [21] incorporates cost volume for depth predic-

tion. [40] used radar. [36] devises transformer architec-

ture with cross-modal attention, and [60] proposes a hybrid

convolution-transformer architecture for depth completion.

While both unsupervised and supervised methods have

demonstrated strong performance on benchmarks, they often

fail to generalize to test datasets with large domain discrep-

ancies. Moreover, obtaining ground truth is unrealistic for

real-time applications, and accumulating sufficient parallax

incurs large latencies – presenting significant challenges for

online adaptation. Unlike past works, we do not assume

access to ground truth nor data outside of the input.

Unsupervised Domain Adaptation (UDA) addresses

the discrepancy between labeled source data and unlabeled

target data [6, 13, 32, 43]. The only existing UDA depth

completion method [27] models the domain gap as the noise

in sparse points and the appearance in images. Unlike most

UDA approaches that require source data during adaptation,

we are only given the inputs necessary for inference in a

stream without the ability to revisit past data, and must up-

date the model online under a limited computational budget.

Our Contributions. We present (i) a study on how the

domain shift in each data modality (e.g., image and sparse

depth) affects model performance when transferring it from

source to target test domain. This study motivates (ii) our

approach to learn an embedding of sparse depth features

(which are less sensitive to the domain shift) that serves as

proxy to source features for guiding test-time adaptation.

(iii) To the best of our knowledge, we are the first to propose

test-time adaptation for the depth completion task, and (iv)

will release code, models, and dataset benchmarking setup

to make development accessible for the research community.

3. Method Formulation
For ease of use, we assume access to a (source) pretrained

depth completion model fθ that infers a dense depth map d̂
from a calibrated RGB image I ∈ R

H×W×3 and its associ-

ated sparse point cloud projected onto the image plane as a

sparse depth map z ∈ R
H×W
+ , i.e., fθ(I, z) → d̂ ∈ R

H×W
+ .

For simplicity, we assume that the model was trained to min-

imize a supervised loss between prediction and ground truth

d ∈ R
H×W
+ on a source dataset Ds = {I(n)s , z

(n)
s , d(n)}Ns

n=1,

where Ns indicates the number of data samples. Following

conventions in TTA, we assume access to the source domain

dataset prior to deployment.

During test-time adaptation, we follow the protocol of

[26, 44], where we only have access to the target domain

data Dt = {I(n)t , z
(n)
t }Nt

n=1 and utilize an online procedure

to adapt to unseen Nt target data samples. Note that we

make no assumptions about supervision during test-time;

hence, while we present results on supervised methods for

controlled experiments, we see our method being applicable

towards unsupervised methods as well.

Our method, ProxyTTA, is split into three stages (Fig. 3):

3

Figure 2. Model sensitivity to input modalities. Depth completion networks have a high reliance on sparse depth modality. Performing

inference in a novel domain without the RGB image, i.e., using just sparse depth as input, can improve over using both data modalities.

(a) During an intialization stage, we augment the network

encoder with an adaptation layer and train it using source

domain data. (b) In the preparation stage, we learn a mapping

from sparse depth features to image and sparse depth (proxy)

embeddings. (c) During test time, we do not need the source

dataset; we freeze the mapping and use its proxy embeddings

for updating the adaptation layer parameters in test domain.

3.1. Sensitivity Study on Data Modalities

To motivate our approach, we begin with a sensitivity study

of depth completion networks to input modalities, e.g. image,

sparse depth, and the effect of domain shift on them. To this

end, we alter the inputs by zeroing out either I or z to yield

(I, z), (I0, z), and (I, z0), where I0 and z0 indicate the zero

matrices with identical size to I and z, respectively. We eval-

uate the pretrained models using (I, z), (I0, z), and (I, z0)
to highlight their dependence on each input modality and to

gauge their sensitivity when one modality gives no useful

information at all. Fig. 1 and Fig. 2 show qualitative (error

maps) and quantitative results (bar graphs), respectively, of

pretrained depth completion models when fed the different

inputs on the source dataset Ds and the target dataset Dt.

In the source domain, inference using both image and

sparse depth as inputs, i.e., d̂s(I, z), shows the best perfor-

mance. Surprisingly, the inference using sparse depth alone

(i.e., with null-image) d̂s(I0, z) is comparable to d̂s(I, z).
This shows the first intuition behind our approach: (i) Even

though depth inputs are sparse, they are sufficient to sup-

port the reconstruction of the scene. Additionally, inference

with image alone (i.e., null-depth) d̂s(I, z0) is worse than

d̂s(I0, z) and d̂s(I, z), which suggests that a depth com-

pletion network relies heavily on sparse depth modality for

inference, and the image for guiding recovery of finer details.

In the target test domain, expectedly, performance de-

grades for inference using both image and sparse depth due

to a covariate shift. Remarkably, we observe that predic-

tions from sparse depth alone d̂t(I0, z) remain consistent in

performance to those using both inputs d̂t(I, z). Moreover,

we observe that in most cases d̂t(I0, z), in fact, outperforms

d̂t(I, z) across several methods and datasets, i.e., inference

without image information in the test domain is better than

with it. Conversely, the performance gap between infer-

ence with both inputs, d̂t(I, z), and just the image, d̂t(I, z0),
becomes more evident under the domain shift. This observa-

tion illustrates another intuition: (ii) The domain shift largely

affects the image modality, and less so depth.

The two intuitions above motivate our approach. As ob-

ject shapes tend to persist across domains, and the measured

sparse points being a coarse representation of them, we aim

to leverage sparse depth modality to bridge the domain gap.

To this end, we exploit the observation that depth comple-

tion networks are able to recover (coarse) 3D scenes from

sparse points alone and that the image serves to propagate

and refine depth for regions lacking points. This is done

by learning to map features encoding sparse depth inputs

to features encoding both modalities in the source domain

and, during test-time, recover the source domain features

compatible with target domain sparse depth to guide model

adaptation. Specifically, as observed, the covariate shift is

largely photometric, so we propose to adapt the RGB image

encoder branch by introducing a adaptation layer: a single

convolutional layer designed to align target domain RGB

embeddings to those of the source domain. As the rest of the

network is frozen, adapting just the adaptation layer allows

for low-cost model updates.

Intuition for integrating adaptation layer. Guided by

our observations, the adaptation layer should be (i) placed

in the image encoder branch prior to the fusion of image

and depth features, and (ii) located within later layers to

modulate higher level representations (i.e., object shapes,

as opposed to low-level edges). (iii) connected as a skip

connection to decoder to more directly affect the output.

4

Figure 3. Overview. (a) The pretraining stage integrates an adaptation layer into a pretrained encoder and pretrains the adaptation layer on

the source dataset. (b) The preparation stage learns the proxy mapping of features encoding sparse depth to those encoding both inputs. (c)

The adaptation stage deploys the model to the target domain and updates the adaptation layer by leveraging proxy embeddings as guidance.

3.2. Preparation Stage - Source Domain

Initialize adaptation layer from source domain. Updating

the entire network is largely infeasible in test-time adap-

tation scenarios. For the sake of speed and efficiency, we

implement an adaptation layer mφ, i.e., a convolutional layer,

within the encoder of a pretrained network. Note that the

entire network will be frozen during all stages of our method

with the exception of the adaptation layer and proxy map-

ping, where both will be initialized during preparation stage

in the source domain; the proxy mapping will then be frozen

and used to adapt mφ in the target domain. To ease the

adaptation process, we initialize the mφ by minimizing a su-

pervised loss over the source dataset (Fig. 3-(a)). We denote

the pretrained encoder integrated with mφ as eφ.

