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Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient
enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on
overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland
biodiversity experimentswithN addition, we found that N addition decreases complementarity effects
and increases selection effects proportionately, resulting in no overall change in overyielding
regardless of N addition rate. However, we observed a convex relationship between overyielding and
cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests
diminishing positive interactions and an increasing contribution of a few dominant species with
increasing N accumulation. Recognizing the importance of cumulative N addition is vital for
understanding its impacts on grassland overyielding, contributing essential insights for biodiversity
conservation and ecosystem resilience in the face of increasing N deposition.

Humans are enriching the environment with nitrogen (N) at an unprece-
dented rate1, and profoundly altering Earth’s ecosystems2–4. In grasslands,
plant diversity5,6 and productivity7,8 change, as N accumulates over time9,10.
Nitrogen enrichment, whether from experimental addition or atmospheric
deposition, usually increases primary productivity by alleviating N
limitation8. However, it reduces plant diversity by increasing competition
for light11–13, acidifying soil14–16, reducing belowground niche
dimensionality17, aswell as accelerating the loss of rare species5,18,19 or evenof
common species20. Nitrogen addition may also alter the relationship
between diversity and productivity20–22. If N addition weakens the positive
effects of diversity on productivity23,24, this would have profound con-
sequences for ecosystem management and our understanding of
biodiversity-ecosystem functioning relationships. However, there is no
consensus on how N affects biodiversity-ecosystem functioning relation-
ships because the underlying mechanisms remain largely unexplored.

Nitrogen addition could alter how biodiversity affects
productivity20,25,26. The effects of biodiversity on productivity can be quan-
tified through net diversity effects, that is the extent to which species mix-
tures differ from the productivity expected from their constituent
monocultures.Net diversity effects can be partitioned into two components:
complementarity and selection effects27. Complementarity effects occur
when species perform better in mixtures than expected from
monocultures28,29. This can occur via several underlying mechanisms: 1)

resource partitioning, where species exploit resources more completely in
mixtures30–32; 2) greater facilitation in diverse mixtures33–37; or 3) reduced
impacts of consumers, pathogens, or other natural enemies in mixtures38,39.
Such mechanisms often operate more effectively in more diverse commu-
nities, leading to an increase in complementarity effects with species
richness21. Nitrogen addition can decrease complementarity effects by
decreasing positive interactions between legumes and other plants32,35, or by
decreasing resource partitioning through a reduction in niche dimension-
ality and belowground nutrient trade-offs31,40,41. Alternatively, positive
selection effects occurwhen specieswith ahighproductivity inmonoculture
increase their productivity inmixtures, while negative selection effects occur
if the opposite happens. Nitrogen enrichmentmay enhance selection effects
by increasing the dominance of some species and decreasing evenness,
because alleviatingN limitationmay result in stronger competition for other
resources, such as light or water11,42,43. Thus, N enrichment may either
weaken or strengthen the effects of biodiversity on productivity, depending
on whether it primarily affects complementarity or selection effects. Some
empirical evidence suggests that N addition leads to a decrease in com-
plementarity effects and an increase in the selection effects26,32,44.

