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Figure 1. Putting touch “in touch” with other modalities. We show that a variety of tactile sensing tasks, ranging from tactile image

understanding to image synthesis with touch, can be solved zero-shot by aligning touch to pretrained multimodal models, extending previous

approaches on work on other modalities [41]. Our learned model can be applied to various vision-based tactile sensors and simulators (e.g.,

GelSight, DIGIT, Taxim, and Tacto). For visualization purposes, we show the corresponding visual signal (labeled “reference”) for each

touch signal, even though it is not used by the model.

Abstract
Touch provides crucial information about the physical

properties of the objects around us. Creating models that
capture cross-modal associations between touch and other
modalities, however, remains a challenging problem, due to
wide variety of touch sensors and the intensive effort required
to collect tactile data. We propose UniTouch, a unified model
for vision-based touch sensors that connects their tactile sig-
nals to other modalities, including vision, language, and
sound. We achieve this by aligning our tactile embeddings to
pretrained image embeddings already associated with a vari-
ety of other modalities. We further propose learnable sensor-
specific tokens, allowing the model to learn from a set of het-
erogeneous tactile sensors, all at the same time. UniTouch is
capable of conducting various touch sensing tasks in a zero-
shot setting, from robot grasping prediction to touch-based
question answering. To the best of our knowledge, UniTouch
is the first model to demonstrate these capabilities. Project

* Indicates equal contribution.

Page: https://cfeng16.github.io/UniTouch/.

1. Introduction
Amongst our five main senses, touch sensing is perhaps the

most crucial to human survival, due to its role in perceiving

physical contact — rivaling even vision in its overall impor-

tance [53, 83, 91]. Our ability to form cross-modal associa-

tions between touch and our other senses [106] thus underlies

a great deal of our physical capabilities. For example, we

predict from vision how a surface will feel before we touch it,

and we predict from touch how an object will sound before

we strike it. These cross-modal associations are also a key

component of computational systems, such as for robotic ma-

nipulation [8, 73, 85, 89, 90, 95, 99, 103, 124, 132, 134], ma-

terial and geometry estimation [10, 44, 111, 129, 137], assis-

tive technology [49], and texture recognition [57, 88, 136].

Despite their importance, cross-modal associations be-
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tween touch and other modalities have received considerably

less attention from the multimodal research community than

those of other modalities, such as vision, language, and

sound. Touch is expensive to acquire [36, 38, 129] as it re-

quires actively probing objects with touch sensors, limiting

the scale of data collected for training tactile “foundation”

models. Moreover, touch sensors are not fully standardized,

and thus there are large differences between outputs of dif-

ferent sensors [37, 139]. Even amongst the commonly used

vision-based sensors, the difference in mechanical design

and elastomeric material will lead to divergent artifacts, lim-

iting generalization (Fig. 2). As a result, existing tactile

representations are typically constrained to a single sensor.

An emerging line of work has addressed the challenges

of learning from other low-resource modalities, like sound,

point clouds, and depth, by aligning examples with pre-

trained vision-language embeddings [41, 72, 127]. In our pa-

per, we show that this approach can be adapted to tactile sens-

ing. We align tactile signals to visual signals, thereby linking

touch to a variety of other modalities, such as language and

sound. Then we can use the representations within off-the-

shelf models trained on other modalities (e.g., CLIP [101]),

to solve different tactile sensing tasks. To deal with the large

variations in different touch sensors, we train a single model

with multiple tactile signals at once, and introduce learn-

able tokens to model sensor-specific properties, such as the

calibration and intensity profiles in the touch signal.

Our trained model, which we call UniTouch, is a general-

purpose interface for multiple vision-based tactile sensors.

Our model unifies many previously studied tactile sensing

tasks “zero shot” and greatly expands the range of tasks that

touch sensing can be applied, as shown in Fig. 1: (i) We apply

it to zero-shot touch understanding tasks like material recog-

nition and robotic grasp stability prediction. (ii) We obtain

strong performance in cross-modal retrieval with touch by

aligning touch with other modalities in a shared latent space.

(iii) The learned representation can also support image syn-

thesis tasks, including touch-to-image generation [79, 130]

and tactile-driven image stylization [129, 130], by using it

within off-the-shelf text-to-image diffusion models. (iv) We

combine touch with large language models (LLM), allowing

us to perform tasks such as tactile question answering in

a variety of tactile domains, including contact localization,

grasping stability prediction, and etc. (v) Finally, we perform

“X-to-touch” generation, producing touch images from vi-

sion, text, and audio. Our experiments suggest our zero-shot

model achieves competitive (or even better) performance

than previously proposed approaches on multiple tasks.

2. Related Work
Tactile sensing. Early tactile sensors were chiefly engi-

neered to register fundamental, low-dimensional sensory

outputs such as force, pressure, vibration, and tempera-

GelSight from [129] DIGIT from [109] Taxim from [38]

GelSlim from [39] TACTO from [36] DIGIT from [64]

Figure 2. Tactile images of different sensors and datasets. In

contrast to many other modalities, signals from different touch

sensing hardware exhibit large amounts of variation.

ture [20, 63, 69, 70]. Lately, there has been a growing focus

on vision-based tactile sensors. GelSight [61, 135] as one

of the representative sensors, features an elastomeric gel

with an embedded camera and illumination system. The

gel deforms upon contact with an object and creates a high-

resolution height map using photometric stereo [62], which

provides detailed information about the shape and physi-

cal properties of touch [74, 113]. One variant, DIGIT [66],

has a specially designed silicone-based elastomer gel with

a harder surface and a different illumination system. An-

other variant GelSlim [113] contains a stretchy, loose-

weave fabric gel surface. Recent work also turns into

the simulation of tactile sensors [1, 18, 42, 60, 105, 117].

Taxim [105] simulates the optical response of a GelSight

sensor and TACTO [117] calculates the local contact geom-

etry and the corresponding rendering. We focus on vision-

based sensors as they are widely available in visuo-tactile

datasets [16, 27, 33, 109, 116, 125, 136], are commonly used

in various applications [9, 11, 12, 22, 48, 52, 58, 67, 75, 76,

80, 98, 110, 133, 148], and all adopt image as the output

format. While these vision-based tactile sensors and simula-

tors share similar imaging patterns, the difference in design

and calibration results in a significant domain gap (Fig. 2).

Hence, researchers typically study each sensor separately. In

our work, we introduce a novel approach to understanding

multiple sensors through our unified touch encoder.

Representation learning with touch. The initial efforts

learn tactile representations for specific tasks [35, 71, 82,

112, 136]. Lee et al. [71] undertook a collaborative training

of Convolutional Neural Networks (CNN) for an RGB cam-

era and a force sensor to facilitate contact-rich manipulation

tasks. Similarly, Yuan et al. [136] employed a comparable

methodology to establish a shared latent space between vi-

sual and tactile modalities using the Gelsight touch sensor,

aimed at precise fabric classification. Recently, researchers

have learned general representations of touch through self-

supervision. Yang et al. [129] learned tactile representations

for Gelsight sensors with visuo-tactile contrastive multiview

coding [114] and Kerr et al. [64] proposed a contrastive pre-
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Figure 3. Method overview. We align our touch embedding with a

pre-trained image embedding derived from large-scale vision lan-

guage data, using sensor-specific tokens for multi-sensor training.

training method for the DIGIT sensor. Other works adopted

BYOL framework [45] or contrastive predictive coding [138]

to learn representations for non vision-based tactile sensors

like BioTac. Some work [59] applies masked autoencoders

to learn tactile representations directly from tactile inputs.

Unlike methods concentrated solely on visuo-tactile learning

for a single sensor, our approach aims to learn touch rep-

resentations that can be applied across various sensors and

interconnected with multiple modalities.

Multimodal representation learning. The success of

vision-language pretraining [25, 87, 96, 100, 102, 123, 147]

has demonstrated the ability to bridge the gap between

visual content, such as images or videos, and textual de-

scriptions [32, 55, 56, 77, 81, 126]. Furthermore, some re-

searchers have extended the multimodal learning into the 3D

domain [43, 68, 97, 120, 140–143, 149]. Some works learn

shared audio-visual representation [2, 13, 28, 31, 51, 92, 94,

108, 122] by leveraging natural correspondence with videos.

Some works also study shared audio-language representa-

tion [29, 46, 119]. Bender et al. [4] crafted an embedding

space for the flavors of wines by leveraging both image and

text annotations. Chen et al. [15] learned shared spatial infor-

mation from binaural sound and vision. Some works learned

the association between vision and metadata [14, 118, 146].

