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Abstract

With growing calls for increased surveillance of antibiotic resistance as an escalating global health threat, improved
bioinformatic tools are needed for tracking antibiotic resistance genes (ARGs) across One Health domains. Most studies
to date profile ARGs using sequence homology, but such approaches provide limited information about the broader
context or function of the ARG in bacterial genomes. Here we introduce a new pipeline for identifying ARGs in genomic
data that employs machine learning analysis of Protein-Protein Interaction Networks (PPINs) as a means to improve
predictions of ARGs while also providing vital information about the context, such as gene mobility. A random forest
model was trained to effectively differentiate between ARGs and nonARGs and was validated using the PPINs of ESKAPE
pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter cloacae), which represent urgent threats to human health because they tend to be multi-
antibiotic resistant. The pipeline exhibited robustness in discriminating ARGs from nonARGs, achieving an average
area under the precision-recall curve of 88%. We further identified that the neighbors of ARGs, i.e., genes connected
to ARGs by only one edge, were disproportionately associated with mobile genetic elements, which is consistent with
the understanding that ARGs tend to be mobile compared to randomly sampled genes in the PPINs. This pipeline
showcases the utility of PPINs in discerning distinctive characteristics of ARGs within a broader genomic context and in
differentiating ARGs from nonARGs through network-based attributes and interaction patterns. The code for running
the pipeline is publicly available at https://github.com/NazifaMoumi/PPI-ARG-ESKAPE
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Introduction

The increasing prevalence of antibiotic-resistant infections

poses a significant health threat(1). Previously treatable

diseases are now becoming untreatable due to the evolution

and spread of resistant bacterial strains(2). According to

the Centers for Disease Control and Prevention (CDC),

more than 2.8 million people are infected with antibiotic-

resistant pathogens annually, resulting in approximately 35,000

deaths(3; 4; 5). Of particular concern is the evolution and

spread of novel resistance phenotypes, which results in an ever-

evolving challenge to identify effective antibiotics in the clinic

and maintain their efficacy for years to come. Novel resistance

phenotypes can result from the horizontal transfer of antibiotic

resistance genes (ARGs) to new species or strains or through

previously unknown ARGs emerging in the genome(6; 7).

The advent of next-generation DNA sequencing over the

past decade represents a promising approach to support One

Health surveillance of antibiotic resistance, i.e., across humans,

animals, plants/crops, and the environment. Whole genome

sequencing can be applied to profile the dominant genes across

the microbial community inhabiting an environment of interest

(e.g., sewage, manure, soil, food). These sequences can then be

compared against publicly available databases to profile ARGs

and thus profile and compare genotypic resistance patterns.

However, the incompleteness of public databases is an inherent

limitation of this approach, particularly if there is interest in

monitoring previously unidentified ARGs(8). False positives are

also possible, due to local sequence similarity(9). Also, simple

read-matching homology-based profiling of this nature ignores

the context of putative ARGs and other genes of importance in

potentiating and mobilizing antibiotic resistance.

DNA sequences can be assembled into longer contiguous

sequences to provide more complete information about

the ARG of interest and thus increase confidence in its
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annotation and functional assignment when compared to public

databases(10). Machine learning approaches, especially deep

learning, can also help to improve the prediction of ARGs,

including novel ARGs, relative to simple sequence homology-

based comparisons(11; 12; 13; 14). However, such approaches

still fail to tap into broader information available in the genome

to precisely predict ARG function(15). These approaches

struggle to effectively encompass complex interactions between

various ARGs as well as genes of divergent types(16). They

also provide little information about other genes involved in

the mobility of the ARG or expression of its phenotype(17;

18). Focusing analysis on proteins, instead of nucleotide

sequences, could present advantages in this regard because it

is the proteins encoded by ARGs that perform the ultimate

function of conferring resistance to antibiotics, e.g., by target

modification, enzymatic degradation of the antibiotic, or

pumping the antibiotic out of the cell. In particular, analysis

of protein-protein interaction networks (PPINs) could help

to address this need, by enhancing understanding of the

proteins involved in resistance, and their interactions within

an organism(19).