The effects ofNadditionon complementarity and selection effectsmay
also change over time. Complementarity effects typically increase over time,
leading to increased overyielding as plant communities mature, while
selection effects decrease45–47 (Fig. 1a). Under N addition, complementarity
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effectsmaydecline linearly,while selection effectsmay increase linearlywith
N addition (Fig. 1b). If these two effects (Fig. 1a, b) are additive, then the
combination of an increase with time and a decrease with N addition rate
will result in a convex relationship between cumulative N addition and net
biodiversity effects (Fig. 1c). This pattern may be driven by a convex rela-
tionship between cumulative N addition and complementarity effects,
which is partly counteracted by a concave relationship between cumulative
N addition and selection effects. In this case, nutrient enrichment would
gradually erode thepositive effects of biodiversity on ecosystemfunctioning.
This erosion would likely occur even when nutrient enrichment increases
the strength of selection effects, if selection effects remain a small fraction of
the total effects of biodiversity on productivity. However, it is also possible
that N addition interacts with time, leading to multiplicative effects of
cumulative N addition. An interaction would occur if effects of N addition
on complementarity and selection effects strengthen over time. For exam-
ple, increasing N enrichment could cause a decrease in species richness due
to the recycling of N through litter48 and soil acidification6, thereby pre-
venting the increase in complementarity effects over time49. Alternatively,
selection effects could increase more over time44 due to gradual changes in
the soil microbial community and abiotic environment50. Selection effects
may therefore contribute a larger fraction of biodiversity effects than would
be the case without long term N addition (Fig. 1d). Overall, the impacts of
nitrogen enrichment on the relationship between plant diversity and pro-
ductivity can be complex, and its effects may vary depending on the N
addition rate and the duration of nitrogen addition. To our knowledge, no
previous study has quantified the impacts of cumulative nitrogen addition
on overyielding and its underlying processes, nor has any experiment
explored the interaction of N addition rate and duration in a full factorial
design. This research gap results in an incomplete understanding of the
effects of N addition on net biodiversity effects over time. Understanding
these relationships is crucial for predicting how long-term eutrophication
may alter the effects of biodiversity on ecosystem functioning in the future.

Here, we use a meta-level synthesis to determine the main effects of
plant species richness and N addition on productivity, using multi-year
experiments that manipulated both factors (Supplementary Table S1). We
evaluate the impacts of N addition rate, time and cumulative N addition
(over time), on net biodiversity, complementarity and selection effects. Our
hypotheses are (see Supplementary Table S2 for fully detailed hypotheses
and mechanisms):

H1 Nitrogen addition:
H1a: Nitrogen addition treatment (binary): complementarity effects

decrease, and selection effects increase with N addition, resulting in no
overall change in net biodiversity effects. Effects of N addition on com-
plementarity and selection effects are more pronounced at higher species
richness.

H1b: Nitrogen addition rates: Effects of N addition on com-
plementarity and selection effects aremore pronounced at higher rates of N
addition (Fig. 1b).

H2 Nitrogen addition treatment * Time: under ambient conditions,
complementarity effects increase, and selection effects decrease with time
(year).We expect larger increases in complementarity effects than decreases
in selection effects, leading to increase in net biodiversity effects over time
(Fig. 1a). The effects of N addition counteract the effects of time on com-
plementarity effects and selection effects.

H3 Cumulative N addition: Additive effects between N addition
rate and time (year) will lead to a convex relationship of com-
plementarity effects and a concave relationship of selection effects
with increasing cumulative N addition (Fig. 1c). If there is an
interaction between N addition rate and time (year), com-
plementarity effects may decrease and selection effects increase more
rapidly at higher levels of cumulative N addition. The shift
from complementarity to selection effects will lead to a convex
relationship between net biodiversity effects and cumulative N
addition (Fig. 1d).

Fig. 1 | Conceptual figure about potential changes
of overyielding and its components with cumula-
tive nitrogen addition. Potential changes in net
biodiversity effect, complementarity effect and
selection effect with (a) time (without N addition;
unit-year); (b) N addition rate (unit-kg/ha/year); (c)
cumulative N addition (the total amount of N added
across years; unit-kg/ha), when the effects of time
and N addition rates are additive, these patterns
without an interaction between the two effects were
derived by multiplying the fitted trends in Fig. 1a, b;
and (d) cumulative N addition, when the effects of
time and N addition rates are multiplicative, these
patterns with interaction between the two effects
were derived by the fitted trend of multiplying data
in Fig. 1a, b. Note that the x-axes are on the log scale
for comparison with the results presented in
this study.
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Results
Impacts of the nitrogen addition treatment
We found a marginally significant increase in net biodiversity effects with
species richness (Fig. 2a; SupplementaryTable S3). This increasewas largely
due to an increase in complementarity effects with species richness, as there
was no significant change in selection effects. Nitrogen addition interacted
with species richness and strongly reduced the complementarity effects
(Fig. 2b) and reduced the negative selection effects (Fig. 2c) at high species
richness.Despite these changes in complementarity and selectioneffects, the
relationship between species richness and net biodiversity effects remained
unchanged byN addition, because the opposing effects of nitrogen addition
on complementarity and selection effects canceled each other out.

