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Abstract

Microbial symbionts associate with multicellular organisms-on a continuum from facultative
associations to mutual codependency. In the-oldest intracellular symbioses there is exclusive
vertical symbiont transmission, and co-diversification of symbiotic partners over millions of
years. Such symbionts often undergo genome reduction due to low effective population sizes,
frequent population bottlenecks,,and-reduced purifying selection. Here, we describe multiple
independent acquisitionievents of closely related defensive symbionts followed by genome
erosion in a group-of Lagriinae beetles. Previous work in Lagria villosa revealed the dominant
genome-eroded symbiont of the genus Burkholderia produces the antifungal compound
lagriamide, protecting the beetle’s eggs and larvae from antagonistic fungi. Here, we use
metagenomics to assemble 11 additional genomes of lagriamide-producing symbionts from
seven different host species within Lagriinae from five countries, to unravel the evolutionary
history of this symbiotic relationship. In each host, we detected one dominant genome-eroded

Burkholderia symbiont encoding the lagriamide biosynthetic gene cluster. However, we did not

find evidence for host-symbiont co-diversification, or for monophyly of the lagriamide-producing
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symbionts. Instead, our analyses support a single ancestral acquisition of the gene cluster
followed by at least four independent symbiont acquisitions and subsequent genome erosion in
each lineage. By contrast, a clade of plant-associated relatives retained large genomes but
secondarily lost the lagriamide gene cluster. Our results, therefore, reveal a dynamic
evolutionary history with multiple independent symbiont acquisitions characterized by a high
degree of specificity, and highlight the importance of the specialized metabolite lagriamide for

the establishment and maintenance of this defensive symbiosis.

Keywords: lagriamide, Burkholderia, symbiosis, symbiont replacement, biesynthetic gene

cluster, metagenomics, Lagriinae, chemical defence, secondary metabolism

Introduction

Eukaryotes have been associated with prokaryotic microbes at least since the initial
endosymbiotic events that led to the acquisition of mitochondria and chloroplasts [1]. These
organelles represent the presumed endpoint of ancient symbioses with a-proteobacteria and
cyanobacteria, respectively, that aver time led to a progressive shrinkage of the symbionts’
genomes and eventual transferof genes from symbionts to host [1]. Although organelle
acquisition appears to bea rare event [2], other more recent symbioses appear to be on a
similar evolutionary trajectory of profound genome reduction and absolute dependence on host
cells. For example, the acquisition of the intracellular symbiont Buchnera aphidicola in the
common ancestor of aphids allowed them to diversify as sap-feeding insects as the symbiont
synthesizes essential amino acids not found in plant sap, and this is evidenced by a rapid basal
radiation of aphid species [3] and strict co-evolution of aphids and Buchnera [4]. B. aphidicola
has been vertically transmitted for at least 200 million years [4] and has a profoundly reduced

chromosome, about 11% of the size of Escherichia coli [5].
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Through comparison of various symbionts, a model of genome reduction has emerged whereby
host-restriction initially weakens purifying selection on formerly essential genes, through both
host-provided metabolites and symbiont population structure, with low effective population sizes
and isolation within individual hosts [6]. When symbionts are vertically transmitted, population
bottlenecks occur during every transmission event, causing the fixation of deleterious mutations
within the population [6]. These factors combine to first cause an increase in pseudogenes in
the genome [6] and then deletion of those pseudogenes due to a known deletion<bias within
bacteria [7]. The most reduced genomes lose even central functions such as DNA repair
pathways [6], which leads to an increased rate of evolution and further'gene loss, as well as
increased AT-bias in many cases [8, 9]. In the cases of symbiontstliving-inside host cells, it is
likely that this process is exacerbated due to a lack of opportunity er-ability to horizontally
acquire functional genes. However, genome reduction«is also'’known to occur without genetic
isolation. For instance, free-living bacteria living in-nutrient-poor environments such as
Prochlorococcus spp. are thought to have reduced genomes as a consequence of selection
pressure to streamline their metabolism [10], potentially explained through the Black Queen
hypothesis [11], which posits thatselection drives pathways to be lost when the respective
metabolites are produced by another species in the ecosystem as “public goods”. There are
also genome-reduced symbionts which seemingly are not genetically isolated. Burkholderia
symbionts that reside extracellularly in leaf nodules in plants are mainly transmitted vertically
because the symbiosis is mutually co-dependent [12], although horizontal transfer may have
occurred occasjonally between plants, the soil microbiota, and insects [13]. This suggests a lack
of geneticisolation, and indeed there is evidence of repeated horizontal transfers of biosynthetic
genes for defensive molecules among leaf nodule symbionts of Rubiacaeae plants [13]. Such
systems may provide an opportunity to study the evolutionary pressures that lead to the process

of genome reduction, and the mechanisms of symbiosis that underlie it.
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The dichotomy of vertical versus horizontal transfer of symbionts may be one determinant of
genome reduction. A relatively clear-cut example is the two symbionts of the tunicate
Lissoclinum patella, i.e. the extracellular cyanobacterium Prochloron didemni [14] and the
intracellular “Candidatus Endolissoclinum faulkneri” [15]. The former is capable of horizontal
transmission, which is reflected in its almost clonal genome amongst very divergent hosts and a
lack of genome reduction [14], wheras the latter is vertically transmitted, as evidenced-by its\co-
divergence with its hosts across cryptic speciations, and profound genome reduction [15,16].
However, the mode of transmission also exists on a continuum from strict vertical to strict
horizontal, with mixtures of vertical and horizontal transmission in between [17]. For instance,
the tsetse fly symbiont Sodalis glossinidius shows some signs of-genome-reduction such as
rampant pseudogenes, but remains culturable in the lab, meaning-that horizontal transmission
cannot be excluded [18]. Likewise, symbionts long thought to'be exclusively vertically
transmitted, such as the bryozoan symbiont “Ca,.Endobugula sertula”, which is packaged with
the hosts’ larvae, show no signs of genome reduction [19], indicating that there is no compelling
reason why it should not be able to transmit horizontally between hosts. Indeed, “Ca. E. sertula”
has been found in genetically divergent but proximal bryozoan individuals, suggesting horizontal

transmission [20].

The Lagria and Ecnolagriabeetles belong to the subfamily Lagriinae within the family
Tenebrionidae (order Coleoptera). Lagria villosa, a known soybean pest [21], is a source of
lagriamide; an antifungal polyketide, produced by a Burkholderia symbiont (Burkholderia sp.
LvStB) [21]»The compound is made via a trans-AT polyketide synthase (PKS)-non-ribosomal
peptide synthetase (NRPS) hybrid biosynthetic gene cluster (BGC), termed Iga, which due to a
nucleotide signature (k-mer frequency) distinct from the chromosome is predicted to have been
horizontally acquired [21]. The symbiont is present in glandular structures associated with the

ovipositor of female beetles and secreted on its eggs as they are laid [21], and this symbiont
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has been shown to have a defensive role against fungi in the egg [21] and larval stages [22].
Previously, we showed that the genome of Burkholderia sp. LvStB is reduced and has lost
several essential genes including some genes involved in the DNA repair pathways and primary
metabolism [23]. The genome has a low coding density, and a high number of pseudogenes
and transposases, indicative of genome erosion [23]. These characteristics are consistent with
host restriction and vertical transmission of LvStB. However, there is evidence that Burkholderia
symbionts from L. villosa can be transferred to plant tissues and survive for several days.and

that bacteria can be acquired by the beetle from the plant and soil environment.[24].

