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ABSTRACT 

 
Non-linear dynamic analyses (NDAs) are widely used in engineering practice to evaluate the 

seismic performance of geotechnical structures affected by liquefaction or cyclic softening. The 
quality of results from an NDA study depends on several technical and nontechnical factors. 
Validation, wherein a numerical prediction is compared to its physical counterpart, can assess the 
ability of an NDA to capture the various metrics of the response and potentially provide 
guidance toward improving the prediction. This study investigates select methodologies and 
validation metrics commonly used in signal processing problems to assess their effectiveness in 
capturing discrepancies between experimental and simulation results for a specific response of 
interest. Three simple problems are initially evaluated to analyze the metrics’ capabilities and 
identify necessary modifications. Then, the metrics are applied to nine sets of experimental and 
simulation time series, focusing on one response of interest (pore water pressure). It is found that 
cross-correlation successfully captures the lag in the initiation of liquefaction triggering, while 
Russell’s error metric captures magnitude and phase discrepancies. 
 
INTRODUCTION 
 

The performance evaluation of liquefiable geosystems is usually achieved through nonlinear 
deformation analyses (NDAs). The capabilities of NDAs in considering more sophisticated 
system behaviors, like cyclic mobility or cyclic softening of sands and clays respectively, 
structural dynamic response, and complex geometries have proven to be advantageous in 
estimating seismic performance, especially compared to simpler analysis methods (e.g., 
Boulanger, 2022). However, various factors can impact the quality of an NDA evaluation. The 
site characterization, the selection of the constitutive model(s), the model calibration process, , 
and broader numerical uncertainties are some of the factors that can affect the outcomes of a 
numerical evaluation (Boulanger and Ziotopoulou, 2018). Validating NDAs or parts thereof with 
experimental measurements can help refine some of these uncertainties, detect sources of 
discrepancy, and improve the reliability of NDA predictions.  

Oberkampf et al. (2002) described how verification and validation (V&V) can be key tools 
for building and assessing the reliability of numerical analyses and elaborated on the concepts 
and details behind these two processes. The American Society of Mechanical Engineers 
Standards (ASMES) defines model validation as the qualitative comparison of computational 
and experimental results for a response of interest and the determination whether the agreement 
between the experiment and simulation is acceptable or not (Sarin et al., 2010). In the case of 
NDAs, an acceptable agreement in a validation study for a particular geosystem does not always 
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guarantee a satisfactory prediction outcome in another geosystem. This is because the driving 
loading paths, materials, and boundary conditions may not be the same and a reasonable 
performance for one combination thereof cannot be extrapolated. Last but not least, the 
validation of NDAs has been mostly assessed visually (e.g., Ziotopoulou, 2018), in a more 
subjective framework, rather than rigorously quantifying the discrepancy. This qualitative 
approach, called viewgraph norm, can potentially hinder the unbiased objective evaluation of 
parametrically varied predictions and through that the improvement of the overall procedures. 

Various quantitative metrics with a broad range of characteristics and behaviors have been 
proposed in the engineering literature that enable the comparison between experimental 
measurements and numerical simulation results. Their aim is commonly to capture and explain 
the discrepancy between the two (Schwer, 2007). According to Zhan et al. (2011), an ideal 
validation metric has five characteristics, namely it should: (1) produce the same result 
regardless of the operator, (2) be suitable for generalization, (3) satisfy the symmetrical behavior 
(meaning it should yield the same results even if the numerical and experimental datasets switch 
with each other), (4) account for data uncertainty, and (5) have a physical meaning and confirm 
engineering knowledge. Although a usable metric may not satisfy all these characteristics, for 
NDA-based analyses, it should honor the time-dependent nature of the phenomenon. Therefore, 
it is essential that the selected validation metric captures the discrepancy source and explains 
whether the error is due to magnitude, phase, or shape variations. 

This paper presents an initial investigation on select methodologies and metrics that have 
been used in signal processing problems with the goal of evaluating their effectiveness in 
capturing the discrepancy between experimental and simulation results on one response of 
interest. The selected metrics investigated in this study are Sprague and Geers (2004), Russell's 
Error (1997), and Cross-Correlation (Liu et al., 2005). The experimental data selected to perform 
the investigation on, are those obtained from the centrifuge model test number 10 of the 
Liquefaction Experiments and Analysis Project, performed at the Rensselaer Polytechnic 
Institute (RPI) centrifuge facility (RPI-10). Respectively, numerical data were obtained from the 
simulation of the same test in FLAC 8.1 (Itasca, 2019), and with the constitutive model 
PM4Sand (Boulanger and Ziotopoulou, 2022) applied to the liquefiable sands. 

 
VALIDATION METRICS 
 

The three metrics chosen herein to evaluate the discrepancy between simulation and 
experimental data are Sprague and Geers (S&G), Russell’s Error, and Cross Correlation. S&G 
(2004) proposed Equations 1 and 2 for calculating the magnitude and phase errors, respectively, 
between the computed (simulation) and measured (experiment) data. 

 

𝑀𝑆&𝐺 =  √
𝜗𝑐𝑐

𝜗𝑚𝑚
− 1                                                        (1) 

 
𝑃𝑆&𝐺 =  

1

𝜋
cos−1 (

𝜗𝑐𝑚

√𝜗𝑐𝑐𝜗𝑚𝑚
)                                                   (2) 

 
where 

 

𝜗𝑐𝑐 =  
∑ 𝑎𝑖

2𝑁
𝑖=1

𝑁
     ,     𝜗𝑚𝑚 =  

∑ 𝑏𝑖
2𝑁

𝑖=1

𝑁
      , 𝜗𝑐𝑚 =  

∑ 𝑎𝑖𝑏𝑖
𝑁
𝑖=1

𝑁
                            (3) 
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In the above equations, 𝜗𝑐𝑐 is the computed vector, 𝜗𝑚𝑚 is the measured vector, and 𝜗𝑐𝑚 is 
the computed-measured vector. These vectors are defined in Equation 3 based on the computed 
values (𝑎𝑖) and measured values (𝑏𝑖) at each time increment, and the total number of recorded 
values (𝑁). Russell's Error and S&G have a similar phase error calculation but differ in the 
magnitude error calculation. The Russell’s Error equation for calculating the magnitude error 
(Equation 4) is defined in a way to produce values in a similar scale as the phase error defined in 
Equation 2. Cross-correlation, or sliding dot product, represented by Equation 5, is a 
modification to the concept of coefficient of correlation, used to measure phase lag between two 
time histories (Sarin et al., 2010).  

 

𝑀𝑅 = 𝑠𝑖𝑔𝑛(𝜗𝑐𝑐 − 𝜗𝑚𝑚)𝑙𝑜𝑔10(1 + |
𝜗𝑐𝑐−𝜗𝑚𝑚

√𝜗𝑐𝑐𝜗𝑚𝑚
|)                                  (4) 

 

𝜌(𝑛) =  
(𝑁−𝑛) ∑ 𝑎𝑖𝑏𝑖+𝑛

𝑁−𝑛
𝑖=1 −∑ 𝑎𝑖 ∑ 𝑏𝑖+𝑛

𝑁−𝑛
𝑖=1

𝑁−𝑛
𝑖=1

√(𝑁−𝑛) ∑ 𝑎𝑖
2𝑁−𝑛

𝑖=1 −(∑ 𝑎𝑖
𝑁−𝑛
𝑖=1 )2√(𝑁−𝑛) ∑ 𝑏𝑖+𝑛

2𝑁−𝑛
𝑖=1 −(∑ 𝑏𝑖+𝑛

𝑁−𝑛
𝑖=1 )2

                           (5) 

 
where n = 0,1,2,…,N-1. The maximum value of 𝜌(𝑛∗) will be used to shift the simulation 
relative to the experiment by 𝑛∗ step in order to measure the phase lag. Cross-correlation results 
in values between -1 and 1. Higher absolute values indicate stronger agreement, while values 
closer to 0 indicate greater phase difference between the simulation and experiment. 

 

 
 

Figure 1. Three simple problems defined with having (a) only magnitude error, (b) only 
phase error, and (c) phase and magnitude errors. 

 
APPLICATION OF METRICS IN SIMPLE PROBLEMS 
 

Before evaluating the metrics for the LEAP model test, the ability of the metrics for 
capturing different sources of discrepancies is analyzed on three simple known problems. These 
problems are illustrated in Figure 1 and are all defined with simple harmonic waves for both the 
experimental and simulation datasets. One example problem illustrates magnitude error, one 
phase error, and one the combination of magnitude and phase errors. In the first problem, 
simulation produces a 50% higher magnitude than the experiment for the first half of the time 
domain, then the experiment has 50% higher magnitude compared to the simulation. In the 
second problem there is no magnitude difference, but the simulation is 45º ahead of the 
experiment. In the third problem, the simulation has 50% higher magnitudes with a 90º phase lag 
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compared to the experiment throughout. The goal of this simple problem analysis is to identify 
any necessary modification to the metrics to better capture and distinguish the errors due to 
magnitude and phase differences. Once the modifications are applied, the validation is performed 
and analyzed on the experiment and simulation pore water pressure (pwp) dataset at all 9 
locations using the modified metric. 

Results for Simple Problems. S&G and Russell’s Error metrics are used to assess these 
problems in “Delta-T” and “Cumulative” formats. Delta-T plots show the calculations at 
individual time intervals, whereas the cumulative plot shows the accumulated calculations over 
the time history. 

Figures 2 and 3 show the performance of S&G and Russell’s Error metrics on the three 
simple problems. In the first problem (only magnitude error), both S&G and Russell’s Error 
correctly capture a zero-phase difference between the simulation and magnitude. The magnitude 
error captured by S&G metric in the second half of the problem 1 is different than the first half, 
while Russell’s Error remains consistent. This issue comes from the fact that S&G does not 
consider a symmetrical behavior for calculating the magnitude error. Therefore, it produces a 
different result when the simulation and experiment time series switch their places in this 
problem. The second problem shows evolving magnitude errors in S&G despite being designed 
with zero error. Besides, S&G calculates the magnitude error on a larger scale than phase errors, 
unlike Russell’s Error metric. The greater magnitude scale in S&G metric reduces the 
significance of the phase error, as can be seen by comparing the second and third problems in 
Figures 2 and 3. Problem three has the same magnitude difference as problem one. However, 
both S&G and Russell's Error show a different magnitude error trend compared to problem one 
due to the influence of phase error. Therefore, minimizing the phase difference is essential to 
measure the magnitude error more accurately. 
 

 

Figure 2. The performance of S&G metric on problems with (a) only magnitude error, 
(b) only phase error, and (c) phase and magnitude errors in both ‘Delta-T’ (1st row) and 

‘Cumulative’ (2nd row) format. 

Geo-Congress 2024 GSP 349 313

© ASCE

 Geo-Congress 2024 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
, D

av
is

 o
n 

03
/0

1/
24

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



 
Figure 3. The performance of Russell’s Error metric on problems with (a) only magnitude 
error, (b) only phase error, and (c) phase and magnitude errors in both ‘Delta-T’ (1st row) 

and ‘Cumulative’ (2nd row) format. 
 

 
 

Figure 4. Schematic cross-section of the LEAP-2020 centrifuge model test sheet-pile-wall 
geosystem (after Basu et al., 2022). 

 
APPLICATION OF METRICS IN LEAP-2020 
 

The focus of the LEAP-2020 exercise was a soil-sheet-pile wall system which was studied 
experimentally (centrifuge) and numerically. Eleven experiments were conducted at six different 
centrifuge facilities, all following the identical geosystem illustrated in Figure 4. A deposit of 
65% relative density (DR) liquefiable sand was overlying a 90% DR sand (both were Ottawa F-65 
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sand). A sheet-pile wall with specified properties was retaining the liquefiable sand named 
‘backfill’. This centrifuge model was spun up to the target centrifugal acceleration, shaken with a 
predetermined input motion, and different system responses (pore pressures, accelerations, 
displacements, and settlements) were recorded at multiple locations. Figure 4 shows the locations 
of the pore pressure transducers on the ‘backfill’ side of the wall. More information about the 
centrifuge experiments as part of the LEAP-2020 exercise can be found in Basu et al. (2022) and 
Perez et al. (2023). Herein, the measured pwp from the RPI-10 centrifuge test, at the nine 
different locations shown in the Figure 4 are selected for the validation study. This geosystem 
was modeled using the numerical platform FLAC 8.1 and the responses were simulated using the 
nonlinear constitutive model PM4Sand Version 3.2. The calibration of the model was performed 
through single-element simulations of undrained cyclic stress-controlled direct simple shear 
(DSS) tests. All details can be found in Basu et al. (2022). Figure 5 shows the experimental 
recordings along with the simulation results in terms of the excess pore water pressure measured 
at nine different locations of the RPI-10 centrifuge model test. 

 

 
 

Figure 5. Experimental versus baseline simulation results of porewater pressures at 
locations of Figure 4. Variable y-axis scales are used in order to allow the most comfortable 

viewing of the results. 
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RESULTS AND DISCUSSION 
 

After evaluating the metrics on three simple problems, Russell's Error is chosen for LEAP-
2020 measurements. Cross correlation is first used for measuring the phase lag between the 
experiment and simulation, so that it can be minimized before implementing the metric. Figure 6 
displays the cross-correlation results and corresponding 𝜌(𝑛∗) values for each location. 
According to the 𝜌(𝑛∗) values, agreement between the simulation and experiment time series 
weakens at shallower depths (PB3,PM3, PW3) and closer to the retaining wall (PW1, PW2, 
PW3), as 𝜌(𝑛∗) decreases. The calculated 𝑛∗ ranges from 3s to 7s for all locations, representing 
the time difference in liquefaction triggering initiation. This time of initiation strongly depends 
on the soil cyclic strength that was used in the model calibration process. Higher cyclic strength 
delays the triggering. Like 𝜌(𝑛∗), 𝑛∗ increases near the retaining wall, indicating lower cyclic 
strength at those locations. Figure 7 shows the time series after shifting the simulation by 𝑛∗ 
steps from cross correlation. Better matching occurs in the liquefaction triggering phase, but the 
simulation has greater pre-liquefaction magnitudes compared to Figure 5. The level of agreement 
between the simulation and experiment at different locations in Figure 7 correlates with the 
calculated 𝜌(𝑛∗) values shown in Figure 6. The comparisons at PB and PM locations show a 
better agreement (higher 𝜌(𝑛∗)) than at PW locations (lower 𝜌(𝑛∗)). 

 

 
 

Figure 6. Cross-correlation result with time at all nine locations in Figure 4. The location of 
the p(n*) is marked with a red triangle in all figures. 
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Figure 7. The simulation versus experiment results of pwp at all nine locations, after 
adjusting the simulation results with respect to the p(n*) in Figure 6 (non-gray area shows 

the overlapping time window between the two signals). 
 

After the phase error adjustment, Russell’s Error metric was applied to assess its 
effectiveness in capturing discrepancies during the overlapping time window of simulation and 
experiment (see Figure 8). The phase error captured by the metric is higher in locations with 
lower 𝜌(𝑛∗), which indicates greater remaining phase error after minimizing the lag. As the 
presence of phase error affects the calculated magnitude error, the captured magnitude errors are 
more accurate at locations with lower phase errors. In Figure 8, magnitude errors are evolving 
with a positive, a negative, or a zero slope. The magnitude error solely focuses on the relative 
difference in signal amplitudes between the experiment and simulation, irrespective of their 
absolute values. A positive slope indicates that the simulation produces higher amplitudes than 
the experiment, a negative slope suggests the opposite, and a zero slope signifies the same 
amplitude for both the experiment and the simulation. At all locations, the magnitude error starts 
with a positive slope, confirming the greater simulation amplitudes in the pre-liquefaction phase 
that was observed in Figure 7. 
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Figure 8. The captured cumulative magnitude and phase errors from Russell’s Error 
metric after minimizing the phase lag on pwp experiment and simulation datasets at 9 

locations. 
 
CONCLUSIONS AND RECOMMENDATIONS 
 

This study performed an initial investigation on three discrepancy metrics: Sprague and 
Geers (S&G), Russell’s Error, and Cross Correlation. The aim was to (1) evaluate their potential 
for use in the validation of geosystems’ simulations, and through that (2) provide a more 
unbiased approach to discussing the agreement between experimental and numerical data than 
the standard viewgraph norm of visual inspection. Through analysis of the metrics on three 
simple problems with known answers, it was observed that S&G exhibits asymmetrical behavior 
when calculating magnitude error and generating magnitude and phase errors on different scales. 
Additionally, both S&G and Russell's Error metrics are influenced by the presence of phase error 
in magnitude error calculations. 

Russell’s Error metric was selected for evaluating the agreement of LEAP-2020 porewater 
pressure recorded and simulated time histories. Cross-correlation was used to capture and 
minimize phase lag prior to calculating the magnitude error. The 𝜌(𝑛∗) obtained through cross-
correlation addressed the existing lag between simulation and experiment, attributed to the 
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existing difference between the experimentally realized and numerically predicted cyclic 
strengths. Additionally, it explained variations in phase lag with changing measurement location. 
Cross-correlation effectively minimized phase lag in locations with higher agreement (higher 
𝜌(𝑛∗)). Russell’s Error magnitude and phase errors explanation aligned with cross-correlation 
and visual comparison, reporting higher simulation amplitude in the pre-liquefaction phase and 
an improved match in the liquefaction triggering phase after phase lag minimization.  

Validation metrics offer insights into the quality of agreement between numerical and 
experimental results. As such, they can form a solid and objective basis for the implementation 
of targeted improvements for either the simulations or the execution of experiments. When 
embarking upon such comparisons, it is important to understand that both the experiment and the 
simulation can be responsible for discrepancies in the results. Future research should focus on 
enhancing the performance of the presented metrics through modifications and evaluating 
additional metrics. These evaluations will be further improved by considering other responses of 
interest (beyond porewater pressure time histories), introducing numerical and experimental 
uncertainties, and exploring different geosystems. 
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