Impacts of nitrogen addition rate
Wefound that higherNaddition ratesmarginally reduced complementarity
effects but did not affect selection effects (Fig. 3b, c; Supplementary
Table S3), leading to reduced net biodiversity effects with increasing N
addition rate (Fig. 3a). However, these relationships were mainly driven by
the difference between ambient and fertilized plots (with experimental N
addition), i.e., the significant and marginally significant relationships with
ambient and fertilized plots became non-significant when ambient plots
were removed (Fig. 3d, e; Supplementary Table S3). As a result, experi-
mental N addition decreased complementarity effects (Supplementary Fig.
S1b) but increased selection effects (Supplementary Fig. S1c), regardless of
the annual rate of nutrient enrichment. These opposite but proportional
responses led to no effect of experimental N addition on the net biodiversity
effects (Supplementary Fig. S1a).

Impacts of nitrogen addition over time
By analyzing the long-term BioCoN experiment we found that N addition
treatment interacted with time, influencing both complementarity effects
and selection effects (Supplementary Fig. S2). Specifically, N addition
reduced the increase of complementarity effects with time (Supplementary
Fig. S2b) and offset the decrease in selection effects with time (Supple-
mentary Fig. S2c). These opposing effects of time and nitrogen addition led
to decreasing net biodiversity effects over time (Supplementary Fig. S2a).

Impacts of cumulative nitrogen addition
Across all experiments, we found a convex relationship between cumulative
experimentalNadditionandnet biodiversity effects (Fig. 4a; Supplementary
Table S3). Complementarity effects decreasedfirst and then levelled off with
increasing cumulative experimental N addition (Fig. 4b), while selection

effects increased continuously (Fig. 4c). As expected, similar trends were
found with atmospheric N deposition (Fig. 4d–f). However, when com-
bining inputs from both experimental N addition and atmospheric N
deposition, complementarity effects decreasedmore rapidly (Fig. 4h), while
selection effects increased more rapidly (Fig. 4i) at higher levels of cumu-
lativeNaddition.These counteracting effectswere proportional, leading to a
non-significant relationship between net biodiversity effects and total
amount of cumulative N addition from both experimental addition and
atmospheric deposition (Fig. 4g).

Discussion
Our study reveals that time and N addition rate interactively affect over-
yielding and its drivers. Low levels of cumulative experimental N addition
decrease net biodiversity effects and complementarity effects, while high
levels of cumulativeNaddition increasenet biodiversity effects and selection
effects. This finding highlights that cumulative N addition alters over-
yielding by modulating the relative contributions of complementary and
selection effects.

Our synthesis of 15 grassland experiments is consistent with pre-
vious findings that overyielding is robust to nutrient enrichment21.
However, our results indicate that this lack of effect occurs due to con-
trasting effects on the different components of net biodiversity effects,
with a decrease of complementarity effects and a proportional increase
in selection effects with nutrient addition32 (Fig. 2). Nitrogen addition
reduces complementarity effectsmore strongly at higher levels of species
richness, potentially due to changes in underlying ecological mechan-
isms. One potential explanation is that with increasing N, plant species
may facilitate each other less29. Weaker facilitation may be partially
attributes to a lower abundance or lower N2 fixation rate of legumes and,
therefore, reducing N fixation36,51–53. However, this is likely not the only
explanation for the observed decrease in complementarity effects, as our
dataset includes experiments without legumes54 (PaNDiv experiment).
Another potential explanation is that N addition may modify the
community of beneficial belowground mycorrhizal fungi or rhizo-
bacteria, thereby reducing positive interactions mediated by
microbes55–57. Moreover, N enrichment may cause the loss of plant
species by alleviating N limitation and promoting interspecific
competition11,13,58,59. These effects are especially pronounced in species-
rich communities16, as the increased resources reduce the opportunity
for different species to partition resource utilization in space, time, or
form, leading to larger decreases in plant species richness, com-
plementarity effects and thereby productivity in diverse communities20.

