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Abstract

With growing calls for increased surveillance of antibiotic resistance as an escalating global health threat, improved
bioinformatic tools are needed for tracking antibiotic resistance genes (ARGs) across One Health domains. Most studies
to date profile ARGs using sequence homology, but such approaches provide limited information about the broader
context or function of the ARG in bacterial genomes. Here we introduce a new pipeline for identifying ARGs in genomic
data that employs machine learning analysis of Protein-Protein Interaction Networks (PPINs) as a means to improve
predictions of ARGs while also providing vital information about the context, such as gene mobility. A random forest
model was trained to effectively differentiate between ARGs and nonARGs and was validated using the PPINs of ESKAPE
pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter cloacae), which represent urgent threats to human health because they tend to be multi-
antibiotic resistant. The pipeline exhibited robustness in discriminating ARGs from nonARGs, achieving an average
area under the precision-recall curve of 88%. We further identified that the neighbors of ARGs, i.e., genes connected
to ARGs by only one edge, were disproportionately associated with mobile genetic elements, which is consistent with
the understanding that ARGs tend to be mobile compared to randomly sampled genes in the PPINs. This pipeline
showcases the utility of PPINs in discerning distinctive characteristics of ARGs within a broader genomic context and in
differentiating ARGs from nonARGs through network-based attributes and interaction patterns. The code for running
the pipeline is publicly available at https://github.com/NazifaMoumi/PPI-ARG-ESKAPE

Key words: ARG, PPIN, Machine Learning, Pathogen

Introduction Health surveillance of antibiotic resistance, i.e., across humans,

. . . . . . animals, plants/crops, and the environment. Whole genome
The increasing prevalence of antibiotic-resistant infections ! . .
L. . sequencing can be applied to profile the dominant genes across
poses a significant health threat(1l). Previously treatable K . . . . K
. . . the microbial community inhabiting an environment of interest
diseases are now becoming untreatable due to the evolution .
. . . . (e.g., sewage, manure, soil, food). These sequences can then be
and spread of resistant bacterial strains(2). According to

the Centers for Disease Control and Prevention (CDC),
more than 2.8 million people are infected with antibiotic-

compared against publicly available databases to profile ARGs
and thus profile and compare genotypic resistance patterns.

. .. . However, the incompleteness of public databases is an inherent
resistant pathogens annually, resulting in approximately 35,000 L. i . . L. K
. . . limitation of this approach, particularly if there is interest in
deaths(3; 4; 5). Of particular concern is the evolution and L K R R .
. . . monitoring previously unidentified ARGs(8). False positives are
spread of novel resistance phenotypes, which results in an ever- . A .
. . . . e L. .. also possible, due to local sequence similarity(9). Also, simple
evolving challenge to identify effective antibiotics in the clinic . . A .
] K . . read-matching homology-based profiling of this nature ignores
and maintain their efficacy for years to come. Novel resistance . i X

. . the context of putative ARGs and other genes of importance in
phenotypes can result from the horizontal transfer of antibiotic o L L K
. . . potentiating and mobilizing antibiotic resistance.
resistance genes (ARGs) to new species or strains or through . .
. . DNA sequences can be assembled into longer contiguous
previously unknown ARGs emerging in the genome(6; 7). X . R
. . sequences to provide more complete information about
The advent of next-generation DNA sequencing over the . . L
.. the ARG of interest and thus increase confidence in its
past decade represents a promising approach to support One
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annotation and functional assignment when compared to public
databases(10). Machine learning approaches, especially deep
learning, can also help to improve the prediction of ARGs,
including novel ARGs, relative to simple sequence homology-
based comparisons(11; 12; 13; 14). However, such approaches
still fail to tap into broader information available in the genome
to precisely predict ARG function(15). These approaches
struggle to effectively encompass complex interactions between
various ARGs as well as genes of divergent types(16). They
also provide little information about other genes involved in
the mobility of the ARG or expression of its phenotype(17;
18). Focusing analysis on proteins, instead of nucleotide
sequences, could present advantages in this regard because it
is the proteins encoded by ARGs that perform the ultimate
function of conferring resistance to antibiotics, e.g., by target
modification, enzymatic degradation of the antibiotic, or
pumping the antibiotic out of the cell. In particular, analysis
of protein-protein interaction networks (PPINs) could help
to address this need, by enhancing understanding of the
proteins involved in resistance, and their interactions within
an organism(19).

The overall objective of this study was to develop and
validate a PPIN-based pipeline for characterizing ARGs in
whole genome data. We hypothesized that ARGs would exhibit
distinct patterns in network topology relative to nonARGs
in the PPIN, which can then be recognized by machine-
learning algorithms to predict their resistance mechanisms.
Of particular interest was to assess whether ARGs are likely
to be mobile, based on the strength of their networks
To wvalidate the
pipeline, we analyzed whole genome sequences of representative

with mobile genetic elements (MGEs).

“ESKAPE” pathogens (Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter cloacae), which
represent an urgent clinical threat because of their tendency
to be multi-antibiotic resistant due to carriage of multiple
ARGs on MGEs(20; 21; 22). The findings of this study
highlight the potential of PPIN-based analysis as a new
and accurate means of classifying ARGs, providing much
more comprehensive characterization than typical nucleotide
sequence read-matching approaches. The approach here also
overcomes the limitations of publicly available databases,
enabling the discovery of previously unknown ARGs.

Materials and methods

The experimental steps are depicted in Fig. 1, providing a
visual overview of the process.

Data collection

The PPINs for ESKAPE pathogens were collected from the
String DB(23). The interaction type used for the analysis
is physical and every interaction has a confidence score
associated with it. If proteins exhibit indications of co-
occurrence within a protein complex, physical interaction scores
are calculated based on selected evidence channels. These scores
are then combined to create an aggregated physical interaction
score. The resulting physical interaction score represents the
probability of two proteins being present together in a gold-
standard set of protein complexes. We opted for the physical
network instead of the functional interaction network due to the
higher confidence scores associated with physical interactions.

perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Proteins that are likely to encode antibiotic resistance
were selected from the set of proteins in the PPINs by
using DIAMOND alignment with the reference ARG database
from DeepARG(25; 11). There are 14,872 ARGs in the latest
DeepARG-DB. After aligning with an identity cutoff of 70%,
varying numbers of ARGs were detected in the PPINs of the
pathogens (Table 1). To derive the negative control set of
nonARGs, we reasoned that housekeeping genes are less likely
to play a specific role in drug resistance, especially those that
encode the enzymes that are necessary for basic metabolic
processes(26), and therefore selected genes from 184 different
Gene Ontology (Biological Process) terms that cover some of
the well-established characteristics of housekeeping genes, such
as different metabolic processes, excision repair of nucleotides,
aerobic respiration chain, etc(27; 28) (Supplementary Table
1). By listing the proteins from the selected pathogens from
UniProt that contain at least one of these GO terms in its
functionality, the designated housekeeping genes are found for
these microorganisms, which, in the following process, are used
as the negative set.

Feature selection

The PPIN can be represented as an undirected graph denoted
by G(V, E), where V represents the set of protein vertices and E
represents the set of edges. In this graph, proteins are connected
by an edge if they interact with each other. To discern between
ARGs and nonARGs in the PPIN, we selected ten network
topology-based features calculated using NetworkAnalyzer in
Cytoscape and five ARG node-based features(29) (Table
2,3). To further refine our feature selection by eliminating
redundancy, we computed the pairwise correlations between
the features. We have excluded any features that exhibit a
correlation exceeding 0.95 with another feature (Supplementary
Fig. 1).

Random forest classifier

The constructed networks for ESKAPE pathogens had
insufficient data, thereby limiting the use of deep learning
frameworks that require extensive training data to produce
satisfactory results. As such, we employed a random forest
classifier with the number of trees determined empirically.
The Random Forest model includes a built-in feature selection
mechanism calculating the decrease in node impurity weighted
by the probability of reaching that node, enabling us to
identify the most relevant features crucial for accurately
distinguishing ARGs from nonARGs. Moreover, it is well-
suited for analyzing high-dimensional biological data due to its
robustness to noise and outliers(30). By leveraging ensemble
learning, Random Forest reduces overfitting and improves
generalization performance, which is especially valuable when
working with limited sample sizes compared to the number of
features.

To enhance the prediction performance of our model, we
implemented a sampling technique (Fig. 2). In this approach,
we considered M as the number of instances in the minority
class (ARG nodes) and N as the number of instances in the
majority class (nonARG nodes) within the training dataset,
with M significantly smaller than N. During each iteration,
we randomly sampled M instances from the majority class.
Subsequently, we combined these M instances with all instances
from the minority class to train one Random Forest model.
This sampling process was repeated k times to train k separate
models and eventually, all of the predictions were ensembled
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Table 1. Network Information (total number of proteins/nodes, interactions/edges, ARGs, neighboring nodes to the ARGs in the PPINs)

for ESKAPE pathogens from STRING-DB.

E. faecium S. aureus A. baumannii K. pneumoniae P. aeruginosa E. cloacae
#Proteins (Nodes) 1,867 1,834 2,229 3,688 3,897 3,384
#Interactions (Edges) 26,874 21,669 26,171 35,520 63,007 35,778
#ARGs 182 181 216 468 447 388
#Neighbours to the ARG nodes 857 797 825 1,177 1,504 1,264

Table 2. Topological Features Calculated by NetworkAnalyzer.

Feature Description

AverageShortestPathLength Expected distance between two connected nodes

BetweennessCentrality
ClosenessCentrality
ClusteringCoefficient
Degree

Eccentricity
NeighborhoodConnectivity
Radiality

Stress

A node centrality index

TopologicalCoefficient

Control that this node exerts over the interactions of other nodes in the network

How fast information spreads from a given node to other reachable nodes in the network

A measure of the degree to which nodes in a graph tend to cluster together

The number of edges linked to a node

The maximum non-infinite length of the shortest path between a node and another in the network
Average connectivity of all neighbors of a node

Counts the number of shortest paths passing through a node
Quantify the extent to which a protein in the network shares interaction partners with other proteins
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Fig. 1. Overview of the pipeline. A random forest classifier is used to predict the ARGs in the Protein-Protein Interaction Networks (PPIN). NonARGs
are randomly sampled and annotated using MobileOG-DB for comparing their mobility relative to ARGs

together. By employing this sampling method, we ensured that
each instance in the majority class was selected and trained
alongside an equal number of instances from the minority class,
mitigating the risk of overfitting. As such, we achieved a
balanced 1:1 ratio between ARGs and nonARGs by creating
several undersampled subsets within the nonARGs class. Each
of these subsets served as the training data for separate Random
Forest models. Later, we amalgamated the predictions from
these individual models through a majority voting approach.

We split our dataset into an 80-20 ratio for training
and testing and ensured that the ARGs on the testing set
were excluded while calculating the features. This exclusion
minimized potential bias in the feature values calculated from
the network specifically for the ARG-based features. We
assessed the performance of our random forest classifier by
training six models on six different pathogens. We varied the
number of trees in each model from 10 to 400 and evaluated
the precision and recall metrics to select the optimal number of
trees to be used.

To rigorously evaluate the statistical significance of our
models in accurately identifying antibiotic resistance genes

(ARGs), we established a null hypothesis framework. This
involved analyzing the distribution of evaluation metric scores
which
represented ARGs within the network. For each organism

derived from ten randomly selected positive sets,

under study, we systematically carried out a random sampling
procedure to generate the same number of proteins as the actual
ARGs identified specifically for that organism. This random
sampling process was repeated ten times, yielding ten distinct
sets of randomly selected positive proteins for each organism.

Subsequently, we trained separate Random Forest models by
treating these randomly selected sets as the ARGs or positive
sets, while the remaining proteins were considered nonARGs
or negative sets. The sampling strategy was replicated for
this analysis to ensure a 1:1 ratio between the positive and
the negative sets. The prediction results obtained from these
models were then aggregated using the average method. This
approach enabled us to construct a robust statistical framework
for assessing the performance of our models by comparing their
results to the average evaluation scores derived from these
randomized positive sets.
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Table 3. ARG node-based features. kf denotes the number of edges lined to an ARG; k; denotes the degree of the node; N; denotes a
node-set consisting of all the neighbors of node i; M denotes a node set consisting of all the ARGs; d;; denotes the shortest path between
two nodes; C;; denotes the number of nodes that are connected to both nodes ¢ and j; M; denotes a node set consisting of nodes that share

neighbors with node <.

Feature Function Description
1 N index ]Z—f Proportion of the number of links to other ARGs
kP
2 N index %67:',; Proportion of links to other ARGs in the second neighbors of a node
jen; Ri
. ; d; . . .
Average distance to ARGs % The communication efficiency of a node to ARGs

min i
JEM T

Nearest ARG distance

The distance from a node to its closest ARG in the network

Siers mmis
JEM; min(k; kj)

Positive topology coefficient 37 A variant of classical topological coefficient
X R
4 8
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Fig. 2. Illustration of the random sampling approach applied to both ARG and non-ARG sets to achieve a balanced 1:1 ratio. Following this, the

prediction results obtained from these samples were aggregated for the final prediction score

Evaluation metrics

To obtain a reliable estimate of our model’s performance, we
conducted a 5-fold cross-validation. The performance of our
model was evaluated using the following metrics:

e Accuracy is the ratio of the number of correct predictions
to the total number of predictions.

e Precision is the ratio of the number of correctly predicted
ARGs to the number of predicted ARGs.

e Recall is the ratio of the number of correctly predicted
ARGs to the total number of ARGs.

e F1 Score is the harmonic mean of precision and recall:

Precision - Recall
Fl Score=2+ —M
Precision + Recall

Additionally, we calculated the AUPRC (Area Under the
Precision-Recall Curve) values for each of the six models as it
is particularly useful when dealing with imbalanced data.

Mobility analysis of nodes in PPINs

To gain insight into potential drivers of the dissemination of
ARGs, we inspected the mobility of the ARGs as well as
their first-order neighbors in the PPINs. We used mobileOG-
DB as the reference database to label the proteins from the
PPIN into two of the major categories from mobileOG, namely,
Transfer and Excision/Integration(31). Proteins mediating the
transfer mechanism or proteins associated with site-specific
recombination mechanisms were annotated using this database.

We examined whether ARGs are more mobile compared to
the other nodes by comparing the number of ARGs to linkages
with MGE hallmark genes compared to randomly sampled
genes. In addition, we aimed to examine the comparative
mobility of genes resistant to different drug classes.

Determining the putative mobility of the ARGs in PPIN
To investigate the mobility of ARGs within the PPIN, we
conducted an alignment of the proteins associated with the
ARGs from the network against the mobileOG-DB using
DIAMOND. This alignment aimed to identify potential mobile
ARGs that possess either of two pertinent tags: ” Transfer” or
?Excision/Integration,” with a minimum identity threshold of
70%.

Subsequently, we proceeded to assess whether there was
a statistically significant difference in the frequency of tags
among the neighbors of ARGs, which refers to proteins directly
interacting with ARGs, in comparison to other randomly
sampled proteins. To assess the relative mobility of ARGs,
we employed a sampling approach. We randomly selected an
equal number of proteins matching the number of ARGs from
the entire protein set for each organism. From the combined
neighboring nodes of these randomly selected proteins, we again
randomly sampled an equal number of proteins to match the
number of neighbors to the ARGs for a specific organism. In
cases where an insufficient number of neighbors were available,
we repeated some of the proteins in the sampled set to maintain
the desired sample size. This particular sampling technique
was employed to ensure that the network structure remained
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Fig. 3. Area Under the Precision-Recall Curve (AUPRC) plot of the
six ESKAPE pathogens(EF = Enterococcus faecium, SA = Staphylococcus
aureus, KP = Klebsiella pneumoniae, AB = Acinetobacter baumannii, PA
= Pseudomonas aeruginosa, EnC = Enterobacter cloacae).

consistent between the actual neighboring proteins of ARGs
and the proteins chosen randomly. This sampling process was
repeated 100 times. For each sample, we determined the
mobility tags using DIAMOND alignment with mobileOG-DB
(identity cutoff 70%). We then compared the distributions for
the neighbors and non-neighbors and conducted a one-tailed
t-test to evaluate the significance.

Because of the association of genes resistant to specific
drug classes with MGEs, we hypothesized that the first-
order neighbors of different families of ARGs would be
disproportionately associated with MGE-hallmark genes. To
further investigate the relative mobility of genes resistant to
different drug classes, we applied the same sampling strategy
for each drug class. We combined the protein sets from the
six pathogens and identified genes resistant to a specific drug
class of interest. We then extracted the neighborhoods of
these genes and repeated the sampling process like before to
obtain 100 random samples of genes, matching the number of
neighbors for the group of genes resistant to that specific drug
class. Significance tests were performed to compare the relative
mobility with the randomly picked protein sets, as well as across
different groups of genes resistant to different drug classes. This
allowed us to assess the differences in mobility patterns among
various drug classes and evaluate their significance.

Results

Overall network topology and model accuracy

The results of our analysis revealed an average Area Under
the Precision-Recall Curve (AUPRC) of 0.8816 across all
the ESKAPE pathogens, indicating relatively good overall
performance (Fig. 3). However, the performance was better
for some species rather than others. the Model trained on the
network from S. aureus has the lowest AUPRC 0.813, likely
due to the observation that its PPIN has the least number
of proteins and also the least number of ARGs. By contrast,
the model trained on the network from K. pneumoniae
demonstrated the highest performance across all evaluation
metrics (AUPRC: 0.914). Comparatively, K. pneumoniae’s
PPIN has one of the largest number of nodes as well as the

5

Score

Precision

Recall

Accuracy
Fl-score
Random Positive

KP
Organism

Fig. 4. Performance evaluation of the ARG prediction model by four
different metrics (precision, recall, accuracy, and F1 score) across the six
pathogens; * marks indicate the evaluation scores obtained by considering
a randomly picked set of proteins as the positive proteins.

number of ARGs, and the increased network complexity may
provide more meaningful patterns and information for accurate
prediction.

In order to assess the statistical significance of our models’
performances, we implemented a null hypothesis by analyzing
the distribution of evaluation metrics’ scores obtained from ten
randomly chosen positive sets for each organism of interest,
which were considered ARGs in the network. Across different
organisms, we consistently observed lower values for accuracy,
recall, precision, and fl-score, averaging around 45% (Fig.
4), for identifying the randomly sampled positive nodes.
Importantly, when evaluating the model’s performance using
the actual set of ARGs specific to each organism, we observed
a substantial improvement in the evaluation metrics, nearly
doubling their values.

Principal Component Analysis (PCA) was performed for
all of the proteins across all of the ESKAPE pathogens
by merging the topological feature sets in order to explore
whether ARGs exhibit a tendency to cluster together based
on network-based features. In the PCA plot (Supplementary
Fig. 2), we observed a discernible separation between ARGs
and nonARGs. The orange dots representing ARGs appeared
predominantly in the top region of the plot, while the nonARGs
were primarily located in the lower region. Furthermore, we
performed single linkage hierarchical clustering to investigate
the discernibility of different drug classes based on topological
features of the PPIN. The clustering was conducted using the
Mahalanobis distance between the means of the 10 PCs from
the PCA for the drug classes. We focused on the top 20 most
frequent drug classes identified across the six pathogens. The
resulting dendrogram provided insights into the similarity and
dissimilarity between the drug classes, visually depicting their
hierarchical relationships (Supplementary Fig. 3).

In our multi-drug class classification, we observed that
certain drugs such as macrolide, fluoroquinolone, multidrug,
and tetracycline are highly prevalent across the ESKAPE
pathogens (Supplementary Fig. 4). Notably, our model was able
to classify these frequently occurring drugs, as evidenced by
the darker shades of color along the diagonal in the heatmap
of the confusion matrix (Fig. 5). In particular, glycopeptide,
peptide, and macrolide drug classes were consistently present
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Fig. 5. Normalized Confusion Matrix illustrating the performance of the PPIN-based model in classifying genes resistant to multiple drug classes based

on the PPINs of the ESKAPE pathogens (The matrix displays true drug classes on the y-axis and predicted drug classes on the x-axis). The pathogens

are listed from left to right representing Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas

aeruginosa, and Enterobacter cloacae, respectively. The confusion matrix offers a visual depiction of the classification performance, showing the balance

between accurate and erroneous predictions within the top 10 correctly predicted drug classes for each pathogen.

among the top ten correctly classified drug classes in all six
pathogen-specific models. The majority of genes belonging to
these drug classes were accurately identified by our models.
However, it’s important to note that the performance of our
model varied among different organisms. For instance, for the
network from K. pneumoniae, the classification performance
was generally better compared to networks from S. aureus and
A. baumannii, which have relatively fewer proteins.

We also observed that some genes from less common drug
classes were misclassified as nonARGs. This can be attributed
to the limited number of representative genes from these classes
in our training set. As a result, our model may not have learned
sufficient interaction patterns to accurately classify these less
prevalent drug classes.

The analysis of feature importance in predicting ARG
nodes provides valuable insights into the interaction patterns
of ARGs in the PPIN (Fig. 6(a)). Among the top five most
informative features contributing to the accuracy of the model,
two of them are centrality-based features. Stress centrality and
betweenness centrality play a crucial role in facilitating the flow
of information across the PPIN(32; 33). They determine the
essentiality of a particular protein in carrying out an associated
In the
PPIN, many proteins’ shortest pathways pass through those

function by connecting bridges within the network.

with high centrality measures. They act as mediators between
other proteins, catalyzing reactions or acting as intermediate
substances. Alterations in these proteins (mutation) can
affect the interactions between other proteins whose shortest
pathways rely on them. By incorporating feature values from

all ESKAPE pathogens, we can see that ARGs exhibit higher

values for stress, closeness centrality, clustering coefficient, and
neighborhood connectivity compared to nonARGs (Fig. 6(b)).
A node with high stress in a PPIN is likely to be a central
player in mediating interactions and communication within the
network. These nodes are distinguished by a notably higher
incidence of shortest paths traversing through them reflecting
their importance in coordinating various biological functions.
We can also observe an ARG-based feature: the average
distance to ARG in the top five features. However, the values
for this feature suggest that resistance genes typically do
not exhibit a pattern of close proximity to other resistance
genes within the PPIN. The positive topological coefficient, a
variant of the general topological coefficient metric, measures
the frequency of a node sharing common neighbors with ARG
The 1N index and the 2N index calculate the ratio
of ARGs to all neighboring proteins and to all the second

nodes.

neighbors respectively for a specific node; while the average
ARG distance represents the mean length of the shortest paths
between the query protein and ARGs. The relative importance
of these ARG-based features suggests that protein interactions
with ARGs and their shared neighborhoods are significant
indicators of resistance in PPINs.

Integration/excision and conjugation proteins in the
PPINs show a significant association with ARGs

We performed mobility analysis of the 17 prevalent drug

classes, including multidrug, tetracycline,
macrolide, glycopeptide, peptide, macrolide, aminoglycoside,

monobactam,

fluoroquinolone,

aminocoumarin, cephalosporin, fosfomycin,
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Fig. 6. (a) Average feature importance to the model’s performance across all six pathogens.
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nucleoside, beta-lactam, polymixin, quinolone, phenicol,
sulfonamide which are known to be associated with MGEs
in ESKAPE pathogens(20). The plots indicate a significant
and consistent association between ARGs from these prevalent
drug classes and transfer/excision elements in the PPINs
(Fig. 7). While drug

aminocoumarin, cephalosporin, monobactam, and multidrug

classes including aminoglycoside,
showed a significant association with MGEs, drug classes such
as sulfonamide, fosfomycin, nucleoside, phenicol, tetracycline,
and glycylcycline exhibited a significantly lower association.
bleomycin,

Drug classes such as bicyclomycin, bacitracin,

chloramphenicol, elfamycin, fosmidomycin, kasugamycin,
lincosamide, mupirocin, and oxazolidinone were not included in
the analysis due to the limited number of genes in the classes.

A higher number of excision/integration elements and a
lower number of transfer elements were observed in beta-
lactam, glycopeptide, peptide, polymyxin, and quinolone drug
classes, suggesting that these drug classes may be more prone
to gene excision and integration processes, potentially leading
to increased resistance. Conversely, we did not observe the

opposite pattern in any of the drug classes.

Discussion and conclusion

PPINs have been used to
in

identify key proteins involved
ESKAPE pathogens
pinpoint essential clusters that highlight significant resistance
pathways(34; 35; 36). Additionally,
to shed light on the intricacies of Staphylococcus aureus

resistance mechanisms in and

PPINs were employed

pathogenesis within the context of antibiotic resistance(37).
Similarly, the exploration of host-pathogen protein interactomes
has proven invaluable, offering a promising avenue for the
discovery of novel antibacterial drug targets(38). However, to
the best of our knowledge, PPIN and its topological properties
have not been employed to develop a machine-learning model
for distinguishing ARGs from nonARGs in specific bacterial
strains.

Our research builds on our previous work that utilized PPIN
analysis in Escherichia coli and Acinetobacter baumannii(39).
We have now developed a pipeline that extends this approach
to differentiate ARGs from nonARGs, providing insights into
ARG mechanisms and mobility patterns across all ESKAPE
pathogens. Additionally, a multiclass classification model was
developed as a part of the pipeline to determine the specific
drug class to which a resistance gene confers resistance.
Importantly, we demonstrated that the ARGs can be classified
into different drug classes based solely on their network
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features, without relying on sequence similarities. Furthermore,
through our analysis, we discovered that the neighboring
proteins of ARGs exhibited significantly higher mobility
compared to nonARGs. This finding suggests a potential
link between the mobility of these proteins and the mobility
of ARGs. Overall, our study revealed that genes conferring
resistance to different drug classes exhibit distinct behaviors
within the PPIN with respect to network topology and mobility.

The study also delves into the role of MGEs in spreading
antibiotic resistance. The mobility analysis conducted in our
study aligns with the initial assumption that ARGs tend to
exhibit higher mobility compared to regular nonARGs(40; 41).
In contrast, housekeeping genes, being responsible for essential
cellular functions, showed less mobility. Moreover, we found
that ARG mobility patterns can vary with drug classes; for
example, genes resistant to aminoglycosides, aminocoumarins,
cephalosporins, monobactams,

and multidrugs are more

likely to be mobile, correlating with a higher association
with MGEs.
like

mobility, consistent with previous research that reports their

In contrast, genes resistant to drug classes

sulfonamides, fosfomycin, and phenicol show less
chromosomal localization(42; 43). These findings emphasize
that the interactions observed in the PPIN provide a rational
basis for understanding the mobility of genes resistant to
various drug classes.

‘We conducted our analysis on six highly relevant pathogens
known for their mobile forms of antibiotic resistance. In
the future, our pipeline can be extended to other virulent
and antibiotic-resistant bacterial pathogens. An intriguing
aspect of our analysis is the identification of a significant
number of proteins falsely predicted as ARGs by our models.
This raises questions about their potential roles in resistance
mechanisms and whether they could represent novel ARGs,
necessitating further investigation. Additionally, our pipeline
can be applied to metagenomic data with a preprocessing step
required to predict interactions among proteins in different
organisms within a metagenomic sample. This approach can
enhance existing ARG identification tools and contribute to
their robustness. The PPIN pipeline developed in this study
can also be applied to identify and study other resistance genes,
such as metal resistance genes or biocide resistance genes.

Our pipeline establishes that the network features from
the PPIN have some discriminatory power in distinguishing
between ARGs and nonARGs.

the potential identification of novel ARGs by observing and

This approach allows for

following the established patterns of well-characterized ARGs
within the PPIN. By leveraging PPINs,
into the mechanisms underlying ARG resistance, and their

we gain insights

mobility between bacterial species, and potentially uncover new
strategies for combating antibiotic resistance.
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