Learning proxy mapping from source domain. As ob-

served in Fig. 1, the best results in the source domain are

achieved by feeding in both the image and sparse depth

modalities for inference. However, the image is susceptible

to domain shift which degrades performance when the model

is transferred to an unseen test domain. Conversely, sparse

depth is more resilient to the domain shift than RGB images,

i.e., the shape of a car (or another object) remains similar

regardless of (synthetic or real) domain. Our method aims

to leverage the sparse depth modality, which is less sensitive

to the domain shift, in the downstream adaptation process.

To this end, we employ a soft mapping [15] from just the

encoded sparse depth features to sparse depth and image
features to learn the photometric information that is captured

from the same scene as the sparse point cloud. This strategy

allows us to learn the mapping that projects the sparse depth

features to “proxy” embeddings close to those that also en-

code the image. In other words, it fills in what is missing

in the image encoder branch by predicting the residual la-

tent image encoding that is compatible with the input sparse

depth, i.e., 3D scene. As this is trained in the source domain,

the mapping naturally yields proxy embeddings that encode

the source domain image (and sparse depth), which can be

later used to guide the adaptation layer mφ to transform test

domain RGB features close to those of the source domain.

This mapping by MLPs can be denoted as gψ(·), gψ′(·)
and hω(·); to learn them, we get two embeddings ppps and qqqs,

ppps = hω(gψ(StopGrad(eφ(I0, zs)))),

qqqs = StopGrad(gψ′(eφ(Is, zs)))
(1)

where eφ denotes the encoder augmented with the adap-

tation layer trained on source dataset, Is, zs, the image and

sparse depth from source domain, and I0 the null-image. The

embedding modules gψ and hω are updated to maximize the

similarity between ppps and qqqs. To learn them, we minimize:

�prepare = 1− (
ppps
‖ppps‖ · qqqs

‖qqqs‖), (2)

where ‖ · ‖ is L2-norm, and (aaa · bbb) indicates the dot product

of the vectors aaa and bbb. To this end, we first train the MLP

heads gψ, hω by minimizing Eqn. 2. Note that the MLP head

gψ′ is updated with EMA update following BYOL [15] to

avoid collapse: gψ′ ← τ · gψ′ + (1− τ) · gψ .

Once the mapping is learned, we can freeze the embed-

ding module and deploy it for test-time adaptation where

we update the adaptation layer weights φ to maximize the

similarity between the embeddings of a test domain image

and sparse depth, and its proxy from the source domain. Nat-

urally, due to the domain shift, the embeddings will yield

5

low similarity scores; hence, maximizing the scores through

our proxy embedding implicitly aligns the target RGB distri-

bution to that of the source distribution, i.e., minimizing the

cosine similarity between the source and target distributions.

3.3. Deploying Proxy Mapping to Target Domain

Adaptation stage aims to update the adaptation layer param-

eters by minimizing a test-time loss function over the target

test domain data {It, zt} ∈ Dt. To do so, we deploy the

learned proxy mapping module (MLP heads {g∗ψ(·), g∗ψ′(·),
and h∗

ω(·)}) along with the adaptation layer mφ integrated

into the frozen encoder as eφ.

Adaptation loss. For adaptation, our loss is composed of

a linear combination of three loss terms:

Ladapt = wz�z + wsm�sm + wproxy�proxy, (3)

where �z , �sm denote sparse depth consistency loss and lo-

cal smoothness loss, respectively, �proxy is proxy mapping

consistency loss, and w indicates a weight of each loss term.

Sparse Depth Consistency. Sparse point clouds capture

a coarse structure of the 3D scene.To obtain metric scale

predictions consistent with the scene structure, we minimize

L1 error between the sparse depth zt and the prediction d̂t:

�z =
1

|Ω(zt)|
∑

x∈Ω(zt)

|d̂t(x)− zt(x)|, (4)

where x ∈ Ω(zt) are the pixel locations where sparse points

were projected onto the image plane.

Local Smoothness. Based on the assumption of local

smoothness and connectivity in a 3D scene, we impose the

same in the predicted depth map d̂t. Specifically, we apply

an L1 penalty to its gradients in both the x- and y-directions

(i.e., ∂X and ∂Y). We balance the weight of each term with

λX and λY , to allow discontinuities over object boundaries

based on the image gradients, where λX(x) = e−|∂XIt(x)|,
λY (x) = e−|∂Y It(x)|, and Ω denotes the image domain.

�sm =
1

|Ω|
∑

x∈Ω

λX(x)|∂X d̂t(x)|+ λY (x)|∂Y d̂t(x)|. (5)

Proxy Consistency. In order to regularize the adaptation

with the learned mapping from the previous stage, we freeze

the weight parameters of MLP heads {g∗ψ(·), h∗
ω(·)}, and

update the parameters of the adaptation layer mφ. First, we

obtain the features pppt and qqqt using the null-image I0 in one

and the given target test domain image It in the other:

pppt = StopGrad(h∗
ω(g

∗
ψ(eφ(I0, zt)))),

qqqt = g∗ψ′(eφ(It, zt)).
(6)

We maximize the cosine similarity between the feature qqqt
and pppt via a proxy loss �proxy to update adaptation layer mφ:

�proxy = 1− (
pppt
‖pppt‖ · qqqt

‖qqqt‖). (7)

4. Experiments

We demonstrate the effectiveness of our approach on a mix of

both real and synthetic datasets including indoor SLAM/VIO

scenarios (VOID [51], NYUv2 [30], SceneNet [29], and

ScanNet [7]) and outdoor driving scenarios using lidar sen-

sor (KITTI [45], Virtual KITTI (VKITTI) [12], nuScenes [1],

and Waymo Open Dataset [42]). We chose three represen-

tative architectures of current depth completion methods to

test our method: MSG-CHN [23] (CNN-based), NLSPN

[31] (SPN-based) and CostDCNet [21] (cost volume-based).

All reported results are averaged over 5 independent trials.

We describe implementation details, hyper-parameters used,

hardware requirements, evaluation metrics as well as addi-

tional experimental results in the Supp. Mat.

Main Result. We use pretrained models (MSG-CHN,

NLSPN, and CostDCNet) from the two source datasets,

VOID for indoor, and KITTI for outdoor. For indoor, we

adapt models pretrained on VOID to NYUv2, SceneNet, and

ScanNet; for outdoors, we adapt from KITTI to VKITTI

(with fog), nuScenes, and Waymo. BN Adapt denotes updat-

ing the batch statistics (i.e., running mean and variance). BN

Adapt, �z, �sm is a variation of TENT [48] which minimizes

Eqn. 4, 5 instead of entropy by updating learnable scale

factors. CoTTA denotes replacing proxy loss with L1 consis-

tency loss w.r.t. the pretrained prediction [49]. ProxyTTA-

fast denotes our method without batch norm update, which

improves adaptation runtime by 25.32%.