As several Lagriinae beetles harbor symbionts in special structures that likely evolved between
55 and 82 million years ago based on fossil evidence, positioned to-deposit symbionts on the
eggs [25, 26], we hypothesized that lagriamide-producing Burkholderia symbionts might have
co-evolved with their hosts in a manner similar to other vertically transmitted insect symbionts.
However, the possibility for transmission of the.Symbionts to and from plants, and the
accessibility of the symbionts’ habitat on the surface of eggs and within adult females suggested
that horizontal symbiont acquisition maybe possible. As the beetles harbor complex
microbiomes with multiple related'Burkholderia strains as well as other bacteria [22, 24], both
genome-reduced and not, an alternative hypothesis is that the lagriamide BGC has been
repeatedly horizontally transferred among environmental strains and symbionts. Moreover,
partnerships in defensive symbionts are usually more dynamic as compared to intracellular
nutritional symbionts [27]. It is also possible that the lagriamide-producing strain is restricted to
L. villosa, and-that different Lagriinae species have symbionts with different BGCs, as this would
allow'the association to react much more flexibly to changes in antagonist communities. To
clarify this evolutionary picture, we analyzed the metagenomes of 12 beetle samples, spanning
seven species belonging to the genera Lagria and Ecnolagria across five different countries

(four continents) (Table 1). We recovered the metagenome-assembled genomes (MAGs) of
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several different Burkholderia bacteria and confirmed the presence of the lagriamide BGC in
each beetle specimen. We also report a complete genome of the genome-reduced, lagriamide-
producing Burkholderia sp. LvStB symbiont, obtained through long-read Nanopore sequencing.
We compared the phylogeny of the recovered Burkholderia MAGs, the lagriamide BGCs, and
the host beetles to determine whether co-cladogenesis occurred in this system, and to further
explore the evolutionary relationships in the symbiosis. The results indicate that the lagriamide
BGC was likely only acquired once in the common ancestor of beetle-associated’Burkholderia
symbionts, and subsequently lost in the majority of the descendent free-living_strains. As all the
lagriamide-bearing symbionts are genome-reduced but do not form a menophyletic clade, do
not correspond to host phylogeny, and the pattern of gene conservation-is different in the
component clades, they likely represent multiple symbiont acquisition events, followed by
independent genome-reduction processes. The commen factorof lagriamide production might
be one of the reasons for selection by and dependency on hosts. This would suggest that a
single group of natural products caused several independent symbioses to be established over

evolutionary time.

Materials and Methods

Insect collection

Specimens were collected between 2009 and 2023 in Spain, Germany, Brazil, Japan and
Australia“in the locations listed in Table S4. Female adults were dissected either directly after
chilling for ca. 15 min at —20°C or preserved in 70% ethanol or acetone until dissected. The
accessory glands were removed and preserved in 70% ethanol at —80°C until further

processing. For species in which we suspected the presence of symbiont-harboring
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compartments within the ovipositor in addition to the glands, the ovipositor was also dissected

and preserved along with the accessory glands.

DNA isolation and metagenomic sequencing

Given that the specimens used in this study were collected throughout multiple years and were
available at different times during the project, we carried out DNA extractions in different
batches. We used short-read sequencing (lllumina) for the majority of samples and long=read
sequencing (Oxford Nanopore) to complement the metagenomic data for two_of-the species

(Table S4).

Short-read sequencing

Genomic DNA from the preserved organs was extracted. per.individual after removing the
fixative and homogenizing the tissue in liquid nitrogen. The MasterPure complete DNA and RNA
isolation Kit (Epicentre Technologies) was‘sed as’indicated by the manufacturer, including an
additional incubation step at 37°C for30'min with 4 uL lysozyme (100 mg mL™") before protein
precipitation. The nucleic acids.were re-suspended in Low TE buffer (1:10 dilution of TE) and
pooled by species. Metagenomic sequencing was carried out in two batches. The first batch
included the samples.corresponding to L. atripes, L. grenieri, L. hirta G, L. hirta SB, L. hirta HG,
and L. villosa 2020, This first batch was sent for DNA library preparation using a Nextera XT
DNA Library Prep Kit (lllumina) and metagenomic sequencing on a NovaSeq 6000 platform
(lumina), using a paired-end approach (2 x 150 bp) to a depth of 30 M reads (9 Gbp) by
CeGaTl GmbH (Tubingen, Germany). Samples from the second batch including L. rufipennis 1
and’2, L. okinawana, and Ecnolagria sp., were sequenced using a NextSeq 2000 (lllumina,
paired end 2 x 150bp) to a depth of 28 to 44 million reads at the Max Planck Genome Centre

(Cologne, Germany). The data from sample Lv19 corresponds to that described previously [21].
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Taxonomic assignment of individual specimens of L. rufipennis was first done morphologically
according to a previously described method [28] very similar to how the sympatrically occurring
females of Lagria nigricollis, and the specimens used for sample Lruf2 were originally identified
as L. nigricollis [26]. Due to the uncertainty associated with morphological identification, we
therefore additionally barcoded the specimens after their metagenomes had been sequenced
(Supplementary methods) and compared their cytochrome oxidase | sequences to those of
male specimens of L. rufipennis and L. nigricollis that can be more easily distinguished based
on their morphology. All 19 L. rufipennis and 10 L. nigricollis COl sequences,that.we obtained
turned out to be very similar and formed a sister group to the L. rufipennis sequence available in
NCBI (MW802588). However, the L. nigricollis sequences formedwa-distinct subclade, with the
exception of the sample that had been used for metagenomics (Lruf2), which grouped within L.
rufipennis. Hence, we reassigned Lruf2 to L. rufipennisy.resulting in two replicate metagenomes
for this species. Unfortunately, the L. nigricollis samples were males (which do not contain

symbionts), preventing us from sequencing. a metagenome of this species.

Long-read sequencing

We selected samples from Liwviflosa and L. hirta for long-read sequencing, aiming to improve
the assembly of the Iga-centaining MAGs in these species obtained with short-read sequencing.
For the L. hirta HG population, genomic DNA was extracted from a pool of 6 egg clutches (20—
30 eggs per-clutch) using the Genomic-tip 20/G Kit (Qiagen) following the instructions from the
manufacturer. For L. villosa, the symbiotic organs of six female adults were dissected and gently
homogenized to release bacterial symbionts. The residual host tissue was separated from the
bacterial suspension, and both samples were frozen at —20°C. Later, both samples were thawed
and centrifuged for 2 minutes at 3,000 rpm + 2 minutes at 5,000 rpm to pellet the tissue and

bacteria, respectively. The supernatant was removed, and 20 pL sterile 1x PBS was added to
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both samples. Genomic DNA was extracted using the Nanobind CBB Big DNA kit (Circulomics,
Baltimore, USA) followed by enrichment for HMW (high molecular weight) DNA using the Short
Read Eliminator kit XS (Circulomics). Isolated HMW DNA purity and concentrations were

measured using a Qubit (Thermo Fisher).

These samples, as well as an aliquot of the L. villosa 2020 genomic DNA sample, underwent
end-DNA repair and library preparation using the NEBNext Ultra Il DNA Library Prep Kit«(New
England Biolabs, Ipswich, USA) and the Ligation Sequencing Kit V14 (SQK-LSK114; Oxford
Nanopore Technologies, Oxford, UK) followed by a clean-up step with AMPure XP beads
(Beckman Coulter). Sequencing was performed on a MinlON platform-(Oxford Nanopore

Technologies) and MinlON flow cells (vR10.4.1) with 100 ng of the library during a 72 h run.

