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Abstract

Three-dimensional (3D) reconstruction from a single im-
age is an ill-posed problem with inherent ambiguities, i.e.
scale. Predicting a 3D scene from text description(s) is
similarly ill-posed, i.e. spatial arrangements of objects de-
scribed. We investigate the question of whether two inher-
ently ambiguous modalities can be used in conjunction to
produce metric-scaled reconstructions. To test this, we fo-
cus on monocular depth estimation, the problem of predict-
ing a dense depth map from a single image, but with an
additional text caption describing the scene. To this end,
we begin by encoding the text caption as a mean and stan-
dard deviation; using a variational framework, we learn the
distribution of the plausible metric reconstructions of 3D
scenes corresponding to the text captions as a prior. To
“select” a specific reconstruction or depth map, we encode
the given image through a conditional sampler that samples
from the latent space of the variational text encoder, which
is then decoded to the output depth map. Our approach is
trained alternatingly between the text and image branches:
in one optimization step, we predict the mean and standard
deviation from the text description and sample from a stan-
dard Gaussian, and in the other, we sample using a (im-
age) conditional sampler. Once trained, we directly predict
depth from the encoded text using the conditional sampler.
We demonstrate our approach on indoor (NYUv2) and out-
door (KITTI) scenarios, where we show that language can
consistently improve performance in both. Code: https:
//github.com/Adonis-galaxy/WorDepth.

1. Introduction
The process of imaging is a surjection from a 3D scene

to the 2D image domain, where infinitely many 3D scenes

can map to the same image. Its inverse problem, estimating

*Due to an oversight, the author list in the published camera ready does

not match that of this manuscript. The above is the correct author list.

Figure 1. Language as a prior for depth estimation. Depth

estimation from a single image is an ill-posed problem (i.e., scale),

and likewise from text captions (i.e., layout). Can two inherently

ambiguous modalities resolve metric-scaled depth estimates?

the 3D scene structure from a single image, i.e., monocular

depth estimation, is therefore ill-posed with inherent ambi-

guity, such as the scale of the reconstruction. Consequently,

induction is necessary, and depth estimation becomes draw-

ing a scene with maximum likelihood from the distribu-

tion of all possible scenes, conditioned on the image. This

conditional scene distribution is learned by a deep neural

network on a chosen training set. While an ideal training

set should accurately reflect this distribution, practical chal-

lenges arise due to the scarcity of well-established large-

scale depth datasets. A crucial question arises: Can any

priors, other than the training set, be leveraged to calibrate

the learned scene distribution to true real-world statistics?

These priors may come in many forms, from generic pri-

ors such as local smoothness and connectivity [19, 22, 67,

102] or object orientation [15] that may be imposed as a

part of the training objective (regularizer) to specific induc-

tive biases realized as architectural designs (layers) [65] or

a collection object shapes [14]. While generic priors are
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suitable for a wide variety of scenes, they typically lack

specificity, i.e., size or shape of objects within a specific

3D scene. On the other hand, specific network designs may

backfire when the assumption motivating the design does

not hold, i.e., using specifics about camera parameters for

reconstruction. We consider a more flexible source of pri-

ors – language – that is closely tied to semantics, and of-

ten shape (and functionality) [4, 31, 32]. Consider a text

description of “A bedroom with a bed and a table” as in

Fig. 1: One can imagine a probable 3D scene containing a

bed and a table as the primary objects. In fact, there exist

infinitely many 3D scenes compatible with the description,

as there are ambiguities in terms of the scene layout and the

precise shape of the bed and table. Yet, one may surmise

that the scale of the scene is closely related to the objects

(and their typical sizes) populating it. This lends to a prior

that is specific for a given scene, yet, generic enough with-

out assumptions on the camera used or the shapes within the

imaged 3D scene.

Hence, the question at hand becomes whether two inher-

ently ambiguous modalities (camera image and text descrip-

tions) can be exploited for their complementary strengths:

In the image, one can observe the layout and object shapes

populating the 3D scene; in a text caption, one has strong

priors about the scale (and coarse shapes) of the scene. Our

work aims to resolve the respective ambiguities of the two

modalities by using language to reduce the solution space

to yield metric-scaled reconstructions as 2.5D depth maps.

To test the feasibility of this approach, we consider the

ill-posed inverse problem of monocular depth estimation,

where one predicts a depth map from a single image. In-

stead of using just an image, we also assume a text descrip-

tion or caption describing the 3D scene captured within the

image. Note that we do not make any assumption regard-

ing the source of the description, i.e., it can be dictated by

humans or generated by a model. But for practicality, we

use an image captioner (ExpansionNet v2 [25]) to generate

a brief, concise description of the image.

To exploit the inherent ambiguity of text captions, where

a single description can generate infinitely many 3D scenes,

we choose to encode the caption using a variational auto-

encoder (VAE) as a mean and standard deviation of the

plausible scene layout distribution. By sampling a noise

vector from a standard Gaussian and using the reparame-

terization trick customary in VAEs, we can draw from the

latent distribution and decode it into a metric-scaled depth

map. Yet, to choose a particular depth map amongst the

many possible, one must rely on the image. This is facili-

tated by a conditional sampler that predicts the noise vector

from the given image in place of the one sampled from a

Gaussian to be used in the reparameterization step. Con-

sequently, this substitution enables one to sample the most

probable depth map, adhering to the scene arrangement and

object shapes observed in the image, from the learned dis-

tribution. This naturally lends to an alternating optimization

process between the (text-)VAE and conditional sampler.

In one alternation, one would predict the mean and stan-

dard deviation from the text caption and optimize the text-

VAE branch for depth by minimizing a loss with respect

to ground truth on the depth map sampled using a standard

Gaussian (similar to traditional VAEs). In the other alter-

nation, one would still use the mean and standard deviation

predicted by the text-VAE, but instead, use the conditional

sampler to “select” a specific depth map compatible with

the image, and again, minimize a loss on the output depth.

Note: that depending on the alternation, either the text-VAE

or the conditional sampler is frozen. At test-time, one no

longer needs to sample from the Gaussian and may directly

predict depth using the text-VAE with the conditional sam-

pler (see Fig. 2). In another mode, one may use the text-

VAE alone to generate plausible scenes for a given caption.

Our contributions are as follows: (i) We propose a vari-

ational framework that leverages complementary strengths

of two inherently ambiguous modalities for monocular

depth estimation; we term our approach, WorDepth. (ii) We

introduce an image-based conditional sampler that models

the use of language as a conditional prior. (iii) We achieve

the state-of-the-art on indoor (NYU Depth V2 [58]) and

outdoor (KITTI [20]) benchmarks. (iv) To the best of our

knowledge, we are the first to treat language as a variational

prior for monocular depth estimation.

2. Related Work
Monocular depth estimation trains by minimizing loss

between depth predictions and ground-truth depth maps

[2, 7, 17, 35, 46, 52, 54, 61, 66, 78, 80, 84, 86]. Specifically,

DORN [16] employs a spacing-increasing discretization

strategy for depth estimation as an ordinal regression prob-

lem. AdaBins [2] introduces a transformer block that seg-

ments the depth range into adaptive bins. ASTransformer

[7] incorporates an Attention-based Up-sample Block to

enhance detailed texture features. DepthFormer [40] em-

ploys hierarchical aggregation and heterogeneous interac-

tion modules for effective feature affinity and modeling.

RPSF [47] presents a differentiable model of the aper-

ture mask. However, deriving semantics solely from vi-

sual cues is challenging because of scale ambiguity and the

limited size of fully annotated training datasets. We use

language as a prior to ground predictions to metric scale.

When ground-truth depth is not available, self-supervised

approaches [3, 15, 27, 36, 51, 62–64, 70, 85, 94, 96, 100]

rely on geometric constraints, often established via from

various modalities, including lidar [44, 50, 67–69, 72, 79]

and radar [59], or through deliberate design. Arising from

training, if done at a large scale, is a prior on the scene that

can be exploited for semantic tasks [33]. On the other hand,
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we consider language as a semantic prior to enhance the ef-

fectiveness of monocular depth estimation.

Variational and generative methods focus on the am-

biguous nature of monocular depth estimation, many in-

volving Diffusion or VAE models for modeling this ambi-

guity [5, 10, 41, 56, 57, 73, 83]. DepthGen [56] uses a depth

pre-trained diffusion model, which generates depth estima-

tions conditioned on images, and shows that the model is

capable of generating multiple plausible depth maps when

depth is ambiguous. DDVM [57] uses a similar approach

and designed a training pipeline that can produce both depth

maps and optical flow outputs with a diffusion model. [73]

trained a VAE model that outputs a probability distribution

over scene depth given an image, which can then be com-

bined with additional inputs for more accurate depth esti-

mations. VDN [10] models depth as a distribution with its

variance interpreted as uncertainty. The CodeSLAM model

[5] also employed a VAE conditioned on image intensities

for depth estimation. However, although these work ex-

plored the idea of uncertainty in depth estimation, and even

combined other modalities of inputs [73], none have ex-

perimented with language priors, and most VAE-based ap-

proaches use images to obtain the mean of the modeled dis-

tribution, which is fundamentally different from WorDepth.

Foundation models [6, 21, 23, 37, 38, 48, 49, 53, 77, 98,

104] acquire a comprehensive understanding of languages,

images, and other data types through pre-training under

substantial and diverse datasets, thus forming an effective

baseline for downstream tasks [2, 8, 12, 39, 42, 71, 74–

76, 81, 82, 89, 92, 93, 95]. To leverage foundation mod-

els for monocular depth estimation, TADP [30] uses cap-

tions created by AI to enhance the correlation between text

and images in diffusion-based vision models. VPD [97]

leverages a diffusion-based pipeline with cross-attention be-

tween text and images. Dinov2 [48] trains a ViT [11] with

1B parameters using an automatically built image dataset

under contrastive learning objectives. Unlike methods that

rely on foundation models for feature extraction, WorDepth

is potentially more efficient for industrial applications.

Vision-language models are designed to build connec-

tions between visual and language inputs. CLIP [53] con-

ducts contrastive learning between text-image pairs, em-

powering various tasks like few-shot image classification

[18, 87, 88, 101], image segmentation [55, 99], object de-

tection [55, 103], and 3D perception [26, 90, 91, 105]. In

light of the powerful emerging ability brought by recent

vision-language models, some works have tried to apply

the vision-language model for monocular depth estimation.

DepthCLIP [91] leverages the semantic depth response of

CLIP [53] with a depth projection scheme to conduct zero-

shot adaptation from the semantic language response to

monocular depth estimation. Furthermore, [26] extends

DepthCLIP with learnable prompts and depth codebook to

narrow the depth domain gap among different scenes. Like-

wise, [1] modifies DepthCLIP [91] using continuous learn-

able tokens in place of discrete human-language words. Ad-

ditionally, VPD [97] exploits the high-fidelity embedding of

a pre-trained text-to-image diffusion model in monocular

depth estimation. However, existing methods using vision-

language models rely on implicit modeling. Conversely,

WorDepth explicitly models language as a prior for depth

estimation and exploits strong priors regarding the size of

objects described in text captions to better ground monocu-

lar depth (often scaleless) to metric scale.

3. Method
Given an RGB image x : Ω ⊂ R

2 → R
3, monocu-

lar depth estimation aims to infer a dense depth map y :
Ω ⊂ R

2 → R+ using a parameterized function h realized

as a neural network, i.e., y := h(·). We consider a super-

vised dataset D = {x(m), t(m), y∗(m)}Mm=1 with M sam-

ples, where y∗ : Ω ⊂ R
2 → R+ denotes the ground-truth

depth map, and t the text caption describing the image.

3.1. Text variational auto-encoder

To incorporate language priors to monocular depth es-

timation, we first design a variational auto-encoder (VAE)

to learn the latent distribution of possible depth maps as

described by the text caption. This VAE is comprised of

the text encoder from a pre-trained vision-language model,

CLIP [53], which by default offers a shared latent space

between vision and text embeddings, followed by a multi-

layer perceptron (MLP) to estimate the mean μ̂ ∈ R
d and

standard deviation σ̂ ∈ R
d of the latent distribution of

plausible scenes based on the text encoding. Note that the

CLIP text encoder is frozen at all times and never updated

when training WorDepth. Specifically, given a text cap-

tion t = {t1, t2, ...}, we first encode it using the CLIP text

encoder and estimate the mean and standard deviation as

(μ̂, σ̂) = gψ(t) ∈ R
2×d using a multi-layer perceptron

(MLP). To sample from the distribution parameterized by

μ̂ and σ̂, we first draw a noise vector ε ∈ R
d from a stan-

dard Gaussian ε ∼ N (0, 1). Then, we use ε to sample from

the latent distribution via the reparameterization trick [29],

ẑ = μ̂ + ε · σ̂. We refer to this module as a text variational

auto-encoder (text-VAE). To generate a depth map ŷ from

the sample ẑ ∈ R
d, we first duplicate ẑ along the horizontal

and vertical axes to yield a d × h × w latent (choice of de-

sign to be discussed below in Sec. 3.2) and feed it through

a depth decoder to yield ŷ = hφ(ẑ) ∈ R
H×W
+ , where we

overload ẑ as the spatially duplicated latent, and H and W
denote the height and width of the depth map, preset as hy-

perparameters to match the desired image dimensions.

To train our text-VAE and depth decoder, we minimize

LVAE = LSI(y
∗, ŷ) + α · LKL(μ̂, σ̂) (1)
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Figure 2. Training WorDepth. We begin with optimizing text-VAE by predicting the mean and standard deviation of the latent distribution

of depth maps corresponding to a text caption. We then sample ẑ from the distribution using the reparameterization trick with ε ∼ N (0, 1)
and decode it into a depth map for loss computation. We then optimize a conditional sampler by predicting patch-wise ε̃ from an image to

sample z̃ from the latent to yield output depth for the loss computation. The depth decoder is updated in both alternating steps.

with respect to ψ and φ, where LSI is the scale invariant loss

(Eq. (3)), LKL the KL divergence loss (Eq. (4)) as detailed

in Section 3.3, and α the weight of the KL divergence term.

3.2. Image-based conditional sampler

While our text-VAE can predict plausible metric-scaled

depth maps from text captions, we are interested in the

depth map corresponding to a specific image. To do so, we

treat text-VAE as the latent prior distribution of the plausi-

ble scene layouts. Predicting depth ỹ for a specific image

x requires sampling the latent corresponding to the depth

map of the 3D scene layout with the highest likelihood to be

compatible with the observed image, i.e., prior conditioned

on the image. To this end, we introduce an image-based

conditional sampler that will predict the sample ε̃ in place

of ε ∼ N (0, 1) drawn from the standard Gaussian. Using

the reparameterization trick as before, we will use ε̃ to select

the latent vector z̃ to be decoded by the depth decoder.

Specifically, our image-based conditional sampler uti-

lizes a Swin-L transformer backbone to encode an image

x ∈ R
3×H×W . We chose this design to exploit the local-

ity of the tokens produced by Swin-L. The tokens are then

encoded into h × w number of local samples ε̃ ∈ R
d×h×w

to be used to sample from the latent distribution of our text-

VAE; in other words, we perform “patch-wise” selection

from latent distribution for more granular predictions. To

do so, we additionally include μ̂ and σ̂ as part of its input.

We note that μ̂ and σ̂ have been detached from the computa-

tional graph and treated as input. We refer to this module as

our conditional sampler ε̃ = fϕ(x, μ̂, σ̂), which aims to es-

timate the most probable latent variable of text-VAE. Thus,

the scene layout latent vector is now given by z̃ = μ̂+ ε̃ · σ̂,

and the predicted depth ỹ = hφ(z̃). As an implementation

detail, we note that skip connections from the encoder fϕ
are injected into hφ by concatenation; when training text-

VAE (Sec. 3.1), feature maps of skip connections are of the

same size, but populated with zeros instead.

To train the conditional sampler, we minimize the same

loss (Eq. (1)) as that of text-VAE:

LCS = LSI(y
∗, ỹ) + β · LKL(μ̃, σ̃) (2)

with respect to ϕ and φ. With a batch size of b, the number

of ε̃ is b × h × w, while μ̃ and σ̃ are the sample mean and

standard deviation of ε̃ over a batch. We impose a KL di-

vergence loss as regularization so that the estimated ε̃ does

not drift from the standard Gaussian, which also serves to

improve training stability.

3.3. Training Loss

Scale invariant loss. We minimize a supervised loss us-

ing ground truth y∗. To improve training stability over di-

verse scenes, we use the scale-invariant depth loss [13]:

LSI(y, y
∗) =

1

Ne

∑
(i,j)∈Ω

e(i, j)2 − γ

N2
e

(
∑

(i,j)∈Ω

e(i, j))2,

(3)

where e(i, j) = log y(i, j)− log y∗(i, j), Ω denotes the im-

age space, Ne the number of pixels, y the predicted depth,

and γ the scaling factor to control the sensitivity of the loss.

Kullback-Leibler (KL) divergence loss. Following

[29], we employ the KL Divergence loss as a regularizer,

which biases the predicted latent distribution (parameter-

ized by mean μ and standard deviation σ) towards a stan-

dard Gaussian distribution. We apply the Kullback-Leibler

divergence loss to μ and σ as follows:

LKL(μ, σ) = − log(σ) +
σ2 + μ2

2
− 1

2
. (4)

3.4. Optimizing Wordepth

Training Wordepth involves optimizing text-VAE with

our conditional sampler: One may choose to first train
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Figure 3. Qualitative results on NYU Depth V2. We compare WorDepth with AdaBins [2]. Text descriptions are generated using

ExpansionNet v2 [25]. Overall, WorDepth improves uniformly across the image (darker in error map), implying better scale. WorDepth

also predicts more accurate depth in regions corresponding to “chairs”, “window”, “shower curtain”, “man”, and “desks”, which are objects

specified by text descriptions. Note: Zeros in the ground truth depth map indicate the absence of valid depth values.

text-VAE until convergence (i.e., optimize for ψ∗, φ∗), then

freeze ψ∗, φ∗, and finally train the image-based conditional

sample (i.e., optimize for ϕ∗). However, we find that do-

ing so often results in the conditional sampler being trapped

in a suboptimal local minimum. Moreover, this introduces

the inconvenience of an extra stage of training. Instead, we

propose an alternating optimization scheme to train the text-

VAE with conditional sampler. In one alternating step, we

freeze the conditional sampler and train the text-VAE and

depth decoder following the procedure in Sec. 3.1, i.e., pre-

dicting μ̂ and σ̂ from text caption t and using the reparam-

eterization trick with an ε drawn from a standard Gaussian

to sample the latent vector. In the next alternating step, we

freeze text-VAE and train the conditional sampler with the

depth decoder following Sec. 3.2, i.e., predicting μ̂ and σ̂
using the frozen text-VAE and sample from the latent dis-

tribution using ε̃ predicted from the image. These alternat-

ing steps are repeated with a ratio of p (for optimizing text-

VAE) to 1− p (for optimizing the conditional sampler).

Inference. Once trained, we no longer require drawing

ε from a standard Gaussian. Instead, at test time, the infer-

ence step simply follows Sec. 3.2. In another mode, if one

wants to generate depth maps from text captions, one can

discard the conditional sampler branch and directly sample

from a standard Gaussian instead.

4. Experiments

Datasets. We evaluate our method on indoor (NYU

Depth V2 [58]) and outdoor (KITTI [20]) scenarios. NYU

Depth V2 contains 480×640 images with depth values from

1 × 10−3 to 10 meters. We follow [34] for the dataset par-

tition, which contains 24,231 train images and 654 test im-

ages. KITTI contains 352×1216 images where depth values

from 1× 10−3 to 80 meters. We adopt the Eigen Split [13]

consisting of 23,488 training images and 697 testing im-

ages. Following [2, 86], after cleaning out samples without

valid ground truth, we have 652 valid images for testing.

Network Architecture. We use the ResNet-50 [24] ver-

sion of CLIP [53] text encoder to extract text features. We

use ExpansionNet-v2 [25] for captioning images for effi-

ciency. We set the dimension d of the latent space of the

text-VAE and image-based conditional sampler to be 128.

As for the image-based conditional sampler, we use a Swin-

L Transformer backbone [45] pre-trained on ImageNet [9].

For the text-VAE, given CLIP features of size 1024, we use

a 3-layer MLP with hidden dimensions of 512, 256, and 128

to encode text features. For the depth decoder, there are 3

convolutional up-sampling and refinement layers. For depth
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Method Backbone δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ Abs Rel ↓ log10 ↓ RMSE ↓
DepthCLIP [91] CLIP (zero-shot) 0.394 0.683 0.851 0.388 0.156 1.167

CLIPMDE [1] CLIP 0.465 0.776 0.922 0.319 0.139 0.970

GeoNet [52] ResNet-50 0.834 0.960 0.990 0.128 0.057 0.569

DORN [16] ResNet-101 0.828 0.965 0.992 0.115 0.051 0.509

Yin et al. [80] ResNeXt-101 0.875 0.976 0.994 0.108 0.048 0.416

TransDepth [78] ViT-B 0.900 0.983 0.996 0.106 0.045 0.365

ASN [46] HRNet-48 0.890 0.982 0.996 0.101 0.044 0.377

Big to Small [35] DenseNet-161 0.885 0.978 0.994 0.110 0.047 0.392

DPT-Hybird [54] ViT-B 0.904 0.988 0.998 0.110 0.045 0.357

ASTransformer [7] ViT-B 0.902 0.985 0.997 0.103 0.044 0.374

AdaBins [2] EffNet-B5 + ViT-mini 0.903 0.984 0.997 0.103 0.044 0.364

NeWCRFs [86] Swin-L 0.922 0.992 0.998 0.095 0.041 0.331

Yu et al. [84] Swin-L 0.921 0.990 0.998 0.093 0.040 0.331

DepthFormer [40] Swin-L 0.923 0.989 0.997 0.094 0.040 0.329

Baseline Swin-L 0.910 0.990 0.998 0.098 0.043 0.351

WorDepth Swin-L 0.932 0.992 0.998 0.088 0.038 0.317
%Improvement - +2.42% +0.02% +0.00% -10.20% -11.63% -9.69%

Table 1. Quantitative results on NYU Depth V2. The baseline method is to directly train a Swin-L image encoder and the depth decoder

without the help of language prior. Improvement refers to the performance enhancement relative to the Baseline.

prediction, we attach 3 skip connections from the condi-

tional sampler to the depth decoder between corresponding

layers. When optimizing for text-VAE by our alternating

optimization scheme (Sec. 3.4), we sample ε ∼ N (0, 1)
from a standard Gaussian; as an implementation detail, all

values passed from the skip connections are set to be zero.

Hyperparameters. We use the Adam [28] optimizer

without weight decay. The learning rate is reduced from

3 × 10−5 to 1 × 10−5 by a cosine learning rate sched-

uler. The model is trained for 50 epochs for both KITTI

and NYU Depth V2 under this scheduler. γ for scale-

invariant loss is set to 0.85, and the weights α and β for KL-

Divergence are set to 1× 10−3. We set the probability p to

optimizing text-VAE branch to 1%. Data augmentation in-

cludes random gamma within [0.9, 1.1], random brightness

within [0.75, 1.25] for NYU Depth V2 [58] and [0.9, 1.1]
for KITTI [20], random color intensity within [0.9, 1.1] for

each channel, random horizontal flipping with 50% proba-

bility, and random rotations within [−2.5, 2.5] degrees.

Evaluation metrics. Following [7, 43], we evaluate

WorDepth and baseline methods quantitatively using mean

absolute relative error (Abs Rel), root mean square error

(RMSE), absolute error in log space (log10), logarithmic

root mean square error (RMSElog) and threshold accuracy

(δi). The evaluation metrics are summarized in the Supp.

Mat. For qualitative results and comparisons, see Fig. 3 and

4, where the error map shows the absolute relative error.

Quantitative results. We show results on NYU Depth

V2 in Tab. 1, where we improve over the baseline and

existing works across all evaluation metrics. We want to

highlight that WorDepth significantly excels in terms of the

threshold accuracy δ < 1.25, which measures the propor-

tion of predictions deviating from the ground truth within a

specific range. We note that while existing methods often

produce high fidelity shapes (i.e., ordinal relationships of

points) in depth maps, the scale tends to be off – leading to

lower δ < 1.25. Our gain in the δ < 1.25 metric indicates

that a greater proportion of depth estimations align closely

with the ground truth, thanks to better scale estimated based

on objects that populate the scene, thereby yielding depth

values in ranges closer to that of ground truth.

Tab. 2 shows the results on the KITTI dataset, using the

Eigen Split [13] partition. WorDepth also achieves state-

of-the-art performance. Like NYU Depth V2, WorDepth

improves the threshold accuracy δ < 1.25, however, the rel-

ative performance gain on this metric is not as pronounced

as on NYU Depth V2. This difference can be due to the

wider range of object sizes and shapes that may populate

an outdoor scene that are attributed to the same equivalence

class of an object. For example, the term “car” may refer

to a sedan, a coupe, or a hatchback – all exhibit different

sizes (coupes are smaller than sedans) and shapes (hatch-

backs have an elevated and connect trunk). While text cap-

tions give flexibility between generality and specificity as a

prior, in cases where captions tend to be vague, the explicit

reliance (by modeling as a conditional prior) on them may

backfire, leading to incorrect shapes and sizes. Nonetheless,

conditioning on the image resolve such cases to a degree

and usage of the prior leads to more benefits than harm.

Qualitative comparisons. We show representative vi-

sual examples comparing WorDepth with a baseline method

AdaBins [2] on the NYU Depth V2 dataset in Fig. 3, to

highlight the benefit of the language prior.

From the error map where brighter regions indicate

larger errors, it is evident that WorDepth predicts more ac-

curate depth for objects mentioned in the text description,
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Figure 4. Visualization of depth estimations on KITTI. Compared with AdaBins [2], WorDepth improves uniformly across the image

(darker in error map), implying better scale. WorDepth also predicts more accurate depth in regions corresponding to “wall”, “trees”,

“building”, which are objects specified by text descriptions. Note: Zeros in ground truth depth indicate the absence of valid depth values.

like “chairs and tables” in the first row, “a window” in the

second row, “a shower curtain” in the third row, “a man”

in the fourth row, and “a group of desks” in the last row.