Imagebind [41] proposed to learn a joint embedding for

six diverse modalities solely through image alignment and

emerge zero-shot cross-modal capabilities. In our work, we

extend this concept to the sense of touch and bind it to other

modalities including text and audio by aligning tactile data

with images, encouraging a more comprehensive understand-

ing of cross-modal touch interactions without paired data.

3. Method
We aim to learn a unified tactile representation for different

touch sensors that captures relationships between touch and

different modalities, e.g. vision, text, and audio. First, we

present our contrastive visuo-tactile pretraining, inspired by

[41], that can emerge interconnections of touch and other

modalities. We then introduce our touch encoder design

and data sampling strategy that can be used for different

tactile sensors at once. Finally, we show how our learned

representation can be applied to various downstream tasks.

3.1. Binding touch with images

We learn a multimodal tactile representation from touch and

vision solely, without the need for paired text and audio data

for touch. We achieve that by aligning our touch embedding

to a pretrained image embedding using contrastive learning

as shown in Fig. 3, where the image embedding is already

aligned with modalities like language and audio training

from large-scale image-paired datasets [41].

We denote Ωv as the visual image domain and Ωt as

the tactile image domain. Thus, given B visual and touch

pairs in a batch, {(vi, ti)}Bi=1, where vi : Ωv ⊂ R
2 → R

3

and ti : Ωt ⊂ R
2 → R

3, we align a tactile embed-

ding FT (ti) ∈ R
C with the pretrained visual embedding

FV (vi) ∈ R
C from [41] by maximizing the cosine similar-

ity between corresponding visuo-tactile pairs. We optimize

this objective using InfoNCE loss [93] to match touches to

correct images:

LT→V = − 1

B

B∑

i=1

log
exp(FT (ti) · FV (vi)/τ)∑B
j=1 exp(FT (ti) · FV (vj)/τ)

,

(1)

where τ is a temperature hyperparameter [121] and C is fea-

ture dimension. Analogously, we can also match from image

vi to touch ti using the loss LV→T . Thus, we minimize the

overall loss:

L = LT→V + LV→T . (2)

Naturally, minimizing the contrastive objective [31, 114,

128, 146] will “pull” a visuo-tactile pair close together and

“push” it away from other pairs, achieving the alignment

between touch and visual embedding. As the visual em-

bedding comes from a learned joint space that has already

aligned with different modalities, touch that is bound with

images will bridge a connection to other modalities, yielding

a multi-modal unified tactile representation.

3.2. Learning from multiple sensors at once

We want to learn a generalizable tactile representation that

will be suitable for different tactile sensors. Therefore, we

designed our touch encoder FT to bridge the domain gap

among various vision-based tactile sensors caused by the

difference in sensor designs.

Specifically, we introduce a set of learnable sensor-

specific tokens {sk}Kk=1, where sk ∈ RL×D, to capture

specific details for each senor, e.g., calibration and back-

ground color in touch images, so that the remaining model

capacity can be used to learn common knowledge across
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different type of touch sensors, such as texture and geome-

try. Here, K represents the number of sensors we train on,

L is the number of sensor-specific tokens for each sensor,

and D is the token dimension. For the given touch image

ti, and its corresponding tactile sensor tokens sti , we ap-

pend these sensor-specific tokens as prefixes to touch image

patch tokens and then encode them with our touch encoder

resulting in the final embedding FT (ti, sti) (Fig. 3). For our

contrastive vision-touch pretraining, we optimize:

LT→V = − 1

B

B∑

i=1

log
exp(FT (ti, sti) · FV (vi)/τ)∑B
j=1 exp(FT (ti, sti) · FV (vj)/τ)

,

(3)

as well as LV→T from the other direction.

In-batch data sampling. We found that batch sampling

strategy [19] plays an important role when we train with

data, acquired by multiple touch sensors, using contrastive

learning. The model will under-perform if we randomly

sample from each data source [131] which results in a surplus

of easy negatives due to the domain gap between different

sensors. Therefore, we design a batch sampling strategy to

guarantee that σ percent of training examples in a batch are

sampled from the same datasets. Given that our dataset D
is the union over N datasets collected with diverse tactile

sensors D =
⋃

n∈{1,2,...,N} Dn, the probability of selecting

a given dataset Dn to sample from is defined as:

pn =
‖Dn‖∑N

m=1 ‖Dm‖
, (4)

where ‖ · ‖ denotes cardinality. Dσ denotes the selected

dataset from which we perform uniform random sampling

to yield σ · B examples; the rest (1− σ) · B examples are

uniformly sampled from other datasets, i.e., D \ Dσ , where

σ is a hyperparameter range from 0 to 1 representing the

portion of the batch. This batch sampling strategy signifi-

cantly benefits our training as it allows the model to mostly

focus on intra-sensor hard negatives but still be exposed to

different sensors to enhance inter-sensor discrimination.

Inference. To generalize our learned representation to un-

seen types of sensors during the inference, we retrieve the

nearest neighbor sensor-specific tokens from the learned sen-

sor set {sk}Nk=1. Specifically, we first compute a prototype

for each sensor, a 1D vector that averages all the raw pixels

belonging to the tactile images collected by this sensor, and

store these prototypes after training. Then, during the infer-

ence stage, we compute the L1 distance between an input

tactile image and all the sensor prototypes and retrieve the

sensor with minimum distance.

3.3. Applications

By aligning our touch embedding to the joint latent space, we

establish a link between touch and other modalities. These

alignments allow us to perform various zero-shot and cross-

modal applications without any further training.

Dataset Sensor # data Material
cls.

Robot
grasp

T
ra

in
&

E
v
al Touch and Go [129] GelSight 120k �

The Feeling of Success [6] GelSight 9.3k �
YCB-Slide [109] DIGIT 183k �
Object Folder 2.0 [38] Taxim 180k � �

E
v
al

. Object Folder Real [39] GelSlim 20k �
Object Folder 1.0 [36] TACTO 20k � �
SSVTP [64] DIGIT 4.6k �

Table 1. Datasets for training and evaluation.

Zero-shot touch understanding. Emergent alignment of

touch and text enables zero-shot touch understanding, e.g.,

material classification and grasp stability prediction. Fol-

lowing CLIP [102], we encode the touch images and text

prompts with templates and class names. We compute their

similarity score and rank them to achieve the zero-shot clas-

sification.

Touch-LLM. Using an existing vision-language

model [34, 144] with the image embedding [41] that

we align our touch embedding with, we can create our

touch-language model by switching to our touch encoder.

Given the touch image and language inputs, we can obtain a

more comprehensive understanding via question-answering.

Image synthesis with touch. Binding touch with text also

opens up more potential abilities for image synthesis with

touch. We leverage the pretrained text-to-image diffusion

model [104] and use our touch features to condition the

denoising process, achieving zero-shot touch-to-image gen-

eration [79, 130] and tactile-driven image stylization.

X-to-touch generation. We also connect other modalities

to touch using the diffusion model so that we can achieve x-

to-touch generation, where we imagine the touch by seeing,

describing, or listening. We train an image-to-touch diffusion

model [130] using the pretrained joint image embedding and

then we can generate touch from text and audio as well.

4. Experiments
We evaluate our model on extensive tasks spanning various

application domains, including zero-shot touch understand-

ing, cross-modal retrieval, zero-shot image synthesis with

touch, Touch-LLM, and X-to-touch generation.

Implementations. We base our model on ImageBind [41].

We use the AdamW optimizer [65, 86] with the base learning

rate of 1 × 10−5 and cosine decay learning rate scheduler.

We train our model with a batch size of 48 on each of the

4 NVIDIA A40 GPUs for 150 epochs. We set the temper-

ature parameter τ = 0.07. We adopt Vision Transformer

(ViT) [26] as the backbone for our touch encoder, which con-

tains 24 multi-head attention blocks with 16 heads on each.

The feature dimension C is 1024. We use L = 5 learnable

tokens for each sensor type in our pretraining datasets with
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Method Pretrain
Data

In domain Datasets Out-of-domain Datasets

Touch and Go ObjectFolder 2.0 YCB-Slide ObjectFolder 1.0 ObjectFolder Real SSVTP

Chance – 5.0 14.2 10.0 14.2 14.2 16.6

Linear Probing

Supervised ImageNet 47.1 70.3 72.3 37.5 54.8 73.4

VT CMC [129] Single 56.5 74.3 75.2 – – –

SSVTP [64] Single 47.6 69.8 74.8 – – –

VT CMC [129] All 49.2 70.3 69.5 33.8 48.1 68.5

SSVTP [64] All 43.8 68.9 67.4 35.1 49.7 66.8

Ours All 61.3 85.4 78.1 41.3 61.2 77.4

Zero-Shot Ours All 52.7 43.5 66.4 32.7 33.2 60.9

Table 2. Tactile material classification. We compare our touch features with other methods and ImageNet pretraining. We also report our

zero-shot classification performance. The metric is accuracy (%).

Method Pretrain
Data

In domain Out-of-domain

Feeling OF 2.0 OF 1.0

Chance - 52.3 52.0 50.7

Linear
Probing

Supervised ImageNet 75.9 70.1 68.9

VT CMC [129] Single 80.1 74.8 -

SSVTP [64] Single 80.3 74.0 -

VT CMC [129] All 66.1 65.8 67.2

SSVTP [64] All 65.8 64.2 65.3

Ours All 82.3 78.1 75.8

Zero-Shot Ours All 65.5 64.3 64.7

Table 3. Robotics grasping stability prediction. We compare our

touch features with other methods and ImageNet pretraining on

grasping stability prediction task. We report our zero-shot results.

The metric is accuracy (%).

K = 3 different sensors. For the in-batch sampling, we set

σ = 0.75, meaning that 75% of the data comes from the

same dataset, with the remainder sourced from others.

Datasets. We train and evaluate our model on four visuo-

tactile datasets collected by three different vision-based tac-

tile sensors (Tab. 1). These include the real-world dataset

Touch and Go [129], the robotic dataset Feeling of Suc-

cess [6], the YCB-Slide [109] dataset featuring DIGIT sen-

sor interactions, and the multimodal dataset ObjectFolder

2.0 [38] which contains simulated visual, tactile, and audio

data of daily objects using Taxim tactile simulators. We train

our model solely on the naturally paired image and touch

data via self-supervision. To test the generalization ability

of our model, we also evaluate it with three out-of-domain

datasets with two unseen sensors, including ObjectFolder

Real [39], ObjectFolder 1.0 [36] and SSVTP [64]. We specif-

ically select objects 101-1000 from ObjectFolder 2.0 to avoid

overlap with ObjectFolder 1.0. Also, ObejctFolder Real con-

tains objects distinct from those in ObjectFolder 1.0 and 2.0.

Please see the supp. for more details.

4.1. UniTouch representation

First, we evaluate the quality of our learned touch features

for downstream tasks: material classification and grasping

stability prediction via linear probing. We freeze the learned

touch embeddings and train a linear classifier on the down-

stream tasks for specific datasets.

Baselines. We compare our model with two recent visuo-

tactile self-supervised methods for vision-based tactile sen-

sors: VT CMC [129] and SSVTP [64]. We also adopt them

to our multi-dataset setup. We use the same architectures to

ensure a fair comparison. We also compare with the super-

vised ImageNet [24] features, which are commonly used to

represent tactile images [6, 7, 137]. Following [6, 39, 129],

we evaluate models’ performance via accuracy metric for

both downstream tasks.

Material classification. We evaluate the touch material

classification task on three in-domain datasets Touch and Go,

ObjectFolder 2.0, and YCB-Slide, and three out-of-domain

datasets ObjectFolder 1.0, ObjectFolder Real, and SSVTP. It

is worth noting that ObjectFolder Real and ObjectFolder 1.0

contain sensors never seen during the training.

Tab. 2 shows results on linear probing. UniTouch outper-

forms all the baselines by a large margin, implying that our

tactile representations benefit from the alignment to a well-

structured embedding space trained on large-scale datasets.

In addition, the consistent improvements across all datasets

and sensors validate our proposed sensor-specific tokens

and in-batch sampling strategy during training – resulting in

insignificant generalization gains across different sensors.

Grasping stability prediction. We follow the setting of [6,

39] to predict, from tactile input, whether a robotic gripper

can successfully grasp and stably hold an object before it is

lifted. Failures occur when the grasped object slips by more

than 3cm. We evaluate UniTouch on three datasets: Feeling

of Success, ObjectFolder 2.0, and ObjectFolder 1.0, where

ObjectFolder 1.0 is an out-of-domain dataset.

The linear probing results are shown in Tab. 3. Our per-

formance consistently outperforms existing baselines by a

large margin. Thus, we further demonstrate that our model

design and training paradigm are useful not only in computer

vision but also can be generalized to robotics tasks.

4.2. Zero-shot touch understanding

We further evaluate UniTouch with zero-shot classification

tasks, enabled by the emergent alignment with text during

pretraining. We perform material classification and grasping

prediction tasks by computing the cosine similarity between

the embeddings of touch and corresponding text prompts.
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Tactile-driven Image StylizationTouch-to-Image Generation

Vision-from-touchTouch Reference Ours Vision-from-touchTouch Reference OursSource

Figure 4. Zero-shot image synthesis with touch. (Left) We generate an image of a scene given a tactile signal. (Right) We perform

tactile-driven image stylization to manipulate an image to match a given touch signal. We compare our method to the state-of-the-art

supervised diffusion method [130] trained on Touch and Go. We denote “reference” as visual images paired with the input touch in the

dataset, which are not seen by the model but only shown for demonstration purposes. See the supplement for more examples.

Method Retrieved Modality

Touch → Vision Touch → Audio Touch → Text

Chance 1.0 1.0 1.0

Fully

supervised

CCA† 8.50 6.18 -

PLSCA† 6.25 7.11 -

DSCMR† 4.92 6.15 -

DAR† 8.80 7.77 -

CCA 17.8 15.7 16.8

PLSCA 16.8 15.9 18.2

DSCMR 26.5 19.6 22.7

DAR 32.3 27.8 31.9

Zero-shot Ours 41.9 37.9 38.0

Table 4. Cross-modal retrieval from touch. We evaluate the

performance using mean Average Precision (mAP) on ObjectFolder

2.0. † denotes results from [39].

Class predictions are chosen based on highest scores, without

training on labeled data. To the best of our knowledge,

there are no other baselines that can perform zero-shot touch

understanding in our manner.

Material classification. We conduct zero-shot material

classification by prompting the model with “This feels like

[CLS]”, where [CLS] is the name of the material. We show

our zero-shot performance in the last row of Tab. 2. Our zero-

shot method shows a comparable performance against sev-

eral supervised methods, which not only indicates a strong

tactile representation that is well-aligned with the text but

also shows that off-the-shelf models trained for other modal-

ities can be used to successfully solve touch sensing tasks.

Grasping stability prediction. Similarly, we perform the

zero-shot grasping stability prediction task by using text

prompts like “the object is lifted in the air” and “”the object

is falling on the ground”. Tab. 3 shows that we are com-

parable to some of the supervised methods, demonstrating

the capabilities of aligning touch and text can be extended

to robotics tasks, which may be out of the training scope

of the vision language model like CLIP with appropriate

prompting. This may come from the fact that we link the

Method Evaluation Metrics

CVTP (↑) Material (↑) FID (↓)

Supervised

Pix2Pix [54] 0.09 0.15 136.4

VisGel [79] 0.10 0.20 128.3

Vision-from-touch [130] 0.35 0.25 81.2

Zero-shot Ours 0.56 0.31 103.11

Table 5. Zero-shot touch-to-image generation on Touch and Go.

touch of the successful grasps to the robot’s action of lifting

objects while failed grasps as those falling. We found consis-

tent performance in both in and out-of-distribution datasets,

demonstrating the generalization capability of this link.

4.3. Cross-modal retrieval with touch

We conduct cross-modal retrieval to evaluate the alignment

of our touch embeddings to those of other modalities. Given

a touch image, we aim to identify the corresponding vision,

text, and audio describing the same point of contact.

Experimental setup. We evaluate on ObjectFolder 2.0

cross-sensory retrieval benchmark [39]. Following [39], we

treat points from the same object as positive samples and

evaluate using mAP. To evaluate touch-to-text retrieval, we

annotated text descriptions that depict the contact point of the

object from its visual input, serving as paired ground-truth

text. We obtain the retrieval result by ranking the cosine sim-

ilarity between an input touch and other modalities. Given

that our method is not trained with paired audio or text data,

we consider its performance in these two modalities as a

demonstration of zero-shot learning.

Baselines. We compare our method with several estab-

lished baselines, including Canonical Correlation Analy-

sis (CCA) [50], Partial Least Squares (PLSCA) [23], Deep

Aligned Representations (DAR) [3], and Deep Supervised

Cross-Modal Retrieval (DSCMR) [145].

Results. UniTouch achieves state-of-the-art performance

on all three modalities and outperforms those supervised
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No, the object cannot be 
grasped into the air as the 
gripper is touching the 
object at the edge.

Can this object be grasped 
into the air? Explain why by 
describing where specifically 
is the gripper touching on 
the object.

