
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024 7387

Learning Optimal Strategies for Temporal
Tasks in Stochastic Games

Alper Kamil Bozkurt , Yu Wang , Senior Member, IEEE, Michael M. Zavlanos , Senior Member, IEEE,
and Miroslav Pajic

Abstract—Synthesis from linear temporal logic (LTL)
specifications provides assured controllers for systems op-
erating in stochastic and potentially adversarial environ-
ments. Automatic synthesis tools, however, require a model
of the environment to construct controllers. In this work,
we introduce a model-free reinforcement learning (RL) ap-
proach to derive controllers from given LTL specifications
even when the environment is completely unknown. We
model the problem as a stochastic game (SG) between
the controller and the environment; we then learn optimal
strategies that maximize the probability of satisfying the
LTL specifications against the worst-case environment be-
havior. We first construct a product game using the deter-
ministic parity automaton (DPA) translated from the given
LTL specification. By deriving distinct rewards and dis-
count factors from the acceptance condition of the DPA,
we reduce the maximization of the worst-case probability of
satisfying the LTL specification into the maximization of
a discounted reward objective in the product game; this
enables the use of model-free RL algorithms to learn an
optimal controller strategy. To address the scalability is-
sues arising when the number of sets defining the accep-
tance condition of the DPA, usually referred to as colors,
is large; we propose a lazy color generation method where
distinct rewards and discount factors are utilized only when
needed, and an approximate method where the controller
eventually focuses on only one color. In several case stud-
ies, we show that our approach is scalable to a wide range
of LTL formulas, significantly outperforming existing meth-
ods that learn controllers from LTL specifications in SGs.

Index Terms—Controller synthesis, linear temporal logic
(LTL), reinforcement learning (RL), stochastic games (SGs).

Manuscript received 30 August 2023; revised 8 February 2024; ac-
cepted 28 March 2024. Date of publication 18 April 2024; date of current
version 25 October 2024. This work was supported in part by ONR
under Grant N00014-17-1-2504 and Grant N00014-20-1-2745, in part
by NSF under Grant CNS-1652544 award, in part by AFOSR under
Grant FA9550-19-1-016, and in part by the National AI Institute for
Edge Computing Leveraging Next Generation Wireless Networks under
Grant CNS-2112562. Recommended by Associate Editor A. Mahajan.
(Corresponding author: Alper Kamil Bozkurt.)

Alper Kamil Bozkurt, Michael M. Zavlanos, and Miroslav Pajic are
with the Department of Computer Science, Mechanical Engineering
and Material Science, and Electrical and Computer Engineering, Duke
University, Durham, NC 27708 USA (e-mail: alper.bozkurt@duke.edu;
mz61@duke.edu; miroslav.pajic@duke.edu).

Yu Wang is with the Department of Mechanical and Aerospace En-
gineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
yuwang1@ufl.edu).

Digital Object Identifier 10.1109/TAC.2024.3390848

I. INTRODUCTION

L INEAR temporal logic (LTL) [1] provides a formal speci-
fication language that can be used to express many con-

trol tasks with temporal objectives, such as safety, sequenc-
ing, conditioning, and repetition. For instance, the majority of
robotics tasks can be expressed as an LTL formula (e.g., [2],
[3], [4], [5], [6], and [7]) such as a path planning task where
the objective includes “first go to the entrance and then go to
the workspace,” “if the battery is low, go to the charger,” and
“continuously monitor a particular region while avoiding the
danger zones.” Due to this expressiveness, automatic controller
synthesis from LTL specifications has been widely studied in the
control community (e.g., [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], and [15]). However, such synthesis approaches
require a model of the operational environment a priori, which is
mostly impracticable as modern autonomous systems are being
deployed in more complex and stochastic environments.

The common situations where a model of the environment is
not available necessitate the use of learning-based methods to
design controllers for LTL specifications. A growing body of
literature has investigated learning controllers when the interac-
tion with stochastic environments can be modeled as Markov
decision processes (MDPs). Several studies (e.g., [16], [17],
and [18]) have introduced model-based probably approximately
correct (PAC) methods that construct a product MDP using the
deterministic Rabin automata (DRAs) derived from the LTL
specifications and detect the product MDP components where
the specifications are satisfied. However, to detect such compo-
nents, these methods learn and store the transition structure of
the MDP, potentially resulting in large memory requirements.

Recently, model-free reinforcement learning (RL) methods
have been proposed to mitigate this problem (e.g., [19] and
[20]). With such methods, the LTL specifications are translated
into suitable limit-deterministic Büchi automata (LDBAs) [21]
to construct product MDPs. Rewards are then derived from the
Büchi (i.e., repeated reachability) acceptance condition such that
controller strategies maximizing sums of discounted rewards
maximize the satisfaction probabilities; then, off-the-shelf RL
algorithms are used to learn such strategies. However, all these
approaches focus on learning for MDPs and do not consider non-
deterministic adversarial environments that can take nonrandom
actions to disrupt performing the given tasks.

A key challenge in enabling autonomous systems to operate
in unpredictable environments is to learn controller strategies
robust to adversarial inputs. The adversarial inputs usually
cannot be restricted to simple perturbations, and thus, they

1558-2523 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

7388 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024

need to be considered as separate unpredictable environment
actions (e.g., [14] and [22]). The design of controllers resilient
against the worst-case environment behavior is often crucial for
autonomy when safety and security are of the utmost impor-
tance. Though such controllers might be conservative, they pro-
vide assurance against any potentially adversarial environment
behaviors.

Formally, the interaction between controllers and potentially
adversarial environments can be modeled as zero-sum turn-
based stochastic games (SGs) [23], where the objective is to
learn optimal controller strategies to perform the tasks specified
as LTL formulas. SGs are natural extensions of MDPs to systems
where some states are under the control of an adversary whose
objective is to prevent performing the given tasks. Although
more restrictive than the general-sum concurrent games, the
zero-sum turn-based games are used to model many control and
sequential decision-making problems where tasks need to be
successfully carried out no matter how the adversarial environ-
ment acts [24], [25]; thus, are widely adopted by the control
community (e.g., [26], [27], [28], [29], [30], [31], and [32]). For
example, the problem of security-aware motion planning against
stealthy attacks can be expressed as an SG [33], [34], [35].

There have been studies investigating controller synthesis
from LTL specifications in SGs [32] including synthesis from
the generalized reactivity(1) fragment of LTL [36] and adaptive
approaches [37]; yet, only few have investigated the use of
learning for LTL specifications in SGs. A model-based PAC
method from [26] precomputes the winning states with respect
to the LTL specification based on the assumption that the given
LTL specifications can be translated into deterministic Büchi
automata (DBAs) and the transition structure of the SG is
available a priori. Another model-based PAC method from [38]
learns the winning states for reachability specifications, a lim-
ited fragment of LTL that cannot be used to specify contin-
uous tasks. As model-based methods, these are inefficient in
terms of memory requirements when the number of different
states that actions can lead to is large.

More recently, two automata-based model-free learning meth-
ods have been proposed to learn controller strategies for LTL
specifications in SGs [39], [40]. Our preliminary work [40] has
introduced a method that translates the LTL specifications into
DRAs, and provides reward and discount factors for each Rabin
pair in the acceptance conditions. This method, however, does
not guarantee convergence to the optimal strategies when there
is more than one Rabin pair. In [39], the LTL specifications
are translated to deterministic parity automata (DPAs), whose
acceptance conditions are more intricate than the Büchi con-
dition. The problem of satisfying the parity condition is then
reduced to a reachability problem by extending the product
game constructed using DPAs with terminal states where the
probabilities of transitions to these states are determined by the
sets in the parity condition. Yet, the episode lengths required to
learn optimal strategies in this method grow exponentially with
the number of sets; thus, substantially limiting its scalability as
we demonstrate in our case studies.

Consequently, in this work, we introduce an approach to
learn optimal strategies for any desired LTL specifications in
SGs while significantly improving scalability compared to the
existing methods. Our approach is model-free as it does not use

or construct transition models of SGs. We begin by composing
an SG where the transition structure is completely unknown with
a DPA that is automatically obtained from the given LTL speci-
fication. We then derive novel reward and discount factors from
the parity acceptance condition such that a strategy maximizing
the sum of the discounted rewards also maximizes the probability
of satisfying the LTL specification in the worst case, i.e., for the
worst (most-damaging) adversary actions from the controller’s
perspective.

Unlike the existing automata-based methods (discussed
above), our approach provides dense rewards that significantly
accelerate learning while being capable of capturing all possible
LTL specifications. Also, to overcome the scalability issues
when the number of sets defining the acceptance condition of
the DPA, referred to as colors, is large; we present a model-free
method that utilizes these distinct rewards and discount factors
only when needed via lazy color generation; thus, our method
facilitates efficient learning of the optimal strategies in the
derived product SGs. Moreover, we provide a scalable approxi-
mate method for the scenarios where the controller can perform
the task by eventually focusing on only one color.

We compare our methods with each other and with the ex-
isting methods in several robot navigation case studies with the
LTL specifications, and we show that our lazy color generation
and approximate methods outperform the others. Finally, we
demonstrate the applicability of our methods in several robotic
arm tasks.

The rest of this article is organized as follows. Section II
reviews the necessary preliminaries before providing a reduc-
tion from LTL specifications to reward returns in Section III.
To enhance learning scalability, we introduce the lazy color
generation framework in Section IV, and evaluate our approach
in Section VI. Finally, Section VII concludes this article.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Stochastic Games

We use SGs to model the problem of performing a given task
by the controller (Player 1) against an adversary (Player 2) in a
stochastic environment.

Definition 1: A (labeled fully observable turn-based two-
player) SG is a tuple G = (S, (Sμ, Sν), s0, A, P,AP, L) where
S = Sμ ∪ Sν is a finite set of states, Sμ is the set of states in
which the controller takes action, Sν is the set of states under
the control of the adversary, and s0 is the initial state; A is a
finite set of actions and A(s) denotes the set of actions that can
be taken in a state s; P : S ×A× S �→ [0, 1] is a probabilistic
transition function such that

∑
s′∈S P (s, a, s′) = 1 if a ∈ A(s)

and 0 otherwise; finally, AP is a finite set of atomic propositions
and L : S �→ 2AP is a labeling function.

SGs can be considered as games played by the controller and
the adversary for infinitely many time steps on finite directed
graphs consisting of state and state-action nodes. The state
nodes are divided into two distinct subsets reflecting the turns
of the controller and the adversary. The game starts in the initial
state and moves between the state nodes as the controller and
the adversary take actions. In each state node, only the owner of
the state observes the state information and chooses one of the

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

BOZKURT et al.: LEARNING OPTIMAL STRATEGIES FOR TEMPORAL TASKS IN STOCHASTIC GAMES 7389

Fig. 1. Product game construction for the system from Example 1. (a) Example SG. The sets of words under the state names are the labels.
(b) DPA derived from LTL formula ϕ = (♦�working ∧�♦charging) ∨ ♦�charging . The numbers within parentheses and the set of words on the
transitions are the colors and the labels of the transitions, respectively. (c) Product game of the SG in (a) and the DPA in (b). The numbers in the
parentheses under the state names are the corresponding colors.

state-action nodes of the state and the game then probabilistically
transitions to one of the successors of the node according to
the given transition function. We illustrate this in the following
example.