Metagenomic sequence assembly and binning

Short-read sequences

Sample L. villosa 2019 represented data previously assembled and analyzed [21, 23].
Sequence data generated from L/ atripes,’L. grenieri, L. hirta G, L. hirta SB, L. rufipennis 1, L.
rufipennis 2, L. okinawana, and.Ecnolagria sp., consisted of only short-read lllumina sequence
data. Sequences weretrimmed-using Trimmomatic v0.39 [29] using TruSeq3-PE as reference,
and sequences shorter than 25 bp being discarded. The trimmed sequences were assembled using
SPAdes v.3.14.1 [30] and binned using Autometa [31]. Sequence data generated from L. villosa
2020 and L. hirta HG consisted of both short-read lllumina sequence data and long-read
Nanopore sequence data, as mentioned above. After trimming, reads were assembled with
SPAdes v.3.14.1 as a hybrid assembly with the nanopore flag enabled. Assembled contigs were
binned using Autometa [31]. The quality of all MAGs was assessed using CheckM2 v1.0.1 [32]

and each MAG was classified using GTDB-Tk v.2.3.2 against database release 214. Coverage

10
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reported by SPAdes for each contig was used to calculate the MAG coverage, except for

LvStB_ 2023 where coverage was calculated by read aligned using minimap2 [33].

Long-read sequences

After sequencing, super-high-accuracy base calling of the raw reads was performed with.Guppy
v6.3.8 (Oxford Nanopore Technologies) (dna_r10.4.1_400bps_sup.cfg model; split-read
function enabled), resulting in a total of 9 Gb sequence data. The resulting reads were,de novo
assembled using Flye v2.9.1 [34, 35] with setting minimum overlap as 10kb and with the “--
meta” option, followed by four rounds of polishing with Racon v1.3.3.{34] starting from the Flye
assembly with option (-m 8 -x -6 -g -8 -w 500). After each polishing-round, reads were re-aligned
to the resulting assembly with minimap2 v2.17 [33]. A finalround of polishing was performed

using Medaka v1.2.0 (https://github.com/nanoporetech/medaka) with the r941_min_high_g344

model using the MinlON raw reads. After polishing, haplotype redundancies and overlaps in the
assembly based on read depth were purged using Purge_Dups v1.2.6 [36]. The relative contig
coverage, GC content, and contig taxonemic classification were scanned after each genome
assembly using Blobtools and TaxonAnalysis to enable the identification of potential microbial
symbiont contigs. We subsequently performed several rounds of Flye assemblies, using only
subsets (e.g. 25%) of the'.complete MinlON data and/or read length size-cutoffs (5 kb) to

optimize symbiont.genome assembly.

Phylogeny of beetles

Mitochendrial genomes (mitogenomes) were recovered from the Eukaryote kingdom bins from
each respective sample. Mitogenomes used previously [37] to produce a beetle phylogenetic
tree were selected for references and outgroups. Mitogenomes from all metagenomic datasets

and reference mitogenomes were annotated using the MITOS2 webserver [38] against the

11
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RefSe89 Metazoan database, using genetic code 5 (invertebrate mitochondrial). Amino acid
sequences of the 13 protein coding genes (PCGs) from each mitogenome were collected and
aligned using muscle v5.1 [39]. Nucleic acid sequences of the corresponding PCGs were
aligned using pal2nal v14 [40] with the -codontable 5 flag. Nucleic acid alignments were
concatenated and a partition file was generated using the pxcat command from the phyx
package [41]. Phylogenetic analysis was performed by partitioning each codon position,for each
gene. An AICC model predicted by ModelTest-NG v0.1.7 [42, 43] was used to constructithe
phylogenetic tree using RAXML-NG v1.2.1 [44] with the parameters --all and --tree
pars{25},rand{25}. The alignment file in FASTA format was converted to,nexus format using

Geneious Prime 2023.2.1 (www.geneious.com). Bayesian analysis'was-performed by

partitioning each codon position for each gene using MrBayes'v3.2,[45] with seed and
swapseed equal to 42 and using the following parameters Iset.applyto=(all) nst=6
rates=invgamma; and unlink statefreq=(all) revmat=(all) shape=(all) pinvar=(all); using 10 million
generations, and sample frequency of 500. The final average standard deviation of split

frequencies (ASDSF) was 0.0042.

Burkholderia symbiont phylogeny

Prokka [46] was used.to annotate the ORFs of the genomes/ MAGs. Pseudogenes were
removed from the®MAGs and orthofinder v2.5.5 [47] was run on amino acid sequences of the
genomes//MAGs. A'custom script was used to extract the genes with single-copy heirarchical
orthogroups-(HOGs) that are present in more than 95% (23 HOGs), 90% (126 HOGs), 80%
(336 HOGs), 70% (656 HOGs) and 60% (888 HOGs) of the genomes/ MAGs. Muscle v5.1 [39]
was’used to align the amino acid sequences of the selected HOGs, followed by pal2nal v14 [40]
to align the corresponding nucleic acid sequences using -codontable 11. Subsequent steps

were similar to those performed for constructing beetle phylogeny. Bayesian analysis was
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performed using MrBayes v3.2 [45] following the steps and parameters described in beetle

mitogenome tree construction. The final ASDSF was 0.0002.

Amino acid sequences of MAGs were blasted (diamond blastP) [48, 49] (with parameters -k 1 --
max-hsps 1 --outfmt 6 qseqid stitle pident evalue glen slen) against a local copy of the NCBI nr
database, where previously identified Burkholderia sequences [21, 23] were removed. Genes
where the top blastP hits had percent identity less than 50% or those without “Burkholderia” in
the subject sequence title of the top hit were classified as putative horizontally transferred
genes. These genes along with any pseudogenes were removed from MAGs and orthofinder
was used to detect HOGs present in more than 95% (16 HOGs), 90%-(98:HOGs), 80% (304
HOGs), 70% (632 HOGs) and 60% (884 HOGs) of the genomes/ MAGs. Subsequent steps

were similar to those mentioned in the above paragraph.

Lagriamide BGC phylogeny

Lagriamide BGC genes from IgaA to Igal' were extracted. Protein sequences were aligned with
muscle v5.1 [39] followed by alignment of DNA sequences using pal2nal v14 [40] using -
codontable 11. Pxcat command.in the-phyx package [41] was used to concatenate the DNA
alignments and generate a partition file. A maximum likelihood tree was made using RAXML
v8.2.12 (raxmIHPC<PTHREADS-SSE3) [50], with the parameters -f a -# 1000 -p 1989 -x 19809.
For the GTRGAMMAI model each gene was partitioned for each codon position, wheras using
the GTRCAT -\ model partitioning was only performed per gene as it resulted in higher
bootstrap.values than partitioning for each codon position in each gene. Bayesian analysis was

performed as described in the beetle phylogeny with the final ASDSF being 0.0001.
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Results and Discussion

Beetle phylogeny

We sequenced and assembled the metagenomes of the collected Lagria and Ecnolagriabeetle
populations (Table 1), and beetle mitogenomes (see Table S1 for mitogenome statistics) were
extracted and annotated to infer host beetle phylogeny (Fig. 1). In line with previous studies,
mitogenomes belonging to the tenebrionid subfamilies Lagriinae, Blaptinae, Pimeliinae,
Stenochiinae, and Alleculinae were found to be monophyletic whereas Diaperinae and
Tenebrioninae were found to be para- or polyphyletic [37, 48—-50]. Maximum likelihood analysis
using RAXML [51] (Fig. Sl 1) and Bayesian analysis usingiMrBayes [45] (Fig. 1) gave similar

results.

