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Abstract— In this work, we introduce REFORMA, a novel
robust reinforcement learning (RL) approach to design con-
trollers for unmanned aerial vehicles (UAVs) robust to unknown
disturbances during flights. These disturbances, typically due
to wind turbulence, electromagnetic interference, temperature
extremes and many other external physical interference, are
highly dynamic and difficult to model. REFORMA can perform
a real-time online adaptation to these disturbances and generate
appropriate velocity actions as countermeasures to stabilize
the drone. REFORMA consists of two components: a base
policy trained completely in simulation using model-free RL
and an adaptation module trained via supervised learning
with on-policy datasets. By varying the disturbance strength
in an adaptation module, i.e., adopting adaptive adversary,
the policy is then able to handle extreme cases when the
velocity of the drone is immediately affected by disturbances.
Finally, we demonstrate the effectiveness of our method through
extensive simulated experiments. To the best of our knowledge,
REFORMA is the first robust RL approach that uses adaptive
adversaries to tackle uncertain disturbances in drone tasks.

I. INTRODUCTION

Aerial drones have seen numerous promising applications

ranging from aerial surveillance [1] to package delivery [2]

and search-and-rescue missions [3]. However, during these

tasks, drones often encounter unpredictable factors such as

turbulent winds, sudden gusts, or electromagnetic interfer-

ence that might manifest as sensor noise. These disturbances

can jeopardize flight stability and accurate navigation. For

instance, while hovering, drones must constantly adjust their

position to counteract external forces, maintaining precise al-

titude and location. Similarly, during traversing tasks, drones

need to respond swiftly to changing conditions, adapting

their flight path to avoid obstacles and maintain safety. The

ability to effectively address these challenges is crucial for

enabling the reliable and safe operation of drones in diverse

and dynamic environments.
Deep reinforcement learning (deep RL) has demonstrated

promising performance on drone tasks, such as hovering

[4], [5], landing [6], [7], goal-reaching [8], and collision

avoidance [9], [10]. Among many deep RL approaches,

robust reinforcement learning is proposed particularly to en-

hance the performance and reliability of autonomous agents

operating in dynamic and uncertain environments.
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Enhancing the robustness of RL through adversarial learn-

ing has been proposed in [5], [11], [12], [13]. Two typical

robust RL approaches formulated as Robust Markov Deci-

sion Process (R-MDP) are Robust Adversarial Reinforcement

Learning (RARL) [11] and Noisy Robust Markov Decision

Processes (NR-MDP) [13]. The former requires access to

sensing data and control of the simulator in training, while

the latter does not.

In this work, we propose a robust RL approach via

adaptive adversary (i.e., REFORMA) that allows the result-

ing drone controller to generalize well toward environmen-

tal uncertainty and adversarial actions. The framework of

REFORMA is illustrated in Fig. 1. We focus on action

attacks, as opposed to policy, transition, reward, or state

attacks, in order to simplify the adversarial training process

while still providing valuable robustness improvements for

RL protagonist agents. Moreover, action attacks fit realistic

scenarios since real applications involve coping with external

disturbances that affect the agents’ actions. For instance,

drones may need to adapt to sudden gusts of wind or sensor

noise, which can be modeled as action attacks.

Inspired by the ROLAH framework recently proposed

in [14], we train REFORMA with a group of adversaries to

circumvent the occurrence of local optima and excessive pes-

simism in generated policies, addressing challenges observed

in RARL [11] and NR-MDP [13]. The protagonist agent is

assumed to share the environment with the adversaries. The

adversaries take actions to disturb the environment and the

protagonist directly, so that the cumulative reward received

by the agent is minimized. This framework optimizes the

average worst-k performance of a group of adversaries under

disturbance with max-min optimization formulation such as

the setup in ROLAH [14]. However, instead of following

RARL [11] framework as in the original ROLAH setting,

we consider the action attack adopted in NR-MDP [13]. By

doing this, we can eliminate the reliance on prior knowledge,

such as the specific attackable elements in the protagonist’s

action space that are required by RARL. When mixing the

attacked actions from both protagonist and adversary agents,

we use an α value to indicate the adversary strength.