Example 1: An example SG of a robotics environment is
shown in Fig. 1(a). A robotic agent (i.e., the controller) starts in
“Entrance,” where an empty label {} is received. In “Entrance,”
the agent can choose either “go up” or “go down.” With “go
down,” the agent starts working and moves to the charging sta-
tion with probability (w.p.) 0.9 (i.e., the game makes a transition
to “Charger (Agent-On)” and a label of {charging, working}
is received). If the agent keeps taking “go down,” it eventually
moves to “Charger (Agent-On)” w.p. 1. With “go up,” the agent
moves to the charging station but could get stuck w.p. 0.1. In
“Charger (Agent-On),” the adversary can prevent the agent from
working by turning it OFF (“Charger(Agent-Off)”); however,
the agent can turn itself ON again. In addition, the adversary
can move the agent from the charging station to “Workspace,”
where the agent cannot get charged but can work or go back to
the charging station.

We call π := s0s1 . . . an infinite path (i.e., execution) of the
SG G if for all t ≥ 0 there exists an action a ∈ A(st) such
that P (st, a, st+1) > 0. We denote the state st and the suffix
stst+1. . . by π[t] and π[t:], respectively. The behaviors of the

players can be specified by strategy functions mapping the his-
tory of the visited states to an action. We focus on finite-memory
strategies since they suffice for the LTL tasks (see [23] and
references therein).

Definition 2: A finite-memory strategy for an SG G is a tuple
σ = (M,m0, T, α) where M is a finite set of modes; m0 is
the initial mode; T : M × S �→ D(M) is the transition function
that maps the current mode and state to a distribution over the
next modes;α : M × S �→ D(A) is a function that maps a given
mode m ∈ M and a state s ∈ S to a discrete distribution over
A(s). A controller strategy μ is a finite-memory strategy that
maps only the controller states to distributions over the actions.
Similarly, an adversary strategy ν is a finite-memory strategy
mapping the adversary states to distributions over the actions.
A finite-memory strategy is called pure memoryless if there is
only one mode (|M | = 1) and α(m0, s) is a point distribution
assigning a probability of 1 to a single action for all s ∈ S.

Intuitively, a finite-memory strategy is a finite state machine
moving from one mode (memory state) to another as the SG
states are visited, outputting a distribution over the actions
in each state. Unlike the standard definition of finite-memory
strategies (e.g., [1] and [23]) where transitions among the modes
are all deterministic, Definition 2 allows probabilistic transi-
tions; this will later enable modeling of probabilistic transitions

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

7390 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024

between different levels of the derived product games where
pure memoryless strategies induce finite-memory strategies with
probabilistic mode transitions in the original SGs.

For a given pair of a finite-memory controller strategyμ and an
adversary strategy ν in an SG G, we denote the resulting induced
Markov chain (MC) as Gμ,ν . We use π ∼ Gμ,ν and πs ∼ Gs

μ,ν

to denote paths drawn from Gμ,ν and Gs
μ,ν , respectively, where

Gs
μ,ν is same as Gμ,ν except that the state s is designated as the

initial state instead of s0. Finally, a bottom strongly connected
component (BSCC) of an MC is a set of states such that there is
a path from each state to any other state in the set without any
outgoing transitions. We denote the set of all BSCCs of the MC
Gμ,ν by B(Gμ,ν).

B. Linear Temporal Logic

LTL provides a high-level formalism to specify tasks
with temporal properties by placing requirements for infinite
paths [1]. LTL specifications consist of nested combinations of
Boolean and temporal operators according to the grammar

ϕ := true | a | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2, a ∈ AP.

The other Boolean operators can be defined via the stan-
dard equivalences (e.g.,ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2),ϕ → ϕ′ :=
¬ϕ ∨ ϕ′). A path π of an SG G satisfies an LTL specification ϕ,
denoted by π |= ϕ, if the following recursively hold:

1) if ϕ = a and L(π[0]) = a (i.e., a immediately holds);
2) if ϕ = ϕ1 ∧ ϕ2, π |= ϕ1, and π |= ϕ2;
3) if ϕ = ¬ϕ′ and π �|= ϕ′;
4) if ϕ = ©ϕ′ (called next ϕ′) and π[1:] |= ϕ′;
5) if ϕ = ϕ1Uϕ2 (called ϕ1 until ϕ2) and there exists t ≥ 0

such that π[t:] |= ϕ2 and for all 0 ≤ i < t, π[i:] |= ϕ1.
Intuitively, the temporal operator ©ϕ expresses that ϕ needs

to hold in the next time step, whereas ϕ1Uϕ2 specifies that ϕ1

needs to hold untilϕ2 holds. Other commonly used temporal op-
erators such as eventually (♦) and always (�) can be derived as:
♦ϕ := true U ϕ (i.e., ϕ eventually holds) and �ϕ := ¬(♦¬ϕ)
(i.e., ϕ always holds).

LTL can be used to specify a wide range of robotics tasks
such as sequencing, surveillance, persistence, and avoidance.
In the following example, we illustrate how a persistence task
can be specified as an LTL formula, and we discuss the optimal
controller and adversary strategies.

Example 2: Consider a simple persistence task “ϕ =
♦�charging” in the SG presented in Fig. 1(a). The robot
controller can ensure that “Charger(Agent-On)” is eventually
reached by taking “go down” in “Entrance” persistently. How-
ever, the adversary can move the robot to “Workspace,” a
state that is not labeled with “charging,” thereby making the
probability of satisfying the specification 0. To avoid this, the
controller can instead take “go up,” which w.p. 0.1 leads to
“Charger(Stuck),” a trap cell labeled with “charging,” where the
specification is guaranteed to be satisfied.

C. Deterministic Parity Automata

Any LTL task can be translated to a DPA that accepts an
infinite path satisfying the LTL task [41].

Definition 3: A DPA is a tuple A = (Q, q0,Σ, δ, κ, C) such
that Q is the finite set of automaton states; q0 ∈ Q is the initial

automaton state;Σ = 2AP is a finite alphabet; δ : Q× Σ �→ Q is
the transition function; κ is the number of colors; C : Q× Σ �→
{0, . . . , κ−1} is the coloring function. A path π of G induces an
execution ρπ = 〈q0, L(π[0])〉〈q1, L(π[1])〉 . . . such that for all
t ≥ 0, δ(qt, L(π[t])) = qt+1. Let Inf(ρπ) denote the set of the
transitions 〈q, l〉 ∈ Q× Σ made infinitely often by ρπ; then, a
pathπ is accepted by a DPA ifmax{C(〈q, l〉) | 〈q, l〉 ∈ Inf(ρπ)}
is an odd number.

For a given LTL task ϕ, we use Aϕ to denote a DPA de-
rived from ϕ. DPAs provide a systematic way to evaluate the
satisfaction of any LTL specification, which can be expressed
by the satisfaction of the parity condition of a constructed DPA.
The parity condition is satisfied simply when the largest color
among the colors repeatedly visited is an odd number. This
provides a natural framework to reason about LTL tasks in SGs;
the controller tries to visit the states triggering the odd-colored
transitions as often as possible, while the adversary tries to do
the opposite (i.e., even-colored transitions).

Example 3: Fig. 1(b) shows a DPA derived from the LTL
formula “ϕ = (♦�working ∧�♦charging) ∨ ♦�charging .”
The executions visiting q0 and q1 infinitely many times make
the interstate transitions colored with 2 infinitely many times.
Since 2 is an even number and the largest color in this DPA,
regardless of how many times the transitions colored with 1 or
0 are made, these executions would not be accepted. Therefore,
any accepting execution, after some finite time steps, must stay
forever in either q0 or q1. The executions staying in q0 are
accepting only if they receive the label {charging,working}
infinitely many times and the label {} finitely many times,
hence satisfying ♦�working ∧�♦charging . In addition, the
accepting executions staying in q0 receive the labels {charging}
or {charging,working}, thus satisfying ♦�charging.

D. Problem Statement

We can now formalize the problem considered in this work.
Problem 1: For a given LTL task specification ϕ and an

SGG where the transition probabilities are completely unknown,
design a model-free RL approach to learn an optimal controller
strategy under which the given LTL tasks are performed success-
fully with the highest probability in the worst case (i.e., against
an optimal adversary).

We consider control strategies maximizing the worst-case
performance, in order to provide robust performance guarantees
against unpredictable and potentially adversarial environmental
behaviors. When the environment does not act as an optimal
adversary, the learned controller strategy can exhibit an even
higher probability of successfully performing the task. On the
other hand, while there may exist superior controller strategies
against a suboptimal adversary, the tradeoff is that adopting such
strategies could lead to even zero satisfaction probability as soon
as the adversary becomes optimal. Therefore, considering the
worst-case scenario may be necessary, especially in the context
of safety-critical systems.

Formally, our objective is to learn a controller strategy μϕ

for the SG G such that under μϕ, the probability that a path π
satisfies the LTL specification ϕ of the given task is maximized
in the worst case, i.e.,

μϕ := argmax
μ

min
ν

Prπ∼Gμ,ν
{π | π |= ϕ} (1)

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

BOZKURT et al.: LEARNING OPTIMAL STRATEGIES FOR TEMPORAL TASKS IN STOCHASTIC GAMES 7391

where μ and ν are finite-memory controller and adversarial
strategies from Definition 2, and Prπ∼Gμ,ν

{π | π |= ϕ} denotes
the probability that a path drawn from Gμ,ν satisfies ϕ.

Model-free RL algorithms such as minimax-Q [42] require a
discount factor, which can be considered as the probability of
continuing the game, and a reward function providing a scalar
reward after each transition for guidance, and therefore cannot
learn directly from the LTL specifications. Hence, we solve
Problem 1 by crafting rewards and discount factors from the
given LTL specification in a way that a model-free RL algorithm
can efficiently learn an optimal strategy from (1) by maximizing
the minimum expected value of the return, which is the sum of
the discounted rewards.

III. REDUCTION FROM LTL SPECIFICATIONS TO REWARD

RETURNS

In this section, we introduce a reduction from Problem 1 to
the problem of learning a controller strategy maximizing the
worst-case return. We start by constructing a product game by
composing the given SG with the DPA derived from the given
LTL specification of the desired task. We then introduce novel
rewards and discount factors for each set in the acceptance
condition of the DPA, and show that for any memoryless strategy
pair, the expected sum of the discounted rewards approaches the
probability of satisfying the parity condition as rewards approach
zero.

A. Product Game Construction

By constructing a product game, the problem of learning an
optimal controller strategy for an LTL task ϕ in an SG G is
reduced to meeting the parity condition of the derived DPA Aϕ.

Definition 4: A product game of an SG G and a DPA Aϕ is
a tuple G× = (S×, (S×

μ , S
×
ν), s

×
0 , A

×, P×, κ, C×) where S× =

S×Q is the set of product states;S×
μ = Sμ×Q andS×

ν = Sν×Q
are the controller and adversary product states, respectively;
s×0 = 〈s0, q0〉 is the initial state; A× = A with A×(〈s, q〉) =
A(s) for all s∈S, q∈Q; P×:S××A××S×�→[0, 1] is the prob-
abilistic transition function such that

P (〈s, q〉, a, 〈s′, q′〉) =
{
P (s, a, s′), if q′ = δ(q, L(s))

0, otherwise
(2)

and C× : S× �→ {0, . . . , κ−1} is the product coloring func-
tion such that C×(〈s, q〉) = C(q, L(s)). A path π× =
〈s0, q0〉〈s1, q1〉 . . . in a product game meets the parity condition
if it holds that

ϕ× := “max
{
C×(s×) | s× ∈ Inf×(π×)

}
is odd” (3)

where Inf×(π×) is the set of product states visited infinitely
many times by π×.

The product game G× effectively captures this synchronous
execution of the SG G and the DPA Aϕ; they start in the initial
states, and whenever G moves to a state, Aϕ consumes the label
of the state and makes a transition. For example, when G is
in state s and Aϕ is in q, the product game G× is in 〈s, q〉. If
the SG moves to s′, the DPA moves to the state q′ = δ(q, L(s′)),
represented by the product game transition from 〈s, q〉 to 〈s′, q′〉.

This implies a one-to-one mapping between the paths of G and
G×.

Lemma 1: For a given SG G, a DPA Aϕ and their prod-
uct game G×, let π = s0s1 . . . be a path in G and π× =
〈s0, q0〉〈s1, q1〉 . . . be the corresponding path in G×. Then(

π× |= ϕ×) ⇔ (π |= ϕ) . (4)

Proof: It holds from the definition of SGs, as the DPA Aϕ

makes a transition colored with k if and only if a product state
〈s, q〉 colored with k is visited in the product game G×. �

A strategy in G× induces a finite-memory strategy in G where
the states of Aϕ act as the modes governed by the transition
function of Aϕ. To illustrate this, let μ× denote a pure mem-
oryless strategy in G× and μ denote its induced strategy in G.
While μ is operating in mode m corresponding to the DPA state
q, if a state s is visited in G, μ changes its mode from m to m′,
corresponding to the DPA state q′ = δ(q, L(s′)); as a result, μ
chooses the action that μ× selects in 〈s′, q′〉.

Hence, from Lemma 1, the probability of satisfying the parity
condition ϕ× under a strategy pair (μ×, ν×) in the product game
G× is equal to the probability of satisfying the LTL specification
ϕ in the SG G under the induced strategy pair (μ, ν); this is
formalized in the following lemma.

Lemma 2: For a given strategy pair (μ×, ν×) in the product
game G× and its induced strategy pair (μ, ν) in G, let π and
π× be random paths drawn from the MCs Gμ,ν and G×

μ×,ν× ,
respectively. Then

Pr {π | π |= ϕ} = Pr
{
π× | π× |= ϕ×} . (5)

Proof: Follows from Lemma 1, since there is a one-to-one
mapping between the paths of Gμ,ν and G×

μ×,ν× . �
Example 4: Fig. 1(c) presents the product game G× obtained

from the SG G in Fig. 1(a) and the DPA Aϕ of the LTL task ϕ
in Fig. 1(b). In G, if the adversary follows a pure memoryless
strategy, the controller can almost surely win the game in the
sense that ϕ is satisfied by taking “go down” in “Entrance.”
This eventually leads to “Charger (Agent-On),” from which
G can alternate either between “Charger(Agent-On)” and
“Workspace” (satisfying ♦�working∧�♦charging), or
between “Charger(Agent-On)” and “Charger(Agent-Off)”
(satisfying ♦�charging); thus, ϕ is satisfied. However, the
adversary can win in the G× by following a pure memoryless
strategy that chooses “turn OFF” in 〈Charger(Agent-On), q0〉 and
“move” in 〈Charger(Agent-On), q1〉 as in this case, the largest
color in the obtained infinite cycle 〈Charger(Agent-On), q0〉 →
〈Charger(Agent-Off), q0〉 → 〈Charger(Agent-On), q1〉 →
〈Workspace, q1〉 → 〈Charger(Agent-On), q0〉 → . . . is 2
(even). This pure memoryless strategy in G× induces a
finite-memory strategy in G that alternates between the modes
m0 and m1, under which “turn OFF” and “move” are selected
in “Charger(Agent-On)” respectively, where m0 and m1

correspond to the DPA states q0 and q1.
We use Prμ×,ν×(s× |= ϕ×) to denote the probability that a

state s×∈S× satisfies the parity condition ϕ× under strategies
(μ×, ν×); i.e.,

Prμ×,ν×(s× |= ϕ×) := Pr
{
π×∈Π×s×

μ×,ν× | π× |= ϕ×
}

here,Π×s×

μ×,ν× denotes the set of all paths of the product MCG×,s×

μ×,ν×

that is obtained from G×
μ×,ν× by assigning s× as the initial state.

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

7392 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024

Therefore, from Lemma 2 and the fact that pure memoryless
strategies suffice for the parity condition [23], our objective can
be revised as learning a pure memoryless strategy defined as

μ×
ϕ× := argmax

μ×
min
ν×

Prμ×,ν×(s×0 |= ϕ×) (6)

in the product game G×. The strategy μ×
ϕ× is then used to induce

the finite-memory strategy μϕ from (1) in the initial game G.

B. Reduction From Parity to Return

To obtain optimal strategies from (6) via model-free RL, we
introduce a reward function R×

ε :S
× �→R and a state-dependent

discount function γ×
ε : S× �→ [0, 1), parameterized by ε as

R×
ε (s

×) :=

{
εκ−C×(s×), if C×(s×) is odd
0, if C×(s×) is even

(7)

γ×
ε (s

×) := 1− εκ−C×(s×) (8)

where κ is the number of colors. The idea behind the rewards
structure is to encourage the agent to repeatedly visit a state
colored with an odd number as large as possible by assigning
a larger reward to the states with larger odd colors. Further, the
rewards are discounted more in the states with larger colors to
reflect the parity condition and to keep the return bounded. The
parameter ε should be sufficiently small so that the effect of
finitely visited states on the return becomes negligible.

We slightly extend the definition of the return of a suffix of a
pathπ×[t:], denoted byG×

ε (π
×[t:]), for state-dependent discount

factors as

G×
ε (π

×[t:]) :=
∞∑
i=t

⎛
⎝i−1∏

j=0

γ×
ε (π

×[j])

⎞
⎠R×

ε (π
×[i]). (9)

Now, the return of the entire path is simply G×
ε (π

×) :=
G×

ε (π
×[0:]). We further use v×ε,μ×,ν×(s×) to denote the expected

return of the paths starting from a state s× under a strategy pair
(μ×, ν×), which is formally defined as

v×ε,μ×,ν×(s
×) := E

π×
s×∼G×,s×

μ×,ν×

[
G×

ε (π
×
s×)

]
. (10)

We now establish a connection similar to the Blackwell opti-
mality [43] between the values and satisfaction probabilities, and
show that as ε approaches 0, the value of each state approaches
the probability of satisfying ϕ starting from that state.

Theorem 1: For a given product game G× and a pure memo-
ryless strategy pair (μ×, ν×), it holds for any s×∈S× that

lim
ε→0+

v×ε,μ×,ν×(s
×) = Prμ×,ν×(s× |= ϕ×). (11)

Before proving Theorem 1, we provide several lemmas.
Throughout this section, (μ×, ν×) denotes an arbitrary but fixed
strategy pair in a given product game G×; and we omit the
subscripts from E

π×
s×∼G×,s×

μ×,ν×
, Prμ×,ν× , v×ε,μ×,ν× and use E, Pr,

v×ε instead to simplify our notation.
We first establish bounds on the returns of the paths of G×.

In the following lemma, the first inequality (12) states that the
returns and thereby the values are always between 0 and 1.
The second inequality (13) states that changing the color of a
state on a path to a larger odd number increases the return of the

path. Similarly, the third inequality (14) states that changing the
color to a larger even number decreases the return.

Lemma 3: For a given product game G×, the following hold
for any path π× and any time step t ≥ 0

0 ≤ G×
ε (π

×[t:]) ≤ 1 (12)

G×
ε (π

×[t:]) ≤ εκ−k+(1−εκ−k)G×
ε (π

×[t+1:]) (13)

G×
ε (π

×[t:]) ≥ (1−εκ−k)G×
ε (π

×[t+1:]) (14)

where k = min{κ,C×(π×[t]) + 1}.
Proof: The lower bound in (12) holds since there is no nega-

tive reward. Now, assume that we can change the colors of the
states at each time step. In this case, the maximum return can
be obtained by assigning the same odd color to all the states,
which results in a return εκ−k + εκ−k(1− εκ−k) + εκ−k(1−
εκ−k)2 + · · · = 1, concluding the upper bound in (12) holds.
By definition, for a given color k′, the return can be written
recursively as

G×
ε (π

×[t:]) =

{
εκ−k′

+(1−εκ−k′
)G×

ε (π
×[t+1:]), if k′ is odd(

1−εκ−k′)
G×

ε (π
×[t+1:]), if k′ is even.

(15)

From (12), (15), and ε ∈ (0, 1], we obtain (13) and (14) as

G×
ε (π

×[t:]) ≤ εκ−k′
+
(
1−εκ−k′

)
G×

ε (π
×[t+1:])

= εκ−k′
(1−G×

ε (π
×[t+1:])) +G×

ε (π
×[t+1:])

≤ εκ−k(1−G×
ε (π

×[t+1:])) +G×
ε (π

×[t+1:])

= εκ−k +
(
1−εκ−k

)
G×

ε (π
×[t+1:]) (16)

G×
ε (π

×[t:]) ≥
(
1−εκ−k′

)
G×

ε (π
×[t+1:])

≥
(
1−εκ−k

)
G×

ε (π
×[t+1:]) (17)

since k′ ≤ k. �
The parity condition of a product game is defined over the

recurrent states, i.e., the states that are visited infinitely many
times, in a product game. In the MC induced by a strategy pair,
a state is recurrent if and only if it belongs to a BSCC of the
MC as the paths almost surely reach a BSCC and visit its states
infinitely often. If the largest color among the colors of the states
in a BSCC is an odd number, the BSCC is called accepting as
all the paths reaching the BSCC satisfy the parity condition.
Similarly, if the largest color is an even number, then the BSCC
is called rejecting. Thus, the probability of satisfying the parity
condition can be obtained by computing the probability of reach-
ing an accepting BSCC (see the proofs provided for the Rabin
condition in [1]).

In the following lemma, we show that the values of the states
in a BSCC approach 1 if the BSCC is accepting and 0 otherwise.
Using this lemma, we then prove Theorem 1 by showing that the
values approach the probability of reaching accepting BSCCs.

Lemma 4: For a BSCCV× ∈ B(G×
μ×,ν×), and for all s× ∈ V×,

it holds that

lim
ε→0+

v×ε,μ×,ν×(s
×) =

{
1, if V× is accepting
0, if V× is rejecting.

(18)

Proof: To simplify our notation, for a BSCC V× ∈
B(G×

μ×,ν×), we let kV× denote the largest color among the colors

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

BOZKURT et al.: LEARNING OPTIMAL STRATEGIES FOR TEMPORAL TASKS IN STOCHASTIC GAMES 7393

of the states in V×, i.e.,

kV× := max
{
C×(s×) | s× ∈ V×} (19)

and we let rV× denote εκ−kV× .
We first consider the case where kV× is an odd number; i.e.,

V× is accepting. Let s×∗ ∈ V× be a state colored with kV× . AsV×

is a BSCC, a path π×
s×∗

, starting from s×∗ , almost surely visits s×∗
and the other states in V× infinitely many times. By Lemma 3,
we can obtain a lower bound on v×ε (s

×
∗), the expected value of

the return of π×
s×∗

, by replacing the colors of the states other than
s×∗ by kV×−1. Let N be the number of time steps between two
consecutive visits to s×∗ , then

v×ε (s
×
∗) ≥ rV×+(1−rV×)E

[
(1−εrV×)NG×

ε (π
×
s×∗
[N :])

]
.

Now, by Jensen’s inequality and the Markov property, we can
simplify the bound as

v×ε (s
×
∗) ≥ rV×+(1−rV×)(1−εrV×)nv×ε (s

×
∗) (20)

where n := E[N]. From this inequality and the fact that v×ε (s
×
∗),

rV× , and ε are all between 0 and 1, we further obtain

v×ε (s
×
∗) ≥

rV×

1− (1−rV×)(1−εrV×)n

≥ rV×

1− (1−rV×)(1−nεrV×)

=
1

1− nε(1− rV×)
. (21)

As ε goes to 0, nε(1− rV×) goes to 0 as well, which makes
v×ε (s

×
∗) go to 1.

Furthermore, we can derive a lower bound on the value of any
state s× ∈ V× in a similar way as

v×ε (s
×) ≥ (1−εrV×)n

′
v×ε (s

×
∗) (22)

where n′ is the expected number of time steps between leaving
s× and reaching s×∗ . Since n′ is a constant, (1−εrV×)n

′
along

with v×ε (s
×
∗) goes to 1 as ε goes to 0, making v×ε (s

×) goes to
1. Thus, since the lower bounds go to 1 when ε → 0+ and the
values are bounded above by 1 due to (12), we have that (18)
holds when V× is accepting.

We now consider the case where kV× is an even number (i.e.,
V× is rejecting). Similarly to the previous case, from Lemma 3,
we obtain the following upper bound by changing the colors of
the states other than s×∗ with kV×−1, i.e.,

v×ε (s
×
∗) ≤ (1−rV×)E

[
1− (1−εrV×)N

+ (1−εrV×)NG×
ε (π

×
s×∗
[N :])

]
(23)

whereN is defined as in the previous case. Again, from Jensen’s
inequality, the Markov property, and the fact that 1−εrV× and
1−rV× are between 0 and 1, we obtain that

v×ε (s
×
∗) ≤ 1−(1−εrV×)n+(1−rV×)v×ε (s

×
∗) (24)

where n′ is expected value of N . Hence, it holds that

v×ε (s
×
∗) ≤

1−(1−εrV×)n

rV×
≤ nεrV×

rV×
= nε. (25)

Using this inequality, we obtain the upper bound

v×ε (s
×) ≤ (1−εrV×)n

′
+ v×ε (s

×
∗) ≤ (1−εrV×)n

′
+ nε

on any state s× ∈ V× where n′ is defined as in the previous case.
Since n and n′ are constant, this upper bound goes to 0 as ε goes
to 0, which, by (12), concludes the proof. �

With the above results, we now prove Theorem 1.
Proof. [Theorem 1]: The probability that the parity condition

is satisfied from a state s× ∈ S×, denoted by Pr(s× |= ϕ×), is
equivalent to the probability that a path π×

s× , which starts in s×,
reaches an accepting BSCC. Let U×

+ and U×
− denote the union

of all the states belonging to accepting and rejecting BSCCs,
respectively; then we can express the value as

v×ε (s
×) = E

[
G×

ε (π
×
s×) | π×

s× |= ♦U×
+

]
Pr(s× |= ϕ×)

+ E
[
G×

ε (π
×
s×) | π×

s× |= ♦U×
−
]
Pr(s× �|= ϕ×).

(26)

Let m+ denote the expected number of time steps until an
accepting BSCC is reached. Using Lemma 3, we can obtain a
lower bound on the value by changing the colors of all transient
states to the largest even number; i.e.,

v×ε (s
×) ≥ (1−ε)m+v×ε (U×

+)Pr(s× |= ϕ×) (27)

where v×ε (U×
+) := mins×∈U×

+
v×ε (s

×). From Lemma 4, this lower

bound goes to Pr(s× |= ϕ×) as ε goes to 0.
Similarly, let m− denote the expected number of time steps

until a rejecting BSCC is reached. As changing the colors of all
transient states to the largest odd number increases the return
due to Lemma 3, the following upper bound on the value:

v×ε (s
×) ≤ (1−εrV×)m−v×ε (U×

−)Pr(s× �|= ϕ×)

+ Pr(s× |= ϕ×) (28)

holds, where v×ε (U×
−) := maxs×∈U×

−
v×ε (s

×); this bound goes to
0 as ε goes to 0 due to Lemma 4.

Since both the lower bound (27) and the upper bound (28)
go to Pr(s× |= ϕ×) as ε → 0+, it follows that v×ε (s

×) goes to
Pr(s× |= ϕ×) as ε → 0+, concluding the proof. �

IV. LAZY COLOR GENERATION

In this section, we introduce a framework that efficiently
uses the rewards and discount factors established in the pre-
vious section to learn optimal strategies. For a given number of
colors κ, the functions in (7) and (8) provide κ distinct rewards
and discount factors. Larger discount factors are used in the
states with smaller colors so that visiting such states affects the
return less than the ones with larger colors. However, if κ is
large, the discount factors could be too large for the smaller
colors. For example, for ε = 0.01 and κ = 7, the discount factor
for the color 0 is very close to 1 (i.e., 1−10−14), and thus, would
extremely slowdown learning convergence.

To address this problem, we modify the design of the product
game; we start with a product game having only a single color
and increase the number of colors only when a new color is
needed. The key idea is that if the large colors are not necessary to
learn an optimal strategy, then there is no need to specify distinct
reward and discount factors for them; thus, smaller discount
factors can be also used for small colors.

Definition 5: A multilevel product game (MPG) G�

of a product game G× is a tuple G� = (κ, S�, (S�
μ, S

�
ν),

s�0, A
�, P �, R�, γ�) where κ is the number of colors (levels)

and [κ] := {1, . . . , κ}; S� = S××[κ] is the set of multilevel

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

7394 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024

product states; S�
μ = S×

μ×[κ] and S�
ν = S×

ν ×[κ] are the con-
troller and adversary multilevel product states respectively;
s�0 = 〈s×0 , 1〉 is the initial state; A� = A× is the set of actions;
P �:S�×A�×S� �→[0, 1] is the probabilistic transition function
such that P �(〈s×, κ̄〉, a�, 〈s×′

, κ̄′〉) :=

P×(s×, a�, s×
′
) ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
τε, if κ̄′ > κ̄ and C×(s×) = κ̄′−1

1−τε, if κ̄′ = κ̄ and C×(s×) ≥ κ̄

1, if κ̄′ = κ̄ and C×(s×) < κ̄

0, otherwise
(29)

where τε is a function of ε satisfying limε→0+
ε
τε

= 0 and R� :

S� �→ [0, 1] and γ� : S� �→ [0, 1] are the reward and discount
functions, respectively, such that

R�
ε(〈s×, κ̄〉) :=

{
εκ̄−C�(〈s×,κ̄〉), if C�(〈s×, κ̄〉) is odd
0, if C�(〈s×, κ̄〉) is even

γ�
ε (〈s×, κ̄〉) := 1− εκ̄−C�(〈s×,κ̄〉) (30)

where C�(〈s×, κ̄〉) := min{C×(s×), κ̄−1}.
The MPG G� of a product game G× has a copy of G× for each

level κ̄ ∈ {1, . . . , κ}. In the κ̄th level, the reward and discount
factors are specified as if κ̄ is the total number of colors and κ̄−1
is the largest color; thus, the colors greater than κ̄−1 in the κ̄th
level copy of G× are truncated to κ̄−1. This results in smaller
discount factors and larger rewards for lower levels, thereby
speeding up learning.

In addition, as long as the colors of the states visited infinitely
often are less than κ̄ in the κ̄th level, the return of a path
approaches the probability of satisfying the parity condition as
ε goes to 0. This is because the effect of the states visited only
for a finite number of times on the return vanishes as ε goes to
0, as shown in the proof of Theorem 1. Therefore, truncating
the larger colors to κ̄−1 does not change the return in the limit.
However, this does not hold if a state with a color k ≥ κ̄ is
visited infinitely often as it might alter the satisfaction of the
parity condition. In such cases, a transition to the (k+1)th level
needs to be made to reflect the parity condition.

The main challenge here is that since the transition model
of the initial SG G (and thus, G× and G�) is unknown, it is not
possible to determine in advance whether a state with a color k ≥
κ̄ is visited infinitely often under a strategy pair. Consequently,
our key idea is to allow for probabilistic transitions between
levels so that repeated visits can lead to upper levels. Specifically,
the transitions of the multilevel game G� are constructed in (29)
in a way that it is impossible to make a transition from the κ̄th
level to the κ̄′th level if κ̄′ < κ̄, and a transition from a state s×

in the κ̄th level to the κ̄′th level can happen w.p. τε (i.e., stays
in the same level w.p. 1− τε) only if κ̄′ > κ̄ and C×(s×) = κ̄′.
Such probabilistic transitions ensure that repeatedly visiting a
state with a color k ≥ κ̄ in the κ̄th level almost surely results in
a transition to the level where the color k is the largest color.

This captures our goal that, in order to accelerate learning,
the larger colors in the parity condition should be considered
only when needed. If the first κ̄ colors are sufficient to reflect the
parity condition for the strategies being followed, G� stays in the
κ̄th level and uses only κ̄ distinct rewards and discount factors;
and if they are not, G� eventually moves to an upper level where
more colors are considered to provide a sufficient number of

distinct rewards and discount factors. However, the transitions
to the lower levels are not allowed to avoid redundant circular
transitions between the levels as they can possibly distort the
returns.

Now, any pure memoryless strategy pair (μ�, ν�) in the MPG
G� of a product game G× induces a finite-memory strategy
pair (μ×, ν×) in G×, where the levels of G� act as modes, i.e.,
whenever G� transitions to an upper level, the strategies μ×

and ν× switch to the corresponding mode. Hence, we below
capture the result that enables the use of MPGs; we show that
under a strategy pair, the values of the states in G� approach the
probability of satisfying the parity condition in G× as ε goes to
0.

Theorem 2: For the MPG G� of a product game G×, let
(μ�, ν�) be an arbitrary pure memoryless strategy pair in G�

and let (μ×, ν×) be its induced strategy pair in G×. Then, it
holds that

lim
ε→0+

v�ε,μ�,ν�(〈s×, κ̄〉) = Prμ×,ν×(s× |= ϕ×) (31)

for any s× ∈ S× and κ̄ ∈ {1, . . . , κ}.
Proof: A BSCC of the induced MC G�

μ�,ν� cannot contain
states belonging to the different levels since transitions from an
upper level to a lower level are not permitted. Moreover, a BSCC
in the κ̄th level cannot have a state whose color is greater than
or equal to κ̄ because otherwise a transition to an upper level
eventually happens, conflicting with the BSSC definition. This
means that none of the colors in a BSCC is truncated, i.e., there
is a distinct reward and a discount factor for each color. Thus,
from Lemma 4, all the values in a BSCC approach either 1 or 0
depending on whether the BSCC is accepting or rejecting.

We can now complete the proof by following the same steps
as in the proof of Theorem 1. The only difference is that the
number of steps before reaching a BSCC might depend on the
parameter ε and κ in G�

μ�,ν� . However, since τε approaches 0
slower than ε, both (1−ε)κm+/τε and (1−εrV×)κm−/τε go to 1
as ε goes to 0, the same results hold. �

In the MPGs, the probability of transitioning to an upper
level is controlled by the parameter τε [see (29)]. A smaller
τε encourages the controller and the adversary to learn optimal
strategies utilizing a fewer number of colors. For many SGs
for which such optimal strategies exist, this can result in faster
convergence since the discount factors to be used are smaller,
as we demonstrate in our case studies. In addition, the space
complexity of the MPGs is only linear in the total number of
colors, and any model-free RL algorithm is guaranteed to con-
verge to an optimal controller strategy maximizing the minimum
satisfaction probability for a sufficiently small ε, as formalized
below.

Theorem 3: For the MPG G� constructed from the product
game G� of a given SG G and a given LTL specification ϕ,
there exists ε′ > 0 such that for any ε ∈ (0, ε′], a model-free RL
algorithm, such as minimax-Q, converges to a pure memoryless
controller strategy μ�

∗ in G�, and its induced strategy μϕ max-
imizes the minimum probability of satisfying ϕ in G, i.e., μϕ

satisfies (1).
Proof: Since there are only finitely many different pure mem-

oryless strategies that can be followed in an MPG, the number of
possible different satisfaction probabilities that can be obtained
by them is also finite. Thus, the absolute differences between the

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

BOZKURT et al.: LEARNING OPTIMAL STRATEGIES FOR TEMPORAL TASKS IN STOCHASTIC GAMES 7395

Algorithm 1: Model-free RL for LTL tasks.
Input: LTL formula ϕ, unknown SG G, parameter ε
Output: optimal controller strategy μϕ

Translate ϕ to a DPA Aϕ

Construct a product game G× by composing G and Aϕ

Construct the MPG G� from G×

Initialize Q(s�, a) for each state s� and action a
for [do # for each episode]i = 0 to I − 1

for [do # for each time step]t = 0 to T − 1
Derive an e-greedy strategy pair (μ�, ν�) from Q

Take the action at ←
{
μ�(s�t), s�t∈S�

μ

ν�(s�t), s�t∈S�
ν

Observe the next state s�t+1

Q(s�t , at) ← (1− α
i,t
)Q(s�t , at) + α

i,t
R�(s�t)

+α
i,t
γ�(s�t) ·

{
maxa′ Q(s�t+1, a

′), s�t+1∈S�
μ

mina′ Q(s�t+1, a
′), s�t+1∈S�

ν

end for
end for
Derive a greedy controller strategy μ�

∗ from Q
Obtain the induced controller strategy μϕ for G from μ�

∗
from Q

satisfaction probabilities for different strategy pairs are either 0
or greater than for some d > 0. Hence, from Theorem 2, for the
MPG G� of the product game G× constructed from an SG G and
an LTL task ϕ, there exists ε′ > 0 such that for all ε ∈ (0, ε′], it
holds that

v�ε,μ�
1 ,ν

�
1
(〈s×, κ̄〉) > v�ε,μ�

2 ,ν
�
2
(〈s×, κ̄〉)

⇐⇒ Prμ×
1 ,ν

×
1
(s× |= ϕ×) > Prμ×

2 ,ν
×
2
(s× |= ϕ×) (32)

for any two pure memoryless strategy pairs (μ�
1, ν

�
1) and (μ�

2, ν
�
2)

in G� and their induced strategy pairs (μ×
1 , ν

×
1) and (μ×

2 , ν
×
2) in

G×.
As a result, a memoryless controller strategy μ�

∗ maximizing
the minimum expected return in G� induces a finite-memory
strategy μ×

ϕ× maximizing the minimum probability of satisfying
the parity condition in G×. Additionally, from Lemmas 1 and 2,
μ×
ϕ× further induces a finite-memory strategy μϕ in G that max-

imizes the probability of satisfying ϕ in the worst case. Finally,
since all the discount factors are strictly less than 1 and all the
rewards are Markovian, under regular conditions on the learning
rate and the exploration strategy, a model-free RL algorithm such
as minimax-Q [42] is guaranteed to converge to such optimal
strategies. We note that using state-dependent discount factors
does not violate the convergence conditions of minimax-Q. The
largest discount factor in (30), i.e., (1−εκ−1) < 1, can be used
as the contraction index in the convergence proofs (e.g., see [44]
and [45]).

Our result also suggests a PAC algorithm based on the min-
imum transition probability as discussed in [46]. However, the
convergence rate of such an algorithm could be arbitrarily slow
depending on the minimum transition probability in the SG.
In cases where multiple optimal controller strategies exist, the
converged strategies tend to satisfy the specifications as quickly
as possible due to discounting. �

The overall approach is summarized in Algorithm 1, which
takes as input an LTL formula ϕ, an SG G, and a parameter
ε. The algorithm first translates ϕ into a DPA Aϕ and com-
poses it with G to construct the product game G×. Then, it
obtains the MPG G� of G×. Since G is unknown, the transition
probabilities and the graph topologies of G, G×, and G� are
unknown.

In each episode, Algorithm 1 starts in the initial state and
follows a e-greedy strategy pair, under which a random ac-
tion is taken w.p. e and a greedy action is taken w.p. 1− e.
At each time step t, after taking an action a, the next state
s�t+1 is observed and Q(s�t , a) is updated according to the
minimax-Q algorithm [42] using a properly decreasing learn-
ing rate α

t,i
. Each episode terminates after T time steps,

and after I episodes, a greedy controller strategy is derived
from the Q-values, then used to induce the controller strategy
for G.

V. THREE-COLOR APPROXIMATION

In this section, we provide a modified version of the MPGs for
the scenarios where the controller can learn optimal strategies
by eventually focusing only on a single odd color. The idea here
is that controller nondeterministically decides to focus on an
odd color k, and once the controller decides, the colors smaller
than k are replaced with the color 0, the colors larger than k
are replaced with the color 2, and finally, the color k is replaced
with the color 1. This results in three distinct reward and discount
factors regardless of the actual number of colors; thus, improving
the convergence rate in the worst case compared to the lazy color
generation.

Such an approach, however, may not yield optimal strategies
if the adversary can observe and make use of the controller’s
decision. Nonetheless, in many scenarios, if the controller care-
fully chooses when to decide to ensure that, after the decision,
the adversary cannot follow a strategy under which a state with
a color larger than the focused color is repeatedly visited, the
adversary cannot benefit from observing the decision.

To reflect this approach, we modify the MPGs as follows.
Definition 6: A three-color multilevel product game

(TMPG) G�̂ of a product game G× is a tuple G�̂ =
(κ, S�̂, (S�̂

μ, S
�̂
ν), s

�̂
0, A

�̂, P �̂, R�̂, γ�̂) where κ is the number
of colors and [κ]odd := {k ∈ [κ] | k is odd}; S�̂ = S××[κ]odd

is the set of multilevel product states; S�̂
μ = S×

μ×[κ]odd and
S�̂
ν = S×

ν ×[κ]odd are the controller and adversary multilevel
product states respectively; s�̂0 = 〈s×0 , 1〉 is the initial state;
A�̂ = A× ∪ {βi | i > 1 and i ∈ [κ]odd} is the set of actions;
P �̂:S�̂×A�̂×S�̂ �→[0, 1] is the probabilistic transition function
such that P �̂(〈s×, κ̄〉, a�̂, 〈s×′

, κ̄′〉) :=⎧⎪⎨
⎪⎩
P×(s×, a×, s×′

), if κ̄′ = κ̄ and a�̂∈A×(s×)

1, if κ̄′>κ̄, a�̂ = βκ̄ and s×′
= s×∈S×

μ

0, otherwise

and R�̂ : S�̂ �→ [0, 1] and γ�̂ : S�̂ �→ [0, 1] are the reward and
discount functions, respectively, such that

R�̂
ε(〈s×, κ̄〉) :=

{
ε2, if C×(s×) = κ̄

0, otherwise
(33)

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

7396 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024

γ�̂
ε (〈s×, κ̄〉) :=

⎧⎪⎨
⎪⎩
1− ε, if C×(s×) > κ̄

1− ε2, if C×(s×) = κ̄

1− ε3, if C×(s×) < κ̄.

(34)

The TMPG G�̂ of the product game contains a copy of the
product game G× for each odd color. The game starts in the
first level, and in the κ̄th level, the controller can nondetermin-
istically take a βκ̄′ action to transition to the κ̄′th level where
κ̄′ is an odd number larger than κ̄. In the κ̄th level, there are
three distinct discount factors 1− ε, 1− ε2, and 1− ε3 for
the colors larger than κ̄, the color κ̄, and the colors smaller than κ̄,
respectively. The controller’s nondeterministic decision to focus
on a particular odd color is represented by taking a β-action. The
restriction in a TMPG is that after focusing on an odd color, the
controller can only make a decision to focus on a larger color.
This prevents cyclic transitions between the levels of the TMPG.

We now show that the values of the states in a TMPG provide
a lower bound for the satisfaction probabilities.

Theorem 4: For the TMPG G�̂ of a product game G×, let
(μ�̂, ν �̂) be an arbitrary pure memoryless strategy pair in G�̂

and let (μ×, ν×) be its induced strategy pair in G×. Then

lim
ε→0+

v�̂ε,μ�̂,ν�̂(〈s×, κ̄〉) ≤ Prμ×,ν×(s× |= ϕ×) (35)

for any s× ∈ S× and κ̄ ∈ [κ]odd.
Proof: Any path under any strategy pair in a TMPG eventu-

ally reaches a level where it stays forever because there is no
transition from an upper level to a lower level. As ε goes to
0, the return of a path approaches 1 only if the states with the
color κ̄ in the κ̄th level are visited infinitely many times, and
approaches 0 otherwise. This can be easily shown by following
similar steps as in the proof of Theorem 1. Since visiting a
state colored with an odd number infinitely often while visiting
the states with larger colors only finitely many times satisfies
the parity condition, the values of the states provide a lower
bound of the satisfaction probabilities as ε goes to 0. �

Theorem 4 implies that a controller strategy maximizing the
minimum values in a TMPG achieves a lower bound on the sat-
isfaction probabilities against an optimal adversary. This lower
bound can be informally described as the probability of reaching
a component in the game where the parity condition is satisfied,
and the adversary cannot change the largest color among the
colors of the states visited infinitely many times. In many SGs,
such components exist and can be almost surely reached, making
the lower bound 1, and thus, the optimal controller strategy for
the TMPG induces a controller strategy in the original SG that
is optimal for the given LTL specification as we show in a case
study in Section VI.