The overall objective of this study was to develop and

validate a PPIN-based pipeline for characterizing ARGs in

whole genome data. We hypothesized that ARGs would exhibit

distinct patterns in network topology relative to nonARGs

in the PPIN, which can then be recognized by machine-

learning algorithms to predict their resistance mechanisms.

Of particular interest was to assess whether ARGs are likely

to be mobile, based on the strength of their networks

with mobile genetic elements (MGEs). To validate the

pipeline, we analyzed whole genome sequences of representative

“ESKAPE” pathogens (Enterococcus faecium, Staphylococcus

aureus, Klebsiella pneumoniae, Acinetobacter baumannii,

Pseudomonas aeruginosa, and Enterobacter cloacae), which

represent an urgent clinical threat because of their tendency

to be multi-antibiotic resistant due to carriage of multiple

ARGs on MGEs(20; 21; 22). The findings of this study

highlight the potential of PPIN-based analysis as a new

and accurate means of classifying ARGs, providing much

more comprehensive characterization than typical nucleotide

sequence read-matching approaches. The approach here also

overcomes the limitations of publicly available databases,

enabling the discovery of previously unknown ARGs.

Materials and methods

The experimental steps are depicted in Fig. 1, providing a

visual overview of the process.

Data collection
The PPINs for ESKAPE pathogens were collected from the

String DB(23). The interaction type used for the analysis

is physical and every interaction has a confidence score

associated with it. If proteins exhibit indications of co-

occurrence within a protein complex, physical interaction scores

are calculated based on selected evidence channels. These scores

are then combined to create an aggregated physical interaction

score. The resulting physical interaction score represents the

probability of two proteins being present together in a gold-

standard set of protein complexes. We opted for the physical

network instead of the functional interaction network due to the

higher confidence scores associated with physical interactions.

Proteins that are likely to encode antibiotic resistance

were selected from the set of proteins in the PPINs by

using DIAMOND alignment with the reference ARG database

from DeepARG(25; 11). There are 14,872 ARGs in the latest

DeepARG-DB. After aligning with an identity cutoff of 70%,

varying numbers of ARGs were detected in the PPINs of the

pathogens (Table 1). To derive the negative control set of

nonARGs, we reasoned that housekeeping genes are less likely

to play a specific role in drug resistance, especially those that

encode the enzymes that are necessary for basic metabolic

processes(26), and therefore selected genes from 184 different

Gene Ontology (Biological Process) terms that cover some of

the well-established characteristics of housekeeping genes, such

as different metabolic processes, excision repair of nucleotides,

aerobic respiration chain, etc(27; 28) (Supplementary Table

1). By listing the proteins from the selected pathogens from

UniProt that contain at least one of these GO terms in its

functionality, the designated housekeeping genes are found for

these microorganisms, which, in the following process, are used

as the negative set.

Feature selection
The PPIN can be represented as an undirected graph denoted

by G(V, E), where V represents the set of protein vertices and E

represents the set of edges. In this graph, proteins are connected

by an edge if they interact with each other. To discern between

ARGs and nonARGs in the PPIN, we selected ten network

topology-based features calculated using NetworkAnalyzer in

Cytoscape and five ARG node-based features(29) (Table

2,3). To further refine our feature selection by eliminating

redundancy, we computed the pairwise correlations between

the features. We have excluded any features that exhibit a

correlation exceeding 0.95 with another feature (Supplementary

Fig. 1).

Random forest classifier
The constructed networks for ESKAPE pathogens had

insufficient data, thereby limiting the use of deep learning

frameworks that require extensive training data to produce

satisfactory results. As such, we employed a random forest

classifier with the number of trees determined empirically.

The Random Forest model includes a built-in feature selection

mechanism calculating the decrease in node impurity weighted

by the probability of reaching that node, enabling us to

identify the most relevant features crucial for accurately

distinguishing ARGs from nonARGs. Moreover, it is well-

suited for analyzing high-dimensional biological data due to its

robustness to noise and outliers(30). By leveraging ensemble

learning, Random Forest reduces overfitting and improves

generalization performance, which is especially valuable when

working with limited sample sizes compared to the number of

features.

To enhance the prediction performance of our model, we

implemented a sampling technique (Fig. 2). In this approach,

we considered M as the number of instances in the minority

class (ARG nodes) and N as the number of instances in the

majority class (nonARG nodes) within the training dataset,

with M significantly smaller than N. During each iteration,

we randomly sampled M instances from the majority class.

Subsequently, we combined these M instances with all instances

from the minority class to train one Random Forest model.

This sampling process was repeated k times to train k separate

models and eventually, all of the predictions were ensembled
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Table 1. Network Information (total number of proteins/nodes, interactions/edges, ARGs, neighboring nodes to the ARGs in the PPINs)

for ESKAPE pathogens from STRING-DB.

E. faecium S. aureus A. baumannii K. pneumoniae P. aeruginosa E. cloacae

#Proteins (Nodes) 1,867 1,834 2,229 3,688 3,897 3,384

#Interactions (Edges) 26,874 21,669 26,171 35,520 63,007 35,778

#ARGs 182 181 216 468 447 388

#Neighbours to the ARG nodes 857 797 825 1,177 1,504 1,264

Table 2. Topological Features Calculated by NetworkAnalyzer.

Feature Description

AverageShortestPathLength Expected distance between two connected nodes

BetweennessCentrality Control that this node exerts over the interactions of other nodes in the network

ClosenessCentrality How fast information spreads from a given node to other reachable nodes in the network

ClusteringCoefficient A measure of the degree to which nodes in a graph tend to cluster together

Degree The number of edges linked to a node

Eccentricity The maximum non-infinite length of the shortest path between a node and another in the network

NeighborhoodConnectivity Average connectivity of all neighbors of a node

Radiality A node centrality index

Stress Counts the number of shortest paths passing through a node

TopologicalCoefficient Quantify the extent to which a protein in the network shares interaction partners with other proteins

Fig. 1. Overview of the pipeline. A random forest classifier is used to predict the ARGs in the Protein-Protein Interaction Networks (PPIN). NonARGs

are randomly sampled and annotated using MobileOG-DB for comparing their mobility relative to ARGs

together. By employing this sampling method, we ensured that

each instance in the majority class was selected and trained

alongside an equal number of instances from the minority class,

mitigating the risk of overfitting. As such, we achieved a

balanced 1:1 ratio between ARGs and nonARGs by creating

several undersampled subsets within the nonARGs class. Each

of these subsets served as the training data for separate Random

Forest models. Later, we amalgamated the predictions from

these individual models through a majority voting approach.

We split our dataset into an 80-20 ratio for training

and testing and ensured that the ARGs on the testing set

were excluded while calculating the features. This exclusion

minimized potential bias in the feature values calculated from

the network specifically for the ARG-based features. We

assessed the performance of our random forest classifier by

training six models on six different pathogens. We varied the

number of trees in each model from 10 to 400 and evaluated

the precision and recall metrics to select the optimal number of

trees to be used.

To rigorously evaluate the statistical significance of our

models in accurately identifying antibiotic resistance genes

(ARGs), we established a null hypothesis framework. This

involved analyzing the distribution of evaluation metric scores

derived from ten randomly selected positive sets, which

represented ARGs within the network. For each organism

under study, we systematically carried out a random sampling

procedure to generate the same number of proteins as the actual

ARGs identified specifically for that organism. This random

sampling process was repeated ten times, yielding ten distinct

sets of randomly selected positive proteins for each organism.

Subsequently, we trained separate Random Forest models by

treating these randomly selected sets as the ARGs or positive

sets, while the remaining proteins were considered nonARGs

or negative sets. The sampling strategy was replicated for

this analysis to ensure a 1:1 ratio between the positive and

the negative sets. The prediction results obtained from these

models were then aggregated using the average method. This

approach enabled us to construct a robust statistical framework

for assessing the performance of our models by comparing their

results to the average evaluation scores derived from these

randomized positive sets.
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Table 3. ARG node-based features. kp
i denotes the number of edges lined to an ARG; ki denotes the degree of the node; Ni denotes a

node-set consisting of all the neighbors of node i; M denotes a node set consisting of all the ARGs; dij denotes the shortest path between

two nodes; Cij denotes the number of nodes that are connected to both nodes i and j; Mi denotes a node set consisting of nodes that share

neighbors with node i.

Feature Function Description

1 N index
kp

i

ki
Proportion of the number of links to other ARGs

2 N index
∑

j∈Ni
kp

i∑
j∈Ni

kj
Proportion of links to other ARGs in the second neighbors of a node

Average distance to ARGs
∑

j∈M dij

|M| The communication efficiency of a node to ARGs

Nearest ARG distance minj∈M
dij

Cij
The distance from a node to its closest ARG in the network

Positive topology coefficient

∑
j∈Mi

Cij

min(ki,kj )

|Mi|
A variant of classical topological coefficient

Fig. 2. Illustration of the random sampling approach applied to both ARG and non-ARG sets to achieve a balanced 1:1 ratio. Following this, the

prediction results obtained from these samples were aggregated for the final prediction score

Evaluation metrics
To obtain a reliable estimate of our model’s performance, we

conducted a 5-fold cross-validation. The performance of our

model was evaluated using the following metrics:

• Accuracy is the ratio of the number of correct predictions

to the total number of predictions.

• Precision is the ratio of the number of correctly predicted

ARGs to the number of predicted ARGs.

• Recall is the ratio of the number of correctly predicted

ARGs to the total number of ARGs.

• F1 Score is the harmonic mean of precision and recall:

F1 Score = 2 ·
Precision · Recall

Precision + Recall

Additionally, we calculated the AUPRC (Area Under the

Precision-Recall Curve) values for each of the six models as it

is particularly useful when dealing with imbalanced data.

Mobility analysis of nodes in PPINs
To gain insight into potential drivers of the dissemination of

ARGs, we inspected the mobility of the ARGs as well as

their first-order neighbors in the PPINs. We used mobileOG-

DB as the reference database to label the proteins from the

PPIN into two of the major categories from mobileOG, namely,

Transfer and Excision/Integration(31). Proteins mediating the

transfer mechanism or proteins associated with site-specific

recombination mechanisms were annotated using this database.

We examined whether ARGs are more mobile compared to

the other nodes by comparing the number of ARGs to linkages

with MGE hallmark genes compared to randomly sampled

genes. In addition, we aimed to examine the comparative

mobility of genes resistant to different drug classes.

Determining the putative mobility of the ARGs in PPIN

To investigate the mobility of ARGs within the PPIN, we

conducted an alignment of the proteins associated with the

ARGs from the network against the mobileOG-DB using

DIAMOND. This alignment aimed to identify potential mobile

ARGs that possess either of two pertinent tags: ”Transfer” or

”Excision/Integration,” with a minimum identity threshold of

70%.

Subsequently, we proceeded to assess whether there was

a statistically significant difference in the frequency of tags

among the neighbors of ARGs, which refers to proteins directly

interacting with ARGs, in comparison to other randomly

sampled proteins. To assess the relative mobility of ARGs,

we employed a sampling approach. We randomly selected an

equal number of proteins matching the number of ARGs from

the entire protein set for each organism. From the combined

neighboring nodes of these randomly selected proteins, we again

randomly sampled an equal number of proteins to match the

number of neighbors to the ARGs for a specific organism. In

cases where an insufficient number of neighbors were available,

we repeated some of the proteins in the sampled set to maintain

the desired sample size. This particular sampling technique

was employed to ensure that the network structure remained
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Fig. 3. Area Under the Precision-Recall Curve (AUPRC) plot of the

six ESKAPE pathogens(EF = Enterococcus faecium, SA = Staphylococcus

aureus, KP = Klebsiella pneumoniae, AB = Acinetobacter baumannii, PA

= Pseudomonas aeruginosa, EnC = Enterobacter cloacae).

consistent between the actual neighboring proteins of ARGs

and the proteins chosen randomly. This sampling process was

repeated 100 times. For each sample, we determined the

mobility tags using DIAMOND alignment with mobileOG-DB

(identity cutoff 70%). We then compared the distributions for

the neighbors and non-neighbors and conducted a one-tailed

t-test to evaluate the significance.

Because of the association of genes resistant to specific

drug classes with MGEs, we hypothesized that the first-

order neighbors of different families of ARGs would be

disproportionately associated with MGE-hallmark genes. To

further investigate the relative mobility of genes resistant to

different drug classes, we applied the same sampling strategy

for each drug class. We combined the protein sets from the

six pathogens and identified genes resistant to a specific drug

class of interest. We then extracted the neighborhoods of

these genes and repeated the sampling process like before to

obtain 100 random samples of genes, matching the number of

neighbors for the group of genes resistant to that specific drug

class. Significance tests were performed to compare the relative

mobility with the randomly picked protein sets, as well as across

different groups of genes resistant to different drug classes. This

allowed us to assess the differences in mobility patterns among

various drug classes and evaluate their significance.

Results

Overall network topology and model accuracy
The results of our analysis revealed an average Area Under

the Precision-Recall Curve (AUPRC) of 0.8816 across all

the ESKAPE pathogens, indicating relatively good overall

performance (Fig. 3). However, the performance was better

for some species rather than others. the Model trained on the

network from S. aureus has the lowest AUPRC 0.813, likely

due to the observation that its PPIN has the least number

of proteins and also the least number of ARGs. By contrast,

the model trained on the network from K. pneumoniae

demonstrated the highest performance across all evaluation

metrics (AUPRC: 0.914). Comparatively, K. pneumoniae’s

PPIN has one of the largest number of nodes as well as the

Fig. 4. Performance evaluation of the ARG prediction model by four

different metrics (precision, recall, accuracy, and F1 score) across the six

pathogens; * marks indicate the evaluation scores obtained by considering

a randomly picked set of proteins as the positive proteins.

number of ARGs, and the increased network complexity may

provide more meaningful patterns and information for accurate

prediction.

In order to assess the statistical significance of our models’

performances, we implemented a null hypothesis by analyzing

the distribution of evaluation metrics’ scores obtained from ten

randomly chosen positive sets for each organism of interest,

which were considered ARGs in the network. Across different

organisms, we consistently observed lower values for accuracy,

recall, precision, and f1-score, averaging around 45% (Fig.

4), for identifying the randomly sampled positive nodes.

Importantly, when evaluating the model’s performance using

the actual set of ARGs specific to each organism, we observed

a substantial improvement in the evaluation metrics, nearly

doubling their values.

Principal Component Analysis (PCA) was performed for

all of the proteins across all of the ESKAPE pathogens

by merging the topological feature sets in order to explore

whether ARGs exhibit a tendency to cluster together based

on network-based features. In the PCA plot (Supplementary

Fig. 2), we observed a discernible separation between ARGs

and nonARGs. The orange dots representing ARGs appeared

predominantly in the top region of the plot, while the nonARGs

were primarily located in the lower region. Furthermore, we

performed single linkage hierarchical clustering to investigate

the discernibility of different drug classes based on topological

features of the PPIN. The clustering was conducted using the

Mahalanobis distance between the means of the 10 PCs from

the PCA for the drug classes. We focused on the top 20 most

frequent drug classes identified across the six pathogens. The

resulting dendrogram provided insights into the similarity and

dissimilarity between the drug classes, visually depicting their

hierarchical relationships (Supplementary Fig. 3).

In our multi-drug class classification, we observed that

certain drugs such as macrolide, fluoroquinolone, multidrug,

and tetracycline are highly prevalent across the ESKAPE

pathogens (Supplementary Fig. 4). Notably, our model was able

to classify these frequently occurring drugs, as evidenced by

the darker shades of color along the diagonal in the heatmap

of the confusion matrix (Fig. 5). In particular, glycopeptide,

peptide, and macrolide drug classes were consistently present
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Fig. 5. Normalized Confusion Matrix illustrating the performance of the PPIN-based model in classifying genes resistant to multiple drug classes based

on the PPINs of the ESKAPE pathogens (The matrix displays true drug classes on the y-axis and predicted drug classes on the x-axis). The pathogens

are listed from left to right representing Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas

aeruginosa, and Enterobacter cloacae, respectively. The confusion matrix offers a visual depiction of the classification performance, showing the balance

between accurate and erroneous predictions within the top 10 correctly predicted drug classes for each pathogen.

among the top ten correctly classified drug classes in all six

pathogen-specific models. The majority of genes belonging to

these drug classes were accurately identified by our models.

However, it’s important to note that the performance of our

model varied among different organisms. For instance, for the

network from K. pneumoniae, the classification performance

was generally better compared to networks from S. aureus and

A. baumannii, which have relatively fewer proteins.

We also observed that some genes from less common drug

classes were misclassified as nonARGs. This can be attributed

to the limited number of representative genes from these classes

in our training set. As a result, our model may not have learned

sufficient interaction patterns to accurately classify these less

prevalent drug classes.

The analysis of feature importance in predicting ARG

nodes provides valuable insights into the interaction patterns

of ARGs in the PPIN (Fig. 6(a)). Among the top five most

informative features contributing to the accuracy of the model,

two of them are centrality-based features. Stress centrality and

betweenness centrality play a crucial role in facilitating the flow

of information across the PPIN(32; 33). They determine the

essentiality of a particular protein in carrying out an associated

function by connecting bridges within the network. In the

PPIN, many proteins’ shortest pathways pass through those

with high centrality measures. They act as mediators between

other proteins, catalyzing reactions or acting as intermediate

substances. Alterations in these proteins (mutation) can

affect the interactions between other proteins whose shortest

pathways rely on them. By incorporating feature values from

all ESKAPE pathogens, we can see that ARGs exhibit higher

values for stress, closeness centrality, clustering coefficient, and

neighborhood connectivity compared to nonARGs (Fig. 6(b)).

A node with high stress in a PPIN is likely to be a central

player in mediating interactions and communication within the

network. These nodes are distinguished by a notably higher

incidence of shortest paths traversing through them reflecting

their importance in coordinating various biological functions.

We can also observe an ARG-based feature: the average

distance to ARG in the top five features. However, the values

for this feature suggest that resistance genes typically do

not exhibit a pattern of close proximity to other resistance

genes within the PPIN. The positive topological coefficient, a

variant of the general topological coefficient metric, measures

the frequency of a node sharing common neighbors with ARG

nodes. The 1N index and the 2N index calculate the ratio

of ARGs to all neighboring proteins and to all the second

neighbors respectively for a specific node; while the average

ARG distance represents the mean length of the shortest paths

between the query protein and ARGs. The relative importance

of these ARG-based features suggests that protein interactions

with ARGs and their shared neighborhoods are significant

indicators of resistance in PPINs.

Integration/excision and conjugation proteins in the
PPINs show a significant association with ARGs
We performed mobility analysis of the 17 prevalent drug

classes, including multidrug, tetracycline, fluoroquinolone,

macrolide, glycopeptide, peptide, macrolide, aminoglycoside,

monobactam, aminocoumarin, cephalosporin, fosfomycin,
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Fig. 6. (a) Average feature importance to the model’s performance across all six pathogens. (b) The distribution of feature values for both ARGs and

nonARGs

Fig. 7. Analysis of the relative mobility of the genes resistant to different drug classes across the ESKAPE pathogens. The distribution of ’Transfer’

and ’Excision/Integration’ tags was examined among randomly sampled proteins across various drug classes. The red diamond markers were used to

highlight the actual counts of ’Transfer’ and ’Excision/Integration’ tags for the ARGs, with asterisks denoting statistical significance (p-value < 0.05

based on t-test)

nucleoside, beta-lactam, polymixin, quinolone, phenicol,

sulfonamide which are known to be associated with MGEs

in ESKAPE pathogens(20). The plots indicate a significant

and consistent association between ARGs from these prevalent

drug classes and transfer/excision elements in the PPINs

(Fig. 7). While drug classes including aminoglycoside,

aminocoumarin, cephalosporin, monobactam, and multidrug

showed a significant association with MGEs, drug classes such

as sulfonamide, fosfomycin, nucleoside, phenicol, tetracycline,

and glycylcycline exhibited a significantly lower association.

Drug classes such as bicyclomycin, bacitracin, bleomycin,

chloramphenicol, elfamycin, fosmidomycin, kasugamycin,

lincosamide, mupirocin, and oxazolidinone were not included in

the analysis due to the limited number of genes in the classes.

A higher number of excision/integration elements and a

lower number of transfer elements were observed in beta-

lactam, glycopeptide, peptide, polymyxin, and quinolone drug

classes, suggesting that these drug classes may be more prone

to gene excision and integration processes, potentially leading

to increased resistance. Conversely, we did not observe the

opposite pattern in any of the drug classes.

Discussion and conclusion

PPINs have been used to identify key proteins involved

in resistance mechanisms in ESKAPE pathogens and

pinpoint essential clusters that highlight significant resistance

pathways(34; 35; 36). Additionally, PPINs were employed

to shed light on the intricacies of Staphylococcus aureus

pathogenesis within the context of antibiotic resistance(37).

Similarly, the exploration of host-pathogen protein interactomes

has proven invaluable, offering a promising avenue for the

discovery of novel antibacterial drug targets(38). However, to

the best of our knowledge, PPIN and its topological properties

have not been employed to develop a machine-learning model

for distinguishing ARGs from nonARGs in specific bacterial

strains.

Our research builds on our previous work that utilized PPIN

analysis in Escherichia coli and Acinetobacter baumannii(39).

We have now developed a pipeline that extends this approach

to differentiate ARGs from nonARGs, providing insights into

ARG mechanisms and mobility patterns across all ESKAPE

pathogens. Additionally, a multiclass classification model was

developed as a part of the pipeline to determine the specific

drug class to which a resistance gene confers resistance.

Importantly, we demonstrated that the ARGs can be classified

into different drug classes based solely on their network
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features, without relying on sequence similarities. Furthermore,

through our analysis, we discovered that the neighboring

proteins of ARGs exhibited significantly higher mobility

compared to nonARGs. This finding suggests a potential

link between the mobility of these proteins and the mobility

of ARGs. Overall, our study revealed that genes conferring

resistance to different drug classes exhibit distinct behaviors

within the PPIN with respect to network topology and mobility.

The study also delves into the role of MGEs in spreading

antibiotic resistance. The mobility analysis conducted in our

study aligns with the initial assumption that ARGs tend to

exhibit higher mobility compared to regular nonARGs(40; 41).

In contrast, housekeeping genes, being responsible for essential

cellular functions, showed less mobility. Moreover, we found

that ARG mobility patterns can vary with drug classes; for

example, genes resistant to aminoglycosides, aminocoumarins,

cephalosporins, monobactams, and multidrugs are more

likely to be mobile, correlating with a higher association

with MGEs. In contrast, genes resistant to drug classes

like sulfonamides, fosfomycin, and phenicol show less

mobility, consistent with previous research that reports their

chromosomal localization(42; 43). These findings emphasize

that the interactions observed in the PPIN provide a rational

basis for understanding the mobility of genes resistant to

various drug classes.

We conducted our analysis on six highly relevant pathogens

known for their mobile forms of antibiotic resistance. In

the future, our pipeline can be extended to other virulent

and antibiotic-resistant bacterial pathogens. An intriguing

aspect of our analysis is the identification of a significant

number of proteins falsely predicted as ARGs by our models.

This raises questions about their potential roles in resistance

mechanisms and whether they could represent novel ARGs,

necessitating further investigation. Additionally, our pipeline

can be applied to metagenomic data with a preprocessing step

required to predict interactions among proteins in different

organisms within a metagenomic sample. This approach can

enhance existing ARG identification tools and contribute to

their robustness. The PPIN pipeline developed in this study

can also be applied to identify and study other resistance genes,

such as metal resistance genes or biocide resistance genes.

Our pipeline establishes that the network features from

the PPIN have some discriminatory power in distinguishing

between ARGs and nonARGs. This approach allows for

the potential identification of novel ARGs by observing and

following the established patterns of well-characterized ARGs

within the PPIN. By leveraging PPINs, we gain insights

into the mechanisms underlying ARG resistance, and their

mobility between bacterial species, and potentially uncover new

strategies for combating antibiotic resistance.
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