Our method consistently improves over baselines and vari-

ants of BN Adapt (Table 1). Specifically, we improve over

BN Adapt, �z, �sm by 11.60% on average across all meth-

ods for indoor, 19.73% on outdoors, and 15.67% overall to

achieve state-of-the-art performance. Qualitatively, Fig. 4

and Fig. 5 show that our method performs better in bound-

ary regions and homogeneous regions, thus exhibiting less

oversmoothing on curtains in Fig. 4-(a) and car in Fig. 5-(b),

and undersmoothing on blackboard in Fig. 4-(d) and road in

Fig. 5-(a), respectively, during adaptation. This trend is due

to the proxy loss and the adaptation layer, which allows us to

adapt with minimum weight adjustments while preserving

high-level features (object shapes) learned from the source

domain by mapping the target RGB modality to that of the

source domain. Notably, ProxyTTA-fast still improves over

BN Adapt even though we only adapt our adaptation layer,

which demonstrates the effectiveness of our design choice

as well as our proposed proxy embeddings. We visualize

image and sparse depth features from the source and target

domains along with proxy embeddings in the target domain

using t-SNE [46] in Fig. 1 of Supp. Mat.; we observe that

proxy embeddings are close to source domain features.

Comparison to BN adaptation1 and CoTTA. To assess

the impact of our adaptation layer, we compare to batch norm

1MSG-CHN lacks Batch Norm (BN) layer so we cannot use BN adapt.

6

Method MAE RMSE MAE RMSE MAE RMSE

KITTI → VKITTI-FOG KITTI → nuScenes KITTI → Waymo

MSG-CHN

Pretrained 2842.88 6557.38 3331.821 6449.094 1107.22 2962.45
CoTTA 730.6±11.67 3330.23±44.83 3157.69 6434.14 655.77±30.98 2213.27±98.80
ProxyTTA-fast (Ours) 728.24±3.73 3087.36±15.92 2834.08±17.64 6096.56±21.08 608.91±1.74 1921.83±2.54

NLSPN

Pretrained 1309.99 7423.48 2656.609 6146.590 1175.83 3078.377
BN Adapt 1140.21±35.89 4592.86±198.21 11291.57±21.32 16670.87±52.56 7283.33±104.58 9670.36±250.22
BN Adapt, �z , �sm 775.20±5.65 3465.05±32.73 2928.51±75.89 8209.24±164.31 494.94±3.08 1921.17±338.06
CoTTA 767.93±5.47 3799.88±17.29 2650.45±15.04 6242.52±33.14 933.41±4.31 2763.88±143.48
ProxyTTA-fast 732.61±29.57 3002.19± 52.29 2733.96±34.32 6099.48±82.32 875.01±15.8 2400.17±21.44
ProxyTTA (Ours) 686.91±22.14 2666.70±56.64 2589.25±59.03 6006.18±90.66 477.28±3.32 1598.64±18.95

CostDCNet

Pretrained 1042.98 6301.60 3064.724 6630.649 1093.79 2798.25
BN Adapt 1476.57±1.38 5428.20±8.15 2306.04±28.86 6391.98±48.97 596.08±5.55 1877.91±45.56
BN Adapt, �z , �sm 729.67±3.14 3413.76±14.59 2288.85±14.02 6338.38±31.31 469.97±2.47 1572.95±10.63
CoTTA 756.32±3.59 3686.69±14.75 2676.83±68.92 6099.49±66.79 689.94±1.95 2140.23±16.12
ProxyTTA-fast 756.98±31.07 3091.78±105.42 2595.81±12.13 6373.01±7.74 606.10±11.10 1817.79±19.14
ProxyTTA (Ours) 512.72±0.74 2735.01±3.53 2062.28±11.24 5509.96±23.41 466.44±1.63 1580.38±11.48

VOID → NYUv2 VOID → SceneNet VOID → ScanNet

MSG-CHN
Pretrained 1040.934 1528.983 281.28 645.01 687.988 1201.747
CoTTA 876.93±146.95 1148.62±173.53 223.19±14.77 498.46±28.21 619.37±4.14 1141.04±7.35
ProxyTTA-fast (Ours) 699.60±6.00 1120.37±9.76 192.74±1.72 424.49±4.58 302.21±4.10 480.08±8.03

NLSPN

Pretrained 388.87 702.80 167.250 438.71 233.33 431.20
BN Adapt 250.13±5.23 447.18±10.32 143.61±6.34 385.56±9.84 207.00±0.57 401.41±2.84
BN Adapt, �z , �sm 147.55±1.36 271.10±2.17 120.48±1.94 345.91±7.14 82.76±0.47 181.97±1.21
CoTTA 390.50±8.29 704.72±16.74 205.02±1.79 540.01±4.08 234.77±1.52 496.18±2.75
ProxyTTA-fast 168.43±3.46 309.48±6.92 124.67±1.33 357.56±2.59 104.06±11.03 232.84±20.46
ProxyTTA (Ours) 124.41±2.27 240.73±5.72 113.93±1.49 333.41±4.32 74.77±0.31 166.61±0.45

CostDCNet

Pretrained 189.10 446.71 173.37 443.22 144.31 458.69
BN Adapt 160.31±2.7 410.55±10.70 176.62±0.72 446.32±8.52 159.65±4.63 399.14±13.92
BN Adapt, �z , �sm 136.80±5.35 338.59±22.36 134.22±2.33 385.9±6.68 68.44±0.46 164.59±2.82
CoTTA 147.69±5.3 376.87±21.25 136.42±3.41 405.38±11.63 101.98±1.53 322.63±5.04
ProxyTTA-fast 131.93±2.58 269.02±5.61 129.99±3.88 353.86±7.91 128.12±3.41 244.62±7.53
ProxyTTA (Ours) 95.87±2.16 203.83±4.72 125.75±1.93 357.12±4.13 68.17±0.44 162.35±1.12

Table 1. Qualitative results. For indoors, we adapt from VOID to NYUv2, SceneNet, and ScanNet; for outdoors, from KITTI to VKITTI with

fog, nuScenes, and Waymo. Bold denotes best and Italics second-best. ProxyTTA-fast denotes our method without updating BatchNorm.

(BN) adaptation from TENT [48]. In BN adaptation, we only

update the batch norm layer’s scale and shift factor based on

the loss function. On average, BN Adapt with �z, �sm im-

proves the pretrained model by 32.77%; whereas, updating

just our adaptation layer (ProxyTTA-fast) improves it more

by 34.07% (Table 1). The improvement of ProxyTTA-fast

over BN adapt demonstrates the efficacy of updating adapta-

tion layer, which directly adjusts the high-level features from

the RGB branch guided by proxy loss, where BN adapt re-

aligns the learned source features from both RGB and range

sensors by updating feature statistics.

Nonetheless, the best results are achieved when we in-

clude batch norm update, which improves the pretrained

model by 44.53%, but at the cost ≈33.2% of total extra

time. The improvement of ProxyTTA over BN adapt implies

that the large domain discrepancy may not be addressed

by adapting only BN parameters (i.e., scaling and shifting);

ProxyTTA explicitly adjusts RGB features by updating the

adaptation layer with proxy embeddings as guidance.

We also compared our approach to CoTTA [49], which

adapts the whole model parameters using the prediction from

the teacher model updated by exponential moving average of

pretrained weight and the model prediction. We combined

additional loss �z, �sm on top of CoTTA loss, since we ob-

served that the models cannot be adapted with CoTTA alone.

Specifically, our method without proxy shows a 25.26% aver-

age improvement on the CoTTA method. CoTTA updates the

whole parameters including RGB and sparse depth branch,

which causes a drift from the learned model parameters. On

the other side, our method only updates additional layer at

RGB branch, based on the study from the most domain dis-

crepancy comes from RGB modality as studied in Sec. 3.1,

and this prevents the model from a drift from learned domain.