Fig. 2 | The impacts of nitrogen addition treatment on the relationships between
species richness andoveryielding.The impacts ofN addition on the relationships of
species richness with net biodiversity effects (a), complementarity effects (b) and

selection effects (c). Black lines indicate fixed effects, and colored lines indicate
random effects. Note that the x-axes are on the log-2 scale, the y-axes are on the
original scale with unit g/m2/year.
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We also find that N addition decreases the negative effect of species
richness on selection effects. Thisfinding is in contrast with previous studies
reporting non-significant interactions between N and richness21,60. This
differencemaybe explainedby the fact that our analysis includes studies that
added relatively high amounts of N (e.g., 500 kg/ha/year32 or 450 kg/ha/
year61), cover larger species richness gradients (e.g., for 1–20 species in
PaNDiv experiment54), and use an agricultural-based species pool instead of
a broader species pool61. The larger increase in selection effects with N
addition at higher diversity (Fig. 2c) may occur because species mixtures
withhigherdiversityhave agreater chanceof including species that aremore
sensitive to the change in N availability. By growing faster and taller, these
species are able to capturemore light and shade the other species, leading to
an increased competitive ability and, therefore, increased selection effects
with N addition62–65.

Our study reveals that the responses of net biodiversity, com-
plementarity and selection effects to N enrichment are independent of the
annual rate of experimental N addition (Fig. 3d–f). The lack of effect of N
addition rate on overyielding could be due to the complementary utilization
of N by plants with different functional traits, which maintains ecosystem
productivity along a N addition rate gradient66. However, it is important to
note that any threshold of annual N addition rate may be too low to be
detected with the addition rates used in current experiments (Fig. 3; Sup-
plementary Table S3). In addition, a large proportion of the impact of
different N addition rates depends on variation of annual N addition rates
among experiments; other factors that vary among the studies could also
obscure the effects of N addition rate, including the form of N added, soil
type, and how much N was initially available at the site67 (Supplementary
Table S1). More experiments fully crossing diversity with multiple levels of
N addition would be needed to fully test this idea.

Overyielding may be regulated more by cumulative N addition over
time than by the annual rate of N added. In our data, some studies apply a
relatively low amount of N annually for a relatively long period of time (e.g.,
40 kg/ha/year for 23 years)20,68,69, while others apply a higher amount of
N annually for a shorter period of time (e.g., 360 kg/ha/year for 3 years)70.
Confirming previous results46,47, wefind that complementarity and selection

effects changed over 23 years in BioCoN (Supplementary Fig. S2). Nitrogen
addition also interacts with time to affect overyielding and reduce the
increase of complementarity effectswith time,while shifting selection effects
fromnegative topositiveover time (SupplementaryFig. S2b, c).Considering
cumulative N addition over time, we find a faster decrease in com-
plementarity effects at low levels of cumulative N addition (Fig. 4b, e). This
may indicate a higher sensitivity of biotic interactions to low levels of
cumulative N addition. Our results suggest that net biodiversity effects may
level off or even bounce back in the long run under cumulative N addition,
due to increases in overyielding following increased species dominance4,45.
However, this may result in the community behaving as a functional
monoculture despite a positive net biodiversity effect. Specifically, the
consistent increase in selection effects with cumulative N addition may
overwhelm the decrease in complementarity effects, resulting in a convex
relationship between net biodiversity effects and cumulative N addition
(from either experimental addition or atmospheric deposition; Figs. 1d
and 4a, d). This result contrasts with the expected concave relationship
based on the null hypothesis that the effects of N addition rate and time are
independent (Fig. 1c). Instead, this convex relