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ABSTRACT

The abundance of post-earthquake data from the Canterbury, New Zealand (NZ), area can be
leveraged for exploring machine learning (ML) opportunities for geotechnical earthquake
engineering. Herein, random forest (RF) is chosen as the ML model to be utilized as it is a
powerful non-parametric classification model that can also calculate global feature importance
post-model building. The results and procedure are presented of building a multiclass
liquefaction manifestation classification RF model with features engineered to preserve special
relationships. The RF model hyperparameters are optimized with a two-step fivefold cross-
validation grid search to avoid overfitting. The overall model accuracy is 96% over six ordinal
categories predicting over the Canterbury earthquake sequence measurements from 2010, 2011,
and 2016. The resultant RF model can serve as a blueprint for incorporation of other sources of
physical data such as geological maps to widen the bounds of model usability.

INTRODUCTION

While the fundamental understanding of liquefaction mechanics at the element level has been
established, it is a nonlinear phenomenon with a wide range of potential participating input
parameters that often have interactive effects particularly at the system level of a soil deposit. A
possible manifestation of liquefaction is the formation of ejecta or sand boils at the ground
surface by the seepage of water through ground cracks and the simultaneous temporary loss of
the soil’s bearing capacity. Liquefaction manifestation is a multiscale problem with many
interacting factors that are challenging to isolate. For example, even if someone studies the
response of a singular sand via an exhaustive direct simple shear (DSS) testing program,
upscaling to the field is not straightforward since a liquefiable soil site operates as a system of
multiple layers and/or inclusions that may affect the observed manifestations (e.g., Cubrinovski
et al. 2019, Bassal et al. 2022). As such, case histories become invaluable one-off opportunities
towards studying multiple aspects of liquefaction.

Combined with advancements in field instrumentation, monitoring, data storage, and analysis
capabilities, case histories have yielded rich and high quality during- and post-earthquake data.
These newer datasets allow for liquefaction phenomena to be explored with more advanced
techniques, such as machine learning (ML). A subset of Artificial Intelligence (Al), ML uses
computer algorithms to make predictions on given data without explicit programming
instructions. A ML algorithm can find patterns and relationships among the data without explicit
guidance and could potentially discover associations that may otherwise be missed.
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New Zealand is a seismically active island country and has experienced several major
earthquakes. The 2010/2011 Canterbury earthquake sequence (CES) started with the Mw7.1
Darfield earthquake (September 4, 2010) and was followed by up to ten events which induced
liquefaction in the affected region (e.g., Maurer et al. 2015). The soil deposits in Christchurch, a
city located in the Canterbury region, vary significantly both horizontally and vertically and are
composed of a mix of thin layers of sand, silt, clay, and peat (Cubrinovski et al. 2011, Beyzaei et
al. 2018). The depositional history of the soils was unable to be captured solely by traditional
CPT-based liquefaction triggering assessments which resulted in numerous false positive or false
negative predictions of liquefaction manifestation occurrences (Ballegooy et al. 2014, Beyzaei et
al. 2018). The combination of available information on these complex deposits with well
documented liquefaction manifestation data yielded a seminal case history. This data has been
used in ML applications for earthquake engineering, some involving Random Forest (RF) for
binary liquefaction manifestation occurrence classification (Durante and Rathje 2021) or for
liquefaction potential index (LPI) prediction (Geyin et al. 2022).

Herein, the application of the RF ML algorithm on an established large dataset is
investigated. In the process the methods and approaches behind a successful application of ML
in geotechnical earthquake engineering are demonstrated and established. The work presented
uses post-processed data from the September 2010, February 2011, and February 2016
Canterbury, New Zealand earthquakes (Geyin et al. 2021) to predict different severities of
liquefaction manifestation in the form of multiple categories via the Random Forest ML
algorithm (multiclass classification). The paper first introduces the dataset and RF algorithm
with a subsection justifying the choice of algorithm. Then the subsequent feature engineering on
the dataset is explained along with details of the two-stage cross-validation used to optimize the
RF hyperparameters while minimizing overfitting. Finally, the fitted RF model is presented
along with the final accuracies and model performance results based on various evaluation
metrics. The paper concludes with lessons learned from the application of RF with this dataset,
the feasibility of incorporating physical characteristics with ML in the field of liquefaction, and
challenges and opportunities for the future with incorporation of physical relationships.

DATASET

The dataset is composed of earthquake and CPT data from the September 2010, February
2011, and February 2016 earthquakes in Canterbury, New Zealand (Geyin et al. 2021). The
number of CPT observations is 5,668. It is a structured dataset containing typical CPT data,
recorded peak ground acceleration (PGA) in g and groundwater table (GWT) depth in m for each
CPT location per earthquake, and the severity of liquefaction manifestation experienced at each
CPT per earthquake. The liquefaction manifestation category is the prediction target of the RF
model. It can take the following values: 0 (no manifestation), 1 (minor), 2 (moderate), 3 (severe),
4 (lateral spreading), 5 (severe lateral spreading), and 10 (unknown). Further details of the
separation of categories can be found in Geyin et al. (2021). All records corresponding to
manifestation category 10 were removed from the dataset as they are essentially unknown values
that took up only 5% of the total dataset. Only the 4 m of soil below the GWT were considered
as that is the depth of soil with the most impact on manifestations during the New Zealand
earthquakes (Cubrinovski and Robinson, 2016). The GWT fluctuates per year and the PGA is
different for each earthquake, therefore a different set of data for the same CPTs is created for
each earthquake year due to the subsequent feature engineering, roughly tripling the base dataset.
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RANDOM FOREST ALGORITHM

The method chosen to predict liquefaction manifestation categories is the RF algorithm. The
RF algorithm is an extension of the decision tree algorithm, in that it fits multiple decision trees
and uses a majority vote approach between the trained decision trees to make its predictions as
shown in Figure 1. The overall goal of the decision tree algorithm is to use the supplied predictor
variables and recursively divide the dataset into homogeneous groups to accurately predict the
response variable. In the fitting process of the RF algorithm, several hyperparameters are
specified before training, such as the number of decision trees. Sampling with replacement
(bootstrapping) at a certain percentage of the training set size is used to create new training
datasets that are assigned to each of the individual decision trees, with each training set being
unique from one another due to the bootstrapping method. These bootstrapped datasets contain
only a subset of the overall predictors in the training set both from the size and replacement
sampling restrictions. From there, the decision trees each begin a recursive split process on their
assigned datasets to create a set of rules that determine a given observation’s classification. Each
decision tree path to a split is called a branch, and where a branch splits is called a node, with a
terminal node called a leaf node. In the training process for each decision tree, the algorithm first
determines an optimal variable to split upon, and then an optimal value within the variable to
separate the data. This process repeats recursively until various stop criteria have been reached.
Some of the stop criteria for a decision tree are:

e Minimum split size: A threshold for how small the number of observations within each

subgroup of data should be to continue splitting.

e Minimum node size: A threshold for how small the number of observations in a node

should be to terminate the branch and convert the node into a leaf node.

e Tree depth: The number of recursive splits or nodes used to build the tree.

Once the controlling stop criterion is reached for each decision tree, each of the final splits
within the decision trees are determined. For a new data point (observation), the RF algorithm
checks the resulting classification from each decision tree in its “forest” and then uses a majority
vote approach to predict the observation’s final classification. Besides Scikit-learn (Pedregosa et
al. 2011) for the RF algorithm, other packages used to prepare the data and process the
predictions include NumPy (Harris et al., 2020), Pandas (McKinney, 2010), and Yellowbrick
(Bengfort et al. 2018).

Here, the choice was made to use only one ML model, RF, while focusing on feature
engineering with an emphasis on physical ties and overfitting mitigation such that it can provide
insights that will enhance future adoption into a more generalized usage. RF was chosen as the
final model because: (i) Variable interactions are preserved in the RF algorithm process which is
pertinent for liquefaction analysis; ii) RF is a non-parametric method as it has no prior data
distribution (e.g., Normal) requirements for the algorithm and is known to be able to fit nonlinear
parameter relationships (Brieman, 2001); (iii) RF yields low bias with only moderate variance
which indicates that the predictions will tend to center around the correct category; (iv) RF
models carry a degree of interpretability as they present the feature importance of the
explanatory variables included. Feature importance allows one to draw the results back to
existing knowledge of liquefaction phenomena behavior and check if there is agreement between
the most influential features. If there are any unexpected results, they can serve as an indication
that the model may not be performing within known physical bounds.

© ASCE

Geo-Congress 2024



Downloaded from ascelibrary.org by University of California, Davis on 03/05/24. Copyright ASCE. For personal use only; all rights reserved.

Geo-Congress 2024 GSP 349 225

Random Forest model creation Prediction
s 'S ~
Input new 10
input parameters ‘
to Random Forest 8 Predicted class
. model €6
Input —s Lo > 3 _—>
training data c 4 |:|
2 D
/g\ 0 |:|
ABCDE
)>\ Class
n individual decision trees Each individual decision tree outputs The most common output
are created from bootstrapped a prediction for the test data which prediction is taken as the
training data to create a are tallied up across the Random Forest model  final overall prediction class
Random Forest model

. . J

Figure 1. Conceptual Random Forest (RF) algorithm process
FEATURE ENGINEERING

Feature engineering is the practice of extracting features from raw data (such as CPT data)
with the help of domain knowledge. Following Cubrinovski and Robinson’s (2016) observation
that the 4 m of soil below the GWT had the most impact on liquefaction manifestation for New
Zealand earthquakes, each CPT in the dataset was first truncated to only contain the data from
the GWT for the given year to the subsequent 4 m below it. The GWT depth per CPT was also
an input feature, as it contains the elevation and saturation information per CPT. After
truncation, the CPT section was split via soil behavior type (SBT) into a set of soil layers. SBT
was calculated via Robertson’s (2010) cutoffs for each soil type with an assumption of 18 kN/m?
for the saturated soil unit weight. The SBT categories consist of six types of soils: organic soils,
clay silt mixtures, sand mixtures, sands, and gravelly to dense sands. The distance between each
CPT reading is 0.02 m and a soil layer consists of one continuous SBT section within the same
CPT. The CPT is then discretized into subsections of soil layers and the following data is
recorded for each layer thus creating the feature space: depth at the top of the soil layer [m],
GWT [m], thickness of the soil layer [m], type of soil based on SBT, peak ground acceleration
(PGA) [g], category of liquefaction manifestation, and location label.

The location label feature consists of a spatial label that indicates the geographical location in
terms of Northings and Eastings. A 0.01°(1.11 km) distance was used as the grid distance in
Northing and Easting directions to separate each location section geographically. Any CPTs
within the same grid section received the same numerical label, with the extent and density of the
grid shown in Figure 2. The location labels were created by assigning an integer to each grid
square of size 0.01° in order, starting from the top left corner and moving along the row to the
right. After a row is labeled, the algorithm continues labeling from left to right on the subsequent
row until the last row.

As the PGA and GWT differ for each year for each location, each earthquake event yielded a
different set of data for the same CPT locations. Figure 3 illustrates the counts of liquefaction
manifestation categories per earthquake event, labeled by year of earthquake occurrence,
showcasing the imbalanced dataset. After this process of feature engineering the original dataset
with all three earthquakes, the new dataset contained 239,122 observations. The features were all
preserved in their original units and no feature transformation was used as the intention was to
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keep consistent physical units throughout the whole process. Table 1 contains the summary

statistics and distributions of both the input features and target values used in the model.
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Figure 2. CPT observations in the study area from Canterbury, New Zealand.

Source: Geyin et al. (2021).

Table 1. Summary statistics for variables

Variable Count Mean Std Min Median Max }liljz::hquake Count %total
Depth (m) 239,122 341 135 0 333 105 2010 80,024 33.50%
Length (m) 239,122 0.24 045 0.01 0.1 3.99 2011 82,676 34.60%
PGA (g) 239,122 0.25 0.13 0.05 0.21  0.73 2016 76,422 31.90%
GWT (m) 293,122 1.69 0.76 0 1.6 6.78
Manifestation level Count  %total SBT - Soil Type Count %total
0 147,445 61.70% 2 - Organic Soils 1,709 0.70%
1 43,748  18.30% 3-Clay 18,459 7.70%
2 26,453 11.10% 4 - Silt mixtures 43,919  18.40%
3 5,600 2.30% 5 - Sand mixtures 61,695 25.80%
4 11,555 4.80% 6 - Sands 75,984 31.80%
5 4,321 1.80% 7 - Gravelly to Dense sands 37,356  15.60%
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Figure 3. Count of manifestation events for the September 2010, February 2011, and
February 2016 earthquakes in Canterbury, New Zealand

HYPERPARAMETER OPTIMIZATION

The dataset was split into two portions with 80% of it for training and 20% of it for testing.
To improve the performance of the RF algorithm the hyperparameters were optimized via a
random hyperparameter grid search with cross-validation on the training set. The global grid
search consisted of the hyperparameters in Table 2, resulting in a total of 1,080 different
combinations to explore. To reduce the computational burden, 100 hyperparameter combinations
were randomly drawn from the overall hyperparameter combination space and fit on the training
set with five-fold cross-validation, totaling 500 fits. Then a local exhaustive grid search with
five-fold cross-validation was run with finer hyperparameter values in a close range around the
previously found best hyperparameters also detailed in Table 2. The final hyperparameters after
this two-fold process are presented in Table 2. To prevent overfitting by the RF algorithm the
hyperparameter search was restricted in range and subjected to five-fold cross-validation. The
deeper a decision tree, the more closely it can mirror the training set as the decision tree becomes
increasingly complex and leads to overfitting. As such, the maximum depth of decision trees
within the RF was restricted to a maximum of 90 trees in the second search. The number of
decision trees in the forest was allowed to grow to large numbers to reduce variance in the
resultant predictions. The minimum number of data points in a node before it could split was five
to reduce the complexity of the decision tree. The minimum number of data points in a leaf node
was kept to two to reduce overly branching and overfitting the training set. Bootstrapping was
always kept as the default to reduce overly memorizing the training set since it only uses a
randomly drawn set with replacement of the training set datapoints. The bootstrapping set was
intentionally kept at a range below 100% of the training set size in the second search to ensure
the entire training set could not be drawn each time. These measures lowered the accuracy from
the training set but resulted in higher test set accuracies and a smaller gap between the two
accuracies, indicating an absence of overfitting.

FINAL MODEL RESULTS
The final RF model has an overall accuracy of 96% on the test set. Additionally, the dataset

is imbalanced and therefore the per category accuracy is a more holistic view of model
performance. The prediction accuracy per manifestation level was: 99.4% for category 0, 92.2%
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for category 1, 94.3% for category 2, 82.4% for category 3, 89.1% for category 4 and 88.9% for
category 5. The RF model performs well in detecting no liquefaction manifestation occurrence
with slightly lower accuracy for higher category events.

Table 2. Hyperparameters searched over during the two-stage five-fold cross-validation

(CV)
First random CV Second local CV Final
Hyper parameter name 5-fold CV 5-fold CV Optimal
values
Number of decision trees in the 200, 400, ....2000] [200, 400, 600, 1200

forest 800, 1000, 1200]

[60, 70, 80, 90] 90

[10, 20, ...,80, None

Max depth of each decision tree (No restriction)]

Min number of data points placed in

a node before the node is split [5. 10] [5] 5
Min number of data points allowed

in a leaf node 2, 4] [2] 2
Ratio of train samples to be drawn [0.8,09, 1] (0.8, 0.9] 0.9

via bootstrapping

Other metrics were also used for model evaluation: True positives (TP), False positives (FP),
True negatives (TN), False negatives (FN). As this is a multiclass problem, the one versus rest
(OVR) scheme (Pedregosa et al. 2011) is used where a category is termed as “positive” while the
rest of the categories are termed as “negative”. The confusion matrix of Figure 4a summarizes
the classification accuracy of the final model across each manifestation category. The diagonal
cells show the number of TP out of the predicted number of positives along with the accuracy
percentage for the correct category predictions. The misclassified prediction cells contain both
the number of incorrect predictions and the percentage of the given category in the incorrect
prediction category. The confusion matrix shows a slight tendency for underprediction, with
more incorrect predictions into lower manifestation categories than higher manifestation
categories. The high accuracy for no manifestation is useful for determining whether mitigation
for liquefaction is needed, but the slight underprediction for the other categories can
underestimate the extent of potential damage. However, the predictions can potentially underpin
and propel detailed investigations and predictions depending on the consequence and risk
assessment for a structure at a certain location.

Further examination of model accuracies can be found via the receiver operating
characteristic (ROC) curves and the precision-recall curves (PRC) in Figure 4c and 4d. The True
Positive Rate (TPR) is defined as TP/(TP+FN) and can be interpreted as the amount of correctly
labeled observations for a category out of all the observations that were supposed to be in that
category. The False Positive Rate (FPR) is defined as FP/(FP+TN) and can be interpreted as the
amount of incorrectly labeled datapoints for a category out of all the datapoints that are not in
that category. A ROC curve closer to the top-left corner indicates a good fit of the model. The
model performs well on each category, with similar ROC curves for all classes indicating that the
model is not lacking in prediction of any given category. A ROC curve comes with Area Under
the ROC Curve (AUC) values that range from 0 to 1. The greater the AUC value, the better the
model is at classifying for the given category. A PRC curve also has an area value that captures a
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similar concept. Figure 4c illustrates the AUC values and indicates that the model is skilled at
liquefaction manifestation classification with all values at 1. Figure 4d showcases all PRC curves

have an area over 0.98, with category 0 at an area of 1 as well.
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Figure 4. Final RF model metrics on the testing set: (a) Confusion matrix, (b) Feature
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importance plot, (c) ROC curve, (d) PRC curve. Explanations in surrounding text.

A PRC is useful in the case of an imbalanced dataset as the individual category accuracies
can be observed. Precision is defined as TP/(TP+FP) and can be interpreted as how precisely the
model will label the correct category for an observation. Recall is defined as TP/(TP+FN) and
can be interpreted as how well the model can find all the correct observations for a given
category. A PRC curve close to the top-right corner is better. For this model, category 0 is the
best performing as to be expected due to the high number of datapoints in this category in the
dataset. The rest of the categories perform similarly well without any noticeable drops in
precision from one another or along the plot, indicating that the RF model is overcoming the
imbalanced dataset and learning patterns from the data instead of purely memorizing the training

set.
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For interpretability purposes, a feature importance plot was constructed for the RF model.
Feature importance or Gini importance is calculated by using the mean and standard deviation of
the accumulated Gini impurity decreases for each feature used in each decision tree. Figure 4b
showcases the results, with PGA being the most important variable for predicting the
liquefaction manifestation. Next in importance is the GWT, which captures the amount of
unsaturated material within the CPT location which has an influence on whether the liquefaction
could even manifest. Then there is the location label, which indicates that certain clusters of
geographical and thus geological/depositional areas are more prone to liquefaction. This was
expected due to the prior knowledge that saturated sandy soil is prone to liquefaction, so areas
around pockets of water would be more prone to it. The less influential variables are depth and
thickness of the soil layer, with depth being slightly more important. As even a small layer of
liquefiable soil could cause liquefaction manifestation, the thickness of the soil layer not being
very influential reinforces the observations of others. Surprisingly, SBT does not seem to have a
major predictive effect on the occurrence of liquefaction manifestation, suggesting that it has an
influence, but the PGA, GWT, and location label are more important for a holistic prediction of
liquefaction manifestation

CONCLUSIONS

The ability of the Random Forest classification algorithm to predict multiclass liquefaction
manifestation was investigated using the Geyin et al. (2021) database of observations from three
earthquakes in New Zealand. The algorithm performed successfully yielding 96% overall
accuracy in predicting different categories of manifestation on the test dataset. It was found that
the key to the RF algorithm’s success was robust feature engineering that drew from prior
geotechnical earthquake engineering knowledge that worked to preserve the original data’s
physical constraints as liquefaction manifestation is influenced by both stratigraphy and geology.
CPT data is commonly used in empirical methods and ML algorithms but reframing the available
data into a format suited specifically for the RF algorithm required consideration of how each
feature’s representation would influence the algorithm’s accuracy and efficiency. The RF
algorithm’s potential for overfitting was addressed by restricting the hyperparameter values
allowed in two stages of grid searches with five-fold cross-validation to find the optimal
hyperparameters.

Feature engineering by preserving geological stratification can become a novel approach
where only sections of a CPT are used along with corresponding features to obtain localized
information on whether liquefaction manifestation will occur. Keeping the soil layers distinct can
also allow for isolation of the most influential soil type for liquefaction manifestation or for
identifying interaction effects. This breakdown of a CPT into soil layers can also allow for
further potential integration with geospatial probabilities per soil type as prior distributions and
resulting in a probabilistic instead of deterministic liquefaction manifestation outcome.

The incorporation of geographical locations as Northing-Easting labels currently makes the
model only viable for the area the location grid covers. However, this location label feature
indirectly captures broad geological indicators such as proximity to bodies of water or known
swaths of alluvial soil and can underpin extension of this work by accounting for geology more
directly than with a location label. Future work can explore the above suggestions or try new
representations of the same dataset’s features to explore how changes in feature engineering and
algorithm choices influence the predicted results and accuracies.
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