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A B S T R A C T

This work focuses on the representation of model-form uncertainties in molecular dynamics
simulations in various statistical ensembles. In prior contributions, the modeling of such
uncertainties was formalized and applied to quantify the impact of, and the error generated
by, pair-potential selection in the microcanonical ensemble (NVE). In this work, we extend this
formulation and present a linear-subspace reduced-order model for the canonical (NVT) and
isobaric (NPT) ensembles. The symplectic reduced-order basis is randomized on the tangent
space of the Stiefel manifold to provide topological relationships and capture model-form
uncertainty. Using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS),
we assess the relevance of these stochastic reduced-order atomistic models on canonical
problems involving a Lennard-Jones fluid and an argon crystal melt.

1. Introduction

Molecular dynamics (MD) simulations have become an indispensable tool in the materials science and computational mechanics
oolbox to study materials at fine scales [1]. They are routinely used to analyze and predict the evolution of a very broad range of
hysical properties, from elasticity [2], to defect dynamics [3], to phase transformation [4], to fracture behavior [5], and can be
coupled with continuum descriptions to enable materials design and discovery across spatial scales [6]. In practice, conducting such
simulations requires the selection and application-specific calibration of force fields and interatomic potentials which are used to
describe the interactions between atoms. However, their calibration are not uniquely defined, neither in terms of optimal parameters
nor with respect to their functional form—the identification of which depend on the specific properties targeted, such as lattice
constants, elastic constants, vibrational frequencies, binding energy, etc. (obtained from, e.g., density functional theory simulations
or physical experiments) that are fed into the calibration process as ground truth. Non-exhaustive lists of force fields and potentials
for elements (or multi-element systems and non-elemental materials) can be found in the Interatomic Potentials Repository, hosted
by the National Institute of Standards and Technology (NIST) for instance [7,8]. Such model misspecification can dramatically impact
the accuracy of the predictions [9,10], which raises the important challenge of developing appropriate uncertainty quantification
(UQ) techniques that enable the integration of relevant forms of uncertainties on property predictions.

Most of the papers related to UQ for MD simulations have focused on the integration of parametric uncertainties in potential
parameters, such as depth and distance parameters in a Lennard-Jones potential [11–14]. Other studies have investigated uncertain-
ties induced by finite sampling [15] and reproducibility issues [16], as well as uncertainties in models built using machine-learning
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(ML) techniques [17–21]. The treatment of model-form uncertainties — which are induced by the functional forms of the potentials,
rather than their parameters — remains comparatively more elusive. This lack of fundamental results mostly stems from the fact
that randomizing a functional form is more intricate than building stochastic models for coefficients: the definition of appropriate
encoders for model information, the construction of probability measures, and the integration of the mathematical constraints that
arise in such formulations all constitute open problems. The consideration of multiple model candidates was addressed through
the lens of model selection in prior work [22,23]. In these papers, a methodology was proposed to identify the ‘‘best’’ model
candidate under a given validation scenario, using concepts (e.g., likelihood and plausibility) from Bayesian analysis. Other studies
ave considered the issue of model correction, assuming that predictions are realized with one model that does not exactly match
he underlying ground truth model. Such corrections can be achieved using an additive corrector in the solution space (e.g., with
aussian process regression (GPR) [24]), or functional perturbations [25]. It should be noted that these contributions do not proceed
ith the construction of a probability measure over the space of model candidates and typically deliver deterministic predictions
potentially augmented with some statistical fluctuations capturing the epistemic uncertainties induced by the chosen class of
urrogates for GPR).
The aim of this work is to advance a stochastic formulation enabling the representation of model-form uncertainties in MD

imulations, given a set of model candidates identified through domain expertise or learned using machine learning (ML). This paper
everages two sets of results building on prior work [26,27], and extends these results to the case of commonly-employed statistical
nsembles. In the former contribution by Soize and Farhat [26], it was shown that model-form uncertainties in nonlinear dynamical
ystems described by a given unique model — a setting that we refer to as the uni-model setting in this paper — can be captured
sing a stochastic reduced-order basis formulation. In the work by Zhang and Guilleminot [27], a novel stochastic reduced-order
epresentation was specifically developed for the multi-model setting. While the approach by Zhang and Guilleminot [27] presents
oticeable benefits, including a simple and interpretable low-dimensional parameterization, the ability to constraint the mean of the
tochastic reduced-order basis, and ease of implementation and propagation, it was formulated for the micro-canonical ensemble;
hat is, without constraints in the phase space. This appears as a restriction for broad adoption in a wide range of MD simulation
etups. The overarching goal of this work is therefore to develop a new stochastic reduced-order representation that ensures stability
n arbitrary statistical ensembles (almost surely). As such, we first derive the Hamiltonian formulation for the equations of motion
ith standard control variables. This critical step allows us to clarify the definition of the snapshot matrix in the model reduction
ramework (here, a proper symplectic decomposition), for all considered ensembles. We then present the probabilistic formulation,
nd derive important results pertaining to inference and dynamical behavior. Through numerical examples, we finally demonstrate
he capabilities of the approach to ensure control along trajectories and to capture model-form variability in forward simulations.
This paper is organized as follows. In Section 2, we present a unified (deterministic) reduced-order model for MD simulations

nd specifically define scaling factors for the matrix of snapshots used to compute the projection basis. In Section 3, we summarize
he probabilistic model ensuring well-posedness in the almost sure sense. Numerical results are next provided in Section 4, including
eterministic results demonstrating stability in control (for pressure and temperature variables) and stochastic results illustrating
he integration of model-form uncertainties. Concluding remarks are finally given in Section 5.
The following notation is used throughout this paper.

• 𝑑: Dimension of the physical domain.
• 𝑛: Reduced-order dimension.
• 𝒒: Position vector (physical space).
• 𝒑: Momentum vector (physical space).
• 𝒙: Phase-space vector (physical space).
• 𝒚: Position vector (reduced-order space).
• 𝝅: Momentum vector (reduced-order space).
• 𝒛: Phase-space vector (reduced-order space).
• 𝐱̂: Virtual phase-space vector (physical space).
• 𝐳̂: Virtual phase-space vector (reduced-order space).
• 𝑁 : Number of degrees of freedom in the system.
• 𝑁0: Number of linear constraints in the system.
• 𝑁𝑎: Number of atoms.
• 𝑁𝑡: Number of timesteps.
• 𝑁𝑠: Number of snapshots.
• [𝐼𝑛]: Identity matrix of size 𝑛 × 𝑛.
• [0𝑛]: Zero matrix of size 𝑛 × 𝑛.
• 𝟎𝑛: Zero vector of length 𝑛.