Input touchReference

The object in the touch 
image is a green, grassy 
blade. It is a thin, flat piece 
of grass that is likely part of 
a larger grassy field or lawn.

Can you describe material 
of the object presented in 
touch image?

Input touchReference

The touch is located 
on the corner of 
the table.

What part of the table this 
touch located?

Input touchReference

Figure 5. Touch-LLM. Our Touch-LLM can conduct a series of tactile question-answer tasks such as robot grasping stability prediction,

contact localization, and touch image captioning. We also show “reference” visual images paired with the input touch, for better demonstration.

See the supplement for more examples.

Method LLM Eval

GPT-4 Rating (↑)

BLIP-2 [78] Vicuna [17] 1.01

InstructBLIP [21] Vicuna [17] 1.93

LLaVA-1.5 [84] Vicuna [17] 2.33

ImageBind-LLM [47] LLaMA [115] 1.89

Touch-LLM (ours) LLaMA [115] 3.54

Table 6. Touch image caption evaluation. We evaluate our Touch-

LLM and four baselines on our test cases from Touch and Go [129].

Each model’s response is rated by GPT-4 on a scale from 1 to 5.

methods that are trained with paired modalities by a large

margin (Tab. 4). This demonstrates our strong cross-modal

ability to align touch with other modalities without the need

for explicit paired training data or additional supervision.

4.4. Image synthesis with touch

In this part, we demonstrate that we can combine our touch

embedding with an off-the-shelf image synthesis model eas-

ily to perform the image synthesis tasks conditioning touch

images in a zero-shot manner. We perform two tasks: touch-

to-image generation [30, 40, 79, 130] and tactile-driven im-

age stylization [129, 130]. Following [129, 130], we use

three evaluation metrics: Frechet Inception Distance (FID),

Contrastive Visuo-Tactile Pre-Training (CVTP), and material

classification consistency. See the supplement for details.

Touch-to-image generation. We aim to generate images

solely from touch. We use a pretrained text-to-image diffu-

sion model [104], conditioning on our touch features, and

guiding the denoising process. Compared to the state-of-the-

art visuo-tactile diffusion-based model [130], our method

generates more realistic objects that have not been previously

seen in the dataset (see Fig. 4 (left)). While the images gener-

ated by [130] not only include the sensor and the arm holding

it but also closely resemble the visual images in the training

set. Tab. 5 shows quantitative results, where we compare

with Vision-from-touch [130], VisGel [79] and Pix2Pix [54]

on Touch and Go [129]. Despite a slightly lower FID score

Prompt Datasets

Touch and Go OF 2

This is an image of [CLS] 40.7 34.3

This is a touch image of [CLS] 43.8 36.8

This looks like [CLS] 49.3 41.7

This feels like [CLS] 52.7 43.5

Image of [CLS] 48.8 40.3

Touch of [CLS] 51.2 40.9

Table 7. Prompt analysis for touch. We evaluate our prompt

designs for zero-shot material classification on Touch and Go and

ObjectFolder 2.0 datasets.

compared to [130], our method outperforms on the CVTP

and material consistency metrics. This suggests that while

our generated images are out of the distribution of Touch

and Go, our approach effectively bridges vision and touch.

Tactile-driven image stylization. We also manipulate an

image to align with a given touch signal [129, 130] zero

shot. We achieve this by mixing the input image embedding

with our conditioned touch embedding and feeding it into

the pretrained diffusion model. We show qualitative results

in Fig. 4 (right), where the input image is out of the distri-

bution of Touch and Go [129]. We observe the supervised

state-of-the-art method [130] fails to change the visual style

according to the touch images even though these are seen

during the training stage. See the supp. for more details.

4.5. Touch-LLM

Interpreting vision-based touch images, crucial for delicate

tasks in fields like robotics, is challenging due to human per-

ceptual limitations. To address this, we integrate UniTouch

embedding into a large language model (LLM), leveraging

its robust understanding and reasoning capabilities for touch

image interpretation, and name it as Touch-LLM. Touch-

LLM is capable of a series of tactile tasks such as grasping

stability prediction, touch image interpretation, tactile con-

tact localization and etc., most of which are non-trivial to

humans, demonstrating the usefulness of combining touch

7



with LLMs. We show some example tasks in Fig. 5.

Quantitatively, we compare our model with four open-

source vision-language models (VLMs): BLIP-2 [78], In-

structBLIP [21], LLaVA-1.5 [84], and ImageBind-LLM [47]

in the touch image captioning task by feeding them the same

touch images and text prompts. We manually create captions

for 400 randomly sampled RGB images from Touch and

Go [129] as the ground truth. Following [5], we use GPT–

4 to perform automatic evaluation by instructing GPT-4 to

rate each model’s generations on a scale of 1 to 5 given the

reference response. As shown in Tab. 6, our Touch-LLM

outperforms other VLMs by a large margin, indicating that

our Touch-LLM has much better understanding capabilities

for touch images. See the supp. for more details.

4.6. X-to-touch generation

We conduct X-to-touch generation to synthesize realistic

tactile images corresponding to the input modality of vision,

language, and audio. Fig. 1 shows plausible and consistent

tactile images generated from both the visual input and its

text captioning. Quantitatively, we evaluate our model on

Touch and Go [129], where we measure material classifi-

cation consistency between touch images generated from

vision and its corresponding language captions. Our model

achieves 55.3% consistency, demonstrating the reliability of

our results. See the supp. for more examples and details.

4.7. Ablation study
Learning from multiple sensors. Tab. 8 ablates the im-

portance of each module design on the zero-shot material

classification task with the Touch and Go dataset. The base-

line, a vanilla transformer model aligning touch embedding

to a fixed vision encoder, drops performance significantly

when applied to multiple sensors and datasets, i.e., from

43.1% to 21.4%, indicating the difficulty of the sensor do-

main gap. We improve the performance by 17% by adding

the sensor-specific tokens to it. Similarly, we found a 19%

by adding our sampling strategy. With our proposed batch

sampling strategy and sensor-specific tokens, our model can

achieve strong performance, surpassing the model trained

on a single dataset, which emphasizes the significance of

our proposed methods for learning a better touch represen-

tation from multiple sensors. We argue that this is because

sensor-specific embeddings help distinguish hard samples

from different sensors while sampling strategy helps iden-

tify hard negatives within the same sensor in the training.

Combining these, we can tackle inter-sensor and intra-sensor

hard samples thus obtaining the performance boost.

Language prompting for touch. We explore how lan-

guage prompting can help with understanding touch, the first

endeavor in this domain. Given that vision captures more

global and semantic information, and touch focuses on mate-

rial properties, texture, and microgeometry, directly adopting

Method Pretrain
Data

Eval

Touch and Go

Chance – 16.7

Baseline Touch and Go 43.1

Baseline All 21.4

Baseline + sensor token All 38.1

Baseline + sample All 40.3

Baseline + sensor token + sample All 52.7

Table 8. Ablation study. We ablate the effectiveness of each of our

proposed contributions via the zero-shot material classification.

prompts from vision-language works may not yield satisfac-

tory results. We design touch-specific prompt templates by

adopting the common prompts from vision-language works

and replacing with words related to haptics, i.e., chang-

ing “image” to “touch image” and “look like” to

“feel like” (see Tab. 7). We evaluate them using the

zero-shot material classification task on Touch and Go and

ObjectFolder 2.0. We empirically found that our prompts

can significantly improve the performance, indicating that

language can indeed understand touch. We suspect this phe-

nomenon may be due to the design of visuo-tactile datasets,

which feature human or robotic touch actions, thus enabling

the model to associate tactile images with these actions.

5. Discussion
We introduced UniTouch, a unified multimodal tactile repre-

sentation for vision-based tactile sensors. To achieve this, we

align our touch embedding to a shared multimodal embed-

ding space using contrastive learning. We further introduce

sensor-specific tokens that enables learning from different

sensors all at once. UniTouch unifies many existing tactile

sensing tasks and significantly expands the range of tasks for

touch sensing. Nonetheless, the field of multimodal (foun-

dational) model is admittedly still young. Agents, like our-

selves, leverage complementary strengths of multi-sensory

observations, incorporating all five senses in everyday tasks.

With that goal in mind, we see our work as a concrete step

towards that direction, opening new avenues for multimodal

touch experience beyond vision and touch and integrating

tactile sensing into multimodal foundation models.

Limitations. As the full range of tactile sensors exhibits

differing output formats (e.g., image, barometric signals,

force), we limit our scope to vision-based tactile sensors.

