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Attacks on Perception-Based Control Systems:
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Abstract—We study the performance of perception-
based control systems in the presence of attacks and pro-
vide methods for modeling and analysis of their resiliency
to stealthy attacks on both physical and perception-based
sensing. Specifically, we consider a general setup with a
nonlinear affine physical plant controlled with a perception-
based controller that maps both the physical [e.g., inertial
measurement units (IMUs)] and perceptual (e.g., camera)
sensing to the control input; the system is also equipped
with a statistical or learning-based anomaly detector (AD).
We model the attacks in the most general form and intro-
duce the notions of attack effectiveness and stealthiness
independent of the used AD. In such a setting, we con-
sider attacks with different levels of runtime knowledge
about the plant. We find sufficient conditions for the ex-
istence of stealthy effective attacks that force the plant
into an unsafe region without being detected by any AD.
We show that as the open-loop unstable plant dynam-
ics diverges faster and the closed-loop system converges
faster to an equilibrium point, the system is more vulnera-
ble to effective stealthy attacks. Also, depending on run-
time information available to the attacker, the probability
of the attack remaining stealthy can be arbitrarily close
to one if the attacker’s estimate of the plant’s state is
arbitrarily close to the true state; when an accurate esti-
mate of the plant state is not available, the stealthiness
level depends on the control performance in attack-free
operation.

Index Terms—Anomaly detection, attack-resilient
control, learning-enabled control, nonlinear control,
perception-based control, secure control, stealthy attacks.

I. INTRODUCTION

THE recent progress in deep learning and computer vision
has created a new generation of control systems that in-

corporate perceptual data for control and decision making. For
example, a camera or a light detection and ranging (LiDAR)
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sensor can provide the controller with information about plant
states (e.g., distance to the obstacles and position in a local
frame). Deep neural networks (DNNs) have shown the capability
to extract information from the complex perception data, such
as images.

Two main approaches—i.e., 1) modular and 2) end-to-end
perception-based controllers have been recently developed [2].
With the end-to-end control approach, perception data (e.g.,
camera images and LiDAR 3D-point clouds), combined with
other physical sensor information, is directly mapped to control
inputs at runtime (e.g., see [3], [4], [5]). The controller is then
either learned via supervised methods, such as imitation learn-
ing that mimics a preobtained optimal control input, or using
deep-reinforcement learning techniques that design the control
policy by maximizing the cumulative reward in an unsupervised
fashion. On the other hand, with the modular control approach,
a subset of state information is extracted from the perception
data (e.g., images) and then combined with other physical
sensor information, followed by the use of classic feedback
controllers (e.g., [6], [7], [8]). Despite the tremendous promise
that DNN-based perception brings to controls, the resiliency
of perception-based controllers to well-documented adversar-
ial threats remains a challenge, limiting their applicability in
real-world scenarios. The main focus of adversarial machine
learning methods has been on the vulnerability of DNNs to
small input perturbation, effectively focusing on robustness
analysis of DNNs; e.g., targeting DNNs classification or con-
trol performance when a small and bounded noise is added to
the images in camera-based control systems (e.g., [9], [10]).
However, an attacker capable of compromising the system’s
perception/sensing would not limit their actions (i.e., injected
data) to small bounded measurement perturbation; the reason
is that control-theoretic methods for designing stealthy attacks
suggests that the perturbation vector should gradually increase
in size over time (e.g., [11], [12], [13], [14]).

Little consideration has been given on the potential im-
pact of stealthy (i.e., undetectable) attacks, which are espe-
cially dangerous in the control context as many systems have
recovery-based defenses triggered once an attack is detected.
Model-based vulnerability analysis methods, designed from the
control theory perspective, have been used to analyze the impact
stealthy attacks could have on systems with linear time-invariant
(LTI) dynamics and simple physical sensing, without perception,
(e.g., [11], [14], [15], [16]). However, such analysis cannot be
easily extended to systems with complex dynamics and sensing
models that include perception-based sensing.

Consequently, this work studies the impact that stealthy at-
tacks on system sensing could have on perception-based control.
We assume the attack goal is to move the system into an unsafe
region while remaining stealthy from any anomaly detector
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(AD). Even though our notion of stealthiness is related to the
work [17], we do not restrict the attack impact to the infinite time
horizon. We show how such attacks can be modeled in a gen-
eral form of an additive term for physical (i.e., nonperception)
sensors and a generative model for perception sensors, without
any assumptions about a bound on the perturbation values.

Perception-based controllers (either end-to-end or modular
controllers) implicitly extract the state information from per-
ception sensing (e.g., camera images) to derive suitable con-
trol inputs. Hence, the goal of this work is to evaluate their
vulnerability to sensing attacks, by investigating whether there
exist adversarial perception outputs that convey desired “fal-
sified” state information while remaining stealthy, rather than
blindly adding noise or, e.g., a patch to the current image.
For example, for a vehicle with lane-keeping control (whose
goal is to remain in the lane center), we find a sufficient
stealthy attack sequence based on suitable adversarial image
sequences conveying the desired falsified state information that
is stealthy while fooling the controller into unsafe steering
decisions.

Depending on the attacker’s level of knowledge about the
plant’s states, we derive conditions for which there exists a
stealthy and effective (i.e., impactful) attack sequence that forces
the system far from the operating point in the safe region.
In particular, we assume that the attacker has full knowledge
about the system’s open-loop dynamics, and consider two cases
where at runtime the attacker 1) has or 2) does not have access
to the estimation of the plant’s state. We show that in the
first case, the attack can approach arbitrarily close to the strict
stealthiness condition as long as the estimation error is small.
For the latter, the stealthiness level of the attack depends on
the system’s performance in attack-free operation as well as the
level of impact that the attacker expects to impose on the system
(in terms of the distance from the system’s desired operating
point due to the attack). Thus, there is a tradeoff between the
stealthiness guarantees and the performance degradation caused
by the attack.

Moreover, for LTI plants, we show that these two cases fall
in the same category, which means the attacker does not need to
have access to an accurate estimate of the plant’s states. We
also show that unlike in systems with LTI plants and linear
controllers, where the design of stealthy and effective attacks
is independent of the control design, for nonlinear plants the
level of stealthiness is closely related to the level of closed-loop
system stability—i.e., if the closed-loop system “is more stable”
(i.e., its trajectory converges faster to the equilibrium point), the
attack can have stronger stealthiness guarantees. On the other
hand, the attack impact (i.e., control degradation) fully depends
on the level of open-loop system instability (e.g., the size of
unstable eigenvalues for LTI systems).

A. Related Work

The initial work [18] on adversarial example generation
showed that DNNs are vulnerable to small input perturbations.
Afterward, the majority of works have applied this idea to
adversarial attacks on a physical world such as malicious stickers
on traffic signs to fool the detectors and/or classifiers [19],
[20], [21]. For example, the design of adversarial attacks for
regression tasks has been studied in [22], where the goal of the
attacker is to alter the geometrical prediction of the scene and
the predicted distances from the camera. Yet, all these methods
only consider classification or regression tasks in a static manner;

i.e., the target only depends on its input, without consideration of
the longitudinal (i.e., over time) system behaviors. The vulner-
ability of perception-based vehicle controls has been recently
studied in a longitudinal way (e.g., [9], [10], [23], [24]). For
instance, Boloor et al. [9] consider autonomous vehicles (AVs)
with end-to-end DNN controllers that directly map perceptual
inputs into the vehicle steering angle and target the systems
by painting black lines on the road. On the other hand, the
authors in [10] and [23] introduced online attacks on streams of
images in the tracking task while Hallyburton et al. [24] consider
longitudinal attacks on camera-LiDAR fusion. Specifically, Jia
et al. [10] use the idea of adding a small patch into the image
for a couple of consecutive frames to change the position of
the bounding box around each object, where the location and
the size of the patch are obtained by solving an optimization
problem.

However, these works only consider specific applications and
analyze the attack impact in an ad-hoc manner, limiting the
use of their results in other systems/domains. Furthermore, they
lack any consideration of attack stealthiness, as injecting, e.g.,
adversarial patches that only maximizes the disruptive impact
on the control can be detected by most ADs. For instance, Cai
and Koutsoukos [25] introduced an AD that easily detects the
adversarial attacks from the work in [9]. On the other hand, in
this work, we focus on systems with nonlinear system dynam-
ics, define general notions of attack stealthiness, and introduce
sufficient conditions for a perception-based control system to
be vulnerable to effective yet stealthy perception and sensing
attacks. We show that to launch a successful stealthy attack,
the attacker may need to compromise other sensing information
besides perception.

Finally, for nonperception control systems, stealthy attacks
have been well defined in, e.g., [11], [13], [16], [17], [26], [27],
[28], [29], [30], [31], [32], [33], [34], including replay [26],
covert [28], zero-dynamic [27], and false data injection at-
tacks [11], [12], [16]. However, all these works only focus on LTI
systems and linear controllers, as well as on specific AD designs
(e.g., χ2 detector). The problem of resilient state estimation for
a class of nonlinear control systems has been considered in,
e.g., [35], focusing on systems that do not include perception as
part of the closed loop.

The notion of attack stealthiness independent of the employed
AD (i.e., remaining stealthy for all existing/potential ADs) has
been studied in [17]. We additionally differentiate our work in
the following—our notion of stealthiness is stronger than the
one in [17] as stealthiness there depends on time; i.e., there
exists only a bounded time that the attack can stay undetected
by an AD. However, the notion of stealthiness in our work
is independent of time and the attack is guaranteed to be
stealthy for all time steps after initiating the attack. Moreover,
the performance degradation metric used in [17] is the error
covariance of a Kalman filter estimator as opposed to our work;
we assume the attacker’s goal is to force the system states into an
unsafe region. In addition, we consider systems with nonlinear
dynamics as well as with both perception and physical sensors,
unlike the work in [17] where only LTI plants with physical (i.e.,
without perception) sensors are investigated. Furthermore, this
work considers attacks on both perception (e.g., images) and
sensor measurements while the existing vulnerability analyses
do not take into account perception. Besides, these works all
assume the LTI model and the linear controller for the system
dynamics while we consider a class of systems with a nonlin-
ear dynamical model and control. In addition, they focus on
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the detectability of attacks with respect to specific detection
schemes employed by the controller, such as the classic χ2

anomaly detection algorithm. Recently, Khazraei et al. [30]
have introduced a learning-based attack design for systems
with nonlinear dynamics; yet, in addition to providing no for-
mal analysis, the work only considers stealthiness with respect
to the χ2-based AD and does not consider perception-based
controllers.

B. Paper Contribution and Organization

The contribution of this work is twofold. First, we consider
attacks on perception-based control in the presence of ADs.
We define a new notion of stealthiness using Neyman–Pearson
Lemma and its relation with total variation and Kullback–Leibler
(KL) divergence, where an attack is considered stealthy if it is
stealthy from any AD. We find sufficient conditions for which
the perception-based control systems are vulnerable to highly ef-
fective, in terms of moving the system from the desired operating
point, yet stealthy attacks. Second, unlike all previous works in
control literature, we consider highly impactful stealthy attacks
on plants with nonlinear dynamics, controlled by a perception-
based controller potentially employing an end-to-end nonlinear
controller (e.g., DNN).