To generalize REFORMA to varying α, we adopt the

domain randomization method [15], [16] and wrap our

framework with two training phases [17], [18], [19], accom-

panied by learning both protagonist and adversary policies

as well as adaptive adversary strength level. Specifically, we

learn a latent representation zt of a drone or environment’s

parameters et as well as the adversary strength level from a

history of states, actions, and attacked actions.



Fig. 1: REFORMA consists of 3 modules: the protagonist

policy πθ, the adaptation module ρ, and the adversary poli-

cies πφi
, where i is the index for each adversary policy in the

herd. Training stage: in the base policy training phase, we

train πθ, πφi , and the factor encoder μ together end-to-end to

interact with the training environment via attacked action āt.
In the adaptation module training, we learn an adaptation

module ρ that takes the state history and actions history (both

apt−j and āt−j) to predict ẑt, minimizing the mean square

error MSE(zt, ẑt), where zt is the latent space capturing the

previous inputs. Testing stage: The protagonist policy πθ can

be deployed with the inputs of the current state st, previous

attacked action āt−1, and the intrinsic vector ẑt predicted by

the adaptation module ρ; its action apt will receive unknown

noise or attack before executing on the testing environment.

The REFORMA framework is employed to design stable

flight controllers for drones, in representative tasks including

hovering and traversing, which is validated in simulated en-

vironments. Our method is shown to outperform the state-of-

the-art RL-based control policies in simulated environments.

Specifically, our technical contributions are as follows:

1) We reformulate ROLAH within the NR-MDP to elim-

inate the reliance on prior knowledge, in order to

improve the generality of attackable actions while

preserving its capacity for improving optimization dur-

ing training.

2) We extend the attackable actions in REFORMA to

adapt to a range of adversary strengths using rapid mo-

tor adaption method [17], and hence improve the sys-

tem robustness to disturbances of different strengths.

3) We demonstrate that REFORMA is more robust

for typical drone tasks under different disturbances

through extensive simulated experiments.

To the best of our knowledge, REFORMA is the first

robust RL that uses adaptive adversary to address uncertain

disturbances in drone tasks. The paper is organized as

follows. Sec. II reviews the relevant work. Sec. III describes

the research question and introduces the structure of our

proposed REFORMA. The simulation experiments and anal-

yses of the results are elaborated in Sec. IV. This work is

concluded in Sec. V.

II. RELATED WORK

A. Robust Reinforcement Learning
RL has demonstrated its impressive performance in differ-

ent applications, including healthcare [20], [21], [22], [23],

[24], robotics control [25], [26], [27], and natural language

processing [28]. However, to deploy RL policy in the real

world, researchers should be aware of the issues of inter-

pretability [29], safety [30], [31], and robustness [32]. Robust

RL is initially formulated with Robust Markov Decision

Process (R-MDP) [33], [34] for solving small tabular MDPs

via dynamic programming with a known uncertainty set.

Subsequent works extend the formulation of uncertainty,

introducing the perturbations and disturbances, to define

environmental dynamics [11], [13], [14], [35].
Our work for robust RL interprets the perturbations as

an adversary and aims to learn the distribution of the

perturbation. This idea can be derived from two prior works

[11], [13], which both solve the problem as the two-player

max-min game. The main difference occurs in the pa-

rameterization of the adversaries. RARL [11] is flexible

in defining different action spaces between protagonist and

adversary agents but requires additional access and control

to the simulator. On the other hand, frameworks of PR-

MDP and NR-MDP utilize extra hyperparameter α to model

how the stochastic perturbation can be executed on policy

and action space respectively. Recent work ROLAH [14]

extends the RARL framework to interact a protagonist with

a group of adversaries, optimizing problems with the average

performance over the worst-k adversaries in order to alleviate

the issues of local-optima and over-conservation.

B. Robust Control for Drones
1) Traditional Robust Control for Drones: Traditional

flight control strategies for drones rely on sophisticated

mathematical modeling of physical dynamics and expertise-

based manual tuning. Due to the complexity of aerodynamics

and the uncertainty of environmental factors, robust control

algorithms for drones have been proposed (e.g., [36], [37],

[38]). A recent robust drone control method is the slide-mode

control, achieving robustness in compensation for the para-

metric uncertainty in drones by means of the combination of

sliding mode controller and sliding mode observer (SMC-

SMO) [39]. However, it still has the inherent limitation of

designing complicated control model of high non-linearity

and varying aerodynamics which requires substantial domain

knowledge to reach comparably competitive performance.
2) Reinforcement Learning based Robust Control for

Drones: Unlike traditional robust control strategies for

drones, RL aims to automate the control process by training

agents to overcome the high non-linearity and complicated

coupling effects. To further cope with unexpected distur-

bances from environmental factors, robust RL mechanisms

are introduced to increase the resiliency of drones in the

face of those potential threats. They have achieved wide-

range success in different mission scenarios from multiple

domains when the control performance of drones is severely

tested by harsh environmental factors.