All collected Lagria beetle mitogenomes clustered into four distinct subclades: All L. hirta beetle
mitogenomes were clustered in a single clade, alongside a closely related clade of Lagria
species (L. rufipennis and L. okinawana) from Japan. The L. atripes and L. grenieri beetles
formed another clade more distantly-related to the L. hirta and Japanese Lagria species. Finally,
the L. villosa and Ecnolagria sp.jbeetles formed a fourth clade along with Chrysolagria sp.
(JX412760), distinct from the other Lagria beetles. A small distinction was noted here, wherein
the Bayesian phylogeny (Fig. 1) suggested that the Cerogria beetles belonged to the clade with
L. villosa and Ecnolagria species, whereas the maximum-likelihood phylogeny showed the
Cerogria to be in a clade with all other Lagria beetles (Fig. Sl 1). However, in both cases the
branch’support values are too low to make any definite conclusions. Publicly available
sequences of L. hirta (OX375806) clustered with collected L. hirta samples from Rhineland
Palatinate, Germany (LhHG), and L. rufipennis (MW802588) clustered with the two L. rufipennis

(Lruf1 and Lruf2) samples.
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Recovery of lagriamide BGCs

A complete, or mostly complete, Iga BGC was found, using antiSMASH v7 [52, 53], in eleven of
the twelve samples, with the exception of L. rufipennis 1 where only small fragments of the Iga
BGC could be recovered. The BGC recovered from L. rufipennis 2 was found over two contigs
and could not be manually joined following inspection of the assembly graph. The missing'data
for this region spans from approximately halfway through the IgaB gene to approximately

halfway through the IgaC gene (Fig. 2A).

Analysis of representative BGCs revealed two differences in gene organization of the Iga BGC
across the different Lagriinae beetle species (Fig. 2A). The first difference observed regarded
the IgaC gene. The IgaC gene from the BGCs recovered from the L hirta G and L. hirta SB
samples appeared to be split into two, denoted IgaC17.-and /lgaC2 for clarity. Alignment of the
lgaC gene from the three L. hirta samples revealedthat there was a perfect alignment of the

nucleotide sequences save for a 37 bp deletion inithe BGCs from L. hirta G and L. hirta SB,

which introduced a frameshift (Fig. SI 2A). This frameshift consequently introduced a premature

stop codon which split the IgaC gene into two ORFs in L. hirta G and L. hirta SB (Fig. Sl 2B).

The second difference we.observed was in the /ga BGC from the LvStB genome extracted from
the 2023 L. villosa metagenome (Lv23). One split in IgaB and two splits in /gaC were seen.
However, the assembly.of the L. villosa 2023 metagenome was based solely on long-read data,
which is error-prone [54], and the splits may not be a true reflection of the BGC in this sample.
Normally. Sanger sequencing would be the solution to validate these questionable regions but
unfortunately, there was no remaining DNA after the long read sequencing runs for this
particular sample. For this reason, we left the BGC with the splits but were cautious not to over-

interpret the apparent breaks in the genes in this BGC.
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We then considered the domain organization within the /ga BGC genes (Fig. 2B). The domain
organization is largely congruent across the /ga BGCs recovered from the metagenomes. We
did note, however, an additional annotated “DHt” domain in IgaB, which is defined as
“‘Dehydratase domain variant more commonly found in frans-AT PKS clusters”, in the Iga BGCs
from all L. hirta samples and the L. rufipennis 2 sample. Similarly, we detected an additional
carrier protein domain (phosphopantetheine acyl carrier protein group) near the N-terminus of
the IgaC protein in the BGCs from the L. grenieri and L. okinawana samples. In all cases; close
inspection of the primary sequence of these additional dehydratase and carrier.domains
revealed mutations in the sequences that would likely render the encoded domain non-

functional (Supplementary Methods).

Finally, as with the originally described Iga BGC recovered.from the L. villosa 2019 sample [21],
we found mutations in the catalytic or conserved motifs of lgaG DH2, IgaG KS6, IgaB KR3 and
IgaC KS5 domains, that we believe may renderthese domains inactive (Supplementary
Methods). As a result, the domain architecture of all representative Iga BGCs from all samples

appear functionally identical.

Together, the conservation of the /Iga-BGC in at least seven different species of Lagriinae
beetles, across four geographically distant countries, implies that the production of lagriamide is
an important factor{for the host beetle and that the Iga BGC is under strong selective pressure.
The presence/of additional domains in the /Iga BGC in several samples, even though they are
likely inactive, is intriguing as it suggests that these domains may have previously been present
in all.lga. BGCs but may have decayed over time and were lost. The reason as to why these
domains were selected against would be speculative at best and all lagriamide-like compounds
produced in the different beetle populations would need to be characterized to truly infer
differences that the domain architecture may have on the resulting chemistry. Conserved

production of other bioactive compounds has been observed, such as pederin, across
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Staphylinidae beetle species (Paederus and Paederidus genera) [55], which are host to a

Pseudomonas symbiont that produces pederin [56].

The two systems have several parallels: both pederin and lagriamide are produced by a trans-
AT PKS NRPS hybrid BGC, the former in a Pseudomonas bacterium [55], and the latter in a
Burkholderia sp., where the compound is concentrated in the host’s (female) oviposition argans,
coated onto the eggs and serves to protect juveniles [57]. Further, both pederin and{agriamide
are the sole insect-associated compounds in suites of compounds otherwise associated with
marine invertebrates. Groups of pederin analogs, such as the onnamides; mycalamides,
psymberins, and theopederins have been isolated from a variety of marine.sponges [58—62] and
ascidians [63], whereas bistramide, the most structurally similar compound to lagriamide, was
isolated from an ascidian [64]. The question remains, however,'as to the evolutionary origins of

this BGC and how it came to be present in such diverse ecological niches.

Complete genome of the /ga-carrying LvStB symbiont

Long-read sequencing of the L. villosa 2023 (Lv23) metagenome allowed us to assemble a
complete genome of a Iga-carrying Burkholderia strain (referred to as LvStB_2023 from
hereon). LvStB_2023 was foundto have a 2.5 Mbp long genome with a GC percentage of
58.63%. It has 2 circular chromosomes - chromosome 1 is 1.89 Mbp, chromosome 2 is 0.55
Mpb in size, and there‘is a plasmid 59.77 kbp long. The genome is estimated to be 97.1%
complete(98.8% with “specific’ mode) and 0.02% contaminated as per CheckM2 [32] and thus
is azhigh-quality MAG according to the MIMAG standards [65]. Assembly graph analysis of
LvStB /2023 verified that we have the complete sequence of two circular chromosomes and a
plasmid. However, the CheckM2 estimate did not reflect a fully complete genome, at 98.8%,
and we believe that this small discrepancy in predicted completeness may be a result of

ongoing genome reduction [66].
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LvStB_2023 has a coding density of 78% and 59.1% with and without pseudogenes,
respectively. A large percentage (43.87%) of the ORFs in LvStB_2023 were identified as
pseudogenes (1613 out of 3676), the highest of any Iga-carrying Burkholderia symbiont.
However, this estimate may be artificially high as pseudogenes were identified purely based on
their length relative to their closest BLASTP match and these counts are derived from an
assembly generated from only long-read data which can be prone to errors [67—69], particularly
homopolymeric runs. However, coding density and frequency of pseudogenes is/not very
different from LvStB MAGs assembled from short-read data (see Table S2 for.complete
genome characteristics of recovered MAGs). Having multiple chromosomes is a common
phenomenon in Burkholderia [70, 71]. Generally in multi-chromoseme-bacteria, the majority of
the genes for essential functions are located on one larger or primary chromosome, whereas
the smaller or secondary chromosome has much fewer.essential genes and it mostly carries
genes for niche specific functions [72]. In the case“of LvStB_2023, chromosome 1 appears to be
the primary chromosome as it is much larger'in size,/and has 77 out of 84 core genes (including
multiple copies) (Fig 3A). Functional analysisirevealed chromosome 1 to have the highest
number of genes for all essential COG categories (Fig 3B), including categories L (replication,
recombination and repair), J{Translation, ribosomal structure and biogenesis), M (Cell

wall/membrane/envelope biogenesis) and H (Coenzyme transport and metabolism).