. Reduced-order modeling for molecular dynamics simulations

.1. Reduced-order modeling in free space

Let 𝒒 ∈ R𝑁 and 𝒑 ∈ R𝑁 be the position and momentum vectors associated with a set of 𝑁𝑎 particles in 𝑑 dimensions, respectively,
2𝑁
2

ith 𝑁 = 𝑑 × 𝑁𝑎. Let 𝒙 = (𝒒;𝒑) ∈ R denote the phase-space vector, where the semicolon indicates vertical concatenation. Let
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𝐻 ∶ R2𝑁 → R denote the Hamiltonian function characterizing the motion of the particles. Specifically, the evolution of the system
is described by the differential equation

𝒙̇ = [𝐽2𝑁 ]∇𝒙𝐻(𝒙) , (2.1)

here

[𝐽2𝑁 ] =
[

[0𝑁 ] [𝐼𝑁 ]
−[𝐼𝑁 ] [0𝑁 ]

]

(2.2)

s the (skew-symmetric) Poisson matrix. For later use, the equations of motion (EOM) for the physical Hamiltonian is symbolically
ritten as

𝒙̇ = 𝒇 (𝒙) , (2.3)

ith 𝒇 ∶ R2𝑁 → R2𝑁 (under proper initial conditions). We assume that the position vector 𝒒 satisfies a set of linear constraints,
iven by

[𝐵]𝑇 𝒒(𝑡) = 𝟎𝑁0
, ∀𝑡 ≥ 0 , (2.4)

here 𝑁0 is the number of constraints in the system and [𝐵] ∈ R𝑁×𝑁0 satisfies [𝐵]𝑇 [𝐵] = [𝐼𝑁0
]. In this work, we assume that the

bove constraints represent homogeneous Dirichlet boundary conditions and that the mass of each particle does not change over
ime. In this case, the momentum vector 𝒑 also satisfies the equation

[𝐵]𝑇 𝒑(𝑡) = 𝟎𝑁0
, ∀𝑡 ≥ 0 . (2.5)

n popular MD codes (such as the Large-scale Atomic/Molecular Massively Parallel Simulator [28], LAMMPS in short), the above
quations of motion are integrated using a modified velocity-Verlet algorithm, which is symplectic (i.e it ensures that certain
undamental properties of a Hamiltonian system, like total energy conservation, are preserved over time during the simulation)
nd time-reversible.
A reduced-order model (ROM) can then be defined by using a proper symplectic decomposition (PSD); see in a non-exhaustive
anner Refs. [29–34] for linear subspace formulations, as well as Sharma et al. [35] for an extension with higher-order terms. Note
hat the construction of ROMs based on PSDs is a very active research area that is not the focus of the present study.

efinition 1 (Snapshot Matrix for PSD Without Control). Let 𝑡0,… , 𝑡𝑁𝑡
be a discretization of the time interval [0,T], where 𝑡𝑗 = 𝑗𝛥𝑡

ith time step 𝛥𝑡. Let  = {𝑗1,… , 𝑗𝑁𝑠
} ⊂ {1,… , 𝑁𝑡}, with 1 ≤ 𝑁𝑠 ≤ 𝑁𝑡, be the set of indices identifying 𝑁𝑠 (possibly non-ordered)

napshots. Let 𝛾 be a weighting coefficient that balances accuracy in the reconstructions of the position and momentum vectors
fter basis truncation. Then the snapshot matrix for a PSD without control variables is defined as

[𝑋] =
[

𝒒(𝑡𝑗1 ) − 𝒒(0),… , 𝒒(𝑡𝑗𝑁𝑠
) − 𝒒(0), 𝛾𝒑(𝑡𝑗1 ),… , 𝛾𝒑(𝑡𝑗𝑁𝑠

)
]

. (2.6)

To minimize the projection error for the position, we choose 𝛾 = 0 (see Peng and Mohseni [29] for a discussion). We introduce
he singular value decomposition

[𝑋] = [𝑈 ][𝑆][𝑉 ]𝑇 , (2.7)

here the sequence of singular values is nonincreasing. A reduced-order basis (ROB) [𝛷] can be obtained by retaining the 𝑛 first
olumns of [𝑈 ]. By construction, [𝛷] satisfies the orthogonality property [𝛷]𝑇 [𝛷] = [𝐼𝑛], as well as the property

[𝐵]𝑇 [𝛷] = [0𝑁0 ,𝑛] , (2.8)

nherited from the aforementioned linear constraints. The symplectic reduced-order basis [𝛹 ] ∈ R2𝑁×2𝑛 takes the form

[𝛹 ] = diag([𝛷], [𝛷]) (2.9)

nd satisfies

[𝛹 ]𝑇 [𝐽2𝑁 ][𝛹 ] = [𝐽2𝑛] . (2.10)

he Galerkin projection (i.e., the projection from the physical to reduced-order space) is then defined by the linear symplectic lift
∶ R2𝑛 → R2𝑁 given by [35]

𝛤 (𝒛) = [𝛹 ]𝒛 + 𝒙0 , (2.11)

here 𝒛 = (𝒚;𝝅) ∈ R2𝑛 is the reduced phase-state space vector, with 𝒚 ∈ R𝑛 and 𝝅 ∈ R𝑛 the reduced position and momentum
ectors, respectively, and 𝒙0 = (𝒒(0); 𝟎𝑁 ) ∈ R2𝑁 is a reference vector. The projection of the Hamiltonian differential equation into
he reduced-order space yields

𝒛̇ = [𝐽2𝑛]∇𝒛(𝒛) , (2.12)

here  = 𝐻◦𝛤 denotes the reduced Hamiltonian. Note that due to the symplectic projection, the reduced Hamiltonian  preserves
3

he symplectic structure in the original Hamiltonian 𝐻—a property that is generally lost through standard Galerkin projection [29].
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The reduced-order EOM can be derived from the physical EOM by the symplectic lift:

𝒛̇ = 𝒇 (𝒛) , with 𝒇 (𝒛) = [𝛹 ]𝑇 𝒇 (𝛤 (𝒛)) . (2.13)

ince the parameters [𝛹 ] and 𝒙0 in the symplectic lift do not depend on time, the projection can be used with the symplectic
ntegrator while maintaining time reversibility.