A robust RL policy specifically tailored to autonomous

vertical take-off and landing (VTOL) missions on ships has

been introduced to mitigate the wind effects in the dynamic

landing process onto a moving target, which outperforms

benchmark nonlinear PID-based control methods [6]. Col-

lision avoidance is also of vital importance especially in

unknown areas and a robust reinforcement learning policy

can make full use of various sensor measurements to detect

and avoid obstacles and help drones complete the mission

safely [10]. Guiding and planning trajectories for drones in

adversarial settings can also be assisted by robust reinforce-

ment learning that conducts real-time attack detection using

deep neural networks [17].

III. ROBUST DRONE CONTROLLER VIA ADVERSARY

LEARNING

A. Problem Formulation

A Markov Decision Process (MDP) with adver-

saries in the environment can be defined by a tuple

(S,Ap,Aa,P, r, γ, p0), where S is the set of states in the

environment, Ap and Aa are the sets of actions that the

protagonist and adversaries can take respectively, P : S ×
Ap × Aa → Δ(S) is the transition function that describes

the distribution of the next state given the current state and

actions taken by the protagonist agent and the adversaries,

r : S × Ap × Aa → R is the reward function for the

protagonist agent, γ ∈ [0, 1] is the discounting factor, and

p0 is the distribution of the initial state. Since we consider a

zero-sum game framework in this work, the reward function

of adversaries can be viewed as −r.

B. Robust RL via Adversarial Herding in NR-MDP

We adopt the extension of the two-player zero-sum game

with an adversarial herd in ROLAH [14]. In addition to

learning the policy of the protagonist agent πθ : S → Δ(Ap)
with the parameters θ, we also learn the policies of a group of

adversaries πφi
: S → Δ(Aa), where πφi

and φi denote the

policy of the i-th adversary and its parameter, respectively.

Let st ∈ S be the state of the environment at time t, and

apt ∈ Ap / aat ∈ Aa the actions of the protagonist agent/

adversary at time t. ROLAH follows the definition from

RARL [11] so that the action spaces between protagonist

and adversaries can be different, resulting in the cumulative

discounted reward that the protagonist agent πθ can receive

under the disturbance of the adversary πφi
defined as

R(θ, φi)
.
= E

s0∼p0

[ ∞∑

t=0

γtr(st, a
p
t , a

a
t )|C)

]
, (1)

where C = {apt ∼ πθ, a
a
t ∼ πφi

}.

However, to avoid the burden on deciding the selective

part that the adversary acts such as RARL to pick out specific

robot joints, we formulate our method using Noisy Action

Robust MDPs (NR-MDPs) [13] so that the adversaries can

directly attack the protagonist agent’s action resulting in

R(θ, φi)
.
= E

s0∼p0

[ ∞∑

t=0

γtr(st, (1− α)apt + αaat )|C
]
; (2)

here, α is a hyperparameter controlling the adversary strength

and C = {apt ∼ πθ, a
a
t ∼ πφi}, as before.

To resolve the potential over-pessimism with the optimiza-

tion on the worst-case and local optimality problem, we

consider the objective of optimizing the average performance

over the worst-k adversaries [14], which is defined as

max
θ∈Θ

min
φ1,...,φm∈Φ

1

|Iθ,̂Φ,k|
∑

i∈Iθ,̂Φ,k

R(θ, φi). (3)

Here, Θ and Φ are pre-defined parameter spaces for the agent

and the adversaries. The worst-k adversaries are defined as

the ones where the expected cumulative rewards received

by the protagonist agent πθ under their attack are smaller

than that under the attacks from the rest m− k adversaries.