The Iga BGC is-onvchromosome 2 (0.55 Mbp long) and can be distinguished by the continuous
block of codingisequences on the reverse strand (Fig. 3A, Fig. Sl 3). Chromosome 1,
chromosome-2, and the plasmid have 44.75%, 37.59%, and 42.34% of their coding capacity
taken-up by pseudogenes, respectively. The similar abundance of pseudogenes in each of the
contigs indicates that the whole genome is undergoing reduction simultaneously. The

chromosome with Iga (chromosome 2) has the smallest percentage of pseudogenes, which may
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be a reflection of the required conservation of the Iga BGC in combination with the presence of

large genes in lga.

Diversity of beetle-associated Burkholderia symbionts

Recovery and analysis of metagenome-assembled genomes

Following assembly, the 12 beetle metagenomes were binned, and the resultant bins were
manually refined. A total of 77 MAGs were recovered from all samples, ofwhich 24 MAGs were
of high quality, 30 of medium quality, and 23 of low quality (Table S2).in‘accordance with
published MIMAG standards [65]. Only medium and high-quality MAGs were used for
downstream analysis, with the exception of one low-quality bin'carrying the Iga BGC (LhHG_2).
Genome erosion, such as that already observed for the lga-carrying symbiont Burkholderia sp.
LvStB [23], can skew the completeness metric. To determine if a lower quality MAG was
incomplete or genome-reduced, we also considered several other metrics, including core gene
presence, number of pseudogenes [23],,and coding density (Table S2), and concluded that this

particular MAG (LhHG_2) was likely both reduced and incomplete.

For each beetle population; a single MAG belonging to the genus Burkholderia with a single
copy of the Iga BGC'was identified. Previous studies on the lagriamide-carrying symbiont strain
B. gladioli LvStB [21, 23, 73], showed that this strain was significantly more abundant than all
other bacteria associated with L. villosa, and had a reduced genome. Consistent with this, all
newly recovered MAGs that included Iga BGCs were the most abundant MAGs in each sample,
had.reduced genomes with an abundance of pseudogenes and transposases, and had lower
coding densities relative to other B. gladioli genomes (Table S2). In standing with previous
studies of Lagria beetles, where both reduced and non-reduced B. gladioli genomes were

recovered, additional B. gladioli MAGs (Latri_2, LhHG_3, and LhSB_5) were recovered that did
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not carry the lagriamide BGC and showed no evidence of genome erosion. We also recovered
three small B. gladioli MAGs (Lgren_7, Lv19 6 18, Lv20_2) and one small Burkholderia MAG

(Lv19_6_14), as well as MAGs classified as B. lata (Lv19_4 _0) and B. arboris (Lv20_1).

Average nucleotide identity (ANI) analysis of B. gladioli MAGs carrying the Iga BGC showed that
MAGs from different beetle species and/or different locations were likely different bacterial
species due to shared ANI values less than 95% [74]. However, previous studies have
suggested that ANI alone is not a sufficient metric for species delineation and that the aligned

fraction (AF) must also be taken into account [74-77]. Following recent cutoffs adopted for

species delineation [75], we opted to use AF = 60% along with ANI = 95% as a cutoff for

species assignment. Subsequently, we found that the Burkholderia,;MAGs carrying the

lagriamide BGC appeared to be split into at least five novel'species (Table S3).

Phylogenetic analysis of recovered metagenome-assembled genomes

In order to elucidate the evolutionary history of the association between Lagriinae beetles and
Burkholderia symbionts, we reconstructed phylogenies of the Burkholderia symbionts and free-
living relatives based on/sharedisingle-copy genes. A priori, we hypothesized that the Iga-
encoding, genome-eroded symbionts would form a monophyletic clade showing co-
diversification with the hosts, given that such patterns have been previously described across

many ancient and co-evolved symbioses.

The phylogeny of the beetle-associated Burkholderia symbionts, relative to other Burkholderia
species, was inferred using 126 single-copy hierarchical orthogroups (HOGs) (non-
pseudogenes) present in more than 90% of the genomes using both RAXML and a Bayesian

approach (Fig. 4, Fig. Sl 4, Fig. S| 5). Burkholderia symbionts without the /ga BGC were broadly
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present across the phylogeny containing B. gladioli, B. lata, and B. arboris strains. By contrast,
and consistent with our expectation, symbionts of different host species carrying the Iga BGC
were closely related. However, these genome-eroded, /ga-encoding symbionts did not form a
monophyletic clade. Because the tree indicates that the common ancestor of the genome-
reduced Iga-encoding symbionts also gave rise to a lineage of non genome-reduced
descendents, this result indicates a non-reduced free-living common ancestor and subsequent
multiple independent acquisition events by Lagriinae beetles. To test for the robustness of our
phylogenetic analysis, we repeated the analysis using single-copy HOGs present, in"95%, 80%,
70%, and 60% (Fig. Sl 6) of the genomes, as well as after removing any. putative horizontally
transferred genes (Fig. Sl 7 and 8). Other than minor discrepancies-in-the terminal nodes, we
obtained highly similar phylogenetic trees, supporting the lack of monophyly of the lga BGC
carrying Burkholderia symbionts. Thus, all our analyses.support a phylogeny that contains a
clade of mostly free-living Burkholderia (plus some-beetle-associated symbionts with non-
eroded genomes) that groups within the Iga BGC-containing Lagriinae symbionts (Fig. 4 and
Fig. Sl 4-8). Concerning the evolutionary histery of the symbiosis, this leaves us with two
alternative scenarios: (i) an ancestral association of the whole clade of bacteria with beetles and
a certain degree of genome.erosion on the deep branches, and a subsequent reversal to a free-
living stage of the presently.extant clade containing many plant-associated B. gladioli strains; or
(i) at least four independent transitions from a free-living (or plant-associated) to a symbiotic

lifestyle, eachof which was followed by genome erosion.