VI. CASE STUDIES

In this section, we illustrate the applicability of our approach
in several case studies focused on robot navigation and control
of a robotic arm. We consider different LTL tasks, larger grids,
continuous state-spaces, continuous action spaces, different lev-
els of stochasticity, and adversarial capabilities to evaluate the
effectiveness and scalability of the methods. In particular, we
compared the performance of our methods with the method from
Hahn et al. [39], which we refer to as the augmented product
game (APG) method; specifically, we evaluated our reduction

[referred to as product game (PG)], lazy color generation (re-
ferred to as MPG), and three-color approximation (referred to
as TMPG) methods. We did not compare with our preliminary
methods from [40] as those do not support general LTL formulas.

A. Robot Navigation

We start with three path-planning case studies where a robot
needs to learn to navigate to perform given tasks in planar
environments.

1) Active Adversaries: In the first case study, the environ-
ments are modeled as grids. In these grids, each cell represents
a state, and a robot can move from one cell to a neighbor cell
by taking four actions: up, down, right, and left. An adversary
can observe the actions the robot takes and can act to disturb
the movement so that the robot may move in a perpendicular
direction of the intended direction.

Specifically, there are four actions the adversary may choose
none, cw, ccw, both; for none, the robot will move in the intended
direction w.p. 1; for cw (or ccw), the robot will move in the
intended direction w.p. 0.8, and move in the perpendicular di-
rection that is 90° clockwise (or counter-clockwise, respectively)
w.p. 0.2; for both, the robot will move in any of the perpendicular
directions with w.p. 0.1. The robot cannot leave a trap cell and
if the robot attempts to move towards an obstacle or a grid edge,
the robot does not move and stays in the previous cell.

Fig. 2 captures the considered scenarios. The trap cells are
represented as large empty circles, and the obstacles are repre-
sented as large circles filled with gray. The labels of the cells
(i.e., states) are displayed as encircled letters filled with various
colors.

The core navigation task of the robot is to enter the workspace
(w) and stay there while repeatedly charging (c) and monitoring
the assigned region (r). Alternatively, the robot can go to and stay
in a charging station (c). In addition, the robot must always avoid
the danger zone (d). This entire task can be formally captured
as the LTL formula

ϕ1 := ((♦�w ∧�♦c ∧�♦r) ∨ ♦�c) ∧�¬d. (36)

Fig. 2 illustrates the three ways of performing the task considered
in this case study:

I) reaching and staying in the charging station at (2, 0),
which is not in the workspace;

II) reaching and staying in the charging station at (0, 2) in
the workspace;

III) visiting repeatedly the charging station at (0, 2) and the
assigned region at (0, 3) without leaving the workspace.

We used Owl [47] to automatically translate LTL specifica-
tions into DPAs. The DPA translated from ϕ1 has four states,
and five colors (see Fig. 6). The largest colors among the colors
of the DPA transitions made infinitely often while performing
(I), (II), and (III) are 3, 1, and 3, respectively.

We used minimax-Q [42] to learn the optimal controller strate-
gies. We set ε to 0.01 and τε to

√
ε = 0.1. During the learning

phase, an e-greedy strategy was followed, which chooses ran-
dom actions w.p. e and chooses greedily otherwise. We initially
set e = 1 and gradually decrease it to 0.1 to encourage explo-
ration as both the controller and the adversary need to actively
search for optimal strategies against each other. We gradually
decreased the learning rate α with the number of steps from 0.5

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

BOZKURT et al.: LEARNING OPTIMAL STRATEGIES FOR TEMPORAL TASKS IN STOCHASTIC GAMES 7397

Fig. 2. Environments and the obtained learning curves for the case studies in Sections VI-A1 and VI-A2. The shaded regions are the quarter of
the standard deviations. The results are smoothed by moving averages for better visualization. In the environments, the encircled letters are labels,
the empty circles are trap cells; the filled circles are obstacles, and the arrows are optimal controller actions. The blue, red, green, and black learning
curves are for the PG, MPG, TMPG, and APG methods. (a) Environment I (Discrete). (b) Environment II (Discrete). (c) Environment III (Discrete).
(d) Environment I (Continuous). (e) Environment II (Continuous). (f) Environment III (Continuous).

Fig. 3. Environment for the case study in Section VI-A3. The encircled
letters are labels, the empty circles are trap cells; the filled circles are
obstacles. The arrows represent two ways of satisfying the LTL task
ϕ2 from (37) where the colors of the arrows represent the satisfaction
probabilities.

to 0.05. Each episode started in the cell at (0, 0) and terminated
after a T = 103 time steps. We evaluated the performance of
the learned controller strategies against the optimal adversary
strategies. We formally derived the optimal adversary strategies

and the associated minimum satisfaction probabilities from the
full specification of the underlying SG using the PRISM model
checking tool [48]. The learning curves of the methods for each
environment are shown in the second row of Fig. 2 where the
probabilities are averaged over 10 simulations.

In the first environment, learning to perform (I) is a simple
task as the cell (2, 0) containing the charging station aimed
to be reached is a trap cell, and the corresponding color 3 is
large (yielding smaller discount factors) relative to the largest
color 4. Thus, MPG and TMPG do not have any advantage
over PG. However, the performance of MPG and TMPG is
not significantly less than the one of PG despite the increased
space complexity as shown in Fig. 2(a). APG performs poorly
compared to these methods as the rewards provided by APG are
very sparse.

In the second environment, learning to perform (II) is harder
since the corresponding color is 1, resulting in large discount
factors. TMPG outperforms the other methods as (II) can be
performed by merely focusing on the color 3. The performance
of MPG is significantly better than the ones of PG and APG
as the task can be performed in the second level. However,
the performance is slightly less than TMPG because of the
transitions to the upper levels that can happen with a small

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

7398 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024

Fig. 4. Learning curves for the case study in Section VI-A3. The shaded regions are the quarter of the standard deviations, and the results are
smoothed by moving averages for better visualization. (a) Start Cell: (0, 0). (b) Start Cell: (9, 0). (c) Start Cell: (9, 9).

Fig. 5. Environment and the obtained learning curves for the robotic arm tasks in Section VI-B. The shaded regions are the quarter of the standard
deviations, and the results are smoothed by moving averages for better visualization. (a) Robot trying to repeatedly reach the green and the blue
balls while staying in the rectangular boundary and avoiding the red ball placed by the adversary. (b) Task 1. (c) Task 2.

Fig. 6. DPA constructed from the LTL task specification ϕ1 from (36) using Spot [57].

probability. PG could not converge until 108 steps due to the
large discount factors. APG did not converge even with 109

steps as the probability of getting a positive reward is 10−8.
In the third environment, learning to perform (III) is consid-

erably harder as two cells need to be repeatedly visited without
reaching the danger zone in the presence of adversarial actions.
The controller must take the action left in the cells (0, 3), (1, 3),

and (2, 3) because otherwise, the adversary can eventually pull
the robot to the danger zone. MPG significantly outperforms
the other methods as shown in Fig. 2(c), and PG is slowly
converging. TMPG failed to converge as this task requires two
colors, 3 and 1 to be focused, corresponding to (II), and the
reaching and staying in the cell (2, 3). If the controller focuses
on 3, the adversary can pull the robot to the cell (2, 3), which

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

BOZKURT et al.: LEARNING OPTIMAL STRATEGIES FOR TEMPORAL TASKS IN STOCHASTIC GAMES 7399

requires focusing on 1, and if the controller focuses on 1, the
adversary can pull the robot out of (2, 3). APG, in this case as
well, failed to converge.

Overall, our MPG method outperforms our methods PG and
TMPG, as well as the existing method APG for a general
LTL task. TMPG performs better than MPG if the task can be
performed by focusing on only one color; however, it could
perform poorly otherwise. Finally, the existing APG method
is significantly outperformed by our methods due to its pro-
hibitively sparse rewards.

2) Continuous Environments: In this case study, the en-
vironments are the continuous version of the environments in
the first case study. The state space is defined as the continuous
(y,x)-position of the robot where the origin is at the top left
corner and the positive directions of y and x are downwards and
rightwards, respectively. Similar to the first case study, the robot
can take four actions to move in four directions. The robot moves
1 unit in the intended direction perturbed by bivariate Gaussian
noise with a variance of σ2I where σ is 0.05 and I is a 2× 2
identity matrix. The noise is truncated to fit in a circle with a
radius of 4σ.

The adversary is located within the obstacle at (2.5, 2.5),
and can take the actions push and pull to move the robot
towards or away from the obstacle. Specifically, let (y, x)
denote the position of the robot; then the adversary can perturb
the x-position of the robot if y is in [2, 3] and can perturb the
y-position of the robot ifx is in [2, 3]. The amount of perturbation
is drawn from a uniform distribution over the interval [0, 2].
Similar to the previous case study, the robot cannot leave a trap
region, cannot go inside the obstacle, and is constrained by
the borders of the environment; if the robot attempts, the robot
moves and remains on the borders or the edges of the obstacle.
A position (y, x) in the continuous versions of the environments
has the characteristics of the corresponding grid cell, e.g., same
label, being a trap or an obstacle. The robot needs to learn how
to map these continuous positions to actions to perform the LTL
task ϕ1 from (36) against any adversary strategy.

We adopted deep RL techniques to learn the controller and
adversary strategies. We modified deep Q-Network (DQN) [49],
[50] to include adversarial actions and minimax-Q updates. We
used the default parameters with two hidden layers of size 64.
We set ε = 0.25 to increase discounting and thereby stability
as performing ϕ1 in these environments does not require long-
horizon planning.

In this case study, the optimal adversary strategies and the
corresponding minimum satisfaction probabilities cannot be
derived using the model checking tools such as PRISM [48]
due to the continuous state-space and the nonlinear dynamics.
Instead, in our evaluation, we used a manually crafted optimal
adversary strategy that is to push the robot if the robot is on the
right-hand side of the obstacle, and to pull otherwise.

In addition, since we cannot directly compute the minimum
satisfaction probabilities for the learned controller strategies (as
that would require reasoning on infinite traces), we estimated
them as follows. We considered an episode satisfying if the
largest color in the second half of the episode is an odd number
and occurs at least 20% of the time (a proxy for satisfaction of
repeated reachability condition)—for the environments shown
in Fig. 2, it is reasonable to assume that, on average, one of five
transitions will be colored with the largest odd number visited.

The results, however, are not sensitive to this ratio. We calculated
the estimated satisfaction probability as the ratio of the number
of satisfying paths to the number of all evaluation episodes, and
used 1000 evaluation episodes of length T = 100.

The learning curves of the methods for each environment
against the optimal adversary are shown in the third row of
Fig. 2; the estimated satisfaction probabilities are averaged over
4 simulations. All of our methods converged to an optimal
controller strategy around 106 steps in the first and the second
environments while APG struggled to converge about until 107

steps and exhibited high variance. In the last environment, MPG
outperformed the other methods. PG was able to quickly learn a
near-optimal controller strategy; however, it failed to converge to
an optimal one. Similar to the first case study, TMPG performed
worse than the rest in this environment.

3) Long-Horizon Planning: This case study considers a
larger grid to evaluate the performance of the methods for
long-horizon planning. Here, the robot can deterministically
move to an adjacent cell using the same four actions, and the
adversary can manipulate the position of the garbage area (g)
and the danger zone (d) within the designated regions. Fig. 3
shows the environment and the designated regions considered
in this case study. The initial position of the garbage area is (2,
6), and the adversary can change it to one of (2, 5), (2, 6), and
(2, 7) at any time step w.p. 0.1. Similarly, the initial position of
the danger zone is (5, 1), and the adversary can change it to one
of (5, 0), (5, 1), and (5, 2) at any step w.p. 0.1.