The order of the worst level is changeable. Specifically, in

each iteration, the reward R(πθ, πφi
), where πφi

refers to the

index of the adversary, is estimated with the corresponding

rollout data. Then the adversary for attacking in this iteration

will be only selected from the current worst-k adversaries.

C. Adaptive Adversary via Rapid Motor Adaptation

The empirical performance of solving (3) should heavily

rely on the value of hyperparameter α selected in (2). Al-

though careful hyperparameter tuning leads to a robust policy

for unlearnable noise or disturbance, it is not realistic that the

adversary policies always follow the same adversary strength

α in both training and testing. To generalize our approach to

varying adversary strengths α, we leverage existing domain

randomization techniques [15], [16] to randomize α as well

as drone and environment parameters et for each episode.

Prior work has shown how the framework of rapid motor

adaptation (RMA) can work successfully among online ter-

rain adaptation for legged robots [17], diverse sets of internal

parameters for drones, and physical properties for hand ma-

nipulation [18]. In addition to learning the internal dynamics

of the quadcopter’s body from a history of states and actions,

we also explicitly estimate the external adversary strength,

which enables adaption to the robustness of learnable and

active attack.

Fig. 1 illustrates our whole framework REFORMA, con-

taining training and testing stages. Our training stage can be

divided into two steps: (i) Protagonist policy training, and

(ii) Adaptation module training; we describe these training

modules in what follows.

1) Adversary and Protagonist Policies: In the base policy

training, the protagonist policy πθ is trained with the inputs

of the current state st ∈ R
16, previous attacked action

āt−1, and the latent representation zt ∈ R
8 to predict the

next action apt ∈ R
4. The details of the state and action

space will be introduced in Sec. IV-A. We learn a group

of adversary policies that takes as input the current state

st ∈ R
16 to output aat ∈ R

4 so that the action apt =
πθ(st, āt−1, zt) is attacked and leads to the deployed action

āt = (1 − α)apt + αaat at time-step t. Note that it is not

necessary to let adversary policies learn the varying α, so

we simply train the group of adversaries with only current

state as input: aat = πφi(st).



(a) Hover (b) Fly-through gate

Fig. 2: Illustrations of drone tasks evaluated in our approach,

including hovering and flying through a gate. Our method is

robust enough to varying types of disturbance.

We use a factor encoder μ to compress all drone and

environment parameters et as well as {st, st−1, a
p
t−1, āt−1}

to a low-dimensional vector zt. This results in

zt = μ(et, st, st−1, a
p
t−1, āt−1), (4)

apt = πθ(st, āt−1, zt). (5)

2) Adaptation Module: Since we cannot directly observe

the vector et and compute the latent representation zt during

evaluation, we use sensor history and previous actions to

estimate ẑt via an adaptation module ρ, which is inspired by

[17], [18], [19]. In our experiments, we use k = 300 as the

history length with

ẑt = ρ(st−k:t, a
p
t−k−1:t−1, āt−k−1:t−1). (6)

We train ρ via supervised learning to minimize the mean

square error between zt and ẑt. Although the α value is

not accessible during evaluation, and we do not provide

factor encoder μ and adaptation module ρ with α explicitly,

REFORMA is able to learn the adversary strength level with

the history of both protagonist’s actions apt and attacked

actions āt.

3) Deployment: Finally, we deploy the protagonist policy

πθ where the inputs are the current state st, previous attacked

(deployed) action āt−1, and ẑt predicted by the adaptation

module ρ. The output action apt from the protagonist will

be disturbed by noise or attack before being executed in the

testing environment.

IV. EXPERIMENTS

We validate that the proposed approach can be successfully

used to derive control policies robust to the disturbance

on RL agents’ actions on two drone tasks. Particularly, we

investigate the following questions:

1) Can RL via adversarial herd be compatible with NR-

MDP and perform better under different types of

attacks/disturbances?

2) Can the adaption module in REFORMA serve as an

indicator to identify the adversary strength and be more

generalizable to different α values?

TABLE I: Ranges of the drone, environmental and adver-

sary strength level parameters. Note that only REFORMA

randomizes α value while other compared approaches fixed

α = 0.01.