The rest of the article is organized as follows. In Sec-
tion III, we present the system model, as well as a model
of attacks on perception before introducing the concept of
stealthy yet effective attacks on the control systems. Sec-
tion IV introduces two attack strategies and provides condi-
tions under which the system is vulnerable to highly effective
stealthy attacks. Finally, in Section V, we provide case studies
to illustrate these conditions, before concluding remarks in
Section VI.

II. PRELIMINARIES

In this section, we introduce employed notation before
presenting properties of KL divergence known as data pro-
cessing inequality, monotonicity, and chain-rule as presented
in [36].

Notation: R denotes the set of reals, whereas P and E
denote the probability and expectation of a random variable,
respectively. For a square matrix A, λmax(A) is the maximum
eigenvalue. For a vector x ∈ Rn, ||x||p denotes the p-norm of
x; when p is not specified, the 2-norm is implied. For a vector
sequence, x0 : xt denotes the set {x0, x1, . . ., xt}. A function
f : Rn → Rp is Lipschitz on the set D with constant L if for
any x, y ∈ D ⊆ Rn it holds that ||f(x)− f(y)|| ≤ L||x− y||;
it is globally Lipschitz with constant L if D = Rn. If X and
Y are two sets, X − Y includes the elements in X that are
not in Y . For a set X , ∂X and Xo define the boundary and
the interior of the set, respectively. Br denotes a closed ball
centered at zero with radius r; i.e., Br = {x ∈ Rn | ‖x‖ ≤ r},
whereas 1A is the indicator function on a set A. For a function
f , we denote f ′ = ∂f

∂x as the partial derivative of f with respect
to x and ∇fi(x) is the gradient of the function fi (ith element
of the function f ). Finally, if P and Q are probability distri-
butions relative to the Lebesgue measure with densities p and
q, respectively, then the total variation between them is defined
as TV(P,Q) = 1

2

∫ |p(x)− q(x)|dx. The KL divergence be-

tween P and Q is defined as KL(P||Q) =
∫
p(x) log p(x)

q(x)dx.

Fig. 1. Architecture of a perception-based control system under at-
tack on system sensing, including perception. Independently of the way
attacks are actually implemented (i.e., directly compromising a sensor
or modifying the measurements delivered over the network to the con-
troller), the same impact on the control performance is obtained.

A. Properties of KL Divergence and Other Preliminaries

In the following lemmas,X and Y are assumed to be random
variables (Lemmas 1–4 proofs can be found in [36]).

Lemma 1 ( Data Processing Inequality): Assume Y is
produced given X based on the conditional law WY |X .
Let PY (respectively, QY ) denote the distribution of
Y when X is distributed as PX (respectively, QX ).
Then

KL(QY ||PY ) ≤ KL(QX ||PX). (1)

Lemma 2 (Monotonicity): Let PX,Y andQX,Y be two distri-
butions for a pair of variables X and Y , and PX and QX be the
marginal distributions for variable X . Then

KL(QX ||PX) ≤ KL(QX,Y ||PX,Y ). (2)

Lemma 3 (Chain rule): Let PX,Y and QX,Y be two distribu-
tions for a pair of variables X and Y . Then

KL(QX,Y ||PX,Y ) = KL(QX ||PX) + KL(QY |X ||PY |X) (3)

where KL(QY |X ||PY |X) is defined as

KL(QY |X ||PY |X) = Ex∼QX
KL(QY |X=x||PY |X=x). (4)

Lemma 4: Let PX and QX be two Gaussian distributions
with the same covariance Σ and different means μQ and μP ,
respectively. Then, it holds that

KL(QX ||PX) = μT
QΣ

−1μP . (5)

Lemma 5: Let QX be a distribution for a scalar random
variable X , and that X ≤M for some M > 0. Then

EQX
{X} ≤M. (6)

Proof: The proof is straightforward from the definition of
expectation and some properties of the integral. �

III. MODELING-PERCEPTION-BASED CONTROL SYSTEMS IN

THE PRESENCE OF ATTACKS

In this section, we introduce the system model and show
how to capture attacks on system sensing, including perception.
Specifically, we consider the setup from Fig. 1 where each of
the components is modeled as follows.
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A. Plant and Perception Model

We assume the plant has nonlinear dynamics in the standard
state-space form

xt+1 = f(xt) +But + wt, yst = Csxt + vst

zt = G(xt). (7)

Here, xt ∈ Rn, ut ∈ Rm, wt ∈ Rn, zt ∈ Rl, yst ∈ Rs, and
vs ∈ Rs denote the state, input, system disturbance, observa-
tions from perception-based sensors, (nonperception) sensor
measurements, and sensor noise, at time t, respectively. The
perception-based sensing is modeled by an unknown generative
model G, which is nonlinear and potentially high dimensional.
For example, consider a camera-based lane-keeping system.
Here, the observations zt are the captured images; the map G
generates the images based on the vehicle’s position. Without
loss of generality, we assume that f(0) = 0. Finally, the process
and measurement noise vectors w and vs are assumed inde-
pendent and identically distributed (i.i.d.) Gaussian processes
w ∼ N (0, Σw) and vs ∼ N (0, Σvs).

B. Control Unit

The control unit, shown in Fig. 1, consists of perception,
controller, and AD units. We assume that the control unit receives
yc,s and zc as the sensor measurements and perception sensing
(e.g., images), respectively, as an input. Thus, without malicious
activity, it holds that yc,s = ys and zc = z. Now, we describe in
detail each of the components.

1) Perception: We assume that there exists a perception
map P that imperfectly estimates the partial state information
from perception sensing (e.g., images)—i.e.,

yPt = P (zct ) = CPxt + vP (xt) (8)

here, P denotes a DNN trained using any supervised learn-
ing method on a data set X = {(zi, xi)}Ni=1 collected densely
around the operating point xo of the system, as in [37] and [38].
In addition, vP ∈ Rp is the perception map error that depends
on the state of the system—i.e., smaller around the training
dataset. To capture perception guarantees, we employ the model
for robust perception-based control from the work in [6], and
the standard model of the perception map (8) from the work
in [7] that can capture well DNN-based perception modules.
Specifically, if the model is trained effectively, we assume that
the perception errorvP around the operating pointxo is bounded,
i.e., the following assumption from the work in [7] holds.

Assumption 1: There exists a safe set S with the radius RS
(i.e., S = {x ∈ Rn | ‖x‖ ≤ RS}) around the operating point
such that for all x ∈ S , it holds that ‖P (z)− CPx‖ ≤ γ, where
z = G(x)—i.e., for all x ∈ S , ‖vP (x)‖ ≤ γ. Without loss of
generality, in this work, we consider the origin as the operating
point—i.e., xo = 0.

Remark 1: As will be shown later in this work, the assumption
on boundedness of ‖vP (x)‖ and having a good estimate of such
bound is only essential for the defender because the perception
map is also used for anomaly detection. We should note that such
a bound will not be employed by the attacker to design stealthy
impactful attacks. A systematic method to find the bound on
‖vP (x)‖ is discussed in [7].

2) Controller: The physical plant (7) is controlled by a (gen-
eral) nonlinear controller ut = π(zct , y

c,s
t ) that maps the image

and physical sensor information to the input control. Using (7),
one can write the previous control law in an equivalent form of

ut = Π(xt, v
s
t ) that absorbs zct = G(xt) in the control function

π. Hence, for

h(xt, v
s
t ) = f(xt) +Bπ(zct , y

c,s
t ) = f(xt) +BΠ(xt, v

s
t )

the evolution of the closed-loop system can be captured as

xt+1 = h(xt, v
s
t ) + wt. (9)

In the general form, the controller can employ any end-end
control policy that uses the image and sensor measurements.
For noiseless systems, the state dynamics can be captured as1

xt+1 = h(xt, 0). (10)

Definition 1: The origin of the system (10) is exponentially
stable on a setD ⊆ Rn if for anyx0 ∈ D, there exists 0 < α < 1
and M > 0, such that ‖xt‖ ≤Mαt‖x0‖ for all t ≥ 0.

Lemma 6 (see [39]): For the system from (10), if there exists
a function V : Rn → R such that for any xt ∈ D ⊆ Rn, the
following holds

c1‖xt‖2 ≤ V (xt) ≤ c2‖xt‖2

V (xt+1)− V (xt) ≤ −c3‖xt‖2

‖∂V (x)

∂x
‖ ≤ c4‖x‖ (11)

for some positive c1, c2, c3, and c4, then the origin is exponen-
tially stable.

Assumption 2: We assume that for the closed-loop control
system (10), the origin is exponentially stable on a set D =
Bd. Using the converse Lyapunov theorem [40], there exists a
Lyapunov function that satisfies the inequalities in (11) with
constants c1, c2, c3, and c4 on a set D = Bd. As a result, it
follows that Π(0, 0) = 0.

Remark 2: The assumptions for a closed-loop system are
critical for system guarantees without the attack; i.e., if the
system does not satisfy the stability property in attack-free
scenarios, then an effective strategy for the attacker would be
to wait until the system fails by itself. We refer the reader to the
recent work, e.g., [6], [7] on the design of such controllers.

Remark 3: Note that the exponential stability assumption
on the closed-loop system (10) is only considered due to the
simplicity of the notation and can be relaxed to control systems
with asymptotic stability that satisfies the converse Lyapunov
theorem conditions [40, Th. 3.14]. Specifically, a similar result
as in Lemma 8 can be obtained; however, the needed notation
would be significantly more cumbersome.

Definition 2: Let Uρ be the set of all functions f : Rn → Rn

such that the dynamics xt+1 = f(xt) + dt, where dt satisfies
‖dt‖ ≤ ρ, reaches arbitrarily large states for some nonzero initial
state x0. For a function f from Uρ and an initial condition x0,
we define

Tf (α, x0) = min{t | ‖xt‖ ≥ α} (12)

i.e., Tf (α, x0) is the minimal number of time-steps needed for
an unstable dynamic f , starting from the initial condition x0, to
leave a bounded ball with the center at zero and radius α.2

1With slight abuse of notation, x is used to denote the states of the noiseless
system; yet, in the rest of the article, we use x to denote the states of the actual
physical system with noise and we clarify if the other case is implied.

2To simplify our notation, and since we consider specific f from the plant
dynamics (7), we drop the subscript f .
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3) Anomaly Detector: The system is equipped with an AD
designed to detect the presence of any abnormal behaviors. We

use Yt =
[
yP
t

yc,s
t

]
and Y a

t =
[
yP,a
t

yc,s,a
t

]
to capture sensor [from (7)]

and perception-based [from (8)] values without and under attack,
respectively—we use the superscript a to differentiate all signals
of the attacked system, with the full attack model introduced in
the next section. Now, by denoting Y −1

−∞ = Y−∞ : Y−1, we con-
sider the classical binary hypothesis testing problem as follows:
H0: normal condition (the AD receives Y−∞ : Yt);
H1: abnormal behavior (the AD receives Y −1

−∞, Y a
0 : Y a

t ).
Effectively, the AD uses both the extracted state information

from the perception map [i.e., (8)] as well as sensor measure-
ments. Given a random sequence Ȳ t = (Ȳ−∞ : Ȳt), it either
comes from the distribution P (null hypothesis H0), which is
determined by system uncertainties, or from a distributionQ (the
alternative hypothesis H1); note that the unknown distribution
Q is controlled by the attacker.

For a given AD specified by a function D : Ȳ t → {0, 1},
two types of error may occur. Error type (I), also referred as
false alarm, occurs if D(Ȳ t) = 1 when Ȳ t ∼ P; whereas type
(II) error (miss detection) occurs if D(Ȳ t) = 0 when Ȳ t ∼ Q.
Hence, the sum of the conditional error probabilities of AD D
for a given random sequence Ȳ t is

pet (D) = P (D(Ȳ t) = 0|Ȳ t ∼ Q) + P (D(Ȳ t) = 1|Ȳ t ∼ P).
(13)

Note that pet (D) is not a probability measure as it can take
values larger than one. Let us define pTD

t (D) = P (D(Ȳ t) =
1|Ȳ t ∼ Q) as the probability of true detection, and pFAt (D) =
P (D(Ȳ t) = 1|Ȳ t ∼ P) as the probability of false alarm for
the detector D. We say that an AD (defined by D) to be
better than a random guess-based AD (defined by DRG) if
pFA(D) < pTD(D); as with the random guess it holds that

pFA(DRG) = P (DRG(Ȳ
t) = 1|Ȳ t ∼ P) = P (DRG(Ȳ

t) = 1)

= P (DRG(Ȳ
t) = 1|Ȳ t ∼ Q) = pTD(DRG).

C. Attack Modeling

We assume that the attacker has the ability to compromise
perception-based sensing (e.g., camera images) as well as (po-
tentially) the sensor measurements yst delivered to the controller
(see Fig. 1). Such attacks on physical sensors can be achieved
by directly compromising the sensing (or the environment of
the sensors) or the communication between the sensors and the
controller [41], [42]. On the other hand, implementing the attack
on the images delivered to the controller may not be feasible
using physical spoofing attacks such as LiDAR spoofing by
injecting laser data points [21], [24]. Hence, the attacker needs to
compromise the images in the cyber domain (e.g., as discussed
in [43]). This can be achieved by modifying the firmware di-
rectly on the camera or the driver code, as done in Hyundai’s
Gen5W and Tesla’s Model 3 attacks where custom firmware was
installed [44], [45], or the Tesla Model S attacks that sent custom
messages by compromising application drivers [46]. Similarly,
such cyberattacks can be achieved using Man-in-the-Middle
attacks that target the connection between the camera and the
controller; examples include intercepting legitimate messages
and manipulating their contents, before resending them to the
intended destination (e.g., as described in intervehicle attack
scenarios in [41] and [42] or vehicle attacks that manipulated

timing on V2V/V2I messages, causing out-of-date situational
awareness [47].

Moreover, we assume the attack starts at t = 0, and as pre-
viously mentioned, we use the superscript a to differentiate all
signals of the attacked system, for all t ≥ 0; the attack sequence
is {zc,at , yc,s,at }t≥0, where, e.g., the value of observation deliv-
ered to the perception unit at time t is denoted by zc,at . Note
that due to nonlinearity of the operators (P and G), we do not
employ the additive false-data injection model for perception
attacks, widely used for LTI systems with nonperception sensing
(e.g., [11]).

Thus, the system dynamics under attack can be modeled as

xat+1 = f(xat ) +Buat + wa
t

uat = π(zc,at , yc,s,at ).
(14)

In this work, we assume the attacker has full knowledge of the
system, its dynamics, and employed architecture. Furthermore,
the attacker has the required computation power to calculate
suitable attack signals to inject, planning ahead as needed.

Remark 4: The assumption that the attacker has knowledge
of the system dynamics (i.e., function f and matrix Cs) is
commonly used in existing studies focused on the worst case
analysis of the attack impact on control systems [11], [12], [14],
[16]. In particular, by focusing on resourceful attackers who
possess extensive knowledge of the targeted systems, we can
effectively assess the consequences of worst case attacks and
develop appropriate defensive strategies. However, the attacks
presented in Section IV do not require knowledge of the noise
profile, significantly improving their applicability.

Remark 5: In our notation, xa0 : xat denotes a state trajectory
of the system under attack (for an attack starting at t = 0) while
x0 : xt denotes the state trajectory of the attack-free system;
we refer to such state trajectory as the attack-free trajectory.
Thus, when comparing the attack-free trajectory and the system
trajectory under attack [i.e., from (14)], we assume thatwa

t = wt

and vs,at = vst . However, we cannot make such assumptions for
vP (x) as it is a function of states and the states are compromised
due to the attack.

We define an attack to be stealthy if the best strategy for the
AD is to ignore the measurements and make a random guess
between the hypotheses; i.e., that there is no ADD that satisfies
pTD(D) > pFA(D). However, reaching such stealthiness guar-
antees may not be possible in general. Therefore, we define the
notion of ε-stealthiness, which as we will show later, is attainable
for a large class of nonlinear systems. Formally, we define the
notions of strict stealthiness and ε-stealthiness as follows.

Definition 3: Consider the system defined in (7). An attack
sequence is strictly stealthy if there exists no detector for which
pFAt < pTD

t holds, for any t ≥ 0. An attack is ε-stealthy if for a
given ε > 0, there exists no detector such that pFAt < pTD

t − ε
holds, for any t ≥ 0.

Before introducing the sufficient condition for the previous
notion of stealthiness, we consider the following lemma.

Lemma 7: The AD D satisfies pFA(D) < pTD(D)− ε if
and only if pe(D) < 1− ε. Also, pe(D) = 1 if and only if D
performs as a random-guess detector.

Proof: First, we consider the case pe(D) < 1− ε. From (13),
it holds that

pe(D) = P (D(Ȳ ) = 0|Ȳ ∼ Q) + P (D(Ȳ ) = 1|Ȳ ∼ P)

= 1− P (D(Ȳ ) = 1|Ȳ ∼ Q)
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+ P (D(Ȳ ) = 1|Ȳ ∼ P) < 1− ε. (15)

Thus, P (D(Ȳ ) = 1|Ȳ ∼ P) < P (D(Ȳ ) = 1|Ȳ ∼ Q)− ε or
pFA(D) < pTD(D)− ε.

Now, if we have pe(D) = 1, then we get P (D(Ȳ ) = 1|Ȳ ∼
P) = P (D(Ȳ ) = 1|Ȳ ∼ Q) where the decision of the detector
D is independent of the distribution of Ȳ , and therefore, the
detector performs as the random-guess detector. Since the re-
verse of all these implications holds, the other (i.e., necessary)
conditions of the theorem also hold. �

Now, we can capture stealthiness conditions in terms of KL
divergence of the corresponding distributions.

Theorem 1: An attack sequence is strictly stealthy if and only
if KL(Q(Y −1

−∞, Y a
0 : Y a

t )||P(Y−∞ : Yt)) = 0 for all t ≥ 0. An
attack sequence is ε-stealthy if the corresponding observation
sequence Y a

0 : Y a
t satisfies

KL
(
Q(Y −1

−∞, Y
a
0 : Y a

t )||P(Y−∞ : Yt)
) ≤ log

(
1

1− ε2

)
.

(16)
Proof: With some abuse of notation only specific to this

theorem, Q and P are used to denote Q(Y −1
−∞, Y a

0 : Y a
t ) and

P(Y−∞ : Yt), respectively. First, we prove the strictly stealthy
case.

Using the Neyman–Pearson lemma for any existing detector
D, it follows that

pet (D) ≥
∫

min{Q(y),P(y)}dy (17)

where the equality holds for the likelihood ratio function asD∗ =
1Q≥P [48]. Since 1− ∫

min{Q(y),P(y)}dy = 1
2

∫ |q(x)−
p(x)|dx, from the work in [49] and the definition of total
variation distance between Q and P, it holds that

pet (D) ≥ 1− TV(Q,P) (18)

where TV denotes the total variation distance between the dis-
tributions.

Now, it holds that TV(Q,P) ≤
√
1− e−KL(Q||P) [50, (eq.

(14.11)]. Thus, if KL(Q||P) = 0 holds, then pet (D) ≥ 1 for
any detector D. Therefore, according to Lemma 7, the attack
is strictly stealthy. On the other hand, if for any detector D
pet (D) ≥ 1 holds, then the equality holds for TV(Q,P) = 0;
this is equivalent to Q = P, and therefore, KL(Q||P) = 0.

For the ε-stealthy case, we combine (18) with the inequal-
ity TV(Q,P) ≤

√
1− e−KL(Q||P) and the ε-stealthy condi-

tion (16), to show

pet (D) ≥ 1− TV(Q,P) ≥ 1−
√

1− e−KL(Q||P) ≥ 1− ε

therefore, according to Lemma 7, the attack is ε-stealthy. �
Remark 6: The ε-stealthiness condition defined in [17] re-

quires that

lim
t→∞

KL (Q(Y a
0 : Y a

t )||P(Y0 : Yt))

t
≤ ε.

This allows for the KL divergence to linearly increase over time
for any ε > 0, and as a result, after a large-enough time period,
the attack may be detected even though it satisfies the definition
of stealthiness from the work in [17]. Yet, the ε-stealthiness from
Definition 3 only depends on ε and is fixed for any time t; thus,
it introduces a stronger notion of stealthiness for the attack.

Attack Goal: We capture the attacker’s goal as maximizing
the degradation of the control performance. Specifically, as we
consider the origin as the desired operating point of the closed-
loop system, the attack objective is to maximize the (norm of)

states xt. Moreover, the attacker wants to remain stealthy—i.e.,
undetected by anyemployed AD, as formalized ahead.

Definition 4: The attack sequence, denoted by
{zc,a0 , yc,s,a0 }, {zc,a1 , yc,s,a1 }, . . ., is referred to (ε, α)-successful
attack if there exists t′ ≥ 0 such that ‖xt′ ‖ ≥ α and the attack
is ε-stealthy for all t ≥ 0. When such a sequence exists for a
system, the system is called (ε, α)-attackable. Finally, when the
system is (ε, α)-attackable for arbitrarily large α, the system is
referred to as perfectly attackable.

In the rest of this work, our goal is to derive methods to
capture the impact of stealthy attacks; specifically, in the next
section, we derive conditions for the existence of a stealthy
yet effective attack sequence {zc,a0 , yc,s,a0 }, {zc,a1 , yc,s,a1 }, . . .,
resulting in ‖xt‖ ≥ α for some t ≥ 0,—i.e., we find conditions
for a system to be (ε, α)-attackable. Here, for an attack to be
stealthy, we focus on the ε-stealthy notion; i.e., that the best AD
could only improve the probability detection by ε compared to
the random-guess baseline detector.

IV. CONDITIONS FOR (ε, α)-ATTACKABLE SYSTEMS

To provide sufficient conditions for a system to be (ε, α)-
attackable, in this section, we introduce two methodologies to
design attack sequences on perception and (classical) sensing
data. The difference in these strategies is the level of information
that the attacker has about the system; we show that the stronger
attack impact can be achieved with the attacker having full
knowledge of the system state.

Specifically, we start with the attack strategy where the at-
tacker has access to the current estimation of state; in such
case, we show that the stealthiness condition is less restrictive,
simplifying the design of ε-stealthy attacks. For the second
attack strategy, we show that the attacker can launch the attack
sequence by only knowing the function f (i.e., plant model);
however, achieving ε-stealthy attack in this case is harder as
more restrictive conditions are imposed on the attacker.

