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ABSTRACT

The abundant post-earthquake data from the Canterbury, New Zealand (NZ) area is poised for use with machine
learning (ML) to further advance our ability to better predict and understand the effects of liquefaction. Liquefaction
manifestation is one of the identifiable effects of liquefaction, a nonlinear phenomenon that is still not well understood.
ML algorithms are often termed as “black-box” models that have little to no explainability for the resultant predictions,
making them difficult for use in practice. With the SHapley Additive exPlanations (SHAP) algorithm wrapper,
mathematically backed explanations can be fit to the model to track input feature influences on the final prediction. In
this paper, Random Forest (RF) is chosen as the ML model to be utilized as it is a powerful non-parametric
classification model, then SHAP is applied to calculate explanations for the predictions at a global and local feature
scale. The RF model hyperparameters are optimized with a two-step grid search and a five-fold cross-validation to
avoid overfitting. The overall model accuracy is 71% over six ordinal categories predicting the Canterbury Earthquake
Sequence measurements from 2010, 2011, and 2016. Insights from the SHAP application onto the RF model include
the influences of PGA, GWT depths, and SBTs for each ordinal class prediction. This preliminary exploration using
SHAP can pave the way for both reinforcing the performance of current ML models by comparing to previous
knowledge and using it as a discovery tool for identifying which research areas are pertinent to unlocking more
understanding of liquefaction mechanics.
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1 INTRODUCTION to be captured solely by traditional Cone Penetration
Test (CPT) based liquefaction triggering assessments,
which resulted in numerous false positive or false
negative predictions of liquefaction manifestation
occurrences (Beyzaei et al. 2018). The combination of
available information on these complex deposits with
well documented liquefaction manifestation data yielded
a set of seminal case histories (Geyin et al. 2021).

This new dataset allows for the liquefaction
phenomenon to be explored with more advanced
techniques, such as machine learning (ML). A subset of
Artificial Intelligence (AI), ML wuses computer
algorithms to make predictions on given data without
explicit programming instructions. A ML algorithm can
find patterns and relationships among the data of various
distributions without explicit guidance and could
potentially discover associations that may otherwise be
missed. One of the drawbacks of utilizing ML is the
inability to explain the reasoning behind the resultant
predictions, thus termed a “black-box” model. By
utilizing SHapley Additive exPlanations (SHAP) (
Lundberg and Lee 2017), feature importance and
contributions to individual predictions can be extracted

Liquefaction is a nonlinear phenomenon with many
potential input parameters that vary across multiple
scales, making it difficult to isolate. There is a
fundamental understanding of liquefaction at the
element level, however liquefaction at the system level
introduces complexities that pose additional challenges.
For example, studies of the response of a singular sand
via an exhaustive direct simple shear (DSS) testing
program are not straightforward to upscale to the field,
since a liquefiable site operates as a system of multiple
layers and/or inclusions that may affect the observed
manifestations (e.g., Cubrinovski et al. 2019, Bassal et
al. 2022). Therefore, case history studies become
invaluable opportunities for studying multiple aspects of
liquefaction.

New Zealand (NZ) is a seismically active island
country and has experienced several major earthquakes.
The 2010/2011 Canterbury earthquake sequence (CES)
started with the M,,7.1 Darfield earthquake (September
4, 2010) and was followed by up to ten events which
induced liquefaction in the affected region (Maurer et al.
2015). The depositional history of the soils was unable
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and identified from complex ML models such as
Random Forest (RF). Through these explanations,
insights can be gained from the effect on predicted
liquefaction class of outliers or feature interactions in
ML models.

This paper investigates the application of the RF ML
algorithm coupled with explainable ML SHAP on an
established large dataset from NZ. The feature
engineering and hyperparameter tuning processes for
building the ML model are demonstrated and
established. The work presented uses post-processed
data from the September 2010, February 2011, and
February 2016 Canterbury, NZ Earthquakes (Geyin et al.
2021) to predict different severities of liquefaction
manifestation in the form of multiple categories via the
RF ML algorithm. The paper first introduces the dataset
and feature engineering, then an overview of the RF
algorithm, hyperparameters of RF, and the theory behind
SHAP. The fitted RF model is then presented along with
SHAP results, which are then evaluated and explained at
the global and local level. The paper concludes with
lessons learned through SHAP from the RF algorithm
and the potential usage of SHAP in future geotechnical
engineering ML application work.

2 DATASET AND FEATURE ENGINEERING

The dataset is composed of earthquake and CPT data
from the September 2010, February 2011, and February
2016 earthquakes in Canterbury, NZ (Geyin et al. 2021).
The number of CPT observations is around 5,600. It is a
structured dataset containing typical CPT data, recorded
peak ground acceleration (PGA) in g, and groundwater
table (GWT) depth in m for each CPT location per
earthquake, and the severity of liquefaction
manifestation experienced at each CPT. The liquefaction
manifestation class is the prediction target of the RF
model. It can take the following wvalues: 0 (no
manifestation), 1 (minor), 2 (moderate), 3 (severe), 4
(lateral spreading), 5 (severe lateral spreading), and 10
(unknown). Further details of the separation of
categories can be found in Geyin et al. (2021). All
records corresponding to manifestation Class 10 were
removed from the dataset, as they are essentially
unknown values that took up only 5% of the total dataset.

Feature engineering is the practice of extracting
features from raw data (such as CPT data) with the help
of domain knowledge. Only the 4 m of soil below the
GWT were considered as that is the depth of soil with
the most impact on manifestations during the NZ
earthquakes (Cubrinovski and Robinson, 2016). SBT
was calculated via Robertson’s (2010) cutoffs for each
soil type with an assumption of 18 kN/m? for the
saturated soil unit weight. The SBT categories consist of
six types of soils (with label number): organic soils (2),
clay (3), clay silt mixtures (4), sand mixtures (5), sands
(6), and gravelly to dense sands (7). The layer of soil
above the GWT was termed as the “crust” layer, and the
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average SBT was labeled for it. The CPT for 4 m beyond
the GWT was discretized into 0.5m layers, with each
layer’s SBT Class corresponding to the majority SBT in
the given layer. Layer 1 is the topmost layer, layer 8 is
the bottommost, with 0.5m increments in between.

The corresponding surficial geology at each CPT was
extracted via ArcGIS from the GNS Science (2020) New
Zealand Geological Map as an additional feature. The
geology covered (with label numbers): Middle
Pleistocene loess deposits (0), active dune deposits (1),
active riverbed deposits (2), Anthropic deposits (3),
Holocene Estuary deposits (4), Holocene river deposits
(5), Holocene stable dune deposits (6), Holocene swamp
deposits (7). The GWT fluctuates per year and the PGA
is different for each earthquake, therefore a different set
of data for the same CPTs is created for each earthquake
year due to the subsequent feature engineering, roughly
tripling the base dataset. After this process of feature
engineering the original dataset with all three
earthquakes, the new dataset contained around 11,500
observations. The dataset is imbalanced, with the
percentage counts: Class 0) 60%, Class 1) 18%, Class 2)
13%, Class 3) 3%, Class 4) 4%, Class 5) 2%, and was
preserved as such, as attempts to balance the data by
undersampling only served to worsen any interpretations
and predictions. Upsampling was not used as there was
no guarantee of physics being respected when artificial
datapoints are generated. The features were all preserved
in their original units and no feature transformation (e.g.,
squaring) was used as the intention was to keep
consistent physical units throughout the whole process.

3 RANDOM FOREST ALGORITHM

The method chosen to predict liquefaction
manifestation categories is the Random Forest (RF)
algorithm implemented in Scikit- learn (Pedregosa et al.
2011). The RF algorithm is an extension of the decision
tree algorithm, in that it fits multiple decision trees and
uses a majority vote approach between the trained
decision trees to make its predictions. The overall goal
of the decision tree algorithm is to use the supplied
predictor variables and recursively divide the dataset into
homogeneous groups to accurately predict the response
variable. In the fitting process of the RF algorithm,
several hyperparameters are specified before training,
such as the number of decision trees. Sampling with
replacement (bootstrapping) at a certain percentage of
the training set size is used to create new training
datasets that are assigned to each of the individual
decision trees, with each training set being unique from
one another due to the bootstrapping method. These
bootstrapped datasets contain only a subset of the overall
predictors in the training set both from the size and
replacement sampling restrictions. From there, the
decision trees each begin a recursive split process on
their assigned datasets to create a set of rules that
determine a given observation’s classification. Each
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decision tree path to a split is called a branch, and where
a branch splits is called a node, with a terminal node
called a leaf node. In the training process for each
decision tree, the algorithm first determines an optimal
variable to split upon, and then an optimal value within
the variable to separate the data. This process repeats
recursively until various stop criteria have been reached.
Some of the stop criteria for a decision tree are:

o Minimum split size: A threshold for how small
the number of observations within each
subgroup of data should be to continue splitting.

e Minimum node size: A threshold for how small
the number of observations in a node should be
to terminate the branch and convert the node
into a leaf node.

e Tree depth: The number of recursive splits or
nodes used to build the tree.

Once the controlling stop criterion is reached for each
decision tree, each of the final splits within the decision
trees are determined. For a new data point (observation),
the RF algorithm checks the resulting classification from
each decision tree in its “forest” and then uses a majority
vote approach to predict the observation’s final
classification. RF was chosen as the ML model to use
because: (i)Variable interactions are preserved in the RF
algorithm process which is pertinent for liquefaction
analysis; (i1) RF is a non-parametric method as it has no
prior data distribution (e.g., Normal) requirements for
the algorithm and is known to be able to fit nonlinear
parameter relationships (Brieman, 2001); (iii) RF yields
low bias with only moderate variance which indicates
that the predictions will tend to center around the correct
Class.

3.1 Hyperparameter Training

The dataset was split into two portions with 80% of
it for training and 20% of it for testing. To improve the
performance of the RF algorithm the hyperparameters
were optimized in two stages. First, a random
hyperparameter grid search with five- fold cross-
validation (CV) was run on the training set over a wide
range of hyperparameter values. Then, a local exhaustive
grid search with five-fold CV was run with finer
hyperparameter values in a close range around the
previously found best hyperparameters. The
hyperparameter search was restricted in range and
subjected to five-fold cross-validation to prevent the RF
algorithm  from overfitting. The final best
hyperparameters are: Max depth (90), Max samples
(90%), Min samples per leaf (2), Min samples per split
(5), Number of estimators (500). Bootstrapping was
always kept as the default to reduce overly memorizing
the training set since RF only uses a randomly drawn set
with replacement from the training set datapoints. These
measures lowered the accuracy from the training set but
resulted in higher test set accuracies and a smaller gap
between the two accuracies indicating an absence of
overfitting.
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4 SHAP

SHAP (Lundberg and Lee 2017) allows ML models
to achieve both accuracy and interpretability. SHAP
works as a wrapper around the original ML model,
probing the ML model to calculate the contributions and
interactions of the input features on the final prediction
and can be applied to most ML models. The background
of this technique originates from game theory as an
additive feature attribution method, meaning the
predicted output is a linear combination of the input
features as showcased in Equation 1.

9(z") = o + XiL; dizi (M

where z' € 0,1, M is the number of simplified input
features, and ¢; € R (Lundberg and Lee 2017)

SHAP values are to satisfy three criteria: 1) Local
accuracy: The explanation model output should match
that of the original ML model. 2) Missingness: If a
feature value is 0, then it should reflect as such in the
explanation model as a 0 for the influence value. 3)
Consistency: The explanation model should consistently
reflect any changes as the ML model changes. A unique
solution has been proven to satisfy these three criteria as
Equation 2.

$ilfrx) = Ty LD 4 2y — £ (2\0))
@

where |z'| is the number of non-zero entries in z', and
z' € x'represents all z' vectors where the non-zero
entries are a subset of the non-zero entries in x'
(Lundberg and Lee 2017)

As Equation 2 is computationally intensive to solve,
there are approximation SHAP algorithms, such as
KernelSHAP and TreeSHAP. This paper utilizes
TreeSHAP as it is designed for tree-based algorithms,
such as RF, and efficiently calculates SHAP values for
all input features. Utilizing SHAP allows us to explore
model biases, outlier effects, and trends within input
feature values that can hint towards their overall
influence on the model.

5 RESULTS

The final RF model has an overall accuracy of 71%
on the test set. Additionally, the dataset is imbalanced
and therefore the per class accuracy is a more holistic
view of model performance. The prediction accuracy per
manifestation level was: 93.5 for Class 0, 39.4% for
Class 1, 57.9% for Class 2, 14.1% for Class 3, 9.7% for
Class 4 and 2.3% for Class 5, with the confusion matrix
in Fig. 1. The latter classes 4 and 5 have poor accuracies,
with many mispredictions to classes 1, 2, and 3 instead.
This is due to the difficulty of solving two fundamental
problems at once: liquefaction (class 0-3) or lateral
spreading (class 4-5). The two are tied as lateral
spreading is liquefaction but have been separated out in
the original dataset into different classes. It is evident
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that this RF model has learned liquefaction but cannot
discern between lateral spreading yet with our limited set
of data and input features.

46% 1.9%
62 5

37.3%
158

39.4% 21.5% 05% 1.4%
167/424 o1 2 6

14.5% 26.0% 57.9% 1.0% 0.6%
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Fig. 1. Confusion matrix of final model, correct predictions are
aligned along the diagonal. The percentage value in each box is
the percentage predicted from the actual class (left) into the
predicted class (bottom) out of the total actual class. The
numerical value in each box is the number of datapoints predicted
into the prediction categories.

The SHAP feature importance plot in Fig. 2
showcases the impact of each feature on the predicted
class. Here, we can see that PGA has a large impact on
Class 0 (no liquefaction) but not as much on Class 5
(severe lateral spreading), but it still has the greatest
impact out of all the features overall. This is reasonable
considering it is the imposed demand while all other
features are essentially capacity. The per feature impact
for the following other input features vary, with the
overall size of the bar corresponding to how important
the feature is for the final prediction with the segmented
sections indicating its importance per class. GWT and
geology are both more important than the SBT of
individual layers, including the crust.

Delving into the individual class prediction SHAP
summary plots in Fig. 3, previously hidden trends are
uncovered. The color on the SHAP summary plot
indicates the input feature value, with red being a high
value (e.g., 5) and blue a low value (e.g., 0) relative to
the feature’s range. The x-axis indicates the impact in
log-odds on the final prediction, with a high log-odds
value (towards the right) indicating a bigger input feature
impact on the probability of the given class being the
correct final predicted class. The ordering of input
features along the y-axis is based on the most impactful
input feature on top and least impactful on bottom.
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Fig. 2. SHAP feature importance plot, explanation in text.

From Fig. 3, for a high log-odds probability of Class
0 (no manifestation) the input features of a low PGA,
deep GWT, and Holocene era geology are identified.
The following summarizes the takeaways on the
preferential input features for the rest of the classes:
Class 1) high PGA, shallow GWT, and Holocene era
geology. Class 2) high PGA, shallow GWT, Anthropic
or active deposits. Class 3) high PGA, shallow to mid-
depth GWT, active deposits. Class 4) high PGA,
Anthropocene or fill geology, slight preference towards
deep GWT. Class 5) high PGA, Anthropocene or fill
geology, shallow to mid-depth GWT.

As the geology input feature becomes second most
important for predicting Class 4 and 5, these classes rely
more heavily on geology than classes 0-3. Low PGA
only matters greatly for Class 0, while the rest have
varying spreads of how impactful a high PGA is.
Shallow GWT matters for classes 1,2,3, and less for
classes 4,5, which hints that other unobserved features
are at play for lateral spreading. The shift in geology
importance notes that younger deposits (active or
Anthropocene) tend to be looser and have a higher
possibility of liquefaction than older deposits that have
had time to consolidate and densify. These observations
drawn from the SHAP values match with what is known
in literature on liquefaction (Idriss and Boulanger 2008),
showcasing the RF model’s ability to place importance
on input features without prior knowledge introduced.

Focusing on the SBTs of the crust and subsequent
0.5m layers, the preferences for which SBTs in each
layers are influential towards the log-odds probability of
the predicted Class occurring also change: Class 0)
preference for sands at all layers, except layer 5 which
has a clay preference. Class 1) preference for clays in all
layers. Class 2) interlayering preference, with a
preference for sands in the crust. Class 3) slight
preference for clays in layer 1 and 2, with sands for the
rest. Class 4) no discernable preference, with less
emphasis on clays for layers 5, 6, 8. Class 5) no
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discernable preference across layers. For Class 4 and 5
there is a narrower range for the x-axis, as the x-axis
(range of log-odds) shrinks with increasing classes. This
means the same input feature value has a smaller impact
on the log-odds for predicting Class 5 than Class 0,
which can be explored in detail in Fig. 4.
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Fig. 3. SHAP summary plots per predictive Class, explanation in
text.
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Fig. 4. SHAP plots per predictive class for a correctly classified
Class 0 datapoint. Explanation in text.

The x-axis in Fig. 4 is again the log-odds probability
of the predicted class being the correct class. There is a
base starting value for each class log-odds prediction
which is equivalent to the expected value or bias of the
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class. The subsequent input feature values will then
impact the log-odds probability by adding or subtracting
from the base value. The impact per feature depends on
the importance of the feature under the predicting class
as seen in the overall Fig. 3 breakdown.

From the axis, the expected values per Class are:
Class 0) 0.60, Class 1) 0.17, Class 2) 0.13, Class 3) 0.03,
Class 4) 0.046, Class 5) 0.017. There is a large bias
towards Class 0, which is expected as it was the
overarching Class (60% of the dataset). The classes with
lower accuracy (3,4,5) show lower bias, which makes it
less likely for the model to predict these classes and
explains the accuracy values.

The chosen individual datapoint in Fig. 4 to be
inspected is a Class 0 that was correctly predicted as a
Class 0. For this datapoint after the input features were
added the log-odds per potential Class prediction settle
and can be compared. The SHAP values push the log-
odds per Class to strongly indicates a Class 0 prediction
to be the most likely one, which has a final log-odds of
0.98 compared to that of the other classes that are all
below 0.01. Based on the log-odds, Class 0 was the final
predicted Class by the RF model, and thus this datapoint
was correctly classified.

Class 0 -

Class 1

o4

Class 2 03

Class 3

Class 4 0.03

Class 5 s

Fig. 5. SHAP plots per predictive class for an incorrectly classified
as a Class 1 instead of Class 2 datapoint. Explanation in text.

SHAP not only helps track how the correct
classification was achieved, but it can also be used to
track how misclassifications happened or how close
correct classifications were to being incorrect.
Observing a different datapoint’s SHAP individual plots
in Fig. 5, one that was misclassified as a Class 1 rather
than Class 2, reveals the misprediction path. Class 1 has
a higher log-odds (0.4) than that of Class 2 (0.3) with the
rest of the classes log-odds are all lower than 0.17. This
indicates that the RF model was close to predicting Class
2, but the SHAP values show how the input features
contributed to a greater log-odds for Class 1 with a
greater impact from the same PGA of 0.582. This
inspection of mispredictions through SHAP values leads

- 0S-26-06 -



©8ICEGE

0S-26-06

to informed next steps to course correct the RF model.
The RF model overall does well at recognizing it is not
any of the other classes, and the log-odds being close
between Class 1 and 2 indicate that with some further
improvements the RF model can possibly gain accuracy
by bridging the log-odds impact gap.

6 CONCLUSION

Explainable ML (SHAP) was applied to a Random
Forest (RF) classification algorithm to predict multiclass
liquefaction from the Geyin et al. (2021) database of
observations from three New Zealand earthquakes. The
RF algorithm performed with an overall accuracy of
70.8%, while SHAP calculated a granular breakdown of
input feature influences on final predictions for all
potential predicted classes. The main observations from
the SHAP breakdowns are that: low PGA is a large
contributor to no liquefaction manifestation,
increasingly shallow GWT levels mirrors increasing
liquefaction  manifestation, younger geological
formations have a greater tendency to show liquefaction
manifestation, and sand layers near the upper soil layers
influence greater liquefaction manifestation.

This initial exploration with SHAP illustrates how
previously black-box ML models can be transformed
into white-box ones, with observations that match those
known from literature. As data sharing and capture
increase, ML models can act as a first-pass approach to
handle large amounts of data with complex relationships.
SHAP can then be applied to elucidate granular
observations for which input features are impactful at
what levels or understand prediction paths for both
correctly predicted and mispredicted datapoints. Any
new or unusual feature impacts revealed through SHAP
from originally complex ML models can be used to
identify areas of research to further pursue, whether it be
physical experiments or constitutive modeling to parse
out more insights through traditional geotechnical
methods.

Future work will explore additional input features,
such as slope or elevation, to increase accuracies and
mitigate bias. There are also per-class accuracies that are
lacking that will be addressed by returning to literature
and reevaluating the misclassified points to see if it is an
indication of a greater database misclassification.
Finally, feature interactions will be explored with SHAP,
to see if combining certain values of features (e.g., GWT
and PGA) may lead to different effects than if
independently input into the ML model.
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