Also, CoTTA assumes the test-time augmentation can miti-

gate the domain shift. However, the results shows test-time

augmentation on RGB image, causing a small distributional

shift, may not solve a large domain discrepancy.

Also, our method with batch normalization layer update

shows 26.52% average improvement, while using 25.05%

less adaptation time. Note: CoTTA costs not only additional
memory for teacher model but also inference time to get the
teacher model prediction, even if CoTTA does not require

any preparation process. Overall, our method shows 21.09%

average improvement over BN adapt and CoTTA methods.

7

Figure 4. Qualitative results on NYUv2. For indoors scenarios, ProxyTTA performs better in boundary regions displaying the discontinuity

in depth (e.g., curtains, (a)), as well as homogeneous regions (e.g., blackboard, (d)). Boxes highlight detailed comparisons.

Figure 5. Qualitative results on NuScenes. For outdoor adaptation scenarios, ProxyTTA improves over BN Adapt and CoTTA, notably in

both depth-discontinuous regions (e.g., car in (b)) and homogeneous regions (e.g., road in (a) and (b)). Boxes highlight detailed comparisons.

5. Discussion
We have proposed a method for test-time adaptation for

depth completion that leverages the strength of complemen-

tary multi-sensor setup in the presence of domain shift. By

studying model sensitivity to each input modality as well as

the data under domain shift, we designed a way to exploit

the modality (sparse depth) that is less sensitive to guide

adaptation. We do so through a proxy embedding that learns

the photometric information from the source domain that is

compatible with the sparse depth depicting a 3D scene. Our

proxy embedding works well as a regularizer for scenarios

where there exists covariate shifts in photometry (i.e., KITTI

to VKITTI) as well as scene layouts (i.e., VOID to NYUv2

and SceneNet). While one may surmise that the applica-

tion of the embeddings are specific to scene distributions,

we show otherwise. VOID (classrooms, laboratories, and

gardens), NYUv2 (households and shopping centers), and

SceneNet (randomly arranged synthetic rooms) all differ in

layouts. The proxy embedding captures latent photomet-

ric features of the object shapes populating them; the same

proxy embedding can be transferred across domains even

when scene differ, but share objects within them.

This leads to possible limitations in the scenarios where

the source dataset is sampled from scenes that do not share

any objects with the target test dataset; in this case, the proxy

embeddings should give little to no gain and one must rely

on generic regularizers like local smoothness. Additionally,

while we follow the conventions in TTA and assume access

to the source dataset prior to deployment, in reality, many

models are trained on private datasets, so adapting “off-the-

shelf” models remains a challenge. In such cases, one must

incorporate our preparation pipeline into their model train-

ing and release the adaptation layer and proxy embedding

module together with network weights. Nonetheless, this is

the first test-time adaptation work in depth completion; in ad-

dition to our findings, we release models, dataset, adaptation,

and evaluation code, and hope to further motivate interest in

TTA for multi-modal tasks like depth completion.

Acknowledgements. This work was supported by NSF

2112562 Athena AI Institute.

8

References
[1] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-

ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-

modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 6, 13

[2] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna

Ebrahimi. Contrastive test-time adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 295–305, 2022. 2

[3] Yun Chen, Bin Yang, Ming Liang, and Raquel Urtasun. Learn-

ing joint 2d-3d representations for depth completion. In Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 10023–10032, 2019. 2

[4] Xinjing Cheng, Peng Wang, Chenye Guan, and Ruigang Yang.

Cspn++: Learning context and resource aware convolutional

spatial propagation networks for depth completion. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,

pages 10615–10622, 2020. 3, 12

[5] Sungha Choi, Seunghan Yang, Seokeon Choi, and Sungrack

Yun. Improving test-time adaptation via shift-agnostic weight

regularization and nearest source prototypes. In ECCV, pages

440–458. Springer, 2022. 2

[6] Safa Cicek and Stefano Soatto. Unsupervised domain adapta-

tion via regularized conditional alignment. In Proceedings of
the IEEE/CVF international conference on computer vision,

pages 1416–1425, 2019. 3

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 6, 13

[8] Yiming Dou, Fengyu Yang, Yi Liu, Antonio Loquercio, and

Andrew Owens. Tactile-augmented radiance fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024. 2

[9] Abdelrahman Eldesokey, Michael Felsberg, and Fahad Shah-

baz Khan. Propagating confidences through cnns for sparse

data regression. arXiv preprint arXiv:1805.11913, 2018. 3

[10] Abdelrahman Eldesokey, Michael Felsberg, Karl Holmquist,

and Michael Persson. Uncertainty-aware cnns for depth com-

pletion: Uncertainty from beginning to end. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12014–12023, 2020. 3

[11] Xiaohan Fei, Alex Wong, and Stefano Soatto. Geo-supervised

visual depth prediction. IEEE Robotics and Automation Let-
ters, 4(2):1661–1668, 2019. 12

[12] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig.

Virtual worlds as proxy for multi-object tracking analysis. In

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4340–4349, 2016. 2, 6, 13

[13] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. In International conference
on machine learning, pages 1180–1189. PMLR, 2015. 2, 3

[14] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. The Inter-

national Journal of Robotics Research, 32:1231 – 1237, 2013.

12

[15] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin

Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doer-

sch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-

laghi Azar, et al. Bootstrap your own latent-a new approach

to self-supervised learning. Advances in neural information
processing systems, 33:21271–21284, 2020. 5, 14

[16] Christopher G. Harris and M. J. Stephens. A combined corner

and edge detector. In Alvey Vision Conference, 1988. 13

[17] Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xiao-

jin Gong. Penet: Towards precise and efficient image guided

depth completion. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 13656–13662. IEEE,

2021. 3

[18] Zixuan Huang, Junming Fan, Shenggan Cheng, Shuai Yi,

Xiaogang Wang, and Hongsheng Li. Hms-net: Hierarchi-

cal multi-scale sparsity-invariant network for sparse depth

completion. IEEE Transactions on Image Processing, 29:

3429–3441, 2019. 2

[19] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier

adjustment module for model-agnostic domain generalization.

34:2427–2440, 2021. 2

[20] Maximilian Jaritz, Raoul De Charette, Emilie Wirbel, Xavier

Perrotton, and Fawzi Nashashibi. Sparse and dense data with

cnns: Depth completion and semantic segmentation. In 2018
International Conference on 3D Vision (3DV), pages 52–60.

IEEE, 2018. 3

[21] Jaewon Kam, Jungeon Kim, Soongjin Kim, Jaesik Park, and

Seungyong Lee. Costdcnet: Cost volume based depth com-

pletion for a single rgb-d image. In European Conference on
Computer Vision, pages 257–274. Springer, 2022. 3, 6

[22] Youngeun Kim, Donghyeon Cho, Kyeongtak Han,

Priyadarshini Panda, and Sungeun Hong. Domain adaptation

without source data. IEEE Transactions on Artificial
Intelligence, 2(6):508–518, 2021. 2

[23] Ang Li, Zejian Yuan, Yonggen Ling, Wanchao Chi, Chong

Zhang, et al. A multi-scale guided cascade hourglass network

for depth completion. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 32–40,

2020. 3, 6

[24] Yuankai Lin, Tao Cheng, Qi Zhong, Wending Zhou, and Hua

Yang. Dynamic spatial propagation network for depth com-

pletion. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 1638–1646, 2022. 3

[25] Tian Yu Liu, Parth Agrawal, Allison Chen, Byung-Woo Hong,

and Alex Wong. Monitored distillation for positive congruent

depth completion. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part II, pages 35–53. Springer, 2022. 2

[26] Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste

Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. TTT++:

When does self-supervised test-time training fail or thrive?

