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ABSTRACT 
 
The abundant post-earthquake data from the Canterbury, New Zealand (NZ) area is poised for use with machine 
learning (ML) to further advance our ability to better predict and understand the effects of liquefaction. Liquefaction 
manifestation is one of the identifiable effects of liquefaction, a nonlinear phenomenon that is still not well understood. 
ML algorithms are often termed as “black-box” models that have little to no explainability for the resultant predictions, 
making them difficult for use in practice. With the SHapley Additive exPlanations (SHAP) algorithm wrapper, 
mathematically backed explanations can be fit to the model to track input feature influences on the final prediction. In 
this paper, Random Forest (RF) is chosen as the ML model to be utilized as it is a powerful non-parametric 
classification model, then SHAP is applied to calculate explanations for the predictions at a global and local feature 
scale. The RF model hyperparameters are optimized with a two-step grid search and a five-fold cross-validation to 
avoid overfitting. The overall model accuracy is 71% over six ordinal categories predicting the Canterbury Earthquake 
Sequence measurements from 2010, 2011, and 2016. Insights from the SHAP application onto the RF model include 
the influences of PGA, GWT depths, and SBTs for each ordinal class prediction. This preliminary exploration using 
SHAP can pave the way for both reinforcing the performance of current ML models by comparing to previous 
knowledge and using it as a discovery tool for identifying which research areas are pertinent to unlocking more 
understanding of liquefaction mechanics. 
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1 INTRODUCTION 

Liquefaction is a nonlinear phenomenon with many 
potential input parameters that vary across multiple 
scales, making it difficult to isolate. There is a 
fundamental understanding of liquefaction at the 
element level, however liquefaction at the system level 
introduces complexities that pose additional challenges. 
For example, studies of the response of a singular sand 
via an exhaustive direct simple shear (DSS) testing 
program are not straightforward to upscale to the field, 
since a liquefiable site operates as a system of multiple 
layers and/or inclusions that may affect the observed 
manifestations (e.g., Cubrinovski et al. 2019, Bassal et 
al. 2022). Therefore, case history studies become 
invaluable opportunities for studying multiple aspects of 
liquefaction.  

New Zealand (NZ) is a seismically active island 
country and has experienced several major earthquakes. 
The 2010/2011 Canterbury earthquake sequence (CES) 
started with the Mw7.1 Darfield earthquake (September 
4, 2010) and was followed by up to ten events which 
induced liquefaction in the affected region (Maurer et al. 
2015). The depositional history of the soils was unable 

to be captured solely by traditional Cone Penetration 
Test (CPT) based liquefaction triggering assessments, 
which resulted in numerous false positive or false 
negative predictions of liquefaction manifestation 
occurrences (Beyzaei et al. 2018). The combination of 
available information on these complex deposits with 
well documented liquefaction manifestation data yielded 
a set of seminal case histories (Geyin et al. 2021).  

This new dataset allows for the liquefaction 
phenomenon to be explored with more advanced 
techniques, such as machine learning (ML). A subset of 
Artificial Intelligence (AI), ML uses computer 
algorithms to make predictions on given data without 
explicit programming instructions. A ML algorithm can 
find patterns and relationships among the data of various 
distributions without explicit guidance and could 
potentially discover associations that may otherwise be 
missed. One of the drawbacks of utilizing ML is the 
inability to explain the reasoning behind the resultant 
predictions, thus termed a “black-box” model. By 
utilizing SHapley Additive exPlanations (SHAP) ( 
Lundberg and Lee 2017), feature importance and 
contributions to individual predictions can be extracted 
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and identified from complex ML models such as 
Random Forest (RF). Through these explanations, 
insights can be gained from the effect on predicted 
liquefaction class of outliers or feature interactions in 
ML models. 

This paper investigates the application of the RF ML 
algorithm coupled with explainable ML SHAP on an 
established large dataset from NZ. The feature 
engineering and hyperparameter tuning processes for 
building the ML model are demonstrated and 
established. The work presented uses post-processed 
data from the September 2010, February 2011, and 
February 2016 Canterbury, NZ Earthquakes (Geyin et al. 
2021) to predict different severities of liquefaction 
manifestation in the form of multiple categories via the 
RF ML algorithm. The paper first introduces the dataset 
and feature engineering, then an overview of the RF 
algorithm, hyperparameters of RF, and the theory behind 
SHAP. The fitted RF model is then presented along with 
SHAP results, which are then evaluated and explained at 
the global and local level. The paper concludes with 
lessons learned through SHAP from the RF algorithm 
and the potential usage of SHAP in future geotechnical 
engineering ML application work.   