Scaling up our training strategy is key to further integrate

emerging tactile sensors in the future. In addition, like

other multimodal foundational models, our representation is

“black-box”, which does not easily for interpretability in the

space, where one may benefit from explainability.
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Perdereau. Tactile sensing in dexterous robot hands - review.

Robotics Auton. Syst., 74:195–220, 2015. 2

[64] Justin Kerr, Huang Huang, Albert Wilcox, Ryan Hoque,

Jeffrey Ichnowski, Roberto Calandra, and Ken Goldberg.

Self-supervised visuo-tactile pretraining to locate and follow

garment features. In Robotics: Science and Systems, 2023.

2, 4, 5, 1

[65] Diederik Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In International Conference on
Learning Representation, 2015. 4

[66] Mike Lambeta, Po wei Chou, Stephen Tian, Brian Yang,

Benjamin Maloon, Victoria Rose Most, Dave Stroud, Ray-

mond Santos, Ahmad Byagowi, Gregg Kammerer, Dinesh

Jayaraman, and Roberto Calandra. Digit: A novel design

for a low-cost compact high-resolution tactile sensor with

application to in-hand manipulation. IEEE Robotics and
Automation Letters, 5:3838–3845, 2020. 2

[67] Mike Lambeta, Huazhe Xu, Jingwei Xu, Po wei Chou,

Shaoxiong Wang, Trevor Darrell, and Roberto Calandra.

Pytouch: A machine learning library for touch processing.

2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 13208–13214, 2021. 2

[68] Dong Lao, Fengyu Yang, Daniel Wang, Hyoungseob Park,

Samuel Lu, Alex Wong, and Stefano Soatto. On the viability

of monocular depth pre-training for semantic segmentation.

arXiv preprint arXiv:2203.13987, 2022. 3

[69] Susan J. Lederman and Roberta L. Klatzky. Hand move-

ments: A window into haptic object recognition. Cognitive
Psychology, 19:342–368, 1987. 2

[70] Susan J. Lederman and R. L. Klatzky. Tutorial review haptic

perception: A tutorial. 2009. 2

[71] Michelle A. Lee, Yuke Zhu, Peter Zachares, Matthew Tan,

Krishna Parasuram Srinivasan, Silvio Savarese, Fei-Fei Li,

Animesh Garg, and Jeannette Bohg. Making sense of vision

and touch: Learning multimodal representations for contact-

rich tasks. IEEE Transactions on Robotics, 36:582–596,

2019. 2

[72] Seung Hyun Lee, Wonseok Roh, Wonmin Byeon, Sang Ho

Yoon, Chanyoung Kim, Jinkyu Kim, and Sangpil Kim.

Sound-guided semantic image manipulation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 3377–3386, 2022. 2

[73] Marion Lepert, Chaoyi Pan, Shenli Yuan, Rika Antonova,

and Jeannette Bohg. In-hand manipulation of unknown

objects with tactile sensing for insertion. In Embracing
Contacts - Workshop at ICRA 2023, 2023. 1

[74] Nathan F. Lepora, Yijiong Lin, Ben Money-Coomes, and

John Lloyd. Digitac: A digit-tactip hybrid tactile sensor

for comparing low-cost high-resolution robot touch. IEEE
Robotics and Automation Letters, 7:9382–9388, 2022. 2

[75] Hao Li, Yizhi Zhang, Junzhe Zhu, Shaoxiong Wang,

Michelle A. Lee, Huazhe Xu, Edward H. Adelson, Li Fei-

Fei, Ruohan Gao, and Jiajun Wu. See, hear, and feel: Smart

sensory fusion for robotic manipulation. In Conference on
Robot Learning, 2022. 2

[76] Hongyu Li, Snehal Dikhale, Soshi Iba, and Nawid Jamali.

Vihope: Visuotactile in-hand object 6d pose estimation with

shape completion. IEEE Robotics and Automation Letters,

8(11):6963–6970, 2023. 2

[77] Hangfei Li, Yiming Wu, and Fangfang Wang. Dynamic

network for language-based fashion retrieval. In Proceed-
ings of the 1st International Workshop on Deep Multimodal
Learning for Information Retrieval, pages 49–57, 2023. 3

[78] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-

2: Bootstrapping language-image pre-training with frozen

image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023. 7, 8

[79] Yunzhu Li, Jun-Yan Zhu, Russ Tedrake, and Antonio Tor-

ralba. Connecting touch and vision via cross-modal predic-

tion. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10601–10610, 2019. 2,

4, 6, 7

[80] Yichen Li, Yilun Du, Chao Liu, Chao Liu, Francis Williams,

Michael Foshey, Benjamin Eckart, Jan Kautz, Joshua B.

Tenenbaum, Antonio Torralba, and Wojciech Matusik.

Learning to jointly understand visual and tactile signals.

In The Twelfth International Conference on Learning Repre-
sentations, 2024. 2

[81] Yong-Lu Li, Xiaoqian Wu, Xinpeng Liu, Yiming Dou, Yikun

Ji, Junyi Zhang, Yixing Li, Jingru Tan, Xudong Lu, and

Cewu Lu. From isolated islands to pangea: Unifying seman-

tic space for human action understanding. arXiv preprint
arXiv:2304.00553, 2023. 3

11



[82] Justin Lin, Roberto Calandra, and Sergey Levine. Learning

to identify object instances by touch: Tactile recognition via

multimodal matching. 2019 International Conference on
Robotics and Automation (ICRA), pages 3644–3650, 2019.

2

[83] David J Linden. Touch: The science of the hand, heart, and
mind. Penguin Books, 2016. 1

[84] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.

Improved baselines with visual instruction tuning. arXiv
preprint arXiv:2310.03744, 2023. 7, 8

[85] John Lloyd and Nathan F. Lepora. Goal-driven robotic

pushing using tactile and proprioceptive feedback. IEEE
Transactions on Robotics, 38:1201–1212, 2020. 1

[86] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 4

[87] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei,

Nan Duan, and Tianrui Li. Clip4clip: An empirical study

of clip for end to end video clip retrieval and captioning.

Neurocomputing, 508:293–304, 2022. 3

[88] Shan Luo, Wenzhen Yuan, Edward H. Adelson, Anthony G.

Cohn, and Raul Fuentes. Vitac: Feature sharing between

vision and tactile sensing for cloth texture recognition. 2018
IEEE International Conference on Robotics and Automation
(ICRA), pages 2722–2727, 2018. 1

[89] Fotios Lygerakis, Vedant Dave, and Elmar Rueckert. M2curl:

Sample-efficient multimodal reinforcement learning via self-

supervised representation learning for robotic manipulation.

ArXiv, abs/2401.17032, 2024. 1

[90] Chenyang Ma, Kai Lu, Ta-Ying Cheng, Niki Trigoni, and

Andrew Markham. See, imagine, plan: Discovering and

hallucinating tasks from a single image. 2024. 1

[91] Paul R Manske. The sense of touch. Journal of Hand
Surgery, 24(2):213–214, 1999. 1

[92] Pedro Morgado, Nuno Vasconcelos, and Ishan Misra. Audio-

visual instance discrimination with cross-modal agreement.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12475–12486, 2021.

3

[93] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 3

[94] Andrew Owens, Jiajun Wu, Josh H McDermott, William T

Freeman, and Antonio Torralba. Learning sight from sound:

Ambient sound provides supervision for visual learning.

2018. 3

[95] Chaoyi Pan, Marion Lepert, Shenli Yuan, Rika Antonova,

and Jeannette Bohg. In-hand manipulation of unknown

objects with tactile sensing for insertion. 2022. 1

[96] Zixuan Pan, Zihao Wei, and Andrew Owens. Efficient vision-

language pre-training by cluster masking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024. 3

[97] Hyoungseob Park, Anjali Gupta, and Alex Wong. Test-

time adaptation for depth completion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024. 3

[98] Leszek Pecyna, Siyuan Dong, and Shan Luo. Visual-tactile

multimodality for following deformable linear objects us-

ing reinforcement learning. 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages

3987–3994, 2022. 2

[99] Haozhi Qi, Brent Yi, Sudharshan Suresh, Mike Lambeta,

Y. Ma, Roberto Calandra, and Jitendra Malik. General

in-hand object rotation with vision and touch. ArXiv,

abs/2309.09979, 2023. 1

[100] Longtian Qiu, Renrui Zhang, Ziyu Guo, Ziyao Zeng, Yafeng

Li, and Guangnan Zhang. Vt-clip: Enhancing vision-

language models with visual-guided texts. arXiv preprint
arXiv:2112.02399, 2021. 3

[101] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. Learning transferable visual

models from natural language supervision. In International
Conference on Machine Learning, 2021. 2

[102] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-

ing transferable visual models from natural language super-

vision. In International conference on machine learning,

pages 8748–8763. PMLR, 2021. 3, 4

[103] Adrian Rofer, Nick Heppert, Abdallah Ayman, Eugenio

Chisari, and Abhinav Valada. Pseudotouch: Efficiently

imaging the surface feel of objects for robotic manipulation.