Note that errors maps of WorDepth shows improvement

uniformly across the image regions; this implies that our

method estimates a better scale than existing ones, thanks to

priors about object size (and coarse shapes) from text cap-

tions. Knowing that a certain object exists within an image

reduces the problem to “placing” the object in the 3D scene

based on its shape and location in the image. We showed

that scale can be inferred from language, which can narrow

down the solution space of depth prediction, leading to im-

proved accuracy.

A similar pattern is also evident in KITTI (Fig. 4). Ex-

amples include improved accuracy for “a wall” shown in the

first column, “trees” in the second column, and “a group of

cars” alongside “a large building” in the last column. This

observation is intriguing because, for example, the text “a

wall” is ambiguous by itself, especially in outdoor scenes,

where the wall could be any size or distance away from the

camera, 1 or 100 meters. However, the text description of

a scene, either from a human annotator or a deep neural

network, inherently carries biases that emphasize “a wall”

when its size (tall or wide enough) or depth falls within a

specific range while ignoring it when it falls within another

range. The resulting prior embedded in the text description

may convey more scale information than initially apparent.

Optimizing with different alternation ratios. As a

sensitivity study, we investigate how different ratios of alter-

nating optimization steps between text-VAE and conditional

sampler have an effect on the performance of WorDepth.

We find that optimizing text-VAE with a lower ratio will

lead to a more deterministic model, which is anticipated.

On the other hand, optimizing text-VAE more frequently

enables the model to learn a better variational prior on the

depth maps corresponding to text captions, which facilitates

the generation of diverse prior depth maps. However, this

comes at the cost of training time as the conditional sam-

pler takes more steps to converge and, given a fixed num-

ber of steps, results in more blurry predictions. We iden-

tify the ratio at 1% in updating text-VAE to be the best em-

pirically (Tab. 3). Ratios exceeding 10% notably degrades

performance given a fixed training length because of fewer

updates to the sampler. Note that at 100%, where we do

not condition the image, caption to depth generation still

yields reasonable results as the text captions produce plausi-

ble statistics that match the ground truth depth. On the other

hand, without the modeling language as a variational prior
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Method Backbone δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ Abs Rel ↓ RMSElog ↓ RMSE ↓
CLIPMDE [1] CLIP 0.550 0.830 0.938 0.303 0.119 6.322

DORN [16] ResNet-101 0.932 0.984 0.995 0.072 0.120 2.727

Yin et al. [80] ResNeXt-101 0.938 0.990 0.998 0.072 0.117 3.258

TransDepth [78] ViT-B 0.956 0.994 0.999 0.064 0.098 2.755

Big to Small [35] DenseNet-161 0.955 0.993 0.998 0.060 0.096 2.798

DPT-Hybird [54] ViT-B 0.959 0.995 0.999 0.062 0.092 2.573

ASTransformer [7] ViT-B 0.963 0.995 0.999 0.058 0.089 2.685

AdaBins [2] EffNet-B5+ViT-mini 0.964 0.995 0.999 0.058 0.089 2.360

NeWCRFs [86] Swin-L 0.974 0.997 0.999 0.052 0.079 2.129

Yu et al. [84] Swin-L 0.972 0.996 0.999 0.054 0.081 2.134

DepthFormer [40] Swin-L 0.975 0.997 0.999 0.052 0.079 2.143

Baseline Swin-L 0.969 0.996 0.999 0.054 0.085 2.343

WorDepth Swin-L 0.979 0.998 0.999 0.049 0.074 2.039
% Improvement - +1.03% +0.20% +0.00% -9.26% -12.94% -12.97%

Table 2. Quantitative results on KITTI Eigen Split. The baseline method is to directly train a Swin-L image encoder and the depth

decoder without the help of language prior. Improvement is the relative performance gain compared with the Baseline.

p δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ AbsRel↓ log10 ↓ RMSE↓
0% 0.929 0.990 0.998 0.091 0.039 0.323

1% 0.932 0.992 0.998 0.088 0.038 0.317
10% 0.930 0.991 0.998 0.090 0.039 0.322

50% 0.763 0.942 0.987 0.163 0.068 0.527

90% 0.642 0.906 0.975 0.211 0.089 0.687

100% 0.590 0.889 0.973 0.225 0.097 0.746

Table 3. Sensitivity to different ratios of alternating optimiza-
tion steps between text-VAE and conditional sampler on NYU
Depth V2. p denotes probability of optimizing text-VAE. While

more steps spent on text-VAE will yield better generative results,

it comes at the cost of slower convergence for the sampler.

(at 0%, where we train both text-VAE and conditional opti-

mizer jointly as a direct map from single image and caption

to depth), performance degrade to do the lack of the prior.

Zero-shot Generalization. Given the smaller domain

gap in language descriptions across different scenes com-

pared to images, we conduct a zero-shot transfer experi-

ment to highlight our improved generalization ability. We

train the model on the NYU Depth V2 [58] and test it

on the Sun-RGBD [60] without fine-tuning. As shown in

Tab. 4, WorDepth outperforms baseline methods by a sub-

stantial margin, indicating the transferability of language

priors which underscores the robustness of text descriptions

in handling scene variability. This suggests that language

descriptions may offer a more stable basis for generaliza-

tion across diverse data domains than direct visual signals.