To unravel'which of these scenarios is more likely, we analyzed shared HOGs between different
Burkholderia spp., after removing any pseudogenes from MAGs. We observed higher
conservation of orthogroups between the potentially free-living Burkholderia spp. than among
the Iga-containing symbionts, with the free-living strains sharing a large core genome (Fig. 4). If

the shared ancestor of all /ga-encoding symbionts and the free-living strains would have been
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tightly associated with beetles and experienced some degree of genome erosion (scenario i),
this observation would postulate a substantial increase in the genome size of the bacteria after
the reversal to the free-living/plant-associated lifestyle and before the clade split into the
different taxa. Even though theoretically possible, this scenario seems highly unlikely, because
acquisition of a large number of genes would have to have happened quickly and early in order.
for extant strains in this clade to have such a degree of gene overlap. Instead, it appears much
more plausible that the common ancestor of the entire clade had a full-sized genome similar to
the presently free-living and plant-associated members, and that genome erosion occurred
later. Because the sequenced genome-reduced symbionts are significantly diverged in terms of
sequence, and the extent (and therefore perhaps the age) of genemesreduction appears to vary,
we posit that there were at least four independent transitions to a‘symbiotic lifestyle with
beetles, each of which was followed by genome erosion.(Fig.\5). This is consistent with the
observation that the genomes of the eroded strainstretain distinct sets of genes, many of which
represent subsets of the free-living strains’ core genomes (Fig. S1 9), as gene loss from
independant host-restriction events would be‘expected to be largely stochastic. This distinct set
of genes can, however, also be due to symbiont replacement events followed by genome
reduction. Furthermore, the lack of synteny observed in the genes flanking the Iga BGC (Fig. Sl
10) is indicative of genemic.rearrangement that is often observed in the early stages of genome
erosion. Both of these‘further support the independent acquisitions of symbionts followed by
genome erosion. This conclusion, however, is based on the current data and may change as we
obtain mare samples and long-read metagenomes that allow for synteny analyses across the

entire‘'genome.

Consistent with the scenario of multiple independent transitions to a symbiotic lifestyle, the
phylogeny of the Iga BGC-carrying Burkholderia symbionts was found to be incongruent with the

beetle phylogeny (Fig. 6A), except for the symbionts grouping together for individuals of the
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same host species, i.e. L. hirta and L. rufipennis, respectively. The incongruence between host
and symbiont phylogenies suggests both multiple symbiont acquisition and possibly host
switching events that lead to symbiont replacements. Symbiont replacement has often been
reported in nutritional symbionts as a way for the hosts to replace a genetically degraded
symbiont with a more complete and effective one and to acquire new adaptations for expanding
into different niches [78]. Burkholderia symbionts related to B. gladioli in Lagria beetlesshave
been reported to evolve from plant-associated bacteria [26] capable of transfer from beetles to
plants with subsequent survival [24]. It is possible that the horizontal acquisition-might occur in
the egg and larval stages, where the symbionts are localized on the surface (eggs) or in
cuticular invaginations (larvae and pupae) that remain connected-to-the-external surface via a
small duct [79]. As the closely related Burkholderia strain LvStA can-be acquired horizontally
from the environment [24], and there is evidence of free-living\bacteria carrying lagriamide-like
BGCs [80], we propose that there are Iga-carrying=Burkholderia strains persevering in the

environment (e.g. in plants or soil) [24] that can be horizontally acquired by the beetle host.

As we previously observed that Iga has distinct nucleotide composition to the Lv19 genome [21],
suggestive of a recent horizontal transfer, we sought to determine if it has been independently
transferred to the corresponding symbiont in different beetle hosts. Phylogenetic analysis of the
representative Iga BGCs from all samples resulted in two possible topologies using GTRCAT-V
and GTRGAMMAImodels (Fig. 6B). Both topologies included conserved clades. However, the
relative positions ofthe three clades are poorly supported (Fig. 6B), resulting in the two
alternative topologies. A Bayesian tree was also constructed (Fig. Sl 11) which is congruent
with the GTRGAMMAI tree topology. The inconsistent topology likely stems from limited
resolution of the phylogeny affecting deep nodes in the trees. The GTRCAT-V topology is
perfectly congruent with the symbiont phylogeny based on genome-wide marker genes,

whereas the GTRGAMMAI topology shows one discrepancy at one of the deep nodes. Thus,
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these analyses do not provide evidence for additional horizontal transfer events of the Iga
cluster, so it is likely that there was a single acquisition of /ga in the common ancestor of the
symbiont and B. gladioli clade, with subsequent loss in the free-living group (Fig. 5). It appears
that lagriamide production was highly selected for in symbiotic settings and hence retained,
whereas it was lost in the larger genomes (assumed to be free-living) where it was not selected
for. However, there is likely to be at least some strains in the environment or associated, with
plants that harbor Iga, as relatives in different lineages have been discovered in free-living
strains [80], that served as sources for these independent symbiont acquisitions=Our findings
indicate that the /ga BGC is important in the symbiosis, either for symbiont establishment (e.g.
competition with other symbionts) and/or because lagriamide is an-effective host-defensive
molecule. Furthemore, the fact that different Burkholderia species'with Iga were identified

across different Lagriinae beetles indicates that symbiont acquisition is highly selective.

Lagriamide seems to be highly conserved, despite the dynamics of the system, where multiple
species of bacteria associate with each beetle’host, and several Iga-producing Burkholderia
have apparently been independently-acquired. A dynamic association in defensive symbioses
has been previously hypothesized; to allow for rapid adaptation to a changing community of
antagonists, or to individual co<evolving pathogens [27]. We expected to see changes in the
defensive chemistry used'in a symbiotic context, akin to the rapid evolution of immune genes in
animals [81-83]-However, despite the dynamic nature of many defensive symbioses, with
symbiont replacements on ecological or evolutionary timescales, several examples of defensive
symbioses highlight that the same bioactive compounds can be used over long evolutionary
timescales. In case of beewolf wasps, Streptomyces symbionts have been found to produce
piericidin and streptochlorin for an estimated 68 million years [84, 85]. Both compounds are
found in different beewolf species and across different geographic locations. Similarly, as

discussed above, pederin is produced across different species of Paederus and Paederidus
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beetles by Pseudomonas symbionts [55, 56]. Similarly, we now describe the production of
lagriamide by a Burkholderia symbiont across several species of Lagria and Ecnolagria beetles.
Thus, even though these defensive symbioses are dynamic in the acquisition and replacement
of microbial partners, the chemistry seems to be conserved. This suggests a limited diversity of
chemical compounds that can be used for defense against eukaryotic antagonists (predators or
fungi) in a symbiotic context, which is supported by the convergence on similar compounds in
terrestrial and aquatic symbioses. It is possible that this might be due to the harmful side effects
of the bioactive molecule on the eukaryotic host, analogous to the cytotoxic side-effects of

antifungal pharmaceuticals on humans, resulting in only limited diversity,of such compounds.

To gain insights on the possible origin of the Iga BGC, we performed an analysis of
pentanucleotide (5-mer) frequencies of the beetle-associated, /ga-carrying symbionts and their
associated BGCs, along with the genomes of recently identified soil-borne Paraburkholderia
species that carry the lagriamide B (Igb) BGC, which is highly similar to the /lga BGC [80].
Visualization of 5-mer frequencies of the BGCs-and the genomes revealed three clusters of
BGCs: The BGCs from the two soil-borne. Paraburkholderia strains, the BGCs from the Brazilian
L. villosa-derived LvStB strains, and then a third cluster of all other lga BGCs (Fig. Sl 12). A
similar pattern was observed for the nucleotide composition of the respective genomes wherein
LvStB and Lv20_9 form anisolated cluster, the two soil-borne Paraburkholderia form a second,
distant cluster, and,all"other Iga-carrying Burkholderia strains and cultured Lagria-associated
genomes (LvStA and LhStG) form a third cluster. None of the BGCs share similar 5-mer
composition.with their respective genomes, providing additional evidence for the horizontal

acquisition of the Iga BGC.

We noted during the analysis of the COG annotated genes in LvStB_2023 that there appeared
to be a particularly high number of pseudogenized genes in the L category (replication,

recombination and repair) (Fig 3B). We assessed the percentage change of COG annotated
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genes in all Iga-carrying Burkholderia and found that this pseudogenization of genes involved in
DNA replication, recombination and repair was particularly high in all the Brazilian L. villosa-
derived LvStB strains, as well as the MAGs LhSB_1, LhG_1, Loki_2 and Lgren_6 (Fig. SI 13).
Two of the three LvStB strains also exhibited high pseudogenization of the genes associated
with cell motility (Category N). Even though COG annotation of genes does not provide a robust
picture, as not all genes are successfully annotated, the increased pseudogenization of,genes
involved in DNA replication and repair may explain the divergence of the LvStB strains abserved
in both the phylogenetic analysis and the related 5-mer analysis. In particular, LvStB MAGs
possessed highly truncated and psuedogenized polA genes, coding for DNA polymerase | used
in many DNA-repair pathways and chromosome replication [86], whereas other Iga-containing
MAGs, except LhHG_2, had intact polA genes (Fig. Sl 14), The loss of polA in the L. villosa
symbionts explains their accelerated sequence evolution.in\the-genome as a whole and also in
the Iga BGC compared to other Iga-possessing symbionts’(Fig. SI 12). The absence of polA in
LhHG_2 could be due to its poor quality, as.it'is only.46% complete and has only 47.6%

percentage of core genes.

Previous studies have highlighted how symbionts can be conserved across host-speciation
events and millions of years, leading to genome reduction in the symbiont [6, 16]. A
disadvantage of such.an exclusive relationship is that the symbiont inevitably suffers from
increasing genome,erosion that can result in reduced efficiency in providing benefits to the host
[87]. Consequently,’many long-term obligate symbioses have experienced symbiont
replacement.events that can provide an escape route for the insect host after its symbiont
enters.the irreversible phase of degenerative genome reduction [88]. Such replacement is a
common phenomenon in Hemipteran symbionts [78]. In the present study, however, we are
suggesting that the repeated replacement of symbionts may have happened with very closely

related strains that carry the same biosynthetic gene cluster and hence likely provide the same
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functional benefit to the host. One reason we are suggesting multiple acquisitions and
displacements may have happened is that all the /ga-containing symbionts appear to be at
different stages of genome reduction, with different genome sizes and gene complements,
perhaps indicating that they have been symbionts for different amounts of time. That in
combination with the apparent importance of /ga specifically, the incongruence of symbiont-and
host phylogeny, and the fact that none of the symbionts is profoundly genome-reduced;
suggests that although Lagriinae likely hosted /ga-containing symbionts since the evolution of
special symbiont storage structures, the current symbionts are not direct descendents of those
original symbionts. The replaced symbionts were likely genome-reduced to an extent that they
were outcompeted by incoming Iga-bearing strains from the environment. The Iga BGC-
containing Burkholderia strains were consistently the most abundant ‘symbionts in the
metagenomes across seven different Lagriinae species;.indicating that the lga BGC or an as yet
unknown genomic feature shared among the symbiont strains provides a key selective
advantage in the beetles’ symbiotic organs, Possibly; lagriamide is uniquely suited to defend the
symbionts’ niche against competitors and/or protect its host from antagonists. However, as
lagriamide shows lower antifungal activity than some secondary metabolites of related
Burkholderia strains [21, 26,:89];-another intriguing possibility is that it only provides a moderate
degree of defense but atithe . same time exhibits less harmful side effects on the host than other
antifungal compounds:“Further elucidating the relevance of lagriamide in establishing the
symbiotic association with beetles will not only provide valuable insights into the ecological and
evolutionary dynamics of defensive symbioses, but may also unravel the mechanisms ensuring

specificity'in symbiotic alliances.
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Data availability

The data associated with this study was deposited under BioProject accession no.
PRJNA1054523. Metagenomic reads have been deposited in the Sequence Read Archive with
accessions SRR27332963—-SRR27332975. Representative Iga BGC sequences have been
submitted to Genbank with accession numbers PP034267-PP034277 and PP034279All
lagriamide BGC-carrying MAGs were deposited with the following accession numbers: Ecno_1,
JAYFRUO000000000; Latri_1, JAYFRV000000000; Lgren_6, JAYFRWO000000000; LhG_1,
JAYFRX000000000; LhHG_2, JAYFRY000000000; LhSB_1, JAYFRZ000000000; Lruf2_2,
JAYFSA000000000; Loki_2, JAYFSB000000000; Lruf1_1, JAYFSC000000000; Lv20_9,

JAYFSDO000000000; LvStB_2023, CP144361-CP144363.
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Table 1. Metadata for different beetles collected for this study. *Lagria villosa samples were

collected at three different time points, with one sample reported in a previous study (referred to

as Lv19 in this work) [21, 23].

Sample | Location
Statistics for Burkholderia symbiont MAG with /ga BGC
MAG ID | Genome | Nso (bp) No. of Longest | Coverag
size contigs contig e
(Mbp) (bp)
Lagria Séo LvStB 2.07 8,138 294 99,474 1983.67
villosa Paulo,
2019 Brazil
(Lv19)*
Lagria Séo Lv20_9 1.88 11,699 200 99,421 281.97
villosa Paulo,
2020 Brazil
(Lv20)
Lagria Séo LvStB. 20 | 2.50 1,892,29 (3 1,892,29 | 2263.86
villosa Paulo, 23 2 2
2023 Brazil
(Lv23)
Lagria Osaka and | Lruf1_1 1.93 5,267 368 29,589 636.05
rufipenni>| Ibaraki,
s (kruf1) | Japan
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https://paperpile.com/c/WVPcVJ/ngStO+HeMDi

Sample | Location
Statistics for Burkholderia symbiont MAG with Iga BGC
MAG ID | Genome | Nso (bp) No. of Longest | Coverag
size contigs contig e
(Mbp) (bp)
Lagria Tokushim | Lruf2_2 2.66 7,451 387 55,249 582.66
rufipenni | a, Osaka,
s (Lruf2) | and
Kogashim
a, Japan
Lagria Okinawa, | Loki 2 2.14 6,360 360 60,396 928.22
okinawa | Japan
na (Loki)
Lagria Hessen, LhSB_1 1.17 5,434 212 88,724 261.74
hirta Germany
(LhSB)
Lagria Rhineland | LhHG 2 11.14 6,598 170 127,478 | 868.51
hirta Palatinate,
(LhHG) | Germany
Lagria Galicia, LhG_1 2.70 8,034 376 91,830 557.11
hirta Spain
(LhG)
Lagria Huelva, Lgren_6 |1.14 5,417 205 91,929 83.02
grenieri | Spain
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Sample | Location
Statistics for Burkholderia symbiont MAG with Iga BGC
MAG ID | Genome | Nso (bp) No. of Longest | Coverag
size contigs contig e
(Mbp) (bp)
(Lgren)
Lagria Rhineland | Latri_1 2.20 7,903 280 93,629 29.63
atripes -
(Latri) Palatinate,
Germany
Ecnolagr | New Ecno_3 3.16 8,701 419 87,409 87.61
ia sp. | South
(Ecno) Wales,
Australia
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Qedemera virescens | HQ232826
-Mylabris sp. | JX412732
[Asholus verrucosus | NC_027256
- - -Machla sappho | MZ342778
- \Philolithus aegrotus | MZ342784
'Pelecyphorus foveolatus | MZ342781
- -Pelecyphorus contortus | MZ342780
‘Stenomorpha obovata | MZ342786
- - Stenomorpha consobrina | MZ342785
- Adelium sp. | FJ613422
- -Luprops yunnanus | ON303728
- - Spinolyprops cribricollis | ON303728
\Anaedus unidentatus | ON303730
- -Impressosora sp. | JX412754
Eutrapela ruficollis | HQ232805
Paratenetus tropicalis | JX412774
Cerogria janthinipennis | ON303727
Cerogria popularis | NC_061196
- Eenolagria sp. (Ecno) | Australia
Chrysolagria sp. | JX412760
Lagria villosa (Lv20) | Brazil
Lagria grenieri (Lgren) | Spain
Lagria atripes (Latri) | Germany
Lagria hirta (LhG) | Spain
Lagria hirta (LhSB) | Germany
- Lagria hirta (LhGH) | Germany
‘Lagria hirta | OX375806
-{Lagria okinawana (Loki) | Japan
‘Lagria rufipennis | MW802588
- - -Lagria rufipennis (Lruf1) | Japan
- Lagria rufipennis (Lruf2) | Japan
/psis chinensis | ON303731
aphidema metallicum | KX087341
curus | MG739327
NC_024633
ineum | NC_003081
fusum | NC_026702