.2. Reduced-order modeling with dynamical control

Control algorithms allow for the modeling of systems at constant temperature (also referred to as NVT or canonical ensemble)
nd/or pressure (also referred to as NPT or isothermal–isobaric ensemble), with the aim of controlling specific thermodynamic
tates to better reflect experimental conditions and provide ways to perform virtual experiments. For instance, control in pressure
nables the computation of effective elastic parameters, mimicking the action of statically uniform boundary conditions in
omogenization for continuum media [36]. Current state-of-the-art dynamical methods for pressure and temperature controls were
tudied by Andersen [37] and Nosé [38], and later modified by Tuckerman et al. [39]. The general approach introduces a set of
irtual coordinates scaled by a set of control variables and their corresponding momenta. The coupling between position, momentum,
nd control variables is described by an extended Hamiltonian. For example, in the canonical ensemble described in Nosé [38], the
xtended Hamiltonian takes the form

𝐻̂(𝒒, 𝒑̂, 𝑠, 𝑝𝑠) =
1
𝑠2

𝒑̂𝑇 [𝑀]−1𝒑̂ + 𝜙(𝒒) +
𝑝2𝑠
2𝑄

+ 𝑔𝑘𝐵𝑇tgt ln(𝑠) , (2.14)

here 𝒒 and 𝒑̂ are the virtual position and momentum, 𝑠 and 𝑝𝑠 are the thermostat control variables, 𝑄 is the mass of the thermostat,
𝐵 is the Boltzmann’s constant, 𝑇tgt is the target temperature of the system, and 𝑔 is the number of degrees of freedom in the physical
ystem (𝑔 = 𝑑×𝑁𝑎 in general). A change of variable introduced in [40] allows for the equations of motion in the virtual coordinates
o be written in the physical coordinates.
Let 𝒙̂ ∈ R2𝑁 be the time-dependent virtual phase-space vector and let 𝝁 ∈ R2𝑘 denote the associated phase-space vector for 𝑘

ontrol variables and their corresponding momenta. Let 𝐻̂ ∶ R2𝑁 ×R2𝑘 → R be the Hamiltonian expressed in the virtual coordinates.
he evolution of the system is now described by the coupled system of differential equations

{ ̇̂𝒙 = [𝐽2𝑁 ]∇𝒙̂𝐻̂(𝒙̂,𝝁) ,

𝝁̇ = [𝐽2𝑘]∇𝝁𝐻̂(𝒙̂,𝝁) ,
(2.15)

here [𝐽2𝑘] is the Poisson matrix for the control variables. The phase-space vector 𝒙̂ does not depend directly on the control variables
nd momenta 𝝁 in virtual coordinates. However, the phase-space vector 𝒙 (in physical coordinates) can be written as a function of
̂ and 𝝁:

𝒙(𝒙̂,𝝁) = [𝐺(𝝁)]𝒙̂ , (2.16)

here the matrix [𝐺(𝝁)] = diag(𝑔𝑞(𝝁)[𝐼𝑁 ], 𝑔𝑝(𝝁)[𝐼𝑁 ]). The scaling factors 𝑔𝑞 and 𝑔𝑝 corresponding to various ensembles are provided
n subsequent sections.
The Hamiltonian formalism cannot be readily applied in physical coordinates since the matrix [𝐺(𝝁)] does not define a symplectic

ransformation in general. However, the symplectic lift can be applied in virtual coordinates to construct a reduced-order model
ith dynamical control variables and momenta 𝝁. Consider the Galerkin projection given by the symplectic lift

𝒙̂ = 𝛤 (𝒛̂) , (2.17)

here 𝒛̂ ∈ R2𝑛 denotes the virtual reduced phase-space vector and 𝛤 is defined in Eq. (2.11). Note that the reference vector has the
ame value in virtual coordinates, i.e. 𝒙̂0 = 𝒙0, since there is no scaling of the positions at 𝑡 = 0. The reduced phase-space vector 𝒛
n physical coordinates is then given by

𝒛(𝒛̂,𝝁) = [(𝝁)]𝒛̂ , (2.18)

ith [(𝝁)] = [𝛹 ]𝑇 [𝐺(𝝁)][𝛹 ] = diag(𝑔𝑞(𝝁)[𝐼𝑛], 𝑔𝑝(𝝁)[𝐼𝑛]). Next, let ̂ ∶ R2𝑛×R2𝑘 → R be the reduced Hamiltonian expressed in virtual
oordinates. The evolution of the reduced-order system is described by

{ ̇̂𝒛 = [𝐽2𝑛]∇𝒛̂̂(𝒛̂,𝝁) ,

𝝁̇ = [𝐽2𝑘]∇𝝁̂(𝒛̂,𝝁) .
(2.19)

sing the above definitions, and starting from Eq. (2.17), it follows that

𝒙 = [𝛹 ]𝒛 + [𝐺(𝝁)]𝒙0 = [𝛹 ]𝒛 + (𝑔𝑞(𝝁)𝒒(0); 𝟎𝑁 ) . (2.20)

his result, obtained by considering virtual coordinates, clarifies the scaling factor in the snapshot matrix and leads to the following

efinition 2 (Snapshot Matrix for Control-Dependent PSD). Let [𝐺(𝝁(𝑡))] = diag(𝑔𝑞(𝝁)[𝐼𝑁 ], 𝑔𝑝(𝝁)[𝐼𝑁 ]) denote the block-diagonal matrix
f scaling factors such that 𝑔𝑞(𝝁(0)) = 𝑔𝑝(𝝁(0)) = 1. Assume a given time discretization, and let 𝒒0(𝑡) = 𝑔𝑞(𝝁(𝑡))𝒒(0) be the scaled
nitial position vector at time 𝑡. Then the snapshot matrix is defined as

[𝑋 ] =
[

𝒒(𝑡 ) − 𝒒 (𝑡 ),… , 𝒒(𝑡 ) − 𝒒 (𝑡 ), 𝛾𝒑(𝑡 ),… , 𝛾𝒑(𝑡 )
]

. (2.21)
4

𝝁 𝑗1 0 𝑗1 𝑗𝑁𝑠 0 𝑗𝑁𝑠 𝑗1 𝑗𝑁𝑠
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Fig. 1. Derivation of the equations of motion for reduced systems using physical and virtual coordinates.

The different changes of variables, together with the associated EOMs in physical and virtual variables, are summarized in Fig. 1.
In the next sections, we provide the definition of the matrix-valued scaling factor [𝐺(𝝁)] in the most commonly-employed

ensembles in molecular dynamics. For each ensemble, we specifically define the scaling functions defining [𝐺(𝝁)], i.e. 𝑔𝑞(𝝁) and
𝑔𝑝(𝝁) in

[𝐺(𝝁)] = diag(𝑔𝑞(𝝁)[𝐼𝑁 ], 𝑔𝑝(𝝁)[𝐼𝑁 ]) , (2.22)

nd discuss the impact of the scaling factors on the modified snapshot matrix.

.2.1. Micro-canonical (NVE) ensemble
In the micro-canonical ensemble, no scaling occurs and

𝑔𝑞(𝝁) = 𝑔𝑝(𝝁) = 1 . (2.23)

he initial positions are not scaled when computing snapshots or mapping between reduced and physical variables. The equations
f motion for this ensemble are given in Appendix A.1.

.2.2. Canonical (NVT) ensemble
Thermostats involve control equations that enable MD simulations at (nearly) constant temperature. The Hamiltonian dynamics

n the virtual coordinates is shown to conserve the isothermal conditions [38]. Two common methods for temperature control are
he Nosé-Hoover (NH) thermostat and Nosé-Hoover Chain (NHC) thermostat. The Nosé-Hoover thermostat follows directly from
he equations of motion in [40], which modifies the extended Hamiltonian in Eq. (2.14) by the change of variables 𝜉 = ln 𝑠 and
𝜉 = 𝑝𝑠∕𝑠. Martyna et al. [41] modified the NH thermostat equations to increase stability in small-scale simulations. The modified
quations introduce a chain of thermostat variables rather than a single thermostat variable. However, only the first thermostat
ariable scales the velocity.
We now specify the appropriate choice for 𝑔𝑞(𝝁) and 𝑔𝑝(𝝁) for each method. For the NH thermostat, let 𝝁 = (𝜉, 𝑝𝜉 ), where 𝜉 and

𝜉 are the real-valued thermostat position and momentum, respectively, defined in the equations of motion in [41]. According to
he virtual coordinates used in [38], we define

𝑔𝑞(𝝁) = 1 , 𝑔𝑝(𝝁) = 𝑒−𝜉 . (2.24)

or the NHC thermostat, 𝝁 = (𝜉1,… , 𝜉𝑚, 𝑝𝜉1 ,… , 𝑝𝜉𝑚 ). The scaling factor matrices only depend on the first thermostat variable:

𝑔𝑞(𝝁) = 1 , 𝑔𝑝(𝝁) = 𝑒−𝜉1(𝜉2 ,…,𝜉𝑚) . (2.25)

n both cases, 𝑔𝑞(𝝁) is 1 and [𝑋𝝁] = [𝑋]. This result is similar to the one obtained for the micro-canonical ensemble. The equations
f motion for the canonical ensemble are provided in Appendix A.2.

.2.3. Isoenthalpic–isobaric (NPH) ensemble
Barostats allow for MD simulations under (nearly) constant pressure. The formulation introduces a set of virtual coordinates that

epend on a volume scaling factor. In the isobaric ensemble (NPH), we consider an isotropic external pressure, denoted by 𝑃ext. The
ynamics in virtual coordinates are shown to preserve the isobaric conditions [37]. Let 𝝁 = (𝑉 , 𝑝𝜖), where 𝑉 is the volume and 𝑝𝜖
re the real-valued barostat momentum, respectively, defined in [41]. The volume and momentum are related by a barostat mass
:

𝑉̇ =
𝑑𝑉 𝑝𝜖 . (2.26)
5

𝑊
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Using the virtual coordinates introduced in [37], we define the scaling factor matrices as

𝑔𝑞(𝝁) = 𝑉 1∕𝑑 , 𝑔𝑝(𝝁) = 𝑉 −1∕𝑑 . (2.27)

hus, [𝑋𝝁] ≠ [𝑋] and the scaled initial position (used to calculate the displacement in the modified snapshot) is given by

𝒒0(𝑡) = 𝑉 (𝑡)1∕𝑑𝒒(0) . (2.28)

he equations of motion for the isoenthalpic–isobaric ensemble can be found in Appendix A.3.

.2.4. Isothermal–isobaric (NPT) ensemble
To achieve control in pressure and temperature, consider 𝜇 = (𝜉, 𝑉 , 𝑝𝜉 , 𝑝𝜖), where the barostat and thermostat control variables

s defined in the two previous sections [38]. The scaling factor matrices are then defined as

𝑔𝑞(𝝁) = 𝑉 1∕𝑑 , 𝑔𝑝(𝝁) = 𝑒−𝜉𝑉 −1∕𝑑 . (2.29)

hus, [𝑋𝝁] ≠ [𝑋] and the scaled initial position is given by

𝒒0(𝑡) = 𝑉 (𝑡)1∕𝑑𝒒(0) . (2.30)

he equations of motion for the isoenthalpic–isobaric ensemble are listed in Appendix A.4.
The importance of properly rescaling the positions in the matrix of snapshots will be illustrated in Section 4.1.1, which includes
comparison of the approximation error in a Lennard-Jones fluid.

. Stochastic reduced-order modeling

Consider the common setup where 𝑀 model candidates for interatomic interactions coexist. These candidates can be defined by
electing different potentials, either constructed using physics-based arguments or learned through machine-learning techniques, or
y considering a given potential parameterized by different material parameters. We denote by

[𝛹 (𝑖)] = diag([𝛷(𝑖)], [𝛷(𝑖)])

he symplectic reduced-order basis defined in Definition 2 for the 𝑖th model (with snapshot matrix [𝑋(𝑖)
𝝁 ]), using the appropriate

atrix-valued scaling factor [𝐺(𝝁)] (as defined in Sections 2.2.1 through 2.2.4 for all classical ensembles). We further introduce the
global reduced-order basis [𝛹∗] = diag([𝛷∗], [𝛷∗]), computed from the matrix of snapshots for all models, denoted by [𝑋∗

𝝁]:

[𝑋∗
𝝁] = [[𝑋(1)

𝝁 ],… , [𝑋(𝑚)
𝝁 ]] . (3.1)

We then consider the randomization of the symplectic reduced-order basis [𝛹 ], given the matrix dataset {[𝛹 (1)],… , [𝛹 (𝑀)], [𝛹∗]}.
Conceptually, this is equivalent to randomizing the underlying model, given a functional set of models chosen based on domain
expertise or any ad hoc model selection procedure. This multi-model setting was introduced in [27]; see also [26] for seminal
derivations in the uni-model setting, as well as [42] for applications to MD simulations.

3.1. Probabilistic modeling

Let [𝜳 ] = diag([𝜱], [𝜱]) be the stochastic representation of [𝛹 ], defined on the probability space (𝛩,𝛴, 𝑃 ). Following derivations
in Section 2, the random matrix [𝜱] takes values in the subset of the Stiefel manifold St(𝑁, 𝑛)

S(𝑁, 𝑛) = {[𝐴] ∈ St(𝑁, 𝑛) ∣ [𝐵]𝑇 [𝐴] = [0𝑁0×𝑛]} ⊂ St(𝑁, 𝑛) , (3.2)

where [𝐵] is the deterministic matrix introduced in Section 2.1. Modeling on the Stiefel manifold, or a subset thereof, is traditionally
achieved on the tangent space to the manifold at a given base point, using appropriate projection and retraction operators. The latter
must be chosen accounting for various constraints, such as numerical efficiency and ease of integration for the linear constraints
in Eq. (3.2). The use of operators based on a polar decomposition was proposed in [26] in the uni-model setting. The resulting
formulation promotes computational efficiency through an ad hoc parameterization on the tangent plane, but relies on nonlinear
transformations that complicate inference (in terms of direct estimation for the mean of the reduced-order basis and number of
hyperparameters, the latter growing as (𝑛2)). An alternative formulation leveraging available information in the multi-model setting
was proposed in [27] and makes use of Riemannian projection and retraction operators. This stochastic model is summarized below
to make the presentation self-contained.

Following Zhang and Guilleminot [27], the stochastic reduced-order basis is defined as

[𝜱] = expSt[𝛷∗]

{ 𝑚
∑

𝑖=1
𝑃𝑖 log

St
[𝛷∗]([𝛷

(𝑖)])
}

, (3.3)

where expSt[𝛷∗] and logSt[𝛷∗] denote the Riemannian retraction and projection operators at base point [𝛷
∗], respectively, and 𝑷 is a

random vector (with components 𝑃1,… , 𝑃𝑚) defining stochastic combinations on the tangent space. The use of the above operators
𝑇

6

is motivated by the consideration of the constraint that [𝐵] [𝜱] = [0𝑁0×𝑛] almost surely. Efficient algorithms to evaluate the
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Riemannian operators can be found in Zimmermann and Hüper [43]. Note that this evaluation (and in particular, the evaluation of
the Riemannian logarithm) may be computationally intensive for large values of 𝑛. The derivation of alternative methods for fast
and accurate estimations of Riemannian operators are beyond the scope of this paper. In this work, the base point [𝛷∗] is defined as
the global reduced-order basis constructed by collecting snapshots for all model candidates, and is assumed to belong to the convex
hull defined by these candidates. Alternatively, it may be considered as a model parameter and identified through minimization
with respect to some reference (e.g., experimental) data. This choice, however, introduces a large number of hyperparameters and
constrained optimization problem on S(𝑁, 𝑛).
In order to construct the probability measure of 𝑷 , we note that the formulation on the tangent space relaxes structural constraints

but must be such that new samples remain ‘‘close’’ to the base point [𝛷∗] — otherwise, standard algorithms to retract onto the
manifold may not converge; see [43] for a discussion. Given that a set of model candidates is available, the desire to generate
within the range of these models appears as a reasonable choice. This can be achieved, in practice, by assuming that 𝑷 follows a
Dirichlet distribution:

𝑷 ∼ (𝜶) , 𝑓𝑷 (𝒑) =
𝛤 (

∑𝑚
𝑖=1 𝛼𝑖)

∏𝑚
𝑖=1 𝛤 (𝛼𝑖)

𝑚
∏

𝑖=1
𝑝𝛼𝑖−1𝑖 , (3.4)

here 𝜶 is the vector of positive concentration parameters, 𝑓𝑷 is the probability density function of 𝑷 and 𝛤 is the Gamma function.
his implies that ∑𝑚

𝑖=1 𝑃𝑖 = 1 almost surely, and defines a Riemannian convex combination on the manifold. Note that this choice
orresponds to the distribution obtained by entropy maximization in the context of information theory, with repulsion constraints
uch that 0 ≤ 𝑃𝑖 ≤ 1 ∀𝑖 ∈ {1,… , 𝑚} almost surely, and has important consequences in terms of inference, as pointed out in the next
ection.

.2. Properties of the symplectic reduced-order basis

Based on the construction in Section 3.1, the following properties can be deduced:

(P1) The stochastic symplectic reduced-order basis [𝜳 ] is of second-order.
(P2) The vector of concentration parameters such that E{[𝜳 ]} ≈ diag([𝛷∗], [𝛷∗]) in the Fréchet sense is the solution to

𝜶 = argmin𝒂∈R𝑚
>0
𝒂𝑇 [𝐻]𝒂,

where [𝐻] is the diagonal matrix with entries 𝐻𝑖𝑗 = ⟨logSt[𝛷∗]([𝛷
(𝑖)]), logSt[𝛷∗]([𝛷

(𝑗)])⟩𝐹 .
(P3) Under suitable assumptions, [𝜳 ] takes values in the convex hull defined by the set {[𝛹 (𝑖)]}𝑚𝑖=1.

few remarks regarding the above properties are in order. Property (P1) follows from the consideration of convex combinations on
he tangent space at base point [𝛷∗] and the (local) continuity of the exponential retraction map. It ensures modeling consistency and
tability in the forward propagation problem. The second property (P2) is fundamental in that it allows for the direct calibration
f the hyperparameters, given a set of model candidates (and their associated reduced-order bases); see [27] for a proof. Note
hat the positive definiteness of [𝐻] depends on the dataset and ensures that the solution can be obtained using convex quadratic
rogramming. The last property (P3) holds under the following set of assumptions: (1) St(𝑁, 𝑛) is of constant nonnegative curvature
at least locally); (2) the convex set defined by {[𝛹 (𝑖)]}𝑚𝑖=1 lies in a ball of radius of at most 𝑟cvx = (1∕2)min{inj St(𝑁, 𝑛), 𝜋∕√𝜌}, where
inj St(𝑁, 𝑛) is the injectivity radius of St(𝑁, 𝑛) and 𝜌 is a lower bound for the sectional curvature of the Stiefel manifold St(𝑁, 𝑛) [44].
he fact that the global curvature of the Stiefel manifold is nonnegative in the canonical metric, for arbitrary 𝑁 and 𝑛, is established;
ee, e.g., [45]. The other assumptions cannot be proven for arbitrary dimensions and base point but may be conjectured when the
educed-order bases defining the envelope are close to one another (so that curvature can be assumed constant locally, for instance).

. Numerical results

.1. Deterministic reduced-order modeling in the isothermal–isobaric (NPT) ensemble

In this section, we verify the reduced-order model (and specifically, the definition of the scaling matrices) by considering a
hysical system composed of 864 argon atoms in a cubic simulation box. We follow the simulation setup introduced in Rahman
46], using Lennard-Jones (LJ) units. The simulation box has a side length 𝐿 = 10.229𝜎 and the cutoff distance for the LJ potential
s set to 𝑅 = 2.25𝜎, where 𝜎 = 3.4 Å for argon. The full-order simulations are performed under periodic boundary conditions.
o initialize the system, the atoms are randomly placed in the simulation box and energy minimization was performed before
quilibrating the temperature and pressure for 10,000 timesteps, with 𝛥𝑡 = 0.001 fs.
To perform model verification, we consider two problems using the NPT ensemble, namely a pressure-control test and

emperature-control test. These tests are referred to as Problem 1 and Problem 2, respectively, and are defined according to the
ests developed in Kim et al. [47]:

• In Problem 1 (with pressure control), the temperature and pressure are initialized to 𝑇0 = 1.0 and 𝑃0 = 0.5, respectively using
LJ units. After 10,000 timesteps, the pressure is raised to 𝑃1 = 1.0. After another 10,000 timesteps, the pressure is reduced
back to 𝑃 = 0.5.
7
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Fig. 2. Convergence analysis for the POD and PSD reduced-order bases, for (a) the pressure test and (b) the temperature test. Note that while the snapshots
and eigenvectors in the POD and PSD are different, the eigenvalues for both methods are very similar. See Appendix A.5 for complementary results.

• In Problem 2 (with temperature control), the temperature and pressure are initialized to 𝑇0 = 0.8 and 𝑃0 = 0.5, respectively
using LJ units. After 10,000 timesteps, the temperature is raised to 𝑇1 = 1.2. After another 10,000 timesteps, the temperature
is reduced back to 𝑇2 = 0.8.

n Section 4.1.1, we compare the error convergence estimates for a standard POD basis and the proposed PSD basis (with a rescaled
napshot matrix). Results obtained with the full-order model, the PSD approach, and the standard POD approach are then provided
n Section 4.1.2, along a discussion of the stability of the control algorithms.

.1.1. Convergence comparison between standard POD and proposed PSD
In this section, the reduced-order basis for both the standard POD and proposed PSD are constructed by taking snapshots every

00 timesteps. Then, the (sorted) eigenvalues from the singular value decomposition are used to estimate the projection error
ccording to

𝜀(𝑟) = 1 −
∑𝑟

𝑖=1 𝜆𝑖
∑𝑁

𝑖=1 𝜆𝑖
,

here 𝜆𝑖 is the 𝑖th eigenvalue associated with the 𝑖th eigenvector (column) of the reduced-order basis and 𝑟 is the number of modes
aken (the reduced dimension 𝑛 being the smallest integer such that 𝜀(𝑛) ≤ 𝜀0, with 𝜀0 a given threshold).
The graph of 𝑟 ↦ 𝜀(𝑟) is shown for both the proposed PSD and standard POD in Fig. 2, for the two problems. It is seen that the

two decompositions exhibit similar convergence rates, regardless of the control variable. Indeed, the eigenvalues are nearly identical
— though not the same — for the two reduced-order models (POD and PSD) in both problems. Based on these results, 𝑛 = 167 (295
resp.) and 𝑛 = 163 (294, resp.) modes are selected for Problem 1 and Problem 2, respectively, corresponding to a projection error
0 = 10−4 (10−6, resp.). Note that these values are expected to ensure stability and reasonable accuracy in the approximation of the
ull-order model response. We will see, in the next section, that this is not the case for the standard POD method.

.1.2. Comparison between reference, standard POD and proposed PSD results
Results for Problem 1 are shown in Fig. 3 (together with the target value in dashed red line), associated with pressure control.

ere, the reference model showed an average pressure of 0.5003 during the first 10 time units, 0.9993 during the pressure step, and
.5002 during the last 10 time units. The range of observed fluctuations using the Nosé-Hoover thermostat-barostat is consistent
ith the results reported in [47]. The proposed PSD ROM for 𝑛 = 167 (295, resp.) showed an average pressure of 0.5005 (0.5007,

resp.) during the first 10 time units, 0.9992 (0.9991, resp.) during the pressure step, and 0.5001 (0.5008, resp.) during the last
10 time units. The target pressure is therefore well controlled for the proposed PSD formulation. In contrast, the simulation based
on the standard POD failed on timestep 152 for 𝑛 = 167, with a pressure reaching a maximum value of 60. For 𝑛 = 295, the POD
ROM showed an average pressure of 0.5135 during the first 10 time units, 0.9992 during the pressure step, and 0.5009 during the
last 10 time units. In comparison to the POD ROM, the proposed PSD ROM provided more accurate pressure averages during the
three pressure steps at nearly half the number of modes. Though not shown, the temperature during the simulation was properly
maintained at about 1.0 for the reference and proposed PSD simulations.

Similar results are shown in Fig. 4 for the temperature control problem (Problem 2). In this setting, the reference model showed
an average temperature of 0.8006 during the first 10 time units, 1.1884 during the temperature step, and 0.8103 during the last 10
time units. As previously observed for Problem 1, the range of fluctuations using the Nosé-Hoover thermostat-barostat is consistent
with the results obtained in [47]. The proposed PSD ROM for 𝑛 = 163 (294, resp.) showed an average temperature of 0.7955 (0.7956,
resp.) during the first 10 time units, 1.1826 (1.1870, resp.) during the temperature step, and 0.8111 (0.8134, resp.) during the last
8

10 time units. The reduced simulation also exhibits more variance in temperature during each control segment, as shown in the
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Fig. 3. Problem 1: reference model (left), proposed PSD ROM (middle), and standard POD ROM (right). The same vertical axis is used for all figures in each
row. The target pressure is shown in dashed red. The rightmost figure includes a subpanel with a larger vertical scale to show the point at which the simulation
fails. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

middle plot in Fig. 4. This observation may be a result of projection errors introduced into, and thus propagated by errors in, the
velocity. Proper control in temperature is thus well achieved. On the contrary, the standard POD ROM simulation for 𝑛 = 163
failed on timestep 751, with the temperature reaching a maximum value of 1.6. For 𝑛 = 294, the POD ROM showed an average
temperature of 0.7963 during the first 10 time units, 1.2068 during the temperature step, and 0.8101 during the last 10 time units.
In comparison to the POD ROM, the proposed PSD ROM provided more accurate temperature averages during the three temperature
steps at nearly half the number of modes. Though not shown, the pressure during the simulation was maintained about 0.5 for the
reference and proposed PSD simulations.

In summary, the reduced-order model using the proposed PSD shows stability and better agreement with the reference, full-order
model. In comparison, the standard POD becomes unstable within 10 LJ time units at 𝜀 = 10−4 for both problems.

4.2. Stochastic reduced-order modeling in the isothermal–isobaric (NPT) ensemble

4.2.1. Description of the setup
In this section, MD simulations of the phase transition from solid to liquid of argon is considered to illustrate the probabilistic

framework and its ability to capture model-form uncertainties. It should be pointed out that this setting is challenging in terms of
probabilistic representation, due to the transient nature of the phase change. We will show the ability of the proposed approach to
capture uncertainties in the volume expansion during the phase transition, while appropriately controlling pressure and temperature.