5. Discussion

In this study, we seek to answer the question of whether

language can be used to calibrate the learned scene distribu-

tion to true real-world statistics. The answer is yes, which

is valuable for circumventing the long-standing problem

of scale ambiguity in monocular depth or structure-from-

Method δ < 1.25 ↑δ < 1.252 ↑δ < 1.253 ↑AbsRel↓ log10 ↓RMSE↓
Adabins 0.771 0.944 0.983 0.159 0.068 0.476

DepthFormer 0.815 0.970 0.993 0.137 0.059 0.408

Baseline 0.803 0.965 0.990 0.141 0.062 0.427

WorDepth 0.833 0.976 0.994 0.123 0.054 0.376

Table 4. Zero-shot generalization to SUN-RGBD. The models

are trained on the NYU Depth V2 and testing on the Sun-RGBD

without any fine-tuning.

motion problems. The approach is a first in leveraging com-

plementary properties of two modalities with inherent am-

biguities for the 3D reconstruction, to address the deficits in

one another. We show that by exploiting the layout/scene

ambiguity in language as a strength via our variational ap-

proach, we can ground predictions to metric scale. This

opens up new avenue in how one can address the issue of

scale in 3D reconstruction as well as provide a direct frame-

work to extending the many works that currently are limited

to relative or scaleless depth predictions.

Limitations. Generic regularizers typically yield little

gains, but do little harm; specific regularizers can provide

larger boosts but are limited in their applications. While

using language as a prior gives flexibility between the two,

specificity in the caption controls the degree of regulariza-

tion imposed. Naturally, vague captions give little to no

information on object shape or size, so there is little to be

gained; specific, but incorrect captions may misfire, barring

any malicious intent. As WorDepth relies on the quality of

the caption, it is susceptible to inaccuracies stemming from

descriptions provided by the image captioner. Its ease of

use also opens up vulnerabilities from malicious users who

may choose captions to steer predictions incorrectly.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin.

Emerging properties in self-supervised vision transformers.

In Proceedings of the IEEE/CVF international conference
on computer vision, pages 9650–9660, 2021. 3

[7] Wenjie Chang, Yueyi Zhang, and Zhiwei Xiong.

Transformer-based monocular depth estimation with

attention supervision. In 32nd British Machine Vision
Conference (BMVC 2021), 2021. 2, 6, 8, 1

[8] Jiaben Chen, Renrui Zhang, Dongze Lian, Jiaqi Yang,

Ziyao Zeng, and Jianbo Shi. iquery: Instruments as queries

for audio-visual sound separation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14675–14686, 2023. 3

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009. 5

[10] Georgi Dikov and Joris van Vugt. Variational depth net-

works: Uncertainty-aware monocular self-supervised depth

estimation. In European Conference on Computer Vision,

pages 43–60. Springer, 2022. 3

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, et al. An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3

[12] Yiming Dou, Fengyu Yang, Yi Liu, Antonio Loquercio, and

Andrew Owens. Tactile-augmented radiance fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024. 3

[13] David Eigen, Christian Puhrsch, and Rob Fergus. Depth

map prediction from a single image using a multi-scale

deep network. Advances in neural information processing
systems, 27, 2014. 4, 5, 6, 1

[14] Xiaohan Fei and Stefano Soatto. Visual-inertial object de-

tection and mapping. In Proceedings of the European con-
ference on computer vision (ECCV), pages 301–317, 2018.

1

[15] Xiaohan Fei, Alex Wong, and Stefano Soatto. Geo-

supervised visual depth prediction. IEEE Robotics and Au-
tomation Letters, 4(2):1661–1668, 2019. 1, 2

[16] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression

network for monocular depth estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 2002–2011, 2018. 2, 6, 8

[17] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression

network for monocular depth estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 2002–2011, 2018. 2

[18] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao

Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao.

Clip-adapter: Better vision-language models with feature

adapters. arXiv preprint arXiv:2110.04544, 2021. 3

[19] Ravi Garg, Vijay Kumar Bg, Gustavo Carneiro, and Ian

Reid. Unsupervised cnn for single view depth estimation:

Geometry to the rescue. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part VIII 14, pages

740–756. Springer, 2016. 1

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE conference on computer vision and
pattern recognition, pages 3354–3361. IEEE, 2012. 2, 5, 6,

1

[21] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat

Singh, Kalyan Vasudev Alwala, Armand Joulin, and Ishan

Misra. Imagebind: One embedding space to bind them all.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15180–15190, 2023.

3

[22] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 270–279,

2017. 1

[23] Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xi-

anzheng Ma, Jiaming Han, Kexin Chen, Peng Gao, Xianzhi

Li, Hongsheng Li, et al. Point-bind & point-llm: Align-

ing point cloud with multi-modality for 3d understand-

ing, generation, and instruction following. arXiv preprint
arXiv:2309.00615, 2023. 3

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

9



[25] Jia Cheng Hu, Roberto Cavicchioli, and Alessandro Capo-

tondi. Expansionnet v2: Block static expansion in fast

end to end training for image captioning. arXiv preprint
arXiv:2208.06551, 2022. 2, 5

[26] Xueting Hu, Ce Zhang, Yi Zhang, Bowen Hai, Ke Yu, and

Zhihai He. Learning to adapt clip for few-shot monocular

depth estimation. arXiv preprint arXiv:2311.01034, 2023.