34:21808–21820, 2021. 2, 3

[27] Adrian Lopez-Rodriguez, Benjamin Busam, and Krystian

Mikolajczyk. Project to adapt: Domain adaptation for depth

completion from noisy and sparse sensor data. In Proceedings
of the Asian Conference on Computer Vision, 2020. 3

9

[28] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac

Karaman. Self-supervised sparse-to-dense: Self-supervised

depth completion from lidar and monocular camera. In

2019 International Conference on Robotics and Automation
(ICRA), pages 3288–3295. IEEE, 2019. 2, 3

[29] John McCormac, Ankur Handa, Stefan Leutenegger, and An-

drew J Davison. Scenenet rgb-d: 5m photorealistic images of

synthetic indoor trajectories with ground truth. arXiv preprint
arXiv:1612.05079, 2016. 2, 6, 13

[30] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob

Fergus. Indoor segmentation and support inference from rgbd

images. In ECCV, 2012. 2, 6

[31] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In

So Kweon. Non-local spatial propagation network for depth

completion. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XIII 16, pages 120–136. Springer, 2020. 3, 6, 12

[32] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate

Saenko, and Bo Wang. Moment matching for multi-source

domain adaptation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1406–1415,

2019. 2, 3

[33] Jiaxiong Qiu, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang,

Shuaicheng Liu, Bing Zeng, and Marc Pollefeys. Deepli-

dar: Deep surface normal guided depth prediction for outdoor

scene from sparse lidar data and single color image. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3313–3322, 2019. 3

[34] Chao Qu, Ty Nguyen, and Camillo Taylor. Depth completion

via deep basis fitting. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 71–80,

2020. 3

[35] Chao Qu, Wenxin Liu, and Camillo J Taylor. Bayesian deep

basis fitting for depth completion with uncertainty. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 16147–16157, 2021. 3

[36] Kyeongha Rho, Jinsung Ha, and Youngjung Kim. Guide-

former: Transformers for image guided depth completion.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6250–6259, 2022. 3

[37] Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel Schul-

ter, Buyu Liu, Sparsh Garg, In So Kweon, and Kuk-Jin Yoon.

Mm-tta: multi-modal test-time adaptation for 3d semantic

segmentation. In CVPR, pages 16928–16937, 2022. 2

[38] Shreyas S Shivakumar, Ty Nguyen, Ian D Miller, Steven W

Chen, Vijay Kumar, and Camillo J Taylor. Dfusenet: Deep

fusion of rgb and sparse depth information for image guided

dense depth completion. In 2019 IEEE Intelligent Transporta-
tion Systems Conference (ITSC), pages 13–20. IEEE, 2019.

2

[39] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob

Fergus. Indoor segmentation and support inference from rgbd

images. In European Conference on Computer Vision, 2012.

13

[40] Akash Deep Singh, Yunhao Ba, Ankur Sarker, Howard Zhang,

Achuta Kadambi, Stefano Soatto, Mani Srivastava, and Alex

Wong. Depth estimation from camera image and mmwave

radar point cloud. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

9275–9285, 2023. 3

[41] Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi.

Ecotta: Memory-efficient continual test-time adaptation via

self-distilled regularization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 11920–11929, 2023. 2

[42] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: Waymo open dataset. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2446–2454, 2020. 6, 13

[43] Yu Sun, Eric Tzeng, Trevor Darrell, and Alexei A Efros.

Unsupervised domain adaptation through self-supervision.

arXiv preprint arXiv:1909.11825, 2019. 3

[44] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei

Efros, and Moritz Hardt. Test-time training with self-

supervision for generalization under distribution shifts. In

ICML, pages 9229–9248. PMLR, 2020. 2, 3

[45] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,

Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.

In 2017 international conference on 3D Vision (3DV), pages

11–20. IEEE, 2017. 2, 6, 12, 13

[46] Laurens Van der Maaten and Geoffrey Hinton. Visualizing

data using t-sne. Journal of machine learning research, 9(11),

2008. 6

[47] Wouter Van Gansbeke, Davy Neven, Bert De Brabandere,

and Luc Van Gool. Sparse and noisy lidar completion with

rgb guidance and uncertainty. In 2019 16th international
conference on machine vision applications (MVA), pages 1–6.

IEEE, 2019. 3

[48] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-

shausen, and Trevor Darrell. Tent: Fully test-time adaptation

by entropy minimization. arXiv preprint arXiv:2006.10726,

2020. 2, 6, 7

[49] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.

Continual test-time domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7201–7211, 2022. 2, 6, 7

[50] Alex Wong and Stefano Soatto. Unsupervised depth comple-

tion with calibrated backprojection layers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,

pages 12747–12756, 2021. 2

[51] Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano Soatto.

Unsupervised depth completion from visual inertial odome-

try. IEEE Robotics and Automation Letters, 5(2):1899–1906,

2020. 2, 6, 12

[52] Alex Wong, Safa Cicek, and Stefano Soatto. Learning topol-

ogy from synthetic data for unsupervised depth completion.

IEEE Robotics and Automation Letters, 6(2):1495–1502,

2021.

[53] Alex Wong, Xiaohan Fei, Byung-Woo Hong, and Stefano

Soatto. An adaptive framework for learning unsupervised

depth completion. IEEE Robotics and Automation Letters, 6

(2):3120–3127, 2021. 2

10

[54] Yangchao Wu, Tian Yu Liu, Hyoungseob Park, Stefano Soatto,

Dong Lao, and Alex Wong. Augundo: Scaling up augmen-

tations for unsupervised depth completion. arXiv preprint
arXiv:2310.09739, 2023. 2

[55] Yan Xu, Xinge Zhu, Jianping Shi, Guofeng Zhang, Hujun

Bao, and Hongsheng Li. Depth completion from sparse lidar

data with depth-normal constraints. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,

pages 2811–2820, 2019. 3

[56] Fengyu Yang, Chenyang Ma, Jiacheng Zhang, Jing Zhu, Wen-

zhen Yuan, and Andrew Owens. Touch and go: Learning

from human-collected vision and touch. Neural Information
Processing Systems (NeurIPS) - Datasets and Benchmarks
Track, 2022. 2

[57] Fengyu Yang, Jiacheng Zhang, and Andrew Owens. Gener-

ating visual scenes from touch. International Conference on
Computer Vision (ICCV), 2023.

[58] Fengyu Yang, Chao Feng, Ziyang Chen, Hyoungseob Park,

Daniel Wang, Yiming Dou, Ziyao Zeng, Xien Chen, Rit Gan-

gopadhyay, Andrew Owens, and Alex Wong. Binding touch

to everything: Learning unified multimodal tactile represen-

tations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024. 2

[59] Yanchao Yang, Alex Wong, and Stefano Soatto. Dense depth

posterior (ddp) from single image and sparse range. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3353–3362, 2019. 3

[60] Zhang Youmin, Guo Xianda, Poggi Matteo, Zhu Zheng,

Huang Guan, and Mattoccia Stefano. Completionformer:

Depth completion with convolutions and vision transformers.

arXiv preprint arXiv:2304.13030, 2023. 3

[61] Yinda Zhang and Thomas Funkhouser. Deep depth comple-

tion of a single rgb-d image. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,

pages 175–185, 2018. 3

11

Supplementary Materials

Summary of contents
• In Section A, we present the GPU time of each adaptation

method to show the effectiveness of our method.

• In Section B, we present the preliminary observations with

image and range inputs of varying sparsity.

• In Section C, we describe the datasets used.

• In Section D, we present the comparison of qualitative

results on Waymo dataset’s adverse weather sample from

pretrained and adapted model to show the effectiveness of

our adaptation under adverse weather conditions.

• In Section E, we present the hyperparameter settings for

result reproduction and we elucidate evaluation details.

• In Section F, we provide a study on the learned proxy

embedding with a visualization.

• In Section G, we present an ablation study of the loss

components in our method.

• In Section H, we present the results on KITTI → VKITTI

adaptation.

• In Section I, we present the results on a different source

dataset (Waymo → VKITTI).

• In Section J, we show a qualitavive result of the prelimi-

nary observation.

A. Adaptation speed

We compare the GPU time of our adaptation method with

the baselines (BN Adapt, CoTTA) on VKITTI in Table 2.

Compared to CoTTA, our adaptation method does not

require multiple inferences to get the pseudo-prediction (de-

rived from averaging teacher model predictions with differ-

ent RGB augmentations) used to adapt the student model.

Yet, our method requires an additional computation for the

proxy embedding. Thus, the proxy layer’s size relative to the

model size causes the adaptation time difference. For exam-

ple, CoTTA reduced the total time by 38.9% over ProxyTTA-

fast on MSGCHN, which is a light-weight depth completion

model. In this case, the proxy layer is relatively larger than

in other models, where multiple inferences require less com-

putation than the proxy layer. As a result, the total time is

increased in MSGCHN. However, for large models (NLSPN,

CostDCNet), ProxyTTA reduced total time by 56.6% over

CoTTA; our proxy layer size is relatively smaller than the

large models, while still improving performance by 26.52%.

Compared to BN Adapt, our method requires additional pa-

rameters for the adaptation layer and the proxy layer. Hence,

our method is 38.18% slower in adaptation time, 19.36%

slower in evaluation time, and 33.16% in total. Yet, our

method improves errors by 15.67% over BN Adapt.

Model Method Adaptation time Evaluation time Total time

MSGCHN
CoTTA 88.9 (-38.9%) 8.66 (-1.0%) 81.2 (-41.3%)

ProxyTTA-fast 136.6 8.8 145.4

NLSPN
CoTTA 717.5 (+67.4%) 75.3 (-10.9%) 792.8 (+60.0%)

BN Adapt 185.0 (-20.8%) 82.8 (-0.8%) 267.8 (-15.6%)
ProxyTTA-fast 168.2 (-28.0%) 83.4 (-0.1%) 251.6 (-20.66%)

ProxyTTA 233.6 83.5 317.1

CostDCNet
CoTTA 329.1 (+78.2%) 33.6 (-51.0%) 369.1 (+43.2%)

BN Adapt 82.1 (-55.5%) 42.5 (-37.9%) 125.6 (-50.8%)
ProxyTTA-fast 141.9 (-23.2%) 68.7 (+0.3%) 210.6 (-16.8%)

ProxyTTA 184.7 68.5 253.2

Table 2. GPU time for various methods and models, tested on
Virtual KITTI. Time is in milliseconds (ms). ‘Adaptation time’

denotes the time required to adapt (or train) each method for a

single test data point. ‘Evaluation time’ denotes the time taken to

test each method for a test data instance.‘Total time’ is the sum of

the Adaptation and Evaluation times.

B. Further observations on image/range inputs

We present additional preliminary observations of the image

and range sensor inputs with varying sparsity. Since pre-

vious works [4, 31] state that the depth completion model

propagates the sparse depth to the dense depth guided by

image features, one can raise a question on our preliminary

results in the main paper without the lidar input, such as

there’s no sparse point to propagate to the near pixels. We

clarify that the results are intended to highlight the domain

distrepancy. Therefore, we show additional results with 1%,

5%, and 10% of sparse points in the range input on indoor

datasets, as shown in Table 3. As we increase the range

points, the performance is improved yet still worse than the

sparse-depth-only results in Tab. 8.

C. Datasets

KITTI [14] is composed of calibrated RGB images with

synchronized point clouds from Velodyne lidar, inertial, and

GPS information, and from more than 61 driving scenes.

There are ≈80K raw image frames and associated sparse

depth maps, both with ≈5% density, available for depth

completion [45]. Semi-dense depth is available for the lower

30% of the image space, and 11 neighboring raw lidar scans

comprise the ground-truth depth. We did not use a test or

validation set, and the training set contains ≈86K single

images.

VOID [51] contains synchronized 640×480 RGB images

and sparse depth maps from indoor scenes of laboratories

and classrooms and from outdoor scenes of gardens. Sparse

depth maps (of ≈0.5% density and containing ≈1,500 sparse

dense points) are obtained by the VIO system XIVO [11],

and dense ground-truth depth maps are obtained by active

stereo. VOID uses rolling shutter to capture challenging

6 DoF motion for 56 sequences - as opposed to KITTI’s

typically planar motion. We use a training set of ≈46K

12

Method MSG-CHN NLSPN CostDCNet MSG-CHN NLSPN CostDCNet

Dataset VOID→NYUv2 VOID→ScanNet

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Image + sparse depth (1%) 1643.34 2177.71 602.17 858.19 809.36 1144.91 1597.41 2240.43 490.13 738.77 665.57 982.32

Image + sparse depth (5%) 996.54 1599.14 379.45 638.55 427.69 736.23 809.38 1455.69 240.55 441.70 337.39 620.53

Image + sparse depth (10%) 785.65 1376.93 327.41 591.99 339.31 622.75 581.93 1165.63 191.75 379.10 264.66 516.74

Sparse depth only 734.13 1046.28 237.47 402.47 147.76 354.57 211.86 444.62 162.29 276.29 88.25 205.46

Table 3. Model sensitivity to input modalities with varying sparsity.

images to prepare the model.

NYUv2 [39] contains 372K synchronized 640×480 RGB

images and depth maps (via Microsoft Kinect) from 464

indoor scenes of household, office, and commercial types.

To generate sparse depth maps in the style of SLAM/VIO,

we used the Harris corner detector [16] to sample ≈1,500

points from the depth maps. We use a set of 654 test set

images for adaptation.

ScanNet [7] contains 2.5 million images and dense depth

maps for 1,513 indoor scenes. To generate sparse depth

maps in the style of SLAM/VIO, we used the Harris corner

detector [16] to sample ≈1,500 points from the depth maps.

We use a set of ≈21K test images for adaptation.

Virtual KITTI (VKITTI) [12] contains ≈17K

1242×375 images from 35 synthetic videos created by ap-

plying 7 variations in weather, lighting, or camera angle to

each of 5 cloned KITTI [45] videos. There exists a large

domain gap between RGB images from VKITTI and KITTI,

even though the virtual worlds created in Unity by [12] are

similar to KITTI scenes. Thus, we only use the dense depth

maps of VKITTI to avoid the domain gap in photometric

varations. The sparse depth maps are obtained by simulating

KITTI’s lidar-generated sparse depth measurements such

that the marginal distribution of VKITTI’s sparse points

mimics that of KITTI’s. We use a set of ≈2,300 test images

for the adaptation.

nuScenes [1] consists of 1600×900 calibrated RGB im-

ages and synchronized sparse point clouds, 27.4K images

from 1000 outdoor driving scenes for training, and 5.8K im-

ages from 150 scenes for testing. We set up the ground truth

for the test images by merging projected sparse depth from

forward-backward frames. The setup code will be released

to clarify further details and reproducibility.

SceneNet [29] contains 5 million 320×240 RGB images

and depth maps from indoor trajectories of randomly ar-

ranged rooms. We use a single split (out of 17 available)

containing 1000 subsequences of 300 images each, gener-

ated by recording the same scene over a trajectory. Because

there are no sparse depth maps provided, we sampled from

the depth map via Harris corner detector [16] to mimic the

sparse depth produced by SLAM/VIO. The final 375 corners

Dataset Learning Rate wsm wz wproxy Inner Iter.

MSG-CHN

VKITTI 2e-3 1.0 1.0 0.2 1

VKITTI-FOG 5e-3 3.0 1.0 0.1 1

nuScenes 3e-3 9.0 1.0 0.2 1

SceneNet 2e-3 8.0 1.0 0.1 3

NYUv2 2e-4 0.8 1.0 0.4 3

ScanNet 5e-3 8.0 1.0 0.3 3

NLSPN

VKITTI 2e-3 0.8 1.0 0.4 1

VKITTI-FOG 1e-3 1.0 1.0 0.2 1

nuScenes 1e-3 1.0 1.0 0.1 1

SceneNet 2e-3 0.7 1.0 2.0 3

NYUv2 4e-3 5.0 1.0 1.0 3

ScanNet 1e-4 2.0 1.0 0.3 3

CostDCNet

VKITTI 4e-3 4.5 1.0 0.1 1

VKITTI-FOG 5e-3 3.0 1.0 0.04 1

nuScenes 5e-3 3.0 1.0 0.1 1

SceneNet 7e-3 2.0 1.0 0.2 3

NYUv2 6e-3 4.0 1.0 0.1 3

ScanNet 3e-3 1.0 1.0 0.2 3

Table 4. Hyperparameters. For MSG-CHN, NLSPN, and CostDC-

Net methods for initialization, preparation, and adaptation.

are obtained by using k-means to subsample the resulting

points, representing 0.49% of the total pixels. We use a set

of ≈2,300 test images for adaptation.

Waymo Open Dataset [42] contains 1920×1280 RGB

images and lidar scans from autonomous vehicles. The

training set contains ≈158K images from 798 scenes and

the validation set ≈40K images from 202 scenes, collected

at 10Hz. Objects are annotated across the full 360◦ field.

We obtain our validation set by sampling from the whole

validation dataset every 0.6 seconds. Range sensor inputs are

obtained by projecting the top lidar’s point cloud scan to the

camera frame. We obtained the ground truth by projecting

10 forward and backward frames from front lidar and top

lidar to the image frame, which approximately counts for

1 second of capture. To assume that the reprojected scenes

13

Figure 6. Qualitative results on Waymo. For outdoor adaptation scenarios, ProxyTTA can adapt under the adverse weather condition, such
as raining condition (top row) and low-illumination (bottom row).

are static, we removed the moving objects in the scenes

using object annotations. Also, outlier removal is utilized

for filtering out errorenous depth points.

D. Qualitative results on adverse weather con-
ditions
Typically, in real-world scenarios, most systems will en-

counter non-ideal sensing conditions, which will degrade

performance. For example, existing pretrained depth (com-

pletion) models will fail under adverse weather conditions,

such as nighttime (low-illumination) or rain. To address

such failure modes of existing models, we adapt CostDCNet

using Proxy-TTA. We demonstrate this capability in Fig. 6,

where we improve over the pretrained model significantly as

shown in the range and error map visualizations.

E. Implementation details
Hyperparameter. We specifically note the hyperparameters

of three methods for initialization, preparation, and adapta-

tion on Table 4.

Epochs and training details Adaptation occurs in a single

epoch, with ‘the number of iterations per data point’ (inner-
iter) specified in Tab. 4. During initialization and preparation

stages, the adaptation and proxy layers are trained for 6

epochs. Batch sizes for all methods are: 48 for preparation

stage, 16 for initialization and adaptation stages, with the

exception of ScanNet [6], using a batch size of 36. To prevent

collapse during preparation stage, we follow the protocol

of [15]; we exploit the projection / prediction layers and

divide online / target branch, and update target projection

layer with exponential moving average of online branch. We

used embedding dimension and hidden dimension of 512

for MSGCHN, and 1024 for CostDCNet and NLSPN. The

learning rates for initialization and preparation stage will be

released with the code release.

Evaluation. We evaluate our adaptation models on bottom-

cropped regions in the outdoor dataset, where the sparse

depth exists. For outdoor dataset, models are evaluated on

the bottom cropped region of the test split, 1242× 240 for

Virtual KITTI, and 1600 × 544 for nuScenes. For indoor

dataset, we evaluated the models on the entire region. The

definition of the error metrics in evaluation are described in

Table 6. We evaluate our model on depth range from 0.0 to

80.0 meters for the ourdoor, and 0.2 to 5.0 meters for the

indooor.

F. Discussion on learned proxy embeddings

Here, we provide the t-SNE visualization of image & sparse

depth and proxy embedding from source and target.

Fig. 7 shows the embeddings visualized by t-SNE, where

the target domain proxy embeddings’ centroid is closer to

that of source’s proxy and image & sparse depth embed-

dings, than to the centroid of target’s image & sparse depth

embeddings, highlighting effectiveness of proxy embedding

for adaptation.

14

KITTI → Waymo KITTI → VKITTI-FOG KITTI → nuScenes

Method �z �sm �proxy MAE RMSE MAE RMSE MAE RMSE

MSG-CHN
� 951.25±3.14 3512.07±6.40 978.84±3.36 3561.40±15.48 3164.46±11.32 6453.54±17.31
� � 613.01±1.99 1935.43±9.14 732.61±6.02 3113.11±21.78 2865.15±9.96 6144.48±24.14
� � � 608.91±1.74 1921.83±2.54 728.24±3.73 3087.36±15.92 2834.08±17.64 6096.56±21.08

NLSPN
� 837.66± 8.73 3668.94± 25.90 715.86±26.36 3034.21± 57.65 5076.83±53.85 9710.88± 89.76
� � 489.46±5.45 1613.66±30.04 705.14±16.86 3059.64±97.85 2783.61±159.62 6313.4±276.09
� � � 477.28±3.32 1598.64±18.95 686.91±22.14 2666.70±56.64 2589.25±59.03 6006.18±90.66

CostDCNet
� 816.33±32.01 3431.96±55.34 807.62±69.12 3254.83±179.90 3135.11±81.76 7596.49±159.16
� � 469.52±2.54 1594.38±6.10 516.93±1.62 2751.21±17.42 2067.42±10.23 5487.85±37.21
� � � 466.44±1.63 1580.38±11.48 512.72±0.74 2735.01±3.53 2062.28±11.24 5509.96±23.41

VOID → NYUv2 VOID → SceneNet VOID → ScanNet

MSG-CHN
� 971.64±66.86 1291.45±45.67 242.11±4.24 491.48±10.49 462.95±34.84 659.9±37.93
� � 1005.49±25.97 1329.76±25.01 194.60±3.64 425.16±10.58 330.20±48.46 503.73±57.14
� � � 699.60±6.00 1120.37±9.76 192.74±1.72 424.49±4.58 302.21±4.10 480.08±8.03

NLSPN
� 145.72 ±6.55 271.78± 9.91 130.49±13.64 337.14±28.38 112.38±1.72 234.60±3.46
� � 128.17±4.13 240.97±3.86 118.65±2.24 337.63±2.58 77.84±0.28 169.81±0.50
� � � 124.41±2.27 240.73±5.72 113.93±1.49 333.41±4.32 74.77±0.31 166.61±0.45

CostDCNet
� 152.43±13.07 432.20±54.51 213.4±19.52 597.22±49.78 91.13±1.40 286.17±9.07
� � 101.31±1.67 217.77±6.00 134.51±4.23 360.33±9.67 69.02±0.51 164.90±2.38
� � � 95.87±2.16 203.83±4.72 125.75±1.93 357.12±4.13 68.17±0.44 162.35±1.12

Table 5. Ablation study of each loss term. Note that NLSPN and CostDCNet update the adaptation layer and batch normalization layers, yet

MSGCHN only updates the adaptation layer.

Metric Definition

MAE 1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|

RMSE
(

1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|2

)1/2

Table 6. Error metrics. dgt denotes the ground-truth depth.

Figure 7. t-SNE plot of learned embeddings on VOID and NYUv2.

G. Ablation study
Here, we ablate the effect of each loss term denoted with

the checkmarks in Table 5. Using sparse depth consistency
loss �z (Eqn. 4) alone can improve the pretrained model as

it learns the shapes of the test domain. However, because

of the sparsity, the supervision signal is weak, leading the

model to exhibit artifacts and distortions in the depth map.

Including a local smoothness loss �sm (Eqn. 5) mitigates this

by propagating depth to nearby regions. However, without

knowledge of 3D shapes compatible with the sparse points,

KITTI → VKITTI

Method MAE RMSE

MSG-CHN

Pretrained 2433.46 6675.16
CoTTA 839.19±12.78 3625.38±39.35
ProxyTTA-fast (Ours) 800.88±1.86 3268.26±4.12

NLSPN

Pretrained 1469.19 8060.97
BN Adapt 1016.87±8.84 3453.00±3.21
BN Adapt, �z , �sm 855.12±14.56 3516.85±58.63
CoTTA 775.09±3.63 3585.37±13.31
ProxyTTA-fast 849.43±3.61 3540.44±3.57
ProxyTTA (Ours) 639.19±5.68 2934.36±33.80

CostDCNet

Pretrained 845.35 3774.01
BN Adapt 1248.35±0.25 4267.64±0.62
BN Adapt, �z , �sm 1016.87±8.84 3453.00±3.21
CoTTA 698.42±9.93 3324.59±30.21
ProxyTTA-fast 822.49±13.55 3331.24±55.30
ProxyTTA (Ours) 639.91±8.92 2951.21±30.93

Table 7. Additional results for test-time adaptation for depth com-
pletion on KITTI → VKITTI.

the wrong predictions are sometimes propagated as in the

left bounding box region from Row 1, Column 4 of Fig. 4.

The best-performing method employs the proposed proxy

embeddings as a regularizer to guide the adaptation layer

update. As the proxy mapping produces test-time features

that follow the distribution of the source domain, minimizing

our proxy consistency loss (Eqn. 6) implicitly aligns the test

domain features to those of the source domain that are com-

patible with the 3D scene observed by the test-time sparse

point cloud. Not only does this improve overall performance,

15

Method MSG-CHN NLSPN CostDCNet MSG-CHN NLSPN CostDCNet

Dataset VOID→NYUv2 VOID→ScanNet

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Image only 2072.78 2462.63 969.14 1228.44 1359.16 1619.40 2001.90 2451.681 899.41 1151.12 1216.17 1459.46

Sparse depth only 734.13 1046.28 237.47 402.47 147.76 354.57 211.86 444.62 162.29 276.29 88.25 205.46

Image + sparse depth 1040.93 1528.98 387.36 704.66 189.10 446.71 316.646 698.633 232.332 431.199 144.311 458.692

Dataset KITTI→Waymo KITTI→nuScenes

Image only 12766.791 18324.83 18829.96 24495.73 13598.50 18376.15 11823.061 17244.44 15835.04 22613.78 12794.65 16744.15

Sparse depth only 861.13 2706.75 1290.28 3571.26 1210.93 3102.49 3943.97 7306.33 2540.58 6203.66 2996.28 6773.06

Image + sparse depth 1103.33 2969.39 1173.26 3092.02 1084.18 2819.42 3331.82 6449.09 2656.61 6146.59 3064.72 6630.65

Table 8. Model sensitivity to input modalities. Depth completion networks have a high reliance on sparse depth modality. Performing

inference in a novel domain without the RGB image, i.e., using just sparse depth as input, can improve over using both data modalities.

Waymo → VKITTI-FOG

Method MAE RMSE

MSG-CHN
Pretrained 1473.14 4676.19
CoTTA 1348.02±38.03 4016.67±28.16
ProxyTTA-fast (Ours) 1052.78±5.74 3891.05±17.34

NLSPN

Pretrained 2734.27 37621.10
BN Adapt, �z , �sm 1205.96±40.14 3857.88±101.15
CoTTA 2485.66±18.05 6307.96±48.64
ProxyTTA (Ours) 808.16±7.86 3536.58±91.15

CostDCNet

Pretrained 1261.00 4360.37
BN Adapt, �z , �sm 742.99±2.17 3403.00±3.62
CoTTA 1150.16±5.69 4134.16±9.15
ProxyTTA (Ours) 724.77±5.18 3349.21±29.00

Table 9. Additional results for test-time adaptation for depth com-
pletion on Waymo → VKITTI-FOG.

but it also reduces standard deviation in error, which can

be interpreted as an increase in the stability of the adapta-

tion. We show qualitative comparisons against BN Adapt

in Fig. 4, where boxes highlight improvements by fixing

erroneous propagation by local smoothness (e.g., bleeding

effect, which is not mitigated by using image gradients as

guidance in Eqn. 5). Quantitatively, we improve over the

baseline by an average of 21.09% across all methods and

datasets, demonstrating the efficacy of our proxy embedding.

H. KITTI → VKITTI results
Here, we present additional results on KITTI → VKITTI

adaptation. Test-time adaptation results are shown in Table 7.

Consistent with the trends observed in the main paper, our

method outperforms over both BN Adapt and CoTTA, with

a 21.82% improvement compared to BN Adapt and 12.6%

improvement over CoTTA.

I. Experiment with different source dataset
In our main paper, the only source dataset for outdoor adap-

tation scenario was KITTI which is the most popular outdoor

depth completion dataset. To validate our method’s appli-

cability to models trained on diverse source datasets, we

include additional results from adaptation scenarios using

a model trained on the Waymo dataset, as shown in Table

9. Our method shows an improvement over CoTTA and BN

Adapt by 21.70%.

A noteworthy observation from the Waymo adaptation

results, when compared to the KITTI → VKITTI-fog results

from the main paper, is that the adaptation result of KITTI

outperforms that of Waymo. This difference is caused by

from the domain discrepancies between KITTI and VKITTI-

fog datasets versus the domain gap between Waymo and

VKITTI-fog. For example, VKITTI’s object appearances

and resolution (1226×370 for KITTI, and 1242×375 for

VKITTI) are more akin to those in the KITTI dataset.

Conversely, the Waymo dataset features higher resolution

(1920×1280) and different object shapes compared to KITTI

and VKITTI. Hence, the adaptation result is influenced by

the extent of domain discrepancy between the source and

target datasets.

J. Quantitative preliminary results
To provide a precise observation, we provide the quantitative

results of model sensitive study in Tab. 8.

16