Parameter Training Range

Mass (kg) [0.020, 0.060]
Arm length (m) [0.025, 0.075]

Mass moment of inertia: x, y(kg ·m2) [1.40e(−5), 3.22e(−3)]
Mass moment of inertia: z(kg ·m2) [2.17e(−5), 9.77e(−4)]

Max. speed (km/hr) [10, 30]
Drag coefficient [0, 0.64]

Adversary strength α [0, 0.012]

A. Simulation Environment and Benchmark Problems

We use the gym-pybullet-drones for training and testing

our control policies [4]. The state space consists of kinematic

information, including the drone’s positions, quaternions,

rolls, pitches, yaws, and linear and angular velocities with

st ∈ R
16. The action space contains the desired velocity

input of the drone, {vx, vy, vz, vM}, where vx, vy, vz are

the components of a unit vector for 3 axes and vM is its

corresponding velocity’s magnitude, leading to at ∈ R
4. The

high-level command in the action space is converted to 4
drone’s motor speeds (in RPMs).

In the adversarial learning setting, the adversary can

also attack the same action space, following the NR-MDP

framework from Sec. III-A. We select a fixed α = 0.01 for

both RARL and ROLAH after hyperparameter tuning from

4 values 0.005, 0.01, 0.05, 0.1, considering if the adversarial

learning is large enough to be effective and small enough

to have a higher performance in convergence. On the other

hand, we randomize α ∈ [0, 0.012] for REFORMA for train-

ing. For validation, we consider the following two tasks (see

Fig. 2): (i) hovering, and (ii) flying through a gate.

1) Hover: The agent aims to reach a predetermined

altitude and stabilize. The reward function calculates the

distance between the current position of the drone and the

targeted position.

2) Fly-through gate: The objective of the agent is to fly

through a gate with a rectangular boundary. Besides consid-

ering the distance between the current position and the goal,

a penalty is executed when the drone flies out of the gate.

B. Comparison against Baselines

We empirically evaluate REFORMA with the following

baselines: (i) baseline (vanilla PPO) [40]; (ii) RARL, which

learns the protagonist policy PPO with a single adversarial

agent [11]; and (iii) ROLAH, which trains the protagonist

policy PPO with a group of adversaries with optimization

over worst-k adversaries [14]. Note that all the methods

are trained with domain randomization using the parameters

(e.g., mass, arm length, mass moment of inertia, maximum

speed, and drag coefficient) in the range summarized in

Table I to make the training more realistic and to have a

fair comparison. However, the α of baseline (vanilla PPO)

can be viewed as 0 without adversarial learning, and both



TABLE II: Performance of REFORMA and baselines under

various disturbances for Hover task.

Method Baseline (0 adv) RARL (1 adv) ROLAH (herding adv) REFORMA (ours)

No disturbance 0.90 ±0.13 0.85±0.18 0.86±0.19 0.88±0.21

noiseX 0.74 0.75 0.79 0.77
noiseY 0.75 0.75 0.80 0.82
noiseZ 0.70 0.76 0.80 0.78

average noise 0.73±0.22 0.75±0.25 0.80±0.28 0.79±0.26

randomX 0.77 0.78 0.80 0.77
randomY 0.75 0.77 0.75 0.81
randomZ 0.26 0.43 0.59 0.65

average random 0.59±0.32 0.66±0.27 0.72±0.23 0.74±0.24

learnt α = 0.005 0.20 0.36 0.47 0.52
learnt α = 0.01 0.19 0.30 0.38 0.51
learnt α = 0.015 0.17 0.24 0.34 0.45

average learnt 0.19±0.11 0.30±0.23 0.40±0.28 0.49±0.13

overall average 0.54 0.60 0.66 0.70

TABLE III: Performance of REFORMA and baselines under

various disturbances for Fly-through gate task.

Method Baseline (0 adv) RARL (1 adv) ROLAH (herding adv) REFORMA (ours)

No disturbance 0.87±0.17 0.88±0.23 0.90±0.19 0.88±0.19

noiseX 0.79 0.81 0.89 0.86
noiseY 0.78 0.88 0.84 0.84
noiseZ 0.66 0.50 0.78 0.75

average noise 0.74±0.23 0.73±0.27 0.84±0.29 0.82±0.26

randomX 0.25 0.71 0.88 0.83
randomY 0.71 0.82 0.87 0.82
randomZ 0.27 0.39 0.36 0.45

average random 0.39±0.15 0.64±0.27 0.70±0.25 0.70±0.22

learned α = 0.005 0.23 0.27 0.41 0.50
learned α = 0.01 0.18 0.20 0.34 0.41
learned α = 0.015 0.11 0.15 0.12 0.25

average learned 0.17±0.14 0.21±0.15 0.29±0.26 0.39±0.17

overall average 0.49 0.56 0.64 0.66

RARL and ROLAH only train on α = 0.01 NR-MDP. The

remaining REFORMA is randomized with α ∈ [0, 0.012].
We keep the same architecture and hyperparameters for

all the approaches, investigating the comparison of robust

effectiveness among all methods. For each task and method,

we run 10 random seeds for evaluation.