3

[27] Pan Ji, Runze Li, Bir Bhanu, and Yi Xu. Monoindoor: To-

wards good practice of self-supervised monocular depth es-

timation for indoor environments. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,

pages 12787–12796, 2021. 2

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[29] Diederik P Kingma and Max Welling. Auto-encoding vari-

ational bayes. arXiv preprint arXiv:1312.6114, 2013. 3,

4

[30] Neehar Kondapaneni, Markus Marks, Manuel Knott,
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WorDepth: Variational Language Prior for Monocular Depth Estimation

Supplementary Material

A. Evaluation metrics.

Drawing on [7, 43], our evaluation of WorDepth along-

side comparison methods involves a quantitative assessment

through several metrics. These include mean absolute rela-

tive error (Abs Rel), root mean square error (RMSE), abso-

lute error in log space (log10), logarithmic root mean square

error (RMSElog) and threshold accuracy (δi). The evalua-

tion metrics are summarized in Table 5 for details.

B. Ablation on Model Architecture

We evaluated varying hidden variables d of text-VAE us-

ing the NYU Depth V2 dataset[58], shown in Table 6. A

key consideration was ensuring the hidden space was suf-

ficiently large to encode the necessary structural and ge-

ometric features for reconstructing depth maps. This size

requirement arises from the need to preserve essential fea-

tures about the scene’s objects and layout derived from text

features encoded by text-VAE.

However, it’s equally crucial to avoid excessively large

hidden variables. A relatively constrained dimensionality

acts as a form of regularization, compelling the text-VAE to

focus on extracting features crucial for depth decoding. Ad-

ditionally, a limited hidden dimension prompts the model

to learn not just the distribution mean but also its variance.

This aspect is particularly important when mapping a text

description to multiple scenes, such scenes’ text features

are encoded with identical distribution means but exhibit

significant variance.

We established hidden variables d of 32, 64, 128, 256,

512, and 1024 for training WorDepth. It was observed that

the optimal hidden dimension is 128, striking a balance

between capturing sufficient geometric features of scenes

while maintaining effective regularization. Deviating from

this optimal size, either too small or too large, adversely

impacts performance.

Metric Formulation

Abs Rel 1
Ne

∑
(i,j)∈Ω

|y∗(i,j)−y(i,j)|
y∗(i,j)

RMSE
√

1
Ne

∑
(i,j)∈Ω(y

∗(i, j)− y(i, j))2

log10
1
Ne

∑
(i,j)∈Ω | log10(y∗(i, j))− log10(y(i, j))|

RMSElog

√
1
Ne

∑
(i,j)∈Ω(ln(y

∗(i, j))− ln(y(i, j)))2

δ % of y(i, j) s.t. max( y(i,j)
y∗(i,j) ,

y∗(i,j)
y(i,j) ) < thr ∈ [1.25, 1.252, 1.253]

Table 5. Evaluation metric for monocular depth estimation. y
denotes predictions and y∗ denotes ground truth.

Method δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ Abs Rel ↓ log10 ↓ RMSE ↓
d = 32 0.925 0.990 0.998 0.093 0.039 0.327

d = 64 0.928 0.990 0.998 0.090 0.039 0.325

d = 128 0.932 0.992 0.998 0.088 0.038 0.317
d = 256 0.930 0.991 0.998 0.089 0.039 0.323

d = 512 0.929 0.990 0.998 0.089 0.039 0.324

d = 1024 0.926 0.989 0.998 0.091 0.039 0.325

Table 6. Sensitivity to different numbers of hidden variables d.
Experiments are conducted on NYU Depth V2. d is the number of

hidden variables d of the text-VAE.

C. Additional Visualization on NYU Depth V2
In this section, as illustrated in Figure 5, We present ad-

ditional visualizations comparing WorDepth with a baseline

method AdaBins [2] on the NYU Depth V2 [58] dataset,

emphasizing the advantages gained from integrating the

language prior. Compared with AdaBins, the error map,

with its brighter regions highlighting larger errors, clearly

demonstrates that WorDepth achieves more precise depth

predictions for objects identified in the text description. For

instance: “a sink and a bath tub” in the first row, “a white

bath tub” in the second row, “a wooden dresser” in the third

row, “a bed” in the fourth row, “a bunk bed” in the fifth

row, “an unmade bed with clothes on top of it” in the sixth

row, “a couch and a table” in the seventh row, “a table and

chairs” in the eighth row, “a blender on a counter” in the

ninth row, “chairs” in the tenth row, and “machine on top of

a wooden table” in the last row.

D. Additional Visualization on KITTI
This section, depicted in Figure 6, showcases visualiza-

tions of Monocular Depth Estimation in outdoor scenarios

with the KITTI dataset [20] using Eigen Split [13], compar-

ing with Adabins [2]. Due to the limited variety of objects

in outdoor scenes, our method captures fewer objects com-

pared to indoor scenes. However, when salient objects and

scenes are present outdoors, our method gains a preliminary

understanding of their scale. This understanding aids in en-

hancing monocular depth estimation for these objects. The

error map’s brighter regions, which emphasize greater abso-

lute relative errors, unequivocally show that WorDepth out-

performs AdaBins in making more accurate depth predic-

tions for objects and scenes mentioned in the text descrip-

tion. For instance: “two white trucks” in the upper right, “a

woman riding a scooter” in the lower left, “buildings” in the

lower middle, and “forest with tree” in the lower left.

1



Figure 5. Additional visualization of monocular depth estimation on NYU Depth V2.

2



Figure 6. Additional visualization of monocular depth estimation on KITTI Eigen split.
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