The robot needs to either pick up the garbage (g) and trash
it out (t) in at most two time steps, or repeatedly monitor the
assigned region (r) and go to the charging station (c). The robot
can be formally defined as the following LTL formula:

ϕ2 :=

(
� (♦g ∧ [g → (©t ∨©© t)])

∨ (♦�w ∧�♦c ∧�♦r)
)
∧�¬d. (37)

The DPA obtained from ϕ2 has 9 states, and 4 colors [see
Fig. 6(b) in our corresponding technical report [51]).

There are two possible ways to perform this task: (i) the robot
can repeatedly pick up the garbage at (2, 6) and trash out at (0,
6), or (ii) potentially go through the danger zone and repeatedly
visit the assigned region at (6, 9) and charging station at (9, 9).
Against an optimal policy, (i) cannot be satisfied because the
adversary will eventually move the garbage area to either (2,
5) or (2, 7) from which the robot needs to take at least three
time steps to trash it out. However, the robot can satisfy (ii)
if the robot safely passes the designated region for the danger
zone. The optimal controller strategy is, therefore, to try to pass
the region while avoiding the danger zone and satisfy (ii); and
the optimal adversary strategy is to move the danger zone to the
cell the robot uses to pass the fifth row. As a result, the task can
be almost surely satisfied in the lower part of the grid, and can
be satisfied w.p. 0.9 in the upper part.

We used minimax-Q to learn the optimal controller strate-
gies using the same parameters from the first case study. We
conducted three experiments where the robot starts in cells: (0,
0), (9, 0), and (9, 9) and navigates for T = 1000 environment
steps. Fig. 4 shows the derived learning curves; the satisfaction
probabilities are averaged over ten simulations.

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

7400 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024

MPG learned a near-optimal controller strategy for the case
where the robot starts in (0, 0), which is far from the assigned
region and the charging station. PG was able to learn a controller
strategy satisfying the task w.p. around 0.5; however, it could
not converge. The other methods failed to learn any reasonable
strategy. We note that the maximum satisfaction probability
against the optimal adversary is 0.9 in this case. For the case
where the robot starts in (9, 0); i.e., the robot does not need
to pass through the danger zone, MPG converged to an optimal
strategy faster than the other methods. PG converged slower than
MPG, and TMPG learned a reasonable strategy only after 108

steps. APG could not learn any strategy that yields a positive
satisfaction probability.

For the last case where the robot starts in the charging station
at (9, 9), PG learned faster than the other methods although
it struggled to stably converge to an optimal strategy. MPG
converged to an optimal almost as fast as PG. TMPG learned
an optimal strategy only after about 108 steps. APG, like in the
other cases, could not learn any meaningful strategy. Overall,
MPG significantly outperformed the other methods and APG
could not learn any controller strategy that satisfies the task with
a positive probability.

B. Robotic Arm

We consider two motion planning tasks where a robotic
arm should repeatedly reach some target ball positions where
the adversary can manipulate the position of one of the balls.
We implemented a simulation environment based on the Fetch
environments [52] in OpenAI Gym [53]. In this environment, the
state space consists of the positions of the gripper and the balls.
The action space of the controller is continuous and consists of
three dimensions that represent the position that the arm intends
to move the gripper to. In the beginning of each episode, the
balls are placed in random positions that are at least 10 cm apart
and within the reach of the arm, including the air. The red ball is
placed outside the boundaries of the smallest cuboid containing
the blue and green balls; however, the adversary can move the
red ball to any point in the state space w.p. 0.1. The environment
is illustrated in Fig. 5(a).

The first task is repeatedly visiting two given random posi-
tions, represented by a green and a blue ball while staying within
the boundaries of the cuboid of these balls. The robotic arm does
not need to be within the cuboid if it can repeatedly reach both of
the balls at the same time. The robotic arm should stay away at
all costs from the red ball, which is controlled by the adversary.

The task can be represented as the following LTL formula:

ϕ3 =

(
(�♦green_ball ∧�♦blue_ball ∧ ♦�boundary)

∨ (�♦(green_ball ∧ blue_ball)) ∧�¬red_ball
)
(38)

which is translated to a DPA with 3 states and 4 colors (see
Fig. 6(c) in our technical report [51]). The optimal adversary
strategy for this task is to try to put the red ball in the position of
either the green ball or the blue ball. In this way, the adversary
can prevent the controller performing this task w.p. 0.1.

The second task includes reaching and staying in the position
of the red ball outside the cuboid formed by the other balls. If
the red ball is in the same position as the green or the blue ball,
then reaching the red ball is sufficient; the robot does not need
to stay in its position or to be outside the cuboid. Alternatively,
the robot can repeatedly reach a position where both the green
and the blue balls are in, but the red ball is not. This task can be
formally defined as the LTL formula

ϕ4 =

(
♦� (red_ball ∧ ¬boundary)

∨♦ (red_ball∧green_ball)∨♦ (red_ball ∧ blue_ball)

∨ �♦ (green_ball ∧ blue_ball ∧ ¬red_ball)
)

(39)

which is translated to a DPA with 2 states and 4 colors (see
Fig. 6(d) in our report [51]). The optimal adversary strategy, in
this task, is to try to move the red ball to a position that is away
from the green and the blue balls but inside the boundaries of
the cuboid of these balls. Against such an adversary strategy, the
maximum probability that the robot successfully performs this
task is 0.9.

We integrated our framework into Truncated Quantile Critics
(TQC) [50], [54], an off-policy RL algorithm for continuous
actions. We used a neural network with two hidden layers of
size 64 for both the actor and the critic. Similar to the case in
Section VI-A2, we used ε = 0.25 to increase discounting and
stability since the robotic arm can quickly reach any position in
this environment. We used two separate TQC for the controller
and the adversary. The adversary gets the cumulative discounted
rewards the controller obtained throughout an episode as the
reward signal. During the learning, each episode starts in a
random state, and the adversary tries to move the red ball.
The controller observes the new position of the red ball and
takes actions for T = 100 environment steps to learn to perform
the task. We trained the controller and the adversary in turns
consisting of 104 exploration steps.

Similar to the case study in Section VI-A2, we manually
crafted the optimal adversary strategies and estimated the min-
imum satisfaction probabilities via simulation as deriving them
via model checking tools is not feasible. We evaluated the per-
formance by following the deterministic version of the controller
strategy for 1000 evaluation episodes of length 100 against the
optimal adversary strategy. To estimate the satisfaction proba-
bilities for the first task, we calculated the ratio of the evaluation
episodes that visited both the green and the blue balls inside
the boundaries of their cuboid more than 20% of the time in
the second half of the episode without visiting the red ball—
since the robotic arm can quickly reach positions, 20% is rea-
sonable; however, the results are not sensitive to this number.
Similarly, for the second task, we estimated the satisfaction
probability using the ratio of the evaluation episodes that visited
the red ball either with the green ball or the blue ball, or
outside the cuboid of these balls. We did not consider the case
where the green and blue balls are jointly visited, as it is not
possible in this environment.

Fig. 5(b) and (c) shows the results averaged over four sim-
ulations for each task. MPG quickly learned a near-optimal
controller strategy and successfully converged to an optimal one

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

BOZKURT et al.: LEARNING OPTIMAL STRATEGIES FOR TEMPORAL TASKS IN STOCHASTIC GAMES 7401

for the first task. TMPG converged to an optimal strategy slower
than MPG. APG learned a near-optimal strategy only after 106

steps. PG could not learn any reasonable strategy. For the second
task, MPG immediately learned a near-optimal strategy and then
converged to an optimal one. PG converged slower than MPG
but faster than TMPG, and TMPG converged faster than APG.
Overall, MPG significantly outperformed the other methods.

VII. CONCLUSION

In this work, we presented a model-free RL approach to
synthesize optimal controller strategies for any LTL task in SGs.
We provided an approach to craft rewards and discount factors
from the parity condition of the DPAs translated from the given
LTL tasks. We showed that any controller strategy maximizing
the sum of discounted rewards in the worst case also maximizes
the minimum probability of satisfying the LTL specification
for some sufficiently small parameter. We then introduced our
scalable lazy color generation method providing distinct rewards
and discount factors only when necessary and thereby improving
the learning scalability. In addition, we provided an approximate
method that is highly efficient when the controller can perform
the task by focusing on a single color. Finally, we demonstrated
the applicability of our methods in several case studies and
showed that our methods outperform the existing methods for
learning from LTL tasks in SGs. Generalization of our approach
to partially observable environments and multiobjectives that
include prioritized safety/task constraints (in the form of LTL
specifications) and secondary (control-related) cost minimiza-
tion objectives, as done in [55] and [56] for MDPs, respectively,
is left as a future work.

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[2] M. Kloetzer and C. Belta, “Temporal logic planning and control of robotic
swarms by hierarchical abstractions,” IEEE Trans. Robot., vol. 23, no. 2,
pp. 320–330, Apr. 2007.

[3] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Trans. Robot., vol. 25, no. 6,
pp. 1370–1381, Dec. 2009.

[4] M. Kloetzer and C. Belta, “Automatic deployment of distributed teams of
robots from temporal logic motion specifications,” IEEE Trans. Robot.,
vol. 26, no. 1, pp. 48–61, Feb. 2010.

[5] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta, “Formal approach to
the deployment of distributed robotic teams,” IEEE Trans. Robot., vol. 28,
no. 1, pp. 158–171, Feb. 2012.

[6] M. Lahijanian, S. B. Andersson, and C. Belta, “Temporal logic motion
planning and control with probabilistic satisfaction guarantees,” IEEE
Trans. Robot., vol. 28, no. 2, pp. 396–409, Apr. 2012.

[7] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of Markov
decision processes with linear temporal logic constraints,” IEEE Trans.
Autom. Control, vol. 59, no. 5, pp. 1244–1257, May 2014.

[8] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[9] S. Jiang and R. Kumar, “Failure diagnosis of discrete-event systems with
linear-time temporal logic specifications,” IEEE Trans. Autom. Control,
vol. 49, no. 6, pp. 934–945, Jun. 2004.

[10] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-time lin-
ear systems,” IEEE Trans. Autom. Control, vol. 51, no. 12, pp. 1862–1877,
Dec. 2006.

[11] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Trans. Autom.
Control, vol. 53, no. 1, pp. 287–297, Feb. 2008.

[12] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Autom. Control, vol. 57, no. 11,
pp. 2817–2830, Nov. 2012.

[13] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta, “Temporal logic
control of discrete-time piecewise affine systems,” IEEE Trans. Autom.
Control, vol. 57, no. 6, pp. 1491–1504, Jun. 2012.

[14] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans.
Autom. Control, vol. 58, no. 7, pp. 1771–1785, Jul. 2013.

[15] M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros,
“Symbolic control of stochastic systems via approximately bisimilar finite
abstractions,” IEEE Trans. Autom. Control, vol. 59, no. 12, pp. 3135–3150,
Dec. 2014.