In typical cases, we need to address both unstable ori-

entation and translation when flying drones under unknown

disturbances. However, to reasonably narrow down the re-

search scope, we only consider unstable translation in this

work because we assume the drone compass and/or inertial

measurement unit (IMU) are sufficient in estimating the ori-

entation accurately. GPS sensors typically used in measuring

position are subject to large translational errors of up to 2 m

and a low frequency (1 Hz) [41], so they are more vulnerable

to the disturbances that we focus on in this work.

Table II and III show the evaluation results of both tasks

among different methods with 4 types of disturbances (i) no

disturbance, (ii) Gaussian noise is added to the entry of the

protagonist agent’s original action vector aligning with the

corresponding axis, (iii) the entry of the protagonist agent’s

original action vector aligning with the corresponding axis

is replaced with a random action entry, and (iv) the learnt

adversary that represents the worst-case performance of a

given policy. For instance, noiseX indicates the original

action with Gaussian noise added to the desired velocity

along x-axis and randomY replaces the original entry of the

y-axis with a random action. To provide the worst adversary

TABLE IV: Ablation Studies of Number of k in Hover task.

Since the standard deviations are not different significantly,

they are not depicted here.

Number of Adversaries N
with k percentage worst case No disturbance NoiseX Learned α = 0.01
N=5, k=10% 0.71 0.59 0.23
N=5, k=30% 0.73 0.64 0.21
N=5, k=50% 0.72 0.57 0.18
N=10, k=10% 0.74 0.61 0.27
N=10, k=30% 0.86 0.79 0.38
N=10, k=50% 0.81 0.74 0.33
N=20, k=10% 0.75 0.54 0.24
N=20, k=30% 0.80 0.69 0.35
N=20, k=50% 0.79 0.68 0.31

in (iv), we further train 3 corresponding adversaries under

3 different α values [0.005, 0.01, 0.015] to minimize the

protagonist’s reward while holding its parameters constant
after convergence for all methods. To have a better inter-

pretation of our results, we normalize the episode reward in

evaluation within the range of [0, 1].
In general, we demonstrate that ROLAH is still more

robust to noise, random, and learnt disturbances under NR-

MDP setting compared with vanilla PPO and RARL. Specif-

ically, we mainly attach the standard deviation of different

categories of disturbances in Table II and III, indicating

that robust RL via adversarial training (RARL, ROLAH and

REFORMA) mostly shares a similar standard deviation as

vanilla PPO. In other words, this branch of adversarial learn-

ing keeps its robustness against varying initial conditions

while improving the average performance. Some standard

deviation of vanilla PPO is relatively small because of its

overall deficient performance.

We emphasize the variance reduction between ROLAH

and REFORMA evaluated under the learned adversary poli-

cies. We notice that ROLAH has a larger standard deviation

in some tasks (e.g., half-cheetah and hopper) in [14], which

has been improved in with the REFORMA framework due

to the identification of the adversary strength. In addition, we

show that learning with adversaries in fly-through gate task

outperforms the baseline (0 adv) in Table III even though

the training and testing conditions are consistent, which was

also observed in [11] and [14].

C. Ablation Studies

1) Number of adversary policies and worst k: Note that

the number of adversary policies and the hyperparameter of

the worst k may influence the performance, depending on

the simulation environment and the tasks [14]. Therefore,

we consider the combinations of 3 different number of

adversaries and 3 different k values in the hover task for

hyperparameter tuning via ROLAH because ROLAH can be

viewed as one component of REFORMA.

Table IV presents the comparison among all combination

settings. Overall, as the value of k increases, the training

focuses less on worst-case optimization. When the value of

k decreases, the performance also degrades. This aligns with

the conjecture that a single adversary can get trapped in

extreme cases, also leading to degraded performance in [14].