2024. 1

[104] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 4, 7, 1, 3

[105] Zilin Si and Wenzhen Yuan. Taxim: An example-based

simulation model for gelsight tactile sensors. IEEE Robotics
and Automation Letters, PP:1–1, 2021. 2

[106] Linda Smith and Michael Gasser. The development of em-

bodied cognition: Six lessons from babies. Artificial life,

2005. 1

[107] Jiaming Song, Chenlin Meng, and Stefano Ermon.

Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 1, 2

[108] Kim Sung-Bin, Arda Senocak, Hyunwoo Ha, Andrew

Owens, and Tae-Hyun Oh. Sound to visual scene gener-

ation by audio-to-visual latent alignment. Computer Vision
and Pattern Recognition (CVPR), 2023. 3

[109] Sudharshan Suresh, Zilin Si, Stuart Anderson, Michael

Kaess, and Mustafa Mukadam. MidasTouch: Monte-Carlo

inference over distributions across sliding touch. In Proc.
Conf. on Robot Learning, CoRL, Auckland, NZ, 2022. 2, 4,

5, 1

[110] S. Suresh, Z. Si, J. Mangelson, W. Yuan, and M. Kaess.

ShapeMap 3-D: Efficient shape mapping through dense

touch and vision. In Proc. IEEE Intl. Conf. on Robotics
and Automation, ICRA, Philadelphia, PA, USA, 2022. 2

12



[111] Aiden Swann, Matthew Strong, Won Kyung Do, Gadiel Sz-

naier Camps, Mac Schwager, and Monroe Kennedy. Touch-

gs: Visual-tactile supervised 3d gaussian splatting. 2024.

1

[112] Tasbolat Taunyazov, Yansong Chua, Ruihan Gao, Harold

Soh, and Y. Wu. Fast texture classification using tactile

neural coding and spiking neural network. 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 9890–9895, 2020. 2

[113] Ian Taylor, Siyuan Dong, and Alberto Rodriguez. Gelslim

3.0: High-resolution measurement of shape, force and slip

in a compact tactile-sensing finger. 2022 International Con-
ference on Robotics and Automation (ICRA), pages 10781–

10787, 2021. 2

[114] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. In European conference on com-
puter vision, pages 776–794. Springer, 2020. 2, 3

[115] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-

tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste

Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.

Llama: Open and efficient foundation language models.

arXiv preprint arXiv:2302.13971, 2023. 7, 2

[116] Ruoyu Wang, Shiheng Wang, Songyu Du, Erdong Xiao,

Wenzhen Yuan, and Chen Feng. Real-time soft body 3d pro-

prioception via deep vision-based sensing. IEEE Robotics
and Automation Letters, 5:3382–3389, 2019. 2

[117] Shaoxiong Wang, Mike Lambeta, Po wei Chou, and Roberto

Calandra. Tacto: A fast, flexible, and open-source simula-

tor for high-resolution vision-based tactile sensors. IEEE
Robotics and Automation Letters, 7:3930–3937, 2020. 2

[118] Yiming Wu, Xintian Wu, Xi Li, and Jian Tian. Mgh: Meta-

data guided hypergraph modeling for unsupervised person

re-identification. In Proceedings of the 29th ACM Interna-
tional Conference on Multimedia, pages 1571–1580, 2021.

3

[119] Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor

Berg-Kirkpatrick, and Shlomo Dubnov. Large-scale con-

trastive language-audio pretraining with feature fusion and

keyword-to-caption augmentation. In ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5. IEEE, 2023. 3

[120] Yangchao Wu, Tian Yu Liu, Hyoungseob Park, Stefano

Soatto, Dong Lao, and Alex Wong. Augundo: Scaling up

augmentations for unsupervised depth completion. arXiv
preprint arXiv:2310.09739, 2023. 3

[121] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3733–3742,

2018. 3

[122] Eric Zhongcong Xu, Zeyang Song, Satoshi Tsutsui, Chao

Feng, Mang Ye, and Mike Zheng Shou. Ava-avd: Audio-

visual speaker diarization in the wild. In Proceedings of the
30th ACM International Conference on Multimedia, pages

3838–3847, 2022. 3

[123] Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko,

Armen Aghajanyan, Florian Metze, Luke Zettlemoyer, and

Christoph Feichtenhofer. Videoclip: Contrastive pre-training

for zero-shot video-text understanding. arXiv preprint
arXiv:2109.14084, 2021. 3

[124] Huazhe Xu, Yuping Luo, Shaoxiong Wang, Trevor Darrell,

and Roberto Calandra. Towards learning to play piano with

dexterous hands and touch. 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages

10410–10416, 2021. 1

[125] Wenqiang Xu, Zhenjun Yu, Han Xue, Ruolin Ye, Siqiong

Yao, and Cewu Lu. Visual-tactile sensing for in-hand object

reconstruction. 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8803–8812,

2023. 2

[126] Zhiyang Xu, Chao Feng, Rulin Shao, Trevor Ashby, Ying

Shen, dingnan jin, Yu Cheng, Qifan Wang, and Lifu Huang.

Vision-flan: Scaling human-labeled tasks in visual instruc-

tion tuning. ArXiv, abs/2402.11690, 2024. 3

[127] Le Xue, Mingfei Gao, Chen Xing, Roberto Mart’in-Mart’in,

Jiajun Wu, Caiming Xiong, Ran Xu, Juan Carlos Niebles,

and Silvio Savarese. Ulip: Learning a unified representation

of language, images, and point clouds for 3d understand-

ing. 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1179–1189, 2022. 2

[128] Fengyu Yang and Chenyang Ma. Sparse and complete latent

organization for geospatial semantic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1809–1818, 2022. 3

[129] Fengyu Yang, Chenyang Ma, Jiacheng Zhang, Jing Zhu,

Wenzhen Yuan, and Andrew Owens. Touch and go: Learn-

ing from human-collected vision and touch. Neural In-
formation Processing Systems (NeurIPS) - Datasets and
Benchmarks Track, 2022. 1, 2, 4, 5, 7, 8, 3

[130] Fengyu Yang, Jiacheng Zhang, and Andrew Owens. Gener-

ating visual scenes from touch. International Conference on
Computer Vision (ICCV), 2023. 2, 4, 6, 7

[131] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Bin Xiao,

Ce Liu, Lu Yuan, and Jianfeng Gao. Unified contrastive

learning in image-text-label space. 2022 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 19141–19151, 2022. 4

[132] Zhao-Heng Yin, Binghao Huang, Yuzhe Qin, Qifeng Chen,

and Xiaolong Wang. Rotating without seeing: Towards

in-hand dexterity through touch. Robotics: Science and
Systems, 2023. 1

[133] Kelin Yu, Yunhai Han, Matthew Zhu, and Ye Zhao. Mimic-

touch: Learning human’s control strategy with multi-modal

tactile feedback. ArXiv, abs/2310.16917, 2023. 2

[134] Xihang Yu, Sangli Teng, Theodor Chakhachiro, Wenzhe

Tong, Tingjun Li, Tzu-Yuan Lin, Sarah Koehler, Manuel

Ahumada, Jeffrey M Walls, and Maani Ghaffari. Fully pro-

prioceptive slip-velocity-aware state estimation for mobile

robots via invariant kalman filtering and disturbance ob-

server. arXiv preprint arXiv:2209.15140, 2022. 1

[135] Wenzhen Yuan, Siyuan Dong, and Edward H. Adelson. Gel-

sight: High-resolution robot tactile sensors for estimating

geometry and force. Sensors (Basel, Switzerland), 17, 2017.

2

13



[136] Wenzhen Yuan, Shaoxiong Wang, Siyuan Dong, and Ed-

ward H. Adelson. Connecting look and feel: Associating

the visual and tactile properties of physical materials. 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4494–4502, 2017. 1, 2

[137] Wenzhen Yuan, Chenzhuo Zhu, Andrew Owens, Man-

dayam A Srinivasan, and Edward H Adelson. Shape-

independent hardness estimation using deep learning and

a gelsight tactile sensor. In International Conference on
Robotics and Automation (ICRA), 2017. 1, 5

[138] Martina Zambelli, Yusuf Aytar, Francesco Visin, Yuxiang

Zhou, and Raia Hadsell. Learning rich touch representations

through cross-modal self-supervision. In Conference on
Robot Learning, 2021. 3

[139] Ben Zandonati, Ruohan Wang, Ruihan Gao, and Y. Wu.