[16] J. Fu and U. Topcu, “Probably approximately correct MDP learning
and control with temporal logic constraints,” in Proc. Robot.: Sci. Syst.
Conf., 2014. [Online]. Available: https://www.roboticsproceedings.org/
rss10/p39.pdf

[17] T. Brázdil et al., “Verification of Markov decision processes using learning
algorithms,” in Proc. Int. Symp. Autom. Technol. Verification Anal., 2014,
pp. 98–114.

[18] Q. Gao, M. Pajic, and M. M. Zavlanos, “Deep imitative reinforcement
learning for temporal logic robot motion planning with noisy semantic
observations,” in Proc. Int. Conf. Robot. Autom., 2020, pp. 8490–8496.

[19] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak,
“Omega-regular objectives in model-free reinforcement learning,” in Proc.
Int. Conf. Tools Algorithms Construction Anal. Syst., 2019, pp. 395–412.

[20] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Control synthesis
from linear temporal logic specifications using model-free reinforcement
learning,” in Proc. Int. Conf. Robot. Automat., 2020, pp. 10349–10355.

[21] E. M. Hahn, G. Li, S. Schewe, A. Turrini, and L. Zhang, “Lazy probabilistic
model checking without determinisation,” in Proc. Int. Conf. Concurrency
Theory, 2015, Art. no. 354.

[22] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control for
cyber-physical systems under adversarial attacks,” IEEE Trans. Autom.
Control, vol. 59, no. 6, pp. 1454–1467, Jun. 2014.

[23] K. Chatterjee and T. A. Henzinger, “A survey of stochastic ω-regular
games,” J. Comput. Syst. Sci., vol. 78, no. 2, pp. 394–413, 2012.

[24] J. Filar and K. Vrieze, Competitive Markov Decision Processes. Berlin,
Germany: Springer, 1997.

[25] A. Neyman and S. Sorin, Stochastic Games and Applications, vol. 570.
Dordrecht, The Netherlands: Kluwer, 2003.

[26] M. Wen and U. Topcu, “Probably approximately correct learning in
adversarial environments with temporal logic specifications,” IEEE Trans.
Autom. Control, vol. 67, no. 10, pp. 5055–5070, Oct. 2022.

[27] L. Niu and A. Clark, “Optimal secure control with linear temporal logic
constraints,” IEEE Trans. Autom. Control, vol. 65, no. 6, pp. 2434–2449,
Jun. 2020.

[28] L. Niu, J. Fu, and A. Clark, “Optimal minimum violation control synthesis
of cyber-physical systems under attacks,” IEEE Trans. Autom. Control,
vol. 66, no. 3, pp. 995–1008, Mar. 2021.

[29] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Başar, “Finite-sample analysis
for decentralized batch multiagent reinforcement learning with networked
agents,” IEEE Trans. Autom. Control, vol. 66, no. 12, pp. 5925–5940,
Dec. 2021.

[30] J. Fu, H. G. Tanner, J. Heinz, and J. Chandlee, “Adaptive symbolic
control for finite-state transition systems with grammatical inference,”
IEEE Trans. Autom. Control, vol. 59, no. 2, pp. 505–511, Feb. 2014.

[31] J. Fu and U. Topcu, “Synthesis of joint control and active sensing strategies
under temporal logic constraints,” IEEE Trans. Autom. Control, vol. 61,
no. 11, pp. 3464–3476, Nov. 2016.

[32] M. Svoreňová and M. Kwiatkowska, “Quantitative verification and strat-
egy synthesis for stochastic games,” Eur. J. Control, vol. 30, pp. 15–30,
2016.

[33] M. Elfar, Y. Wang, and M. Pajic, “Security-aware synthesis using delayed-
action games,” in Proc. Comput. Aided Verification, 2019, pp. 180–199.

[34] M. Elfar, H. Zhu, M. L. Cummings, and M. Pajic, “Security-aware syn-
thesis of human-UAV protocols,” in Proc. Int. Conf. Robot. Autom., 2019,
pp. 8011–8017.

[35] A. K. Bozkurt, Y. Wang, and M. Pajic, “Secure planning against stealthy
attacks via model-free reinforcement learning,” in Proc. Int. Conf. Robot.
Autom., 2021, pp. 10656–10662.

[36] M. Svoreňová, J. Křetínsky, M. Chmelík, K. Chatterjee, I. Černá, and
C. Belta, “Temporal logic control for stochastic linear systems using
abstraction refinement of probabilistic games,” Nonlinear Anal.: Hybrid
Syst., vol. 23, pp. 230–253, 2017.

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

7402 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 11, NOVEMBER 2024

[37] S. Sadraddini and C. Belta, “Formal methods for adaptive control of
dynamical systems,” in Proc. IEEE 56th Annu. Conf. Decis. Control, 2017,
pp. 1782–1787.

[38] P. Ashok, J. Křetínsky, and M. Weininger, “Pac statistical model checking
for Markov decision processes and stochastic games,” in Proc. Int. Conf.
Comput. Aided Verification, 2019, pp. 497–519.

[39] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak,
“Model-free reinforcement learning for stochastic parity games,” in Proc.
Int. Conf. Concurrency Theory, 2020, vol. 171, Art. no. 21.

[40] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Model-free
reinforcement learning for stochastic games with linear temporal logic
objectives,” in Proc. Int. Conf. Robot. Autom., 2021, pp. 10649–10655.

[41] J. Esparza, J. Křetínsky, J.-F. Raskin, and S. Sickert, “From LTL and limit-
deterministic Büchi automata to deterministic parity automata,” in Proc.
Int. Conf. Tools Algorithms Construction Anal. Syst., 2017, pp. 426–442.

[42] M. L. Littman, “Markov games as a framework for multi-agent reinforce-
ment learning,” in Proc. Mach. Learn., 1994, pp. 157–163.

[43] A. Hordijk and A. A. Yushkevich, “Blackwell optimality,” in Handbook of
Markov Decision Processes, vol. 40. Boston, MA, USA: Springer, 2002,
pp. 231–267.

[44] M. L. Littman and C. Szepesvári, “A generalized reinforcement-learning
model: Convergence and applications,” in Proc. Int. Conf. Mach. Learn.,
1996, vol. 96, pp. 310–318.

[45] Z. Xuan, A. K. Bozkurt, M. Pajic, and Y. Wang, “On the uniqueness of solu-
tion for the Bellman equation of LTL objectives,” 2024, arXiv:2404.05074.

[46] C. Yang, M. L. Littman, and M. Carbin, “On the (in) tractability of
reinforcement learning for LTL objectives,” in Proc. 31st Int. Joint Conf.
Artif. Intell., 2022, pp. 3650–3658.

[47] J. Kretínský, T. Meggendorfer, and S. Sickert, “OWL: A library for
omega-words, automata, and LTL,” in Proc. Int. Symp. Autom. Technol.
Verification Anal., 2018, vol. 11138, pp. 543–550.

[48] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. Int. Conf. Comput. Aided
Verification, 2011, pp. 585–591.

[49] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[50] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,
“Stable-baselines3: Reliable reinforcement learning implementations,” J.
Mach. Learn. Res., vol. 22, no. 268, pp. 1–8, 2021.

[51] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Learn-
ing optimal strategies for temporal tasks in stochastic games,” 2023,
arXiv:2102.04307.

[52] M. Plappert et al., “Multi-goal reinforcement learning: Challenging
robotics environments and request for research,” 2018, arXiv:1802.09464.

[53] G. Brockman et al., “Openai gym,” 2016. [Online]. Available: https://
github.com/openai/gym?tab=readme-ov-file

[54] A. Kuznetsov, P. Shvechikov, A. Grishin, and D. Vetrov, “Controlling
overestimation bias with truncated mixture of continuous distributional
quantile critics,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 5556–5566.

[55] Y. Wang, A. K. Bozkurt, and M. Pajic, “Reinforcement learning with
temporal logic constraints for partially-observable Markov decision pro-
cesses,” 2021, arXiv:2104.01612.

[56] A. K. Bozkurt, Y. Wang, and M. Pajic, “Model-free learning of safe yet
effective controllers,” in Proc. Conf. Decis. Control, 2021, pp. 6560–6565.

[57] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and
L. Xu, “Spot 2.0–A framework for LTL and-automata manipulation,” in
Proc. Int. Symp. Autom. Technol. Verification Anal., 2016, pp. 122–129.

Alper Kamil Bozkurt received the B.S. and
M.S. degrees in computer engineering from
Bogazici University, Istanbul, Turkey, in 2015
and 2018, respectively. He is currently work-
ing toward the Ph.D. degree in computer sci-
ence with the Department of Computer Science,
Duke University, Durham, NC, USA.

His research interests include the intersection
of machine learning, control theory, and formal
methods. In particular, he focuses on developing
learning-based algorithms that synthesize prov-

ably safe and reliable controllers for cyber-physical systems.

Yu Wang (Senior Member, IEEE) received the
Ph.D. degree in mechanical engineering from
the University of Illinois at Urbana-Champaign,
Champaign, IL, USA, in 2018.

He is currently an Assistant Professor with
the Department of Mechanical and Aerospace
Engineering, University of Florida, Gainesville,
FL, USA. He was a Postdoctoral Associate with
the Department of Electrical and Computer En-
gineering, Duke University. His research inter-
ests include assured autonomy, cyber-physical

systems, machine learning, and formal methods.

Michael M. Zavlanos (Senior Member, IEEE)
received the Diploma in mechanical engineer-
ing from the National Technical University of
Athens, Athens, Greece, in 2002, and the
M.S.E. and Ph.D. degrees in electrical and sys-
tems engineering from the University of Penn-
sylvania, Philadelphia, PA, USA, in 2005 and
2008, respectively.

He is currently an Associate Professor with
the Department of Mechanical Engineering and
Materials Science, Duke University, Durham,

NC, USA. His research interests include control theory, optimization,
and learning and, in particular, autonomous systems and robotics, net-
worked and distributed control systems, and cyber-physical systems.

Dr. Zavlanos was the recipient of various awards including the 2014
ONR YIP Award and the 2011 NSF CAREER Award.

Miroslav Pajic received the Dipl.Ing. and M.S.
degrees in electrical engineering from the Uni-
versity of Belgrade, Belgrade, Serbia, in 2003
and 2007, respectively, and the M.S. and Ph.D.
degrees in electrical engineering from the Uni-
versity of Pennsylvania, Philadelphia, PA, USA,
in 2010 and 2012, respectively.

He is currently the Dickinson Family Asso-
ciate Professor with Department of Electrical
and Computer Engineering, Duke University,
Durham, NC, USA. His research interests in-

clude the design and analysis of high-assurance cyber-physical systems
with varying levels of autonomy and human interaction, at the intersec-
tion of (more traditional) areas of embedded systems, AI, learning and
controls, formal methods, and robotics.

Dr. Pajic was the recipient of various awards including the ACM
SIGBED Early-Career Award, IEEE TCCPS Early-Career Award, NSF
CAREER Award, ONR Young Investigator Award, ACM SIGBED Frank
Anger Memorial Award, Joseph and Rosaline Wolf Best Dissertation
Award from Penn Engineering, IBM Faculty Award, as well as eight Best
Paper and Runner-up Awards.

Authorized licensed use limited to: Duke University. Downloaded on November 05,2024 at 06:22:00 UTC from IEEE Xplore. Restrictions apply.