A. Attack Strategy I : Using Estimate of the Plant State

Consider the attack sequence where zc,at and yc,s,at injected
at time t, for all t ≥ 0, satisfy

zc,at = G(xat − st), y
c,s,a
t = Cs(x

a
t − st) + vst (19)

with st+1 = f(x̂at )− f(x̂at − st), and for a nonzero s0. Here,
x̂at denotes an estimation of the plant’s state (in the pres-
ence of attacks), and thus, ζt = x̂at − xat is the corresponding
state estimation error. Note that the attacker can obtain x̂at by,
e.g., running a local estimator using the true measurements
before injecting the false values; i.e., ys,at = Csx

a
t + vst and

zat = G(xat ). We assume that the estimation error is bounded
by bζ—i.e., ‖ζt‖ ≤ bζ , for all t ≥ 0. On the other hand, the
earlier attack design may not require access to the true plant
state xat since only the “shifted” (i.e., xat − st) outputs of the
real sensing/perception are injected. For instance, in the lane
centering control (i.e., keeping the vehicle between the lanes),
G(xt − st) only shifts the actual image st to the right or left
depending on the coordinate definition. Similarly, the attack on
physical (i.e., nonperception) sensors can be implemented as
yc,s,at = Csx

a
t + vs,at − Csst = ys,at − Csst where the attacker

only needs to subtract Cst from the current true measurements.
The idea behind the earlier attacks is to have the system believe
that its (plant) state is equal to the state et � xat − st; thus,
referred to as the fake state. Note that effectively both zat and

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:18:29 UTC from IEEE Xplore.  Restrictions apply. 



7732 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024

ys,at used by an AD are direct functions of the fake state et. Thus,
if the distribution of e0 : et is close to x0 : xt (i.e., attack-free
trajectory), then the attacker will be successful in injecting a
stealthy attack sequence.

Definition 5: For an attack-free state trajectory x0 : xt, and
for any T ≥ 0 and bx, bv > 0, δ(T, bx, bv) is the probability that
the system state and physical sensor noise vs remain in the zero
center ball with radius bx and bv , respectively, during time period
0 ≤ t ≤ T , i.e.,

δ(T, bx, bv) � P

(
sup

0≤t≤T
‖xt‖ ≤ bx, sup

0≤t≤T
‖vst ‖ ≤ bv

)
.

(20)
When the system with exponentially stable closed-loop con-

trol dynamics3 is affected by a bounded perturbation, one can
show that the state of the system will remain in a bounded
set. The following lemma from the work in [40] provides the
condition and the upper bound on the norm of the state.

Lemma 8 (see [40]): Let x = 0 be an exponentially stable
equilibrium point of the nominal system (10). Also, let V (xt)
be a Lyapunov function of the nominal system that satisfies (11)
in D, where D = Bd. Suppose the system is affected by additive
perturbation term g(xt) that satisfies ‖g(xt)‖ ≤ δ + γ‖xt‖. If

c3 − γc4 > 0 with δ < c3−γc4
c4

√
c1
c2
θd holds for all x ∈ D and

some positive θ < 1, then for all ‖x0‖ <
√

c1
c2
d, there exists

t1 > 0 such that for all 0 ≤ t ≤ t1 ‖xt‖ ≤ κe−βt‖x0‖ holds

with κ =
√

c2
c1

, β = (1−θ)(c3−γc4)
2c2

and for t ≥ t1 it holds that

‖xt‖ ≤ b with b = c4
c3−γc4

√
c2
c1

δ
θ .

The next result captures conditions under which a perception-
based control system is not resilient to attacks, in the sense that
it is (ε, α)-attackable.

Theorem 2: Consider the system (7) with closed-loop con-
trol as in Assumption 2. Assume that the functions f , f ′
(derivative of f ) and Π′ (derivative of Π) are Lipschitz,
with constants Lf , L′

f , and L′
Π, respectively, and let us

define L1 = L′
f (bx + 2bζ + φ), L2 = min{2Lf , L

′
f (α+ bx +

bζ)}, and L3 = L′
Π(bx + φ+ bv) for some φ > 0. Moreover,

assume that there exists φ > 0 such that the inequalities L1 +

L3‖B‖ < c3
c4

and L2bζ <
c3−(L1+L3‖B‖)c4

c4

√
c1
c2
θd, for some

0 < θ < 1, are satisfied. Then, the system (7) is (ε, α)-attackable
with probability δ(T (α+ b+ bx, s0), bx, bv) for some ε > 0,
if it holds that φ > b and f ∈ Uρ with ρ = 2Lf (bx + b+ bζ),

‖s0‖ ≤ φ and b = c4
c3−(L1+L3‖B‖)c4

√
c2
c1

L2bζ
θ .

The theorem proof is provided in Appendix A.
From (11), c3 can be viewed as a “measure” of the closed-loop

system stability (larger c3 means the system converges faster
to the equilibrium point); on the other hand, from Theorem 2,
closed-loop perception-based systems with larger c3 are more
vulnerable to stealthy attacks as the conditions of the theorem
are easier to satisfy. However, if the plant’s dynamics is very
unstable,T (α+ bx + b, s0) is smaller for a fixedα and s0. Thus,
the probability of attack success δ(T (α+ bx + b, s0), bx, bv) is
larger for a fixed bx and bv .

It should be further noted that L′
f , used in Theorem 2 con-

ditions, would be equal to zero for LTI systems, thus causing

3Note that under similar conditions, the same analysis also holds for asymp-
totic stability condition [40].

L1 to become zero. Similarly, when the mapping Π approaches
more toward linear behavior, L3 will go to zero. Therefore, the
inequalityL1 + L3‖B‖ < c3

c4
holds for linear systems and linear

controllers. However, larger values of c3 will help the inequality
to be satisfied even for nonlinear control systems. In simulation
results described in Section V, we discuss when these conditions
are satisfied in more detail.

Moreover, in the extreme case when bζ = 0 (i.e., the attacker
can exactly estimate the plant state), the condition L2bζ <
c3−(L1+L3‖B‖)c4

c4

√
c1
c2
θd will be relaxed and the other condi-

tion L1 + L3‖B‖ < c3
c4

becomes less restrictive as L1 becomes
smaller. Thus, in this case, if the attacker initiates the attack with
arbitrarily small s0, then ε can be arbitrarily close to zero and
the attack will be very close to being strictly stealthy. Hence, the
following result holds.

Corollary 1: Assume bζ = 0, L1 + L3‖B‖ < c3
c4

with
L1 = L′

fbx, L3 = L′
Π(bx + bv) and the functions f , f ′

(derivative of f ) and Π′ (derivative of Π) are Lipschitz,
with constants Lf , L′

f , and L′
Π, respectively. If f ∈ Uρ with

ρ = 2Lf (bx + ‖s0‖), and ‖s0‖ ≤ c3−c4(L1+L3‖B‖)
c4(L′

f+‖B‖L′
Π) holds,

then the system (7) is (ε, α)-attackable with probability
δ(T (α+ bx + ‖s0‖, s0), bx, bv), where ε =

√
1− e−bε for

bε = (λmax(Σ
−1
w ) + λmax(C

T
s Σ

−1
v Cs +Σ−1

w )×min{T (α+

bx + ‖s0‖, s0),
√

c2
c1

e−β

1−e−β })‖s0‖2 and some β > 0.

Finally, the previous results depend on determining ρ such
that f ∈ Uρ. Hence, the following result provides a sufficient
condition for f ∈ Uρ.

Proposition 1: Let V : Rn → R be a continuously differ-
entiable function satisfying V (0) = 0 and define Ur1 = {x ∈
Br1 | V (x) > 0}. Assume that ‖∂V (x)

∂x ‖ ≤ β(‖x‖), and for any
x ∈ Ur1 it holds V (f(x))− V (x) ≥ α(‖x‖), where α(‖x‖)
and β(‖x‖) are in a class of K functions [40]. Furthermore, as-
sume that r1 can be chosen arbitrarily large. Now, the following
statements hold.

1) If lim‖x‖→∞
α(‖x‖)
β(‖x‖) → ∞, then f ∈ Uρ for any ρ > 0.

2) However, if lim‖x‖→∞
α(‖x‖)
β(‖x‖) = γ, then f ∈ Uρ for any

ρ < γ.
Proof: We prove the first case and the second case can be

shown in a similar way.
If lim‖x‖→∞

α(‖x‖)
β(‖x‖) → ∞, there exists a bounded ball with

radius r2 and center at zero (referred to as Br2 ) such that for
all x ∈ S with S = {Ur1 −Bo

r2
} it holds that α(‖x‖)

β(‖x‖) > ρ. Since
the function V is differentiable, using the mean-value theorem
for the dynamics xt+1 = f(xt) + dt with ‖dt‖ ≤ ρ and for any
xt ∈ Ur1 , we have that

V (xt+1)− V (xt) = V (f(xt) + dt)− V (xt)

= V (f(xt)) + (
∂V (x)

∂x
)T dt − V (xt)

≥ α(‖x‖)− β(‖x‖)ρ. (21)

Thus, for any xt ∈ S, we have V (xt+1)− V (xt) > 0. Let
us define η = min{V (xt+1)− V (xt) | xt ∈ S and V (xt) ≥
ar2} where ar = maxx∈∂Br

V (x) for any r > 0. Such mini-
mum exists as the considered set is compact and we haveη > 0 in
Ur1 . Let us also assume x0 = {x ∈ ∂Br2 | V (x) = ar2}. Now,
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Fig. 2. Trajectory of the dynamical system in Example 1.

we claim that the trajectories starting from x0 should leave the
set Ur1 through the boundaries of Br1 .

To show this, we know that for anyxt ∈ S,V (xt) ≥ ar2 since
V (xt+1)− V (xt) ≥ η > 0. Then, for any t > 0

V (xt) ≥ V (x0) + tη = ar2 + ηt. (22)

The previous inequality shows that xt cannot stay in the set S
forever as V (x) is bounded on the compact set S. On the other
hand, xt cannot leave the setS through the boundaries satisfying
V (x) = 0 or the surface ofBr2 because V (xt) > ar2 . Thus, the
trajectories should leave the set S through the surface of Br1 ,
and as r1 can be chosen arbitrarily large, the trajectories of xt
will diverge to become arbitrarily large. �

Example 1: Consider the dynamical system

x1,t+1 = 2x1,t + x1,tx
2
2,t

x2,t+1 = 0.5x2,t (23)

and let us consider the function V (x) = x21 − x22. Hence, we
have ‖∂V (x)

∂x ‖ ≤ 2‖x‖ = β(‖x‖) and

V (f(xt))− V (xt) = 4x21,t + x21,tx
4
2,t + 2x21,tx

2
2,t − 0.25x22,t

−x21,t + x22,t = 3x21,t + 0.75x22,t + x21,tx
4
2,t + 2x21,tx

2
2,t

≥ 0.75‖xt‖2 = α(‖x‖).
Since lim‖x‖→∞

α(‖x‖)
β(‖x‖) → ∞, for any ρ > 0, there exists x such

thatV (xt+1)− V (xt) > 0 for the dynamicsxt+1 = f(xt) + dt
with ‖d‖ ≤ ρ. The shaded region in Fig. 2 shows the area where
V > 0 outsideBr2 and inside ofBr1 . Moreover, any area outside
of the ball Br2 satisfies V (xt+1)− V (xt) > 0 (i.e., V (xt) is
increasing over time). Now, by denoting the state value at point
Awith xA, we have V (xA) = x21,A > 0. As V (xt) is increasing
outside Br2 as t increases, any trajectory starting at A cannot
leave the shaded region from the surface of corresponding to
V = 0 or Br2 ; it also cannot stay in the region for all t, as the
trajectory evolves. Thus, the system states will eventually leave
the shaded region, “exiting” from the surface of the ball Br1 .