Investigating vision foundational models for tactile repre-

sentation learning. ArXiv, abs/2305.00596, 2023. 2

[140] Ziyao Zeng, Daniel Wang, Fengyu Yang, Hyoungseob Park,

Stefano Soatto, Dong Lao, and Alex Wong. Wordepth:

Variational language prior for monocular depth estimation.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024. 3

[141] Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng

Miao, Bin Cui, Yu Qiao, Peng Gao, and Hongsheng Li.

Pointclip: Point cloud understanding by clip. arXiv preprint
arXiv:2112.02413, 2021.

[142] Renrui Zhang, Ziyao Zeng, Ziyu Guo, Xinben Gao, Kexue

Fu, and Jianbo Shi. Dspoint: Dual-scale point cloud

recognition with high-frequency fusion. arXiv preprint
arXiv:2111.10332, 2021.

[143] Renrui Zhang, Ziyao Zeng, Ziyu Guo, and Yafeng Li. Can

language understand depth? In Proceedings of the 30th ACM
International Conference on Multimedia, pages 6868–6874,

2022. 3

[144] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu,

Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and Yu Qiao.

Llama-adapter: Efficient fine-tuning of language models

with zero-init attention. arXiv preprint arXiv:2303.16199,

2023. 4, 2

[145] Liangli Zhen, Peng Hu, Xu Wang, and Dezhong Peng. Deep

supervised cross-modal retrieval. 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 10386–10395, 2019. 6

[146] Chenhao Zheng, Ayush Shrivastava, and Andrew Owens.

Exif as language: Learning cross-modal associations be-

tween images and camera metadata. Computer Vision and
Pattern Recognition (CVPR), 2023. 3

[147] Chenhao Zheng, Jieyu Zhang, Aniruddha Kembhavi, and

Ranjay Krishna. Iterated learning improves composition-

ality in large vision-language models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024. 3

[148] Shaohong Zhong, Alessandro Albini, Oiwi Parker Jones,

Perla Maiolino, and Ingmar Posner. Touching a nerf: Lever-

aging neural radiance fields for tactile sensory data genera-

tion. In Conference on Robot Learning, pages 1618–1628.

PMLR, 2023. 2

[149] Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyu Guo, Ziyao

Zeng, Zipeng Qin, Shanghang Zhang, and Peng Gao. Point-

clip v2: Prompting clip and gpt for powerful 3d open-world

learning. ICCV 2023, 2022. 3

14



Binding Touch to Everything:
Learning Unified Multimodal Tactile Representations

Supplementary Material

A.1. Datasets and Metrics
We provide more details of datasets used in our paper, all of

which are publicly available.

Touch and Go [129]. The Touch and Go dataset is a recent,

real-world visuo-tactile dataset featuring human interactions

with various objects in both indoor and outdoor environ-

ments using a GelSight tactile sensor. It comprises 13,900

instances of touch across approximately 4,000 distinct ob-

ject instances and 20 types of materials. Since it is the only

real-world in-the-wild dataset, we apply it to multiple tasks

including material classification, image synthesis with touch,

Touch LLM, and X-to-touch generation. We use the official

train/test split of [129] where the dataset is split by touches,

not by frames to avoid similar touch images between the train

and test set. For Touch-LLM and X-to-touch applications,

we label 400 visual images by asking turkers to provide their

captioning to describe the object, touch feeling, and texture

from it.

The feeling of success [6]. The Feeling of Success is a

robot-collected visuo-tactile dataset of robots grasping ob-

jects on a tabletop. The tactile images are all captured by

GelSight tactile sensors. It contains 9.3k paired vision and

touch images. We apply this dataset to robotic grasping sta-

bility predictions. As there is no official split of train/val/test,

following [39, 129], we split the dataset by objects in the

ratio of 8:1:1.

YCB-Slide [109]. The YCB-Slide dataset comprises

DIGIT sliding interactions on YCB objects. The dataset

is in the video format where we take all 180k frames for our

experiments. The dataset contains 10 YCB objects including

a sugar box, a tomato soup can, a mustard bottle, a bleach

cleanser, a mug, a power drill, scissors, an adjustable wrench,

a hammer, and a baseball. While the tactile images are col-

lected via sliding interaction, the visual input is generated by

simulation of the YCB objects. In our experiment, we treat

each of the objects as an individual material and our goal

is to classify 10 classes. We apply this dataset to material

classification.

ObjectFolder 1.0 [36]. The ObjectFolder 1.0 dataset is

a simulation dataset containing 3D models of 100 objects

from online repositories. The touch images are simulated by

TACTO simulators. As the raw dataset is a 3D model with in-

finite points, we randomly sample 200 points for each object.

We apply this dataset to material classification and grasping

stability prediction experiments. It is worth noting that for

grasping stability prediction experiments, we select 6 objects

suitable for grasping following their setting and achieve rela-

tively balanced successful and failure outcomes for grasping.

Following [36], all materials can be categorized into 7 mate-

rial categories including wood, steel, polycarbonate, plastic,

iron, ceramic, and glass. These categories are also applied

to ObjectFolder 2.0 and ObjectFolder Real datasets.

ObjectFolder 2.0 [38]. The ObjectFolder 2.0 dataset ex-

tends [36] to 1000 objects and improves the acoustic and

tactile simulation pipelines to render more realistic multisen-

sory data. For the tactile simulation, it utilizes the Taxim

simulator instead of TACTO. Similar to the preprocessing

of ObjectFolder 1.0, we sample 200 points for each object.

To avoid overlapping with [36], we only take the 101-1000

objects. We apply this dataset to material classification,

cross-modal retrieval, robot grasping stability prediction,

and Touch-LLM. For cross-modal retrieval and Touch-LLM

tasks, we annotate text descriptions that depict the contact

point of the object from its visual input, e.g. “The corner
of a wooden table.”

ObjectFolder Real [39]. ObjectFolder Real is an object-

centric multimodal dataset containing 100 real-world house-

hold objects. The touch images are captured by the GelSlim

tactile sensor. Similarly, we sample 200 points for each ob-

ject thus containing in total of 20k visuo-tactile pairs. We

apply this dataset to a material classification task, which is

considered an out-of-domain dataset.

SSVTP [64]. SSVTP dataset is a recent human-collected

visuo-tactile dataset containing 4.9k paired visuo-tactile im-

ages. The touch images are collected via the DIGIT tactile

sensor. The objects in this dataset are mainly from garments

but also contain materials of metal. We apply this dataset

to material classification. As the dataset does not contain

material labels, we annotate material labels from the visual

images. In total, we classify all images into 6 material cate-

gories including cotton, metal, denim fabric, plastic, wood,

and nylon.

A.2. Implementation Details
We show more implementation details in this section.

Image synthesis with touch. We used a pretrained stable

diffusion-2.1 unclip [104] to perform zero-shot touch-to-

image generation by replacing the text condition with our

aligned UniTouch embedding. Specifically, we keep the sim-

ple text "high quality" as the condition while using

our touch embedding as an additional condition. We use

DDIM sampler [107] with a guidance scale of 9 and denois-

ing steps of 50. Additionally, we set an embedding strength

1



of 0.75 for our touch embedding condition. Synthesized

images are at the resolution of 768×768.

As for tactile-driven image stylization, similarly, we still

keep the simple text "high quality" as the condition.

However, we use both touch and image embeddings as extra

conditions to conduct image stylization. We perform a linear

combination of touch and image embeddings, the weights

for touch and image are set to 0.3 and 0.7 respectively. We

use DDIM sampler [107] with a guidance scale of 9 and

denoising steps of 50. The strength for linear combination

embedding is set to 1 and edited images are at the resolution

of 768×768.

Touch-LLM. We adapt our model from [34, 144], which

leverages an adapter to connect our touch encoder and an

open-source large language model LLaMA [115]. We re-

place RGB image embedding with our aligned UniTouch

embedding. Concretely, we denote the global touch fea-

ture encoded by our touch encoder as FT ∈ R
1×CT , where

CT is the dimension of the touch embedding. Inspired by

prior work [34, 144], we use a projector f , which encodes

FT to have the same dimension as the token embedding in

LLaMA [115]:

F ′
T = f (FT ) . (5)

Then we repeat F ′
T and add it to all text tokens across all lay-

ers in language model LLaMA [115] with a zero-initialized

learnable gate function:

T q
j = hzero · F ′

T + T q
j , (6)

where j and q denotes the layer and sequence index respec-

tively, T q
j is the text token embedding, and hzero is the zero-

initialized learnable gate function. In our experiments, we

use pretrained hzero, and plug our UniTouch embedding in.