2 DATASET AND FEATURE ENGINEERING 

The dataset is composed of earthquake and CPT data 
from the September 2010, February 2011, and February 
2016 earthquakes in Canterbury, NZ (Geyin et al. 2021). 
The number of CPT observations is around 5,600. It is a 
structured dataset containing typical CPT data, recorded 
peak ground acceleration (PGA) in g, and groundwater 
table (GWT) depth in m for each CPT location per 
earthquake, and the severity of liquefaction 
manifestation experienced at each CPT. The liquefaction 
manifestation class is the prediction target of the RF 
model. It can take the following values: 0 (no 
manifestation), 1 (minor), 2 (moderate), 3 (severe), 4 
(lateral spreading), 5 (severe lateral spreading), and 10 
(unknown). Further details of the separation of 
categories can be found in Geyin et al. (2021). All 
records corresponding to manifestation Class 10 were 
removed from the dataset, as they are essentially 
unknown values that took up only 5% of the total dataset.  

Feature engineering is the practice of extracting 
features from raw data (such as CPT data) with the help 
of domain knowledge. Only the 4 m of soil below the 
GWT were considered as that is the depth of soil with 
the most impact on manifestations during the NZ 
earthquakes (Cubrinovski and Robinson, 2016). SBT 
was calculated via Robertson’s (2010) cutoffs for each 
soil type with an assumption of 18 kN/m3 for the 
saturated soil unit weight. The SBT categories consist of 
six types of soils (with label number): organic soils (2), 
clay (3), clay silt mixtures (4), sand mixtures (5), sands 
(6), and gravelly to dense sands (7). The layer of soil 
above the GWT was termed as the “crust” layer, and the 

average SBT was labeled for it. The CPT for 4 m beyond 
the GWT was discretized into 0.5m layers, with each 
layer’s SBT Class corresponding to the majority SBT in 
the given layer. Layer 1 is the topmost layer, layer 8 is 
the bottommost, with 0.5m increments in between.   

The corresponding surficial geology at each CPT was 
extracted via ArcGIS from the GNS Science (2020) New 
Zealand Geological Map as an additional feature. The 
geology covered (with label numbers): Middle 
Pleistocene loess deposits (0), active dune deposits (1), 
active riverbed deposits (2), Anthropic deposits (3), 
Holocene Estuary deposits (4), Holocene river deposits 
(5), Holocene stable dune deposits (6), Holocene swamp 
deposits (7). The GWT fluctuates per year and the PGA 
is different for each earthquake, therefore a different set 
of data for the same CPTs is created for each earthquake 
year due to the subsequent feature engineering, roughly 
tripling the base dataset. After this process of feature 
engineering the original dataset with all three 
earthquakes, the new dataset contained around 11,500 
observations. The dataset is imbalanced, with the 
percentage counts: Class 0) 60%, Class 1) 18%, Class 2) 
13%, Class 3) 3%, Class 4) 4%, Class 5) 2%, and was 
preserved as such, as attempts to balance the data by 
undersampling only served to worsen any interpretations 
and predictions. Upsampling was not used as there was 
no guarantee of physics being respected when artificial 
datapoints are generated. The features were all preserved 
in their original units and no feature transformation (e.g., 
squaring) was used as the intention was to keep 
consistent physical units throughout the whole process. 

3 RANDOM FOREST ALGORITHM 

The method chosen to predict liquefaction 
manifestation categories is the Random Forest (RF) 
algorithm implemented in Scikit- learn (Pedregosa et al. 
2011). The RF algorithm is an extension of the decision 
tree algorithm, in that it fits multiple decision trees and 
uses a majority vote approach between the trained 
decision trees to make its predictions. The overall goal 
of the decision tree algorithm is to use the supplied 
predictor variables and recursively divide the dataset into 
homogeneous groups to accurately predict the response 
variable. In the fitting process of the RF algorithm, 
several hyperparameters are specified before training, 
such as the number of decision trees. Sampling with 
replacement (bootstrapping) at a certain percentage of 
the training set size is used to create new training 
datasets that are assigned to each of the individual 
decision trees, with each training set being unique from 
one another due to the bootstrapping method. These 
bootstrapped datasets contain only a subset of the overall 
predictors in the training set both from the size and 
replacement sampling restrictions. From there, the 
decision trees each begin a recursive split process on 
their assigned datasets to create a set of rules that 
determine a given observation’s classification. Each 
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decision tree path to a split is called a branch, and where 
a branch splits is called a node, with a terminal node 
called a leaf node. In the training process for each 
decision tree, the algorithm first determines an optimal 
variable to split upon, and then an optimal value within 
the variable to separate the data. This process repeats 
recursively until various stop criteria have been reached. 
Some of the stop criteria for a decision tree are: 

● Minimum split size: A threshold for how small 
the number of observations within each 
subgroup of data should be to continue splitting. 