After hyperparameter tuning, we keep m = 10 adversary

policies and k = 3 for ROLAH and REFORMA in both

hover and fly-through gate tasks.

2) Adversary adaptation capability: To investigate how

the adaptive module can handle adversary strength, we do

an ablation study on different α values. We mainly com-

pare REFORMA with REFORMA-n. Both REFORMA and

REFORMA-n receive domain randomization with all the

parameters, including α, in Table I. However, the inputs of

the adaptation module in REFORMA-n do not include the

history of the attacked actions āt, which disables the adap-

tation module from identifying the severity of the adversary.

We observe that purely domain randomization on α has

already resulted in higher performance for REFORMA-n

compared with ROLAH. Further, we emphasize that follow-

ing our REFORMA framework with the attacked actions āt
as parts of inputs to the adaptation module can increase

the normalized return as shown in Fig. 3. Even though

encountering the α values out of the training range (e.g.,
0.013 and 0.015), REFORMA still performs better than

REFORMA-n in both drone tasks.

D. Analysis

1) Varying performance in different axis: In fly-through

gate task, it is relatively difficult to perform control robust

to the disturbances along with x-axis and z-axis because

the direction of the gate is y-axis. The perturbation of the

velocity in either x-axis or z-axis will result in a penalty of

failure when the drone collides with the gate boundary or

flies out of the gate.

2) Generalization over different adversary strength: We

observe that REFORMA outperforms ROLAH as captured in

Tables II and III mainly under the attack from the learned ad-

versary policies. With the latent representation ẑt, we are able

to provide additional features to the protagonist about the

estimated adversary strength level under the history states,

its actions, and the attacked actions, including the current

state st. Specifically, we evaluate all methods interacting

with learnt adversary policies under α = 0.005, α = 0.01,

and α = 0.015, representing the α value smaller than,

equal to, and larger than fixed training α respectively. Since

REFORMA randomizes α ∈ [0, 0.012] values and learns the

latent space compacted with adversary strength information,

it receives a higher normalized reward under α = 0.005
and α = 0.01. In addition, the highest performance under

α = 0.015 among all methods indicates the generalizability

to the unseen scenario slightly out of the range.

3) Adversary Adaptation analysis: We analyze the la-

tent presentation ẑt for adaptation on incremental adversary

strength α. We incrementally increase α value in fly-through

gate task every 200 time steps. We plot all the components

ẑt ∈ R
8 from the adaptation module during the evaluation

in Fig. 4. It can be observed that whenever the α is added,

each component of the latent space changes in their own

trends with the whole process starting from detecting the

disturbance change, estimating the latent vector to adapting

to the disturbance, and solving the task.

(a) Hover (b) Fly-through gate

Fig. 3: Testing results with ablation study in different α val-

ues for all drone control tasks. REFORMA is our proposed

method and REFORMA-n is the approach with domain

randomization for all the parameters in Table I, including

α, but without learning the adaptive module.

Fig. 4: Visualization of eight components ci within the latent

representation ẑt predicted by the adaptation module in the

fly-through gate task. The changes for each component are

strongly correlated with the adversary strength α, indicating

that the attack severity has been detected by the adapta-

tion module.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel robust RL approach

named REFORMA to confront complex disturbances oc-

curring during drone flights. REFORMA first adopts the

approach of involving a group of adversaries in training

and enhancing the robustness of RL agents. This approach

was used to tackle unknown disturbances in drone tasks. To

adapt the system with dynamic and unknown disturbances

and further improve the RL robustness, we incorporated

the idea of Noisy NR-MDP and exploited α values for

adaptive adversary learning. In our experiments, we showed

that REFORMA improves robustness of typical drone tasks

including hovering and traversing through a gate. Moreover,

REFORMA was shown more robust to learnable adversaries

than the state-of-the-art methods, such as RARL [11] and

ROLAH [14]. As part of our future efforts, we will improve

REFORMA to adapt to more challenging drone tasks and

extend our work to handle orientation disturbances. Applying

REFORMA to multi-drone scenarios is also an avenue for

future work. As the interactions between drones may lead to

much more complex disturbances, adaptive adversary-based

approach can be more effective than other RL solutions.
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