X-to-touch generation We conduct our X-to-touch gener-

ation model based on stable diffusion. While most existing

multimodal tactile datasets only contain vision and touch,

we first train an image-to-touch diffusion model and we are

able to conduct text-to-touch and audio-to-touch zero shot by

replacing the image conditioning as they are already aligned.

We use the Adam optimizer with a base learning rate of 1e-6.

Models are all trained with 30 iterations using the above

learning rate policy. We train our model with a batch size of

48 on 4 RTX A40 GPUs. Since we want to use the aligned

condition embeddings, the conditional model is frozen dur-

ing training. The condition embeddings are integrated into

the model using cross-attention. We use the frozen, pre-

trained VQGAN to obtain our latent representation, with

a spatial dimension of 64×64. During the inference, we

conducted the denoising process for 200 steps and set the

guidance scale s = 7.5.

A.3. Evaluation Details

Touch-to-image generation Following [130], we use

three evaluation metrics of Frechet Inception Distance (FID),

Contrastive Visuo-Tactile Pre-Training (CVTP), and Mate-

rial Classification Consistency. FID is a standard evaluation

metric in image synthesis that compares the distribution of

real and generated image activations using a trained network.

CVTP [130] is a metric similar to CLIP but measures the

cosine similarity between the visual and tactile embeddings

learned for the generated images and conditioned tactile

signals, which used an off-the-shelf network. Material classi-

fication consistency [130] uses a material classifier to catego-

rize the predicted and ground truth images and measure the

rate at which they agree, where we use CLIP as the zero-shot

material classifier by feeding the prompt of "material
of [CLS]".

Touch-LLM. We feed each vision language model

(including our Touch-LLM) with a touch image and

text prompt: "You will be presented with
a touch image from an object/surface.
Can you describe the touch feeling and
the texture?". In the end, we use GPT-4 to perform

the automatic evaluation for each model following prior

work [5]. Specifically, we provide GPT-4 with: 1) a system

prompt describing the desired evaluation behavior; 2) the

question; and 3) a human-crafted reference response; 4)

each model’s generation result (more details see supp.). We

instruct GPT-4 to rate each model’s generations on a scale of

1 to 5 given the reference response. The template is shown

in Fig. 7.

X-to-touch. We test the effectiveness of the x-to-touch

model on the Touch and Go dataset, which is the only real-

world dataset that contains objects and scenes in the wild. As

the objects in this dataset are closely related to the material

properties, we measure the material classification consis-

tency between different touches generated from different

modalities. We use our UniTouch embedding as the off-the-

shelf zero-shot material classifier. For quantitative results

for text-to-touch generation, we use the 400 human-labeled

text captions as the input. For audio-to-touch generation,

as there is no impact sound correlated to this dataset, we

manually select audios from ObjectFolder 2.0 as the input

that have the same material properties or geometry with the

visual image for qualitative evaluations, as shown in Fig. 10.

A.4. Additional Experiments

In-batch sampling mix rate selection. We evaluate dif-

ferent choices of σ for in-batch sampling, where σ denotes

the percentage of the data that comes from the same dataset

while the rest from others. We set σ to {0, 0.5, 0.75, 1.0}
and evaluate their zero-shot material classification perfor-

mance on all six datasets, as shown in Fig. 6. We observe
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Figure 6. Effect of σ for in-batch sampling. We compare the

average zero-shot material classification accuracy from six datasets

using different σ of 0, 0.5, 0.75, 1.

that if we select σ = 0, the ability to distinguish between

intra-sensor samples is significantly undermined thus leading

to inferior performance. As the σ is increasing, the model

is able to better distinguish between intra-sensor samples.

In the extreme case when σ = 1.0 where all samples come

from the same dataset, the model will have no exposure to

the inter-class negatives. We observe that the performance

in this case is actually decreasing. This demonstrates the

effectiveness of design to balance between inter-sensor and

intra-sensor negatives. We empirically found that selecting

σ = 0.75 obtains a good trade-off between these factors.

Image synthesis with touch. We leverage our aligned

UniTouch embedding and pretrained text-to-image stable

diffusion model [104] to generate more qualitative results

of touch-to-image generation and tactile-driven image styl-

ization as presented in Fig. 8. It shows that our UniTouch

embedding can guide image synthesis successfully in a zero-

shot manner.

X-to-touch generation. We show more examples of X-

to-touch generations on the Touch and Go [129] dataset in

Fig. 10, where we generate touch images using image, text,

and audio.

Touch-LLM. We show more touch image question an-

swering examples in Fig. 9.

3



Figure 7. GPT-4 evaluation template. We use this template to instruct GPT-4 for automatic evaluation of our Touch-LLM and other

selected open-source VLM baselines.
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Tactile-driven Image StylizationTouch-to-Image Generation

Touch Reference OursSourceTouch Reference Ours

Figure 8. More examples of zero-shot image synthesis with touch. (Left) We generate an image of a scene given a tactile signal. (Right)

We perform tactile-driven image stylization to manipulate an image to match a given touch signal. We denote “reference” as visual images

paired with the input touch in the dataset, which are not seen by the model but only shown for demonstration purposes. The last two rows are

failure cases.
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Input touchReference

The object in the touch image 
is made of a rough, grainy
material, which could be a 
mixture of sand, smalll rocks, 
or other similar materials.

Can you describe material 
of the object presented in 
touch image?

Input touchReference

The object is likely to be a flat 
surface, which suggests that it 
might be difficult to hold or 
grip it securely.

How easy or difficult is it to 
hold or grip the object?

Input touchReference

The object, seemingly made of 
wood, rebounds when pressed, 
suggesting that it is stiff and 
resistant to deformation or 
damage.

How does the object respond to 
pressure? Does it bounce back 
or retain indentations? Please 
answer based on its material.

Input touchReference

The touch located on the 
medical bottle is on the neck
of the bottle.

What part of the medical 
bottle this touch located?

Input touchReference

Yes. This is because the point 
is likely to be a sharpp edge, 
which can cause injuries when 
it comes into contact with a 
person's skin.

Will people get hurt when 
hitting the point from the 
touch image? Why?

Input touchReference

The object in the touch image 
appears to be highly
reflective, which suggests that 
it is likely made of a material 
with a high reflective index, 
such as glass or a mirror.

Can you tell me the 
reflectivity of the object in 
the touch image?

Input touchReference

The object presented in
touch image is likely made of 
wood.

What is the material of the 
object presented in
touch image?

Input touchReference

Yes. Because the gripper is still 
inn contactt with the object. 

Is this object grasped
into the air? Please explain 
whether the gripper is in contact 
with the object from the touch 
image. 

Input touchReference

The object in the touch image is 
made of a material that appears 
to be a combination of metal and 
plastic. It could be a metal watch 
or a metal-encased electronic 
device.

Can you describe material 
of the object presented in 
touch image?

Input touchReference

The letter in English alphabet 
represented by the touch 
image of braille is D.

What is the letter in English 
alphabet of this touch 
image of braille?

Input touchReference

The object in the touch image is 
made of a material that is not 
easily identifiable, but it appears 
to be a small, lightweight, and 
possibly plastic or rubber-like 
material.

Can you describe material 
of the object presented in 
touch image?

Input touchReference

Figure 9. More examples of Touch-LLM. We show more question-and-answering examples for touch images using our Touch-LLM.

We denote “reference” as visual images paired with the input touch in the dataset, which are not seen by the model but only shown for

demonstration purposes. The last row is the failure case. Incorrect portion is highlighted in red.
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Vision Touch Text Touch Audio Touch

The surface 
appears to be a 
piece of fabric, 
possibly a 
garment.

The object in 
the image is a 
large rock with 
a fairly rough
and irregular
surface.

The surface is a 
wooden plank 
or board, which 
is textured, 
grainy, and 
slightly rough.

Wood

The surface in 
the image 
appears to be a 
printed sign or 
poster with a 
smooth finish.

Plastic

The surface in 
the image 
appears to be a 
flat surface 
made of 
ceramic.

Ceramic

The surface in 
the image 
appears to be 
the edge of a 
metal object.

Edge

Figure 10. More examples for X-to-touch generation. We show more examples of x-to-touch generations on the Touch and Go [129]

dataset. We manually select audios from ObjectFolder 2.0 [38] matching the vision input. Since the overlapping material categories

between [38] and [129] are limited and [38] only contains rigid objects, impact sound for materials like stone and cloth can not be found.
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