● Minimum node size: A threshold for how small 
the number of observations in a node should be 
to terminate the branch and convert the node 
into a leaf node. 

● Tree depth: The number of recursive splits or 
nodes used to build the tree.  

Once the controlling stop criterion is reached for each 
decision tree, each of the final splits within the decision 
trees are determined. For a new data point (observation), 
the RF algorithm checks the resulting classification from 
each decision tree in its “forest” and then uses a majority 
vote approach to predict the observation’s final 
classification. RF was chosen as the ML model to use 
because: (i)Variable interactions are preserved in the RF 
algorithm process which is pertinent for liquefaction 
analysis; (ii) RF is a non-parametric method as it has no 
prior data distribution (e.g., Normal) requirements for 
the algorithm and is known to be able to fit nonlinear 
parameter relationships (Brieman, 2001); (iii) RF yields 
low bias with only moderate variance which indicates 
that the predictions will tend to center around the correct 
Class.  

3.1 Hyperparameter Training 
The dataset was split into two portions with 80% of 

it for training and 20% of it for testing. To improve the 
performance of the RF algorithm the hyperparameters 
were optimized in two stages. First, a random 
hyperparameter grid search with five- fold cross-
validation (CV) was run on the training set over a wide 
range of hyperparameter values. Then, a local exhaustive 
grid search with five-fold CV was run with finer 
hyperparameter values in a close range around the 
previously found best hyperparameters. The 
hyperparameter search was restricted in range and 
subjected to five-fold cross-validation to prevent the RF 
algorithm from overfitting. The final best 
hyperparameters are: Max depth (90), Max samples 
(90%), Min samples per leaf (2), Min samples per split 
(5), Number of estimators (500). Bootstrapping was 
always kept as the default to reduce overly memorizing 
the training set since RF only uses a randomly drawn set 
with replacement from the training set datapoints. These 
measures lowered the accuracy from the training set but 
resulted in higher test set accuracies and a smaller gap 
between the two accuracies indicating an absence of 
overfitting.  

4 SHAP 

SHAP (Lundberg and Lee 2017) allows ML models 
to achieve both accuracy and interpretability. SHAP 
works as a wrapper around the original ML model, 
probing the ML model to calculate the contributions and 
interactions of the input features on the final prediction 
and can be applied to most ML models. The background 
of this technique originates from game theory as an 
additive feature attribution method, meaning the 
predicted output is a linear combination of the input 
features as showcased in Equation 1. 

𝑔(𝑧′) = ϕ0 +∑ ϕizi
′M

i=1           (1) 

where 𝑧′ ∈ 0,1𝑀, M is the number of simplified input 
features, and ϕ𝑖 ∈ 𝑅 (Lundberg and Lee 2017) 

SHAP values are to satisfy three criteria: 1) Local 
accuracy: The explanation model output should match 
that of the original ML model. 2) Missingness: If a 
feature value is 0, then it should reflect as such in the 
explanation model as a 0 for the influence value. 3) 
Consistency: The explanation model should consistently 
reflect any changes as the ML model changes. A unique 
solution has been proven to satisfy these three criteria as 
Equation 2. 

ϕ𝑖(𝑓, 𝑥) = ∑
|𝑧′|!(𝑀−|𝑧′|−1)!

𝑀!𝑧′⊆𝑥′ [𝑓𝑥(𝑧
′) − 𝑓𝑥(𝑧

′\𝑖)] 
(2) 

where |𝑧′| is the number of non-zero entries in 𝑧′, and  
𝑧′ ⊆ 𝑥′ represents all 𝑧′  vectors where the non-zero 
entries are a subset of the non-zero entries in 𝑥′ 
(Lundberg and Lee 2017) 

As Equation 2 is computationally intensive to solve, 
there are approximation SHAP algorithms, such as 
KernelSHAP and TreeSHAP. This paper utilizes 
TreeSHAP as it is designed for tree-based algorithms, 
such as RF, and efficiently calculates SHAP values for 
all input features. Utilizing SHAP allows us to explore 
model biases, outlier effects, and trends within input 
feature values that can hint towards their overall 
influence on the model. 

5 RESULTS 

The final RF model has an overall accuracy of 71% 
on the test set. Additionally, the dataset is imbalanced 
and therefore the per class accuracy is a more holistic 
view of model performance. The prediction accuracy per 
manifestation level was: 93.5 for Class 0, 39.4% for 
Class 1, 57.9% for Class 2, 14.1% for Class 3, 9.7% for 
Class 4 and 2.3% for Class 5, with the confusion matrix 
in Fig. 1. The latter classes 4 and 5 have poor accuracies, 
with many mispredictions to classes 1, 2, and 3 instead. 
This is due to the difficulty of solving two fundamental 
problems at once: liquefaction (class 0-3) or lateral 
spreading (class 4-5). The two are tied as lateral 
spreading is liquefaction but have been separated out in 
the original dataset into different classes. It is evident 
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that this RF model has learned liquefaction but cannot 
discern between lateral spreading yet with our limited set 
of data and input features. 
 

 
Fig. 1. Confusion matrix of final model, correct predictions are 
aligned along the diagonal. The percentage value in each box is 
the percentage predicted from the actual class (left) into the 
predicted class (bottom) out of the total actual class. The 
numerical value in each box is the number of datapoints predicted 
into the prediction categories. 

 
The SHAP feature importance plot in Fig. 2 

showcases the impact of each feature on the predicted 
class. Here, we can see that PGA has a large impact on 
Class 0 (no liquefaction) but not as much on Class 5 
(severe lateral spreading), but it still has the greatest 
impact out of all the features overall. This is reasonable 
considering it is the imposed demand while all other 
features are essentially capacity. The per feature impact 
for the following other input features vary, with the 
overall size of the bar corresponding to how important 
the feature is for the final prediction with the segmented 
sections indicating its importance per class. GWT and 
geology are both more important than the SBT of 
individual layers, including the crust. 

Delving into the individual class prediction SHAP 
summary plots in Fig. 3, previously hidden trends are 
uncovered. The color on the SHAP summary plot 
indicates the input feature value, with red being a high 
value (e.g., 5) and blue a low value (e.g., 0) relative to 
the feature’s range. The x-axis indicates the impact in 
log-odds on the final prediction, with a high log-odds 
value (towards the right) indicating a bigger input feature 
impact on the probability of the given class being the 
correct final predicted class. The ordering of input 
features along the y-axis is based on the most impactful 
input feature on top and least impactful on bottom. 

 

Fig. 2. SHAP feature importance plot, explanation in text. 

From Fig. 3, for a high log-odds probability of Class 
0 (no manifestation) the input features of a low PGA, 
deep GWT, and Holocene era geology are identified. 
The following summarizes the takeaways on the 
preferential input features for the rest of the classes: 
Class 1) high PGA, shallow GWT, and Holocene era 
geology. Class 2) high PGA, shallow GWT, Anthropic 
or active deposits. Class 3) high PGA, shallow to mid-
depth GWT, active deposits. Class 4) high PGA, 
Anthropocene or fill geology, slight preference towards 
deep GWT. Class 5) high PGA, Anthropocene or fill 
geology, shallow to mid-depth GWT.  

As the geology input feature becomes second most 
important for predicting Class 4 and 5, these classes rely 
more heavily on geology than classes 0-3. Low PGA 
only matters greatly for Class 0, while the rest have 
varying spreads of how impactful a high PGA is. 
Shallow GWT matters for classes 1,2,3, and less for 
classes 4,5, which hints that other unobserved features 
are at play for lateral spreading. The shift in geology 
importance notes that younger deposits (active or 
Anthropocene) tend to be looser and have a higher 
possibility of liquefaction than older deposits that have 
had time to consolidate and densify. These observations 
drawn from the SHAP values match with what is known 
in literature on liquefaction (Idriss and Boulanger 2008), 
showcasing the RF model’s ability to place importance 
on input features without prior knowledge introduced. 

Focusing on the SBTs of the crust and subsequent 
0.5m layers, the preferences for which SBTs in each 
layers are influential towards the log-odds probability of 
the predicted Class occurring also change: Class 0) 
preference for sands at all layers, except layer 5 which 
has a clay preference. Class 1) preference for clays in all 
layers. Class 2) interlayering preference, with a 
preference for sands in the crust. Class 3) slight 
preference for clays in layer 1 and 2, with sands for the 
rest. Class 4) no discernable preference, with less 
emphasis on clays for layers 5, 6, 8. Class 5) no 
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discernable preference across layers. For Class 4 and 5 
there is a narrower range for the x-axis, as the x-axis 
(range of log-odds) shrinks with increasing classes. This 
means the same input feature value has a smaller impact 
on the log-odds for predicting Class 5 than Class 0, 
which can be explored in detail in Fig. 4.  

 

 

Fig. 3. SHAP summary plots per predictive Class, explanation in 
text. 

 

Fig. 4. SHAP plots per predictive class for a correctly classified 
Class 0 datapoint. Explanation in text. 

The x-axis in Fig. 4 is again the log-odds probability 
of the predicted class being the correct class. There is a 
base starting value for each class log-odds prediction 
which is equivalent to the expected value or bias of the 

class. The subsequent input feature values will then 
impact the log-odds probability by adding or subtracting 
from the base value. The impact per feature depends on 
the importance of the feature under the predicting class 
as seen in the overall Fig. 3 breakdown. 

From the axis, the expected values per Class are: 
Class 0) 0.60, Class 1) 0.17, Class 2) 0.13, Class 3) 0.03, 
Class 4) 0.046, Class 5) 0.017. There is a large bias 
towards Class 0, which is expected as it was the 
overarching Class (60% of the dataset). The classes with 
lower accuracy (3,4,5) show lower bias, which makes it 
less likely for the model to predict these classes and 
explains the accuracy values.  

The chosen individual datapoint in Fig. 4 to be 
inspected is a Class 0 that was correctly predicted as a 
Class 0. For this datapoint after the input features were 
added the log-odds per potential Class prediction settle 
and can be compared. The SHAP values push the log-
odds per Class to strongly indicates a Class 0 prediction 
to be the most likely one, which has a final log-odds of 
0.98 compared to that of the other classes that are all 
below 0.01. Based on the log-odds, Class 0 was the final 
predicted Class by the RF model, and thus this datapoint 
was correctly classified.  

 

 
Fig. 5. SHAP plots per predictive class for an incorrectly classified 
as a Class 1 instead of Class 2 datapoint. Explanation in text. 

SHAP not only helps track how the correct 
classification was achieved, but it can also be used to 
track how misclassifications happened or how close 
correct classifications were to being incorrect. 
Observing a different datapoint’s SHAP individual plots 
in Fig. 5, one that was misclassified as a Class 1 rather 
than Class 2, reveals the misprediction path. Class 1 has 
a higher log-odds (0.4) than that of Class 2 (0.3) with the 
rest of the classes log-odds are all lower than 0.17. This 
indicates that the RF model was close to predicting Class 
2, but the SHAP values show how the input features 
contributed to a greater log-odds for Class 1 with a 
greater impact from the same PGA of 0.582. This 
inspection of mispredictions through SHAP values leads 

OS-26-06 8th international conference on earthquake geotechnical e...

©8ICEGE - OS-26-06 -



 

to informed next steps to course correct the RF model. 
The RF model overall does well at recognizing it is not 
any of the other classes, and the log-odds being close 
between Class 1 and 2 indicate that with some further 
improvements the RF model can possibly gain accuracy 
by bridging the log-odds impact gap. 

6 CONCLUSION 

Explainable ML (SHAP) was applied to a Random 
Forest (RF) classification algorithm to predict multiclass 
liquefaction from the Geyin et al. (2021) database of 
observations from three New Zealand earthquakes. The 
RF algorithm performed with an overall accuracy of 
70.8%, while SHAP calculated a granular breakdown of 
input feature influences on final predictions for all 
potential predicted classes. The main observations from 
the SHAP breakdowns are that: low PGA is a large 
contributor to no liquefaction manifestation, 
increasingly shallow GWT levels mirrors increasing 
liquefaction manifestation, younger geological 
formations have a greater tendency to show liquefaction 
manifestation, and sand layers near the upper soil layers 
influence greater liquefaction manifestation.  

This initial exploration with SHAP illustrates how 
previously black-box ML models can be transformed 
into white-box ones, with observations that match those 
known from literature. As data sharing and capture 
increase, ML models can act as a first-pass approach to 
handle large amounts of data with complex relationships. 
SHAP can then be applied to elucidate granular 
observations for which input features are impactful at 
what levels or understand prediction paths for both 
correctly predicted and mispredicted datapoints. Any 
new or unusual feature impacts revealed through SHAP 
from originally complex ML models can be used to 
identify areas of research to further pursue, whether it be 
physical experiments or constitutive modeling to parse 
out more insights through traditional geotechnical 
methods.  

Future work will explore additional input features, 
such as slope or elevation, to increase accuracies and 
mitigate bias. There are also per-class accuracies that are 
lacking that will be addressed by returning to literature 
and reevaluating the misclassified points to see if it is an 
indication of a greater database misclassification. 
Finally, feature interactions will be explored with SHAP, 
to see if combining certain values of features (e.g., GWT 
and PGA) may lead to different effects than if 
independently input into the ML model.  
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