Promethis valgipes | MW201671

des dermestoides | KM046492
| MH789725

5 sp. | JX412808

s | MK140669

Alleculinae sp. | J%412818

- Morphostenophanes yunnanus | MZ298928
- - -Morphostenophanes yunnanus | MW822745

Pimeliinae

Lagriinae

Diaperinae

Tenebrioninae

Blaptinae

Stenochiinae

Tenebrioninae

Alleculinae

¢
¢
&
t
®

{

S

Figure 1. Beetle-mitogenome phylogenetic tree using 13 mitochondrial protein coding genes

constructed-using MrBayes [45]. Branch values represent posterior probabilities. Mitogenomes

recovered in this study are highlighted with red lettering. Pictures depicting a representative

species of each subfamily are included (Pimeliinae: Pimelia obsoleta; Lagriinae: Lagria hirta;

Diaperinae: Trachyscelis aphodioides; Tenebrioninae: Tenebrio molitor, Blaptinae: Blaps

lethifera; Stenochiinae: Strongylium cultellatum; Alleculinae: Cteniopus sulphureus).

Photography credits: Udo Schmidt [92] (CC BY-SA 2.0).
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Figure 2./Analysis of representative /ga BGCs extracted from eleven Lagriinae beetle
metagenomes. A) Comparison of representative /ga BGC gene organization. Individual genes in
the\lga)BGCs are represented by arrows oriented in the predicted direction of transcription and
colored according to identity. Pairwise amino acid similarity between BGCs is indicated in the
shaded areas between genes, although we have omitted these numbers for the smallest genes.

A scale bar is provided for gene size. Dashed lines indicate fragments missing from the
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respective assemblies. B) Comparison of predicted enzyme domain organization in the

representative /lga BGCs, where genes are ordered according to biosynthetic order. Boxes

around the domains indicate differences between the BGCs.
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Figure 3."A) Circular representation of LvStB_2023 genome from the L. villosa 2023 sample.

Individual chromosomes are indicated by shades of purple. Coding sequences (CDS) which are

core genes or pseudogenes, as indicated by shades of green, whereas the rest are indicated in

shades of blue. B) Raw count of COG categories present on different contigs of the LvStB_2023

genome (with and without pseudogenes) from the L. villosa 2023 sample.
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Burkholderia sp. Lgren_6 (1.14 Mbp, 83.02x) | Spain

Burkholderia sp. Latri_1 (2.02 Mbp, 29.63x) | Germany -

Burkholderia sp. Ecno_3 (3.16 Mbp, 87.61x) | Australia
Burkholderia sp. Loki_2 (2.14 Mbp, 928.22x) | Japan
Burkholderia sp. LhG_1 (2.70 Mbp, 557.11x) | Spain
Burkholderia sp. LhSB_1 (1.17 Mbp, 261.74x) | Germany
Burkholderia sp. LhHG_2 (1.14 Mbp, 868.51x) | Germany
Burkholderia sp. Lv20_9 (1.88 Mbp, 281.97x) | Brazil
Burkholderia sp. Lv2023 (2.50 Mbp, 2263.86x) | Brazil
e Burkholderia sp. LvStB (2.07 Mbp, 1983.67x) | Brazil

B. gladioli Lruf1_1 (1.93 Mbp, 636.05x) | Japan -

B. gladioli Lruf2_2 (2.66 Mbp, 582.66x) | Japan

- B. gladioli A1 (8.11 Mbp) | GCF_000633145.1

B. gladioli Lgren_7 (1.79 Mbp, 5.88x) | Spain

B. gladioli MSMB1756 (8.19 Mbp) | GCF_001527485.1
B. gladioli CHAPALOTE (8.52 Mbp) | GCF_000757585.1
B. gladioli BSR3 (9.05 Mbp) | GCF_000194745.1

B. gladioli ATCC 10248 (8.89 Mbp) | GCF_000959725.1
B. gladioli NBRC 13700 (8.76 Mbp) | GCF_000739755.1
B. gladioli LvStA (8.56 Mbp) | Brazil

B. gladioli SN82F6 (8.45 Mbp) | GCF_000981885.1

B. gladioli Latri_2 (7.58 Mbp, 15.72x) | Germany

---B. gladioli LhHG_3 (5.09 Mbp, 100.61x) | Germany
B. gladioli LhSB_5 (7.71 Mbp, 7.05x) | Germany

B. gladioli LhStG (8.40 Mbp) | Germany

Type of Burkholderia (font color)

. Non producer . lga producer

. Culturable

. Reference

Clade groupings for Iga-producers
Clade 1 Clade 2
Clade 3 Clade 4

|

Il

Il | “”I | I 1

| F‘H} I | ‘I ||

| '||I

Shared HOGs

Figure 4. RAXML phylogenetic tree (lefthand shared hierarchical orthogroups (HOGs) (non-

pseudogenes) between different Burkholderia genomes (matrix on the right). Each dark blue

line indicates a shared HOG. HOGs have been hierarchically clustered on the x-axis. Bootstrap

values are indicated on nodes. Genome size and coverage is represented in brackets next to

MAG ID. Outgroups include - Paraburkholderia acidiphila (GCF_009789655.1), Cupriavidus

necator (GCF 1000219215.1), Herbaspirillum seropedicae (GCF_001040945.1). The branches

of other.Burkholderia and outgroups have been collapsed for the sake of clarity.
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_[Burkhofden'a sp. (Lagria atripes host)
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Lga gan Symbiont
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Lga loss Burkholderia gladioli

949
950 Fig 5. Schematic representation of proposed evolutionary scenario. The Iga BGC was acquired
951 by the common ancestor but lost in the free-living relatives. Burkholderia carrying the lga BGC
952  were independently acquired multiple times by the beetle hosts.
A Burkholderia Symbiont Beetle host Mitogenome
P. acidiphila | GCF_009789655.1 Mylabris sp. MYLO1
Lagria villosa 2020 (Lv20) | Brazil
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Lagria atripes (Latri) | Germany
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Lagria okinawana (Loki_2) | Japan Lagria rufipennis (Lruf1) | Japanl\ 4
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Fig 6. Congruence between phylogenies of beetle host, Burkholdria symbionts and /ga BGCs in
all samples. A) Tanglegram between /ga-carrying symbionts and beetle host phylogeny. B)
Tanglegram between Iga-carrying symbionts (center) and the Iga BGC, as inferred via two
models GTRCAT (left) and GTRGAMMAI (right). In all panels, the four conserved clades are
highlighted in purple, green, blue and orange. Gray dots on nodes indicate congruence between

the compared phylogenies, whereas red dots indicate incongruence.
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