A Face-Centered Cubic (FCC) lattice of 864 argon atoms is first brought to equilibrium at 50 K and at atmospheric pressure (1
atm). The dimension of the full-order model is thus 864×3 = 2592. After 10,000 timesteps, the temperature of the system is stepped
up to 100 K to produce a phase transition. Snapshots of the simulation system for the solid (a) and liquid (b) phases can be seen
in Fig. 5. Note that unlike the setup in Section 4.1, the simulation begins from a crystal FCC lattice structure and is not run in LJ
nits, allowing for comparison across pair potentials.
To quantify the impact of interatomic potential selection, the following three pair potentials are used.

• Model 1 corresponds to the LJ potential used in the seminal work [46]:

𝜙1(𝑟) = 4𝜖
[

(𝜎 )12
−
(𝜎 )6

]

,

9

𝑟 𝑟
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Fig. 4. Problem 2: reference model (left), proposed PSD ROM (middle), and standard POD ROM (right). The same vertical axis is used for all figures in each
row. The target temperature is shown in dashed red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 5. Images of the first and last frames of the simulation system, rendered with Ovito (at the same scale).

where 𝜖 and 𝜎 represent the depth of the potential well and the distance at which the potential energy is zero, respectively.
• Model 2 is the LJ potential defined in Bernardes [48] in the NIST Interatomic Potentials Repository:

𝜙2(𝑟) =

⎧

⎪

⎨

⎪

⎩

4𝜖
[

(𝜎
𝑟

)12
−
(𝜎
𝑟

)6
]

for 𝑟 < 𝑟𝑐𝑢𝑡 ,

0 for 𝑟 ≥ 𝑟𝑐𝑢𝑡 ,

where 𝜖 and 𝜎 are parameters similar to those in Model 1, and 𝑟𝑐𝑢𝑡 is a cutoff distance.
• Model 3 is the Morse potential defined in Jelinek [49] in the aforementioned database:

𝜙 (𝑟) = 𝜖
[

𝑒−2𝑐(𝑟−𝑟0) − 2𝑒−𝑐(𝑟−𝑟0)
]

,

10
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Table 1
Model parameters for interatomic potentials.

Model Parameters

1 𝜖∕𝑘𝐵 = 120.0 K, 𝜎 = 3.40 Å
2 𝜖∕𝑘𝐵 = 120.7 K, 𝜎 = 3.40 Å, 𝑟𝑐𝑢𝑡 = 9.23 Å
3 𝜖∕𝑘𝐵 = 156.4 K, 𝑟0 = 3.786 Å, 𝑐 = 1.545 Å

−1

Fig. 6. Comparison of the interatomic potential functions for the three models used above. The figure includes a subpanel with a larger vertical scale to show
the difference due to the cutoff radius in Model 2.

where 𝜖 is the potential well depth, 𝑟0 is the equilibrium distance, and 𝑐 is a parameter controlling the width of the potential
well.

These potentials were accessed using the OpenKIM repository [47,50–52]. Parameters for each potential are provided in Table 1,
and energy as a function of radial distance is shown in Fig. 6. The potential well depth 𝜖 is expressed in terms of the Boltzmann’s
constant 𝑘𝐵 .

Both the full- and reduced-order MD simulations were run in LAMMPS. The reduced dimension is set to 𝑛 = 521, following a
convergence analysis on the projection error with 𝜀0 = 10−7; see Fig. 7(a) for convergence results for all models (recall from Eq. (3.1)
that the global reduced-order basis is computed by collecting all snapshots from all three models).

In order to assess the evolution of the error induced by the reduced-order model, the normalized 𝐿2 error

𝜂(𝑡) =
‖𝒒ROM(𝑡) − 𝒒FOM(𝑡)‖𝐿2

‖𝒒FOM(𝑡)‖𝐿2

(4.1)

s introduced (where the subscript ‘‘FOM’’ indicates full-order model results). The graph of the error function 𝑡 ↦ 𝜂(𝑡) is shown in
Fig. 7(b).

Unsurprisingly, the error increases with simulation time for all model candidates, especially during the melting phase transition.
This highlights the challenge of applying a linear subspace method to a crystal melt under dynamical control. This error can
be reduced by increasing the number of modes (i.e., the dimension 𝑛), or by augmenting the representation with a nonlinear
pproximation term. Such an extension is classical in the literature of reduced-order modeling and is beyond the scope of this
ork.

.2.2. Sampling and forward propagation results
We now turn to forward propagation of model-form uncertainties, realized with the Monte Carlo approach. The stochastic

educed-order models are run using adaptive selection [27]. In this procedure, the interatomic potential used for updating the force
erm (by lifting in physical space, and by subsequently projecting back in the reduced-order space) is selected by characterizing the
istance between the current sample and the reduced-order bases associated with all models (in other words, if the sample is closer
o, say, the reduced-order basis [𝛷(1)] computed with Model 1, then the latter is considered as the reference model in the physical
pace). This selection is visualized in Fig. 8, where a set of 200 additional samples are shown.
We recall 𝑷 is sampled from a Dirichlet distribution with concentration parameters that can be identified from the quadratic

rogramming problem following the procedure outline in Section 3.2:

𝜶 = argmin 3 𝒂𝑇 [𝐻]𝒂 , (4.2)
11
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Fig. 7. (a) Error estimated from eigenvalues of the reduced-order bases. (b) The normalized 𝐿2 error for the reduced-order models after taking the first 𝑛 = 521
modes.

Fig. 8. Spectral embedding of the reduced-order bases for each model (colored diamonds), the global reduced-order basis (red star), and 200 reduced-order
basis samples (colored dots). The samples of the stochastic reduced-order basis are colored according to the potential identified through adaptive selection. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where

[𝐻] =
⎡

⎢

⎢

⎣

1436.0165 2.9569221 3.6475679
2.9569221 1479.4282 0.18607749
3.6475679 0.18607749 1483.5043

⎤

⎥

⎥

⎦

≻ 0

for the three selected models. The solution is found as 𝜶 = (0.33984, 0.33062, 0.32955).
Figs. 9 and 10 show the trajectories of the temperature, pressure, and volume in each simulation, with and without model

classification, respectively. Probability density functions obtained from these results, extracted at times 𝑡 = 10 [ps] and 𝑡 = 20 [ps]
in the isobaric–isothermal regime, are shown in Fig. 11.

As previously indicated, the target value for the pressure is 1 atm. Large fluctuations are observed for this variable in the solid
state, when the simulation box is close to the atoms on all sides. Temperature control is also properly achieved at the target values,
set to 50 K and 100 K respectively. Smaller fluctuations are obtained for this quantity. A larger spread is observed for the volume,
which can be expected given that (1) this quantity is very sensitive to the chosen reference model (as seen in the rightmost panel
in Fig. 9), and (2) the dimension of the reduced-order model is small compared to the full-order dimension (with a reduction of
bout 80%). The probability density functions (see Fig. 11) are centered at the target temperatures in both phases, and it is seen the
tochastic simulations span the response of each interatomic potential. Overall, this demonstrates the capability of the probabilistic
ormulation to capture differences in the volume change during the phase transition, while maintaining control on both the pressure
nd temperature.
12
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Fig. 9. Trajectories of thermodynamical and simulation quantities for 200 stochastic reduced-order samples, compared to the full-order models. Temperature
step from 50 K to 100 K occurs at 10 picoseconds, shown here by the dashed blue line. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 10. Plot of trajectory samples, classified according to the reference model identified with the adaptive selection procedure (the number of samples is
ndicated in parentheses). Trajectories closer to reference trajectories typically correspond to reduced-order basis samples that are the closest to the reference
educed-order basis. Intermediate samples (e.g., equidistant from two reference reduced-order bases) increase the range of the fluctuations after melting has
ccurred.
13



Computer Methods in Applied Mechanics and Engineering 431 (2024) 117323S. Kounouho et al.

m

Fig. 11. Snapshots probability density functions of thermodynamic and simulation quantities for 200 stochastic reduced-order samples compared to the full-order
odels. Note that the pressure remains centered around approximately 1 atm, and the temperature at 50 K before the sublimation, and 100 K after.

5. Conclusion

This paper develops a new stochastic reduced-order representation to capture model-form uncertainties for all classical statistical
ensembles commonly used in MD simulations. The proposed Hamiltonian formulation specifically ensures the stability of the
control algorithms in the almost sure sense, owing to appropriate rescaling in the proper symplectic decomposition, and can be
easily implemented. The efficiency of the approach was demonstrated on an evaporation problem in the isothermal–isobaric (NPT)
ensemble, following seminal work on control algorithms in the field. These results show that the approach allows for proper control
in the reduced-order state space—in contrast with the POD operating with non-scaled snapshots, which is seen to produce divergent
results regardless of the control variable. The proposed stochastic framework paves the way for broad adoption in a wide range of
MD simulation setups involving control variables, such as multiscale methods (where control on pressure can be used to estimate
macroscopic effective parameter, for instance). By preserving and building a probabilistic description of an envelope of models, it
promotes adaptivity and robustness for, e.g., parameter calibration and model definition in settings where ground truth data are
scarce. Avenues for future research include algorithmic developments to efficiently sample high-dimensional reduced-order bases,
as well as theoretical extensions to very highly nonlinear, potentially irreducible systems.
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ppendix. Equations of motion

.1. Micro-canonical (NVE) ensemble

In the micro-canonical ensemble, no control equation is required and the equations of motions read as

𝒒̇ = [𝑀]−1𝒑 ,

𝒑̇ = 𝒇 (𝒒) .
(A.1)

A.2. Canonical (NVT) ensemble

In the canonical ensemble, the equations of motion are given by

𝒒̇ = [𝑀]−1𝒑 ,

𝒑̇ = 𝒇 (𝒒) −
𝑝𝜉
𝑄
𝒑 ,

(A.2)

and are supplemented with the control equations

𝜉̇ =
𝑝𝜉
𝑄

,

𝑝𝜉 = 𝒑𝑇 [𝑀]−1𝒑 −𝑁𝑘𝐵𝑇tgt .
(A.3)

A.3. Isoenthalpic–isobaric (NPH) ensemble

In the isoenthalpic–isobaric ensemble, the equations of motion are given by

𝒒̇ = [𝑀]−1𝒑 +
𝑝𝜖
𝑊

𝒒 ,

𝒑̇ = 𝒇 (𝒒) −
(

1 + 𝑑
𝑁

) 𝑝𝜖
𝑊

𝒑 .
(A.4)

Control equations are further defined as

𝑉̇ =
𝑑𝑉 𝑝𝜖
𝑊

,

𝑝𝜖 = 𝑑𝑉 (𝑃int − 𝑃ext) +
𝑑
𝑁

𝒑𝑇 [𝑀]−1𝒑 ,
(A.5)

where 𝑃ext is the external pressure and

𝑃int =
1

(

𝒑𝑇 [𝑀]−1𝒑 + 𝒒𝑇 𝒇 (𝒒) − (𝑑𝑉 )
𝜕𝜙

)

(A.6)
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e
a

Fig. A.12. Difference in eigenvalue decay (first row) and projection error estimate (second row) for POD and PSD reduced-order bases, for (a) the pressure test
and (b) the temperature test. Note that the difference between the eigenvalues is roughly two orders of magnitude smaller than the magnitude of the eigenvalues,
but not zero.

A.4. Isothermal–isobaric (NPT) ensemble

For the isothermal–isobaric ensemble, the equations of motion are given by

𝒒̇ = [𝑀]−1𝒑 +
𝑝𝜖
𝑊

𝒒 ,

𝒑̇ = 𝒇 (𝒒) −
(

1 + 𝑑
𝑁

) 𝑝𝜖
𝑊

𝒑 −
𝑝𝜉
𝑄
𝒑 .

(A.7)

In addition, control equations read as

𝑉̇ =
𝑑𝑉 𝑝𝜖
𝑊

,

𝑝𝜖 = 𝑑𝑉 (𝑃int − 𝑃ext) +
𝑑
𝑁

𝒑𝑇 [𝑀]−1𝒑 −
𝑝𝜉
𝑄
𝑝𝜖 ,

𝜉̇ =
𝑝𝜉
𝑄

,

𝑝𝜉 = 𝒑𝑇 [𝑀]−1𝒑 +
𝑝2𝜖
𝑊

− (𝑁 + 1)𝑘𝐵𝑇tgt ,

(A.8)

where 𝑃ext is the external pressure and

𝑃int =
1
𝑑𝑉

(

𝒑𝑇 [𝑀]−1𝒑 + 𝒒𝑇 𝒇 (𝒒) − (𝑑𝑉 )
𝜕𝜙
𝜕𝑉

)

(A.9)

A.5. Eigenvalue decay for pressure and temperature test

In Section 4.1.1, the projection error estimates for the POD and PSD bases plotted in Fig. 2 look nearly identical. Indeed, the
igenvalues computed from the standard POD and proposed PSD are very similar but do not coincide. Below, we plot the eigenvalues
nd projection error estimate along with point-wise differences between the POD and PSD results (see Fig. A.12).
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