Theorem 2 provides conditions on the closed-loop system
stability that may not hold in general for any system with
closed-loop exponential stability. In the following theorem, we
show that one can still obtain a similar (ε, α)-successful attack

(possibly with a larger ε) even when the closed-loop system only
satisfies exponential stability.

Theorem 3: Assume that the closed-loop control sys-
tem (10) is exponentially stable. Then, the system (7) is
(ε, α)-attackable with probability δ(T (α+ b+ bx, s0), bx) for
some ε > 0, if f ∈ Uρ with ρ = 2Lf (bx + b+ bζ) and b =
c4
c3

√
c2
c1

(Lf (2bx+bζ)+2LΠ(bx+bv))
θ .

Proof: Using the same definition as in (9), we have

rt+1 = h(rt, 0) + f(xat )− f(xat + ζt) + f(et + ζt)− f(xt)

− f(rt) +BΠ(et, v
s
t )−BΠ(xt, v

s
t )

−BΠ(rt, 0) = h(rt, 0) + σt.

From the Lipschitz property of function f , it follows that
‖f(xat )− f(xat + ζt)‖ ≤ Lfbζ , and with probability δ(T (α+
b+ bx, s0), bx), we have

‖f(xt)‖ ≤ Lf‖xt‖ ≤ Lf bx

‖f(et + ζt)− f(rt)‖ ≤ Lf‖xt + ζt‖ ≤ Lf (bζ + bx)

‖Π(xt, vst )‖ ≤ LΠ(|xt‖+ ‖vst ‖) ≤ LΠ(bx + bv)

‖Π(et, vst )−Π(rt, 0)‖ ≤ LΠ(|xt‖+ ‖vst ‖) ≤ LΠ(bx + bv).

Therefore, with probability δ(T (α+ b+ bx, s0), bx), it holds
that ‖σt‖ ≤ Lf (2bx + bζ) + 2LΠ(bx + bv) for all 0 ≤ t ≤
T (α+ b+ bx).

Since the closed-loop system rt+1 = h(rt, 0) is exponentially
stable, we use Lemma 8 to show that the dynamics rt+1 =
h(rt, 0) + σt will remain in a bounded ball centered at zero
with such probability for all 0 ≤ t ≤ T (α+ b+ bx). The bound

is obtained by b = c4
c3

√
c2
c1

(Lf (2bx+bζ)+2LΠ(bx+bv))
θ . Using the

Data-processing inequality of KL divergence and following the
same procedure as in Theorem 2, we obtain

KL
(
Q(Y −1

−∞, Y
a
0 : Y a

T (α+bx+b,s0)
)||P(Y−∞ : YT (α+bx+b,s0))

)

≤
T (α+bx+b,s0)∑

i=0

λmax(C
T
s Σ

−1
v Cs +Σ−1

w )‖ri‖2

≤
T (α+bx+b,s0)∑

i=0

λmax(C
T
s Σ

−1
v Cs +Σ−1

w )b = bε

≤ λmax(C
T
s Σ

−1
v Cs +Σ−1

w )b(T (α+ bx + b, s0) + 1) = bε.

This means that the system is (ε, α)-attackable with proba-
bility δ(T (α+ bx + b, s0), bx, bv) and ε =

√
1− e−bε . On the

other hand, since we have f ∈ Uρ with ρ = 2Lf (bx + b+ bζ),
similarly as in Theorem 2, we can show that for t ≥ T (α+
b+ bx, s0), the states of the underattack system will satisfy
‖xat ‖ ≥ α with probability δ(T (α+ b+ bx, s0), bx). �

Note that our results only focus on the existence of perception
measurementsG(xat − st), obtained by shifting the current per-
ception scene by st, that results in (ε, α)-successful attack, and
not how to compute it. Furthermore, to derive an attack sequence
using Attack Strategy I, the attacker needs the estimation of the
plant states. Thus, Attack Strategy II relaxes this assumption,
with the attacker only needing to have knowledge about the
plant’s (open-loop) dynamics f and the computation power to
calculate st+1 = f(st) ahead of time.
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B. Attack Strategy II: Using Plant Dynamics

Similarly to Attack Strategy I, consider the attack sequence
where zat and ys,at , for all t ≥ 0, satisfy

zat = G(xat − st), y
s,a
t = Cs(x

a
t − st) + vs,at

st+1 = f(st) (24)

for some nonzero s0. However, here the attacker does not need an
estimate of the plant’s state; they simply follow plant dynamics
st+1 = f(st) to find the desired measurements’ transformation.
Now, we define the state et � xat − st as the fake state, and the
attacker’s intention is to make the system believe that the plant
state is equal to et.

The following theorem captures the condition for which the
system is not resilient to Attack Strategy II, in the sense that it
is (ε, α)-successful attackable.

Theorem 4: Consider the system (7) that satisfies Assump-
tion 2. Assume that both functions f ′ and Π′ are Lips-
chitz, with constants L′

f and L′
Π, respectively. Moreover, as-

sume that there exists φ > 0 such that the inequalities L1 +

L3‖B‖ < c3
c4

and L2bx <
c3−(L1+L3‖B‖)c4

c4

√
c1
c2
θd with 0 <

θ < 1 are satisfied, where L2 = L′
f (α+ bx), L1 = L′

f (α+ φ)

and L3 = L′
Π(bx + φ+ bv). Then, the system (7) is (ε, α)-

attackable with probability δ(T (α+ bx + b, s0), bx) and b =
c4

c3−(L1+L3‖B‖)c4
√

c2
c1

L2bx
θ , for some ε > 0, if it holds that

φ
b > 1 and f ∈ U0.

The proof of the theorem is provided in Appendix B.
Unlike in Theorem 2, L1 and L2 in Theorem 4 increase

as α increases. Therefore, unless L′
f = 0, one cannot claim

that the attack can be ε-stealthy for arbitrarily large α as the
inequality L1 + L3‖B‖ ≤ c3

c4
might not be satisfied. Therefore,

there is a tradeoff between the stealthiness guarantees (ε) and the
performance degradation caused by the attack (α). However, in
an extreme case where the system is linear, it holds that L′

f = 0
andL1 = L2 = 0; before introducing the results for LTI systems
in the next section, we remark on the following.

Remark 7: The fact that we considered the control input in
a general end-to-end form can help us verify that our results
also hold when the perception-based control system is modular;
i.e., when the states are extracted from the perception module
and physical sensors and then used with the classic control
methods. This is because the end-to-end formulation of the
controller is very general, also covering the modular methods.
In such cases, the traditional control methods can be used such
that the noiseless closed-loop system becomes exponentially or
asymptotically stable.

C. Attack on LTI Systems

To derive sufficient conditions for which stealthy yet effective
attacks exist, we have designed such attacks for perception-
based control systems where plants have input affine nonlinear
dynamics. However, for LTI plants, the obtained conditions can
be significantly relaxed. Specifically, for LTI systems, because
the system dynamics takes the form of f(st) = Ast, Attack
Strategies I and II become identical as

st+1 = f(x̂at )− f(x̂at − st) = A(x̂at )−A(x̂at − st)

= Ast = f(st).
(25)

Therefore, the attacker does not need to estimate the state of
the system and they can use the Attack Strategy II to design the
attack sequence.

In general, assume that for such systems we use the controller
satisfying Assumption 2, where due to the complexity of per-
ception (e.g., image observations), a nonlinear function maps the
perception sensing (e.g., the image) and sensors to the control
input. Hence, from Corollary 1, we directly obtain the following
result.

Corollary 2: Consider an LTI-perception-based control
system with f(xt) = Axt. Assume that L3‖B‖ < c3

c4
with

L3 = L′
Π(bx + bv), ‖s0‖ ≤ c3−c4L3‖B‖

c4‖B‖L′
Π

, and the matrix A is
unstable. Then, the system is (ε, α)-attackable with probability
δ(T (α+ bx + ‖s0‖, s0), bx, bv), for arbitrarily large α and
ε =

√
1− e−bε , with bε = (λmax(Σ

−1
w ) + λmax(C

T
s Σ

−1
v Cs +

Σ−1
w )×min{T (α+ bx + ‖s0‖, s0),

√
c2
c1

e−β

1−e−β })‖s0‖2 and

some β > 0.
Note that even though the previous corollary considers LTI

plants, the earlier requirementL3‖B‖ < c3
c4

is due to the nonlin-
earity of employed controllers. Both Theorems 2 and 4 assume
an end-to-end controller that directly maps the perception and
sensor measurements to the control input. However, there are
controllers that first extract the state information using the
perception module P and then use a feedback controller to find
the control input (e.g., [6], [7]). For instance, consider a linear
feedback controller with gain K =

[
KP Ks

]
, resulting in

ut = KYt = Ksy
c,s
t +KP y

P
t

= KCxt +KP v
P (xt) +Ksv

s
t . (26)

Applying the earlier control input to the attack-free system

xt+1 = Axt +But + wt

= (A+BKC)xt +BKP v
P (xt) +BKsv

s
t . (27)

Let us assume that Assumptions 1 and 2 still hold. It is easy
to show that (A+BKC) needs to be a stable matrix (i.e., all
eigenvalues are inside the unit circle). Then, we obtained the
following result.

Theorem 5: Consider perception-based control of an LTI
plant with dynamics f(xt) = Axt, controlled with a linear
feedback controller from (26). If the matrix A is unstable, the
system is (ε, α)-attackable with probability 1 for arbitrarily large
α and ε =

√
1− e−bε , where

bε = λmax(C
T
s Σ

−1
v Cs +Σ−1

w )

(
2γT (α+RS , s0) + ‖s0‖
1− λmax(A+BKC)

)
(28)

and λmax(A+BKC) is the largest eigenvalue of the matrix
A+BKC.

Proof: Let us assume that the attack dynamics are generated
using (25); by defining et = xat − st, we obtain zc,at = G(xat −
st) = G(et) and yc,s,at = ys,at − Csst = Cset + vst . Therefore

et+1 = xat+1 − st+1 = Axat +BKYt −Ast

= Aet +BK

[
CP et + vP (et)

Cset + vst

]

= (A+BKC)et +BKP v
P (et) +BKsv

s
t . (29)

The previous dynamics follows the same dynamics as in (27).
Thus, if the initial condition s0 is chosen small enough, e will
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remain in the set S and it would hold that ‖vP (et)‖ ≤ γ for all
t ≥ 0. Now, by defining rt = et − xt, we have

rt+1 = (A+BKC)rt + vP (et)− vP (xt). (30)

Since we have ‖vP (et)‖ ≤ γ and ‖vP (xt)‖ ≤ γ, and the matrix
(A+BKC) is stable, we have

‖rt‖ = ‖(A+BKC)tr0

+
t−1∑
i=0

(A+BKC)t−i−1(vP (ei)− vP (xi))‖

≤ |λmax(A+BKC)|t‖s0‖+ 2γ

1− λmax(A+BKC)

where we used r0 = s0 and the squared matrix property of
‖Atv‖ ≤ |λmax(A)|t‖v‖ for any v ∈ Rn and A ∈ Rn×n. From
the proof of Theorem 2, we obtain

KL
(
Q(Y a

0 : Y a
T (α+RS ,s0))||P(Y0 : YT (α+RS ,s0))

)

≤
T (α+RS ,s0)∑

i=0

λmax(C
T
s Σ

−1
v Cs +Σ−1

w )‖ri‖2

= λmax(C
T
s Σ

−1
v Cs +Σ−1

w )

T (α+RS ,s0)∑
i=0

‖ri‖2

= λmax(C
T
s Σ

−1
v Cs +Σ−1

w )

(
2γT (α+RS , s0) + ‖s0‖
1− λmax(A+BKC)

)
.

Since the matrix A is unstable, choosing s0 = cqi where c > 0
is a scalar and qi is the unstable eigenvector with associated
eigenvalue |λi| > 1, results in st = cλt

iqi; thus, st becomes
arbitrarily large for large enough t.

Now, as T (α+RS , s0) is the time such that ‖st‖ ≥ α+RS ,
for all t ≥ T (α+RS , s0), it holds that

‖st‖ − ‖xat ‖ ≤ ‖xat − st‖ = ‖et‖ ≤ RS

⇒ ‖xat ‖ ≥ RS + α−RS = α. (31)

�
Finally, note that for LTI plants, the attacker will be effective

if and only if s0 is not orthogonal to all unstable eigenvectors
of the matrix A. Therefore, if γ is small enough, by choosing
such s0 that is also arbitrarily close to zero, the attacker can
be ε-stealthy with ε being arbitrarily small. On the other hand,
γ is not controlled by the attacker (rather, it is property of the
controller design) and if γ is large, there may be no stealthiness
guarantee for the attacker. While this implies that having large
γ improves the resiliency of the systems, it should be noted
that large γ is not desirable from the control’s perspective, as it
would degrade the control performance when the system is free
of attack.

The instability condition for LTI plants in Theorem 5 is inline
with the results from the work in [11] and [14] focused on LTI
systems with linear controllers and without perception-based
control, as well as with the notion of perfect attackability intro-
duced there for the specific ADs (i.e., χ2) considered in those
works. On the other hand, in this work, we consider a general
notion of stealthiness (being stealthy from any AD) and provide
analysis for perception-based control systems.

Remark 8: It is important to note that the results obtained
in this work capture sufficient conditions for the existence of
(ε, α) attacks on a system. However, this does not imply that

systems whose model parameters do not satisfy these conditions
are secure against attacks. While it can be shown that the open-
loop stability of a system can improve the system’s resiliency
against stealthy attacks, a formal analysis of this aspect is beyond
the scope of this work.

V. SIMULATION RESULTS

We illustrate and evaluate our methodology for vulnerability
analysis of perception-based control systems on two case stud-
ies, 1) inverted pendulum and 2) AVs.

A. Inverted Pendulum

We consider a fixed-base inverted pendulum equipped with
an end-to-end controller and a perception module that estimates
the pendulum angle from camera images. By using x1 = θ and
x2 = θ̇, the inverted pendulum dynamics can be modeled in the
state-space form as

ẋ1 = x2

ẋ2 =
g

r
sinx1 − b

mr2
x2 +

L

mr2
(32)

where θ is the angle of the pendulum rod from the vertical axis
measured clockwise, b is the Viscous friction coefficient, r is
the radius of inertia of the pendulum about the fixed point, m is
the mass of the pendulum, g is the acceleration due to gravity,
and L is the external torque that is applied at the fixed base [51].
Finally, we assumed m = 0.2kg, b = 0.1m×kg

s , and r = 0.3m
and discretized the model with Ts = 0.01 s.

Using Lyapunov’s indirect method, one can show that the
origin of the previous system is unstable because the linearized
model has an unstable eigenvalue. However, the direct Lyapunov
method can help us to find the whole unstable region −π < θ <
π (see [40]). We used a data set S with 500 sample pictures
of the fixed-base inverted pendulum with different angles in
(−π, π) to train a DNN P (perception module) to estimate the
angle of the rod. The angular velocity is also measured directly
by the sensor with a noise variance of Σv = 0.0001. We also
trained a deep-reinforcement-learning-based controller directly
mapping the image pixels and angular velocity values to the
input control. For anomaly detection, we designed a standard χ2

extended Kalman filter AD that receives the perception module’s
P output and angular velocity and outputs the residue/anomaly
alarm.

After discretizing the model with sampling rate ofdt = 0.01 s,
one can verify thatL′

f = 0.33, ‖B‖ = 0.556, and we also found
that L′

Π = 0.12 for the controller (note here that the inputs
of Π, as defined in Section III-B2, are x = [θ θ̇]T and vst ).
We also considered a Lyapunov function with c1 = c2 = 0.5,
c3 = 0.057, and c4 = 1 that satisfies the inequalities from (11).
On the other hand, in more than 100 experiments without the
attack, each simulated for a period of 5 s (i.e., 500 time steps),
we found that for bx = 0.2 and bv = 0.05, the inequalities in
Definition 5 were always satisfied—i.e., holding with the prob-
ability of almost one. Now, one can verify that the condition in
Theorem 2 is satisfied if bζ < 0.051.

We first chose s0 = [0.001 0.001]T and used Attack Strat-
egy I to design attacks. To derive the current adversarial image
at each time step, the attacker exploits the actual image and
compromises it by deviating the pendulum rod by st degrees.
This compromised image is then delivered to the controller, to be
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Fig. 3. (a) Evolution of the angle’s (θ) absolute value over time for
different levels of bζ . (b) Norm of the residue over time when the attack
starts at time t = 0.

Fig. 4. (a) Angle’s (θ) absolute value over time for Attack Strategy II
(red) and normal condition (blue). (b) Residue norm over time for both
underattack and attack-free systems.

used by the perception module to evaluate the system state. The
other sensor’s measurements are also compromised accordingly.
Again, the attacker does not need to have access to the perception
map P ; the knowledge about the dynamics f and estimate of
the current plant state x̂at is sufficient to craft the perturbed
images.

Fig. 3(a) shows the actual pendulum rod angle for different
estimation uncertainty levels bζ (by the attacker) when the attack
starts at t = 0. In both cases, the attacker can drive the pendulum
rod into an unsafe region. Fig. 3(b) shows the residue signal
over time; the attack stealthiness level decreases as bζ increases,
consistent with our results in Section IV.

Fig. 4(b) presents the residue of the system in normal op-
erating conditions (i.e., without attack) as well as under At-
tack Strategy II. We can see that the residue level of both
Attack Strategy I with bζ = 0.05 and Attack Strategy II are
the same as for the system without attack. The red and
blue lines in Fig. 4(a) also show the pendulum rod an-
gle trajectory for Attack Strategy II and normal conditions,
respectively.

B. Autonomous Vehicle

We consider the nonlinear dynamical model of an AV from
the work in [52], with four states [x y ψ v]T in the form

ẋ = v cos(ψ + β), ẏ = v sin(ψ + β)

ψ̇ =
v

lr
sin(β), v̇ = a, β = tan−1

(
lr

lf + lr
tan(δf )

)
(33)

where x and y represent the position of the center of mass in
x- and y-axis, respectively, ψ is the inertial heading, v is the
velocity of the vehicle, and β is the angle of the current velocity

of the center of mass with respect to the longitudinal axis of
the car. Also, lf = 1.1 and lr = 1.73m are the distance from
the center of the mass of the vehicle to the front and rear axles,
respectively, and a is the acceleration. The control inputs are the
front steering angle δf and acceleration a. We assume only ψ
is measured directly using noisy sensors, with zero-mean noise
with variance Σv = 0.0001. Moreover, there is a camera affixed
to a dashboard that receives the image of the scene in front of
the car. The system noise is assumed to be zero-mean, with
covariance Σw = 0.0001.

We consider the scenario where the car has a constant speed
of 25m/s. Since the control objective is to keep the vehicle
within the lane (i.e., between the lines of the road), the relative
position of the camera with respect to the two lines is the
essential information used by the controller. Therefore, even
if the image has some other backgrounds, we assume that the
lines of the road would be detected, to allow for extracting the
relevant information about the states of the system (including
the position of the car with respect to the lane center). Using
deep reinforcement learning, we trained a controller that takes
the images (containing the lines) and the inertial heading mea-
surements ψ as the observations and maps them to the control
input δf that keeps the car between the lanes. As the reward
function, we assign a higher reward when the car is between the
lines and a lower reward when the car is moving further from
the center of the lane. To find the position of the car with respect
to the lane center, we trained another DNN (perception map)
that takes the images and renders the position y in state space as
follows P (zt) = yt + vP (yt).

This information is used in AD, where we used P (zt) and
measured ψ to find the residue for both χ2 and CUSUM de-
tectors. We assume the system is equipped with χ2 [12] and
CUSUM ADs [53], where an extended Kalman filter is used to
find the residue signal. The thresholds are set to have pFA = 0.05
as a false alarm rate. Although the system dynamics (33) is not
in the form of (7), the car’s kinematics in lateral movement can
be approximated well by an LTI model with matrix A around

operating point (xe, 0, 0, 0) asA =

[
1 0 0 dt
0 1 25dt 0
0 0 1 0
0 0 0 1

]
; the model

was obtained by linearizing the state dynamics with sampling
time of dt = 0.01 s, where xe is any arbitrary value. Then, we
considered the LTI-based attack design using as st+1 = Ast for
some small nonzero initial condition s0 = 0.001 [0 1 1 0]T .
Since the open-loop model is linear, we verify the conditions of
Corollary 2; the only condition that needs to be satisfied in this
case is L3‖B‖ < c3.

We obtained L′
Π = 0.23 (here, Π’s arguments are y, ψ, and

vst ) and considered a Lyapunov function with c1 = c2 = 0.5,
c3 = 0.032 and c4 = 1 that satisfies the conditions from (11).
Also, when running 100 experiments without the attack for,
each for a simulation period of 30 seconds (i.e., 3000 time
steps) in all experiments, we obtained sup0≤t≤3000 ‖xt‖ <
0.2, sup0≤t≤3000 ‖vst ‖ < 0.05, which means that for bx = 0.2
and bv = 0.05, with a probability of almost one the system
stays in the zero center ball, as in Definition 5. Now, we have
L3 = L′

Π(bx + bv + φ) = 0.0532where the upper bound on the
norm of the initial condition of attack states s is considered to
be 0.0014. Thus, having ‖B‖ = 0.556 (obtained by linearizing
and discretization)

L3‖B‖ = 0.0106 < 0.032.
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Fig. 5. (Left) Position of the car with respect to the road center over

time for the initial condition s0 = 0.001
[
0 1 1 0

]T
when the attack

starts at time t = 0. (Right) Position of the car with respect to the road

center over time for the initial condition s0 = −0.001
[
0 1 1 0

]T
when the attack starts at time t = 0.

Fig. 6. (Left) Average number of alarms at each time step for χ2-based
intrusion detector when the attack starts at time t = 0. (Right) Average
number of alarms at each time step for CUSUM-based AD when the
attack starts at time t = 0.

Now, yat − st,2 provides the desired position of the camera
(center of the car) in theY -axis (where st,2 is the second element
of st). To find the attacked image, we distorted the current image
by shifting some pixels to right or left (depending on the sign
of st,2) in order to have the camera placed in yat − st,2. Another
approach to find the attacked image is to use some prerecorded
images of the road where the car is placed at different distances
from the lane center. Then, the goal would be to find an image
from those prerecorded images whose distance from the lane
center is closest to yat − st,2.

Fig. 5 shows the position of the center of the car with respect
to the road center when the attack starts at time zero. If the
attacker chooses the initial condition s0 = 0.001 [0 1 1 0]T

the car will deviate to the left-hand side of the road (left figure)
while choosing s0 = −0.001 [0 1 1 0]T will push the car to
the right-hand side (right figure).

Fig. 6 illustrates the average number of alarms at each time
step for both χ2 (left figure) and CUSUM (right figure) ADs
in 1000 experiments when the attack starts at time t = 0. As
shown, the values of true alarm averages (for t > 0) are the
same as the false alarm averages (for t ≤ 0) for both ADs,
which indicates the stealthiness of the attack according to
Definition 3.

VI. CONCLUSION

In this work, we have considered the problem of resiliency
under sensing and perception attacks for perception-based con-
trol systems, focusing on a general class of nonlinear dynamical
plants. We have assumed that the noiseless closed-loop system

equipped with an end-to-end controller and AD is exponentially
stable on a set around the equilibrium point. We have introduced
a general notion of ε-stealthiness as a measure of difficulty in
attack detection from the set of perception measurements and
sensor values. Furthermore, we have derived sufficient condi-
tions for effective yet ε-stealthy attack sequences to exist. Here,
the control performance degradation has been considered as
moving the system state outside of the safe region defined by
a bounded ball with radius α, resulting in an (ε, α)-successful
attack. Finally, we illustrated our results on two case studies:
1) fixed-base inverted pendulum and 2) vehicle lane-keeping.

A Proof of Theorem 2

Theorem 2: We need to show that the sequence of fal-
sified perception (e.g., images) and physical sensor values
{zc,a0 , yc,s,a0 }, {zc,a1 , yc,s,a1 }, . . ., obtained by Attack Strategy I
is (ε, α)-successful attack for arbitrarily large α. By defining
et = xat − st and rt = et − xt, we get zc,at = G(et), y

c,s,a
t =

Cset + vst and

et+1 = f(xat )− f(xat + ζt) + f(et + ζt) +BΠ(et, v
s
t )

+ wa
t

rt+1 = h(rt, 0) + f(xat )− f(xat + ζt) + f(et + ζt)− f(xt)

− f(rt) +BΠ(et, v
s
t )−BΠ(xt, v

s
t )−BΠ(rt, 0)

= h(rt, 0) + σ′
1 + σ′

2 (34)

with σ′
1 = f(xat )− f(xat + ζt) + f(et + ζt)− f(xt)−

f(rt) and σ′
2 = BΠ(G(et), y

s,a
t )−BΠ(G(xt), y

s
t )−

BΠ(G(rt), Csrt).
Using the mean-value theorem and equality xat = rt + st +

xt, we have that

f(xat + ζt) = f(xat ) +
∂f

∂x
|Θ(xa,xa+ζ)

ζt

f(et + ζt) = f(xt) +
∂f

∂x
|Θ(x,x+r+ζ)

(rt + ζt)

f(rt) = f(0) +
∂f

∂x
|Θ(0,r)

rt =
∂f

∂x
|Θ(0,r)

rt

(35)

where for instance, ∂f
∂x |Θ(x,y)

=

⎡
⎣∇f1(c1x+ (1− c1)y)

.

.

.
∇fn(cnx+ (1− cn)y)

⎤
⎦ for some

0 ≤ c1, . . ., cn ≤ 1 where fi is the ith element of function f .
Therefore, we get that

σ′
1 =

(
∂f

∂x
|Θ(xa,xa+ζ)

− ∂f

∂x
|Θ(x,x+r+ζ)

)
ζt

+

(
∂f

∂x
|Θ(x,x+r+ζ)

− ∂f

∂x
|Θ(0,r)

)
rt. (36)

Similarly, using the mean-value theorem and et = rt + xt, we
obtain

Π(et, v
s
t ) = Π(xt, v

s
t ) +

∂Π

∂et
|Θ(x,x+r)

rt

Π(rt, 0) = Π(0, 0) +
∂Π

∂rt
|Θ(0,r)

rt (37)
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where Π(0, 0) = 0. Therefore, we get

σ′
2 = B

(
∂Π

∂et
|Θ((x,v),(x+r,v))

− ∂Π

∂rt
|Θ((0,0),(r,0))

)
rt. (38)

Using the fact that the functions f and ∂f
∂x (x) are Lipschitz, for

all 0 ≤ t ≤ T (α+ b+ bx, s0), it holds that∥∥∥∥∂f∂x |Θ(xa,xa+ζ)
− ∂f

∂x
|Θ(x,x+r+ζ)

∥∥∥∥
≤ L′

f

(
Θ(xa,xa+ζ) −Θ(x,x+r+ζ)

) ≤ L′
f (‖xat ‖+ ‖xt‖+ ‖rt‖

+ ‖ζt‖) ≤ L′
f (α+ bx + bζ) + L′

f‖rt‖ (39)

where we used our assumption that ‖xt‖ ≤ bx with probability
δ(T (α+ b+ bx, s0), bx, bv). Moreover, Lipschitz’s assumption
on f and the boundedness of ζ also results in∥∥∥∥∂f∂x |Θ(xa,xa+ζ)

− ∂f

∂x
|Θ(x,x+r+ζ)

∥∥∥∥ ≤ 2Lf . (40)

Therefore, we get ‖∂f
∂x |Θ(xa,xa+ζ)

− ∂f
∂x |Θ(x,x+r+ζ)

‖ ≤
min{2Lf , L

′
f (α+ bx + bζ) + L′

f‖rt‖} ≤ min{2Lf , L
′
f (α+

bx + bζ)}+ L′
f‖rt‖. Similarly, we have

‖∂f
∂x

|Θ(x,x+r+ζ)
− ∂f

∂x
|Θ(0,r)

‖ ≤ L′
f

(
Θ(x,x+r+ζ) −Θ(0,r)

)
≤ L′

f (‖xt‖+ ‖rt‖+ ‖ζt‖) ≤ L′
f (bx + bζ) + L′

f‖rt‖. (41)

Therefore, ‖σ′
1‖ ≤ min{2Lf , L

′
f (α+ bx + bζ)}bζ + L′

fbζ
‖rt‖+ L′

f (bx + bζ)‖rt‖+ L′
f‖rt‖2. Now, consider the

bounded set of Bφ satisfying Bφ ⊂ D, where we know
‖rt‖2 ≤ φ‖rt‖ for all rt ∈ Bφ, and we get

‖σ′
1‖ ≤ min{2Lf , L

′
f (α+ bx + bζ)}bζ

+ L′
f (bx + 2bζ + φ)‖rt‖ = L1‖rt‖+ L2bζ . (42)

In addition, since the function Π′ is Lipschitz, for all x ∈ D and
rt ∈ Bφ with probability δ(T (α+ b+ bx, s0), bx, bv) it holds
that∥∥∥∥∂Π∂et |Θ((x,v),(x+r,v))

− ∂Π

∂rt
|Θ((0,0),(0,r))

∥∥∥∥ ≤ L′
Π(‖xt+rt+vst ‖)

≤ L′
Π(φ+ bx + bv)

and we get ‖σ′
2‖ ≤ L3‖B‖‖rt‖ with L3 = L′

Π(bx + φ+ bv);
this results in

‖σ′
1 + σ′

2‖ ≤ L2bζ + (L1 + L3‖B‖)‖rt‖. (43)

Since for rt ∈ Bφ, we have that L1 + L3‖B‖ < c3
c4

and

L2bζ <
c3−(L1+L3‖B‖)c4

c4

√
c1
c2
θd, using Lemma 8 for all

‖r0‖ = ‖s0‖ < min{
√

c1
c2
d, φ}, there exists t1 > 0, such

that for all t < t1, it holds that ‖rt‖ ≤
√

c2
c1
e−βt‖s0‖

with β = (1−θ)(c3−(L1+L3‖B‖)c4)
2c2

, and ‖rt‖ ≤ b with b =

c4
c3−(L1+L3‖B‖)c4

√
c2
c1

L2bζ
θ for t ≥ t1. It should be noted that our

assumptionφ > b (or equivalentlyBb ⊂ Bφ) guarantees that the
trajectory of rt will remain in the set Bφ.

Now, we need to show that for t ≥ T (α+ bx + b, s0), we get
that ‖xat ‖ ≥ α. Since the function f is differentiable, using the

mean-value theorem, we obtain
st+1 = f(st + ζt + et)− f(ζt + et)

= f(st) +
∂f

∂x
|(st,st+et+ζt)(et + ζt)− f(et + ζt).

(44)

Since et = rt + xt, for 0 ≤ t ≤ T (α+ bx + b, s0) with proba-
bility δ(T (α+ bx + b, s0), bx, bv), we have that∥∥∥∥∂f∂x |(st,st+et+ζt)(et + ζt)− f(et + ζt)

∥∥∥∥
≤ 2Lf‖(rt + xt + ζt)‖
≤ 2Lf (bx + b+ bζ).

Since we assume that f ∈ Uρ with ρ = 2Lf (bx + b+ bζ), there
exists s0 such that st becomes arbitrarily large. Using Defini-
tion 2, T (α+ bx + b, s0) is defined as the first time step that sat-
isfies ‖st‖ ≥ α+ bx + b. On the other hand, using et = xat − st
and et = xt + rt, it holds that

‖xat ‖ ≥ ‖st‖ − ‖et‖ ≥ ‖st‖ − ‖xt‖ − ‖rt‖ ≥ α.

We now need to show that the designed Y a
t for t ≥ 0 sat-

isfies the stealthiness condition; i.e., we need to show that
KL(Q(Y −1

−∞, Y a
0 : Y a

t )||P(Y−∞ : Yt)) ≤ log( 1
1−ε2 ) for some

ε > 0. Since the sequences Y a
0 : Y a

t , Y0 : Yt, and Y −1
−∞ are

generated by e0 : et, x0 : xt, and x−∞ : x−1, respectively, us-
ing the data-processing inequality of the KL divergence, it
holds that

KL
(
Q(Y −1

−∞, Y
a
0 : Y a

t )||P(Y−∞ : Yt)
)

≤ KL (Q(x−∞ : x−1, e0 : et)||P(x−∞ : xt)) . (45)

On the other hand, by defining Zt =
[

xt

yc,s
t

]
and Ze

t =
[

et
yc,s,a
t

]
,

and using monotonicity from Lemma 2 it holds that

KL(Q(x−∞ : x−1, e0 : et)||P(x−∞ : xt))

≤ KL(Q(Z−∞ : Z−1, Z
e
0 : Ze

t )||P(Z−∞ : Zt)) (46)

Then, we apply the chain-rule property of KL-divergence on the
right-hand side of (46) to obtain the following:

KL (Q(Z−∞ : Z−1, Z
e
0 : Ze

t )||P(Z−∞ : Zt))

= KL (Q(Z−∞ : Z−1)||P(Z−∞ : Z−1))

+ KL (Q(Ze
0 : Ze

t |Z−∞ : Z−1)||P(Z0 : Zt|Z−∞ : Z−1))

= KL (Q(Ze
0 : Ze

t |Z−∞ : Z−1)||P(Z0 : Zt|Z−∞ : Z−1))
(47)

where we used the fact that the KL-divergence of two identical
distributions (i.e., Q(Z−∞ : Z−1) and P(Z−∞ : Z−1) since the
system is not under attack for t < 0) is zero. Using the chain
rule property of the KL divergence, we have that

KL (Q(Ze
0 : Ze

t |Z−∞ : Z−1)||P(Z0 : Zt|Z−∞ : Z−1))

= KL (Q(e0|Z−∞ : Z−1)||P(x0|Z−∞ : Z−1))

+ KL (Q(yc,s,a0 |e0, Z−∞ : Z−1)||P(yc,s0 |x0, Z−∞ : Z−1))

+ · · ·+ KL
(
Q(et|Z−∞ : Ze

t−1)||P(xt|Z−∞ : Zt−1)
)

+ KL
(
Q(yc,s,at |et, Z−∞ : Ze

t−1)||P(yc,st |xt, Z−∞ : Zt−1)
)
.

GivenZ−∞ : Zt−1, the distribution ofxt is a Gaussian with some
mean μ(xt−1) and covariance Σw written as xt = μ(xt−1) +
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wt−1. Similarly using (34) given Z−∞ : Z−1, Z
e
0 : Ze

t−1, the
distribution of et is a Gaussian with some mean μ(et−1) and
covariance Σw written as et = μ(et−1) + wt−1. Therefore, we
get rt = et − xt = μ(et−1)− μ(xt−1). Using Lemmas 3 and 4
for all t ≥ 0, it holds that

KL(Q(et|Z−∞ : Ze
t−1)||P(xt|Z−∞ : Zt−1))

= EQ(Z−∞:Ze
t−1)

{rTt Σ−1
w rt}

≤ EQ(et|Z−∞:Ze
t−1)

{λmax(Σ
−1
w )‖rt‖2}. (48)

On the other hand, given xt, the distribution of yc,st is a Gaussian
with meanCsxt and covarianceΣvs . Similarly, given et, the dis-
tribution of yc,s,at is a Gaussian with mean Cset and covariance
Σvs . Using Lemmas 4 and 3 for all t ≥ 0

KL(Q(yc,s,at |et, Z−∞ : Ze
t−1)||P(yc,st |xt, Z−∞ : Zt−1))

= KL (Q(yc,s,at |et||P(yc,st |xt))
≤ EQ(yc,s,a

t |et){rTt CT
s Σ

−1
vs Csrt}. (49)

The arguments inside the expectations in the right-hand side
of the inequalities (48) and (49) are upper bounded by
λmax(Σ

−1
w )‖rt‖2 and λmax(C

T
s Σ

−1
vs Cs)‖rt‖2, respectively, us-

ing the norm property xTQx ≤ λmax(Q)‖x‖2. On the other
hand, since ‖rt‖ is bounded from above, using Lemma 5, we
can find an upper bound for (48) and (49).

Specifically, if T (α+ bx + b, s0) < t1, then

T (α+bx+b,s0)∑
i=0

‖ri‖2≤min

{
T (α+ bx + b, s0) + 1,

√
c2
c1

e−β

1− e−β

}

× ‖s0‖2
with probability δ(T (α+ bx + b, s0), bx, bv). However, if
T (α+ bx + b, s0) ≥ t1, then

T (α+bx+b,s0)∑
i=0

‖ri‖2 ≤ min

{
t1,

√
c2
c1

e−β

1− e−β

}
‖s0‖2

+ (T (α+ bx + b, s0) + 1− t1)b

with probability δ(T (α+ bx + b, s0), bx, bv). Using the in-
equalities (45)–(49), we get

KL(Q(Y −1
−∞, Y

a
0 : Y a

T (α+bx+b,s0)
)||P(Y−∞ : YT (α+bx+b,s0)))

≤ λmax(C
T
s Σ

−1
v Cs +Σ−1

w )

×max {min {T (α+ bx + b, s0) + 1,√
c2
c1

e−β

1− e−β

}
‖s0‖2

min

{
t1,

√
c2
c1

e−β

1− e−β

}
‖s0‖2

+ (T (α+ bx + b, s0) + 1− t1)b}
= bε

which means that the system is (ε, α)-attackable with the prob-
ability of δ(T (α+ bx + b, s0), bx, bv) and ε =

√
1− e−bε .

B. Proof of Theorem 4

Theorem 4: We need to show that the sequence of
compromised perception (e.g., images) and sensor values
{za0 , ys,a0 }, {za1 , ys,a1 }, . . ., obtained by Attack Strategy II are
(ε, α)-successful attack. By defining et = xat − st and rt =
et − xt, we get zat = G(et), y

s,a
t = Cset + vs,at , and

et+1 = f(xat )− f(st) +BΠ(et, v
s
t ) + wa

t

rt+1 = f(rt) +BΠ(rt, 0) + f(xat )− f(st)− f(xt)

− f(rt) +BΠ(et, v
s
t )−BΠ(xt, v

s
t )−BΠ(rt, 0)

= h(rt, 0) + σ1 + σ2

with σ1 = f(xat )− f(st)− f(xt)− f(rt) and σ2 =
BΠ(et, v

s
t )−BΠ(xt, v

s
t )−BΠ(rt, 0). Using the mean-value

theorem and equality xat = rt + st + xt, we obtain

f(xat ) = f(xt + st + rt) = f(st) +
∂f

∂x
|Θ(s,s+x+r)

(xt + rt)

f(rt) = f(0) +
∂f

∂x
|Θ(0,r)

rt =
∂f

∂x
|Θ(0,r)

rt

f(xt) = f(0) +
∂f

∂x
|Θ(0,x)

xt =
∂f

∂x
|Θ(0,x)

xt.

Therefore, we get

σ1 =

(
∂f

∂x
|Θ(s,s+x+r)

− ∂f

∂x
|Θ(0,x)

)
xt

+

(
∂f

∂x
|Θ(s,s+x+r)

− ∂f

∂x
|Θ(0,r)

)
rt. (50)

Similarly, using the mean-value theorem and et = rt + xt, we
obtain that

Π(et, v
s
t ) = Π(xt, v

s
t ) +

∂Π

∂et
|Θ(x,x+r)

rt

Π(rt, 0) = Π(0, 0) +
∂Π

∂rt
|Θ(0,r)

rt. (51)

Therefore, we get

σ2 = B

(
∂Π

∂et
|Θ((x,v),(x+r,v))

− ∂Π

∂rt
|Θ((0,0),(r,0))

)
rt. (52)

Using the fact that the function ∂f
∂x (x) is Lipschitz, for all 0 ≤

t ≤ T (α+ bx + b, s0), we have∥∥∥∥∂f∂x |Θ(s,s+x+r)
− ∂f

∂x
|Θ(0,x)

∥∥∥∥ ≤ L′
f (‖xat ‖+ ‖xt‖)

≤ L′
f (α+ bx)

and ∥∥∥∥∂f∂x |Θ(s,s+x+r)
− ∂f

∂x
|Θ(0,r)

∥∥∥∥ ≤ L′
f (‖xat ‖+ ‖rt‖)

≤ L′
f (α+ φ).

Therefore, ‖σ1‖ ≤ L2bx + L1‖rt‖.
Similarly, ‖ ∂Π

∂et
|Θ((x,v),(x+r,v))

− ∂Π
∂rt

|Θ((0,0),(r,0))
‖ ≤

L′
Π(‖xt + rt‖ ≤ L′

Π(φ+ bx), and we get L3 = L′
Π(bx +

φ+ bv) and ‖σ2‖ ≤ L3‖rt‖; this results in ‖σ1 + σ2‖ ≤
L2bx + (L1 + L3‖B‖)‖rt‖. Since we have L1 + L3‖B‖ < c3

c4

and L2bx <
c3−(L1+L3‖B‖)c4

c4

√
c1
c2
θd, using Lemma 8
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for all ‖r0‖ = ‖s0‖ < min{φ,
√

c1
c2
d}, there exists

t1 > 0, such that for all t ≥ t1, we have ‖rt‖ ≤ b with

b = c4
c3−(L1+L3‖B‖)c4

√
c2
c1

L2bx
θ ; also, for all 0 ≤ t < t1, it holds

that ‖rt‖ ≤
√

c2
c1
e−βt‖s0‖ with β = (1−θ)(c3−(L1+L3‖B‖)c4)

2c2
.

On the other hand, the dynamics st+1 = f(st) with nonzero
s0 will reach ‖st‖ ≥ α+ bx + b for some t ≥ T (α+ bx +
b, s0) as f ∈ U0. Using the reverse triangle inequality, we obtain

‖st‖ − ‖xat ‖ ≤ ‖xat − st‖ = ‖et‖ = ‖xt + rt‖
≤ bx + b⇒ −b− bx + b+ bx + α = α ≤ ‖xat ‖

with probability δ(T (α+ bx + b, s0), bx, bv).
Now, we need to show that the designed yat satisfies the

stealthiness condition. In other words, we need to show
that KL(Q(Y a

0 : Y a
T (α+bx+b,s0)

)||P(Y0 : YT (α+bx+b,s0))) ≤
log( 1

1−ε2 ) for some ε > 0. Since the sequences Y a
0 , . . ., Y

a
t

and Y0, . . ., Yt are generated by e0, . . ., et and x0, . . ., xt,
respectively, using the data-processing inequality of KL
divergence and following the same procedure as for Theorem 2,
we obtain

KL
(
Q(Y a

0 : Y a
T (α+bx+b,s0)

)||P(Y0 : YT (α+bx+b,s0))
)

≤
T (α+bx+b,s0)∑

i=0

λmax(C
T
s Σ

−1
v Cs +Σ−1

w )‖ri‖2. (53)

Similar argument as in the proof of Theorem 2 results in

KL
(
Q(Y a

0 : Y a
T (α+bx+b,s0)

)||P(Y0 : YT (α+bx+b,s0))
)

≤ λmax(Σ
−1
w )‖s0‖2 + λmax(C

T
s Σ

−1
v Cs +Σ−1

w )

×max

{
min

{
T (α+ bx + b, s0) + 1,

√
c2
c1

e−β

1− e−β

}
‖s0‖2,

min

{
t1,

√
c2
c1

e−β

1− e−β

}
‖s0‖2

+ (T (α+ bx + b, s0)− t1)b

}

= bε.

This means that the system is (ε, α)-attackable with the proba-
bility of δ(T (α+ bx + b, s0), bx) with ε =

√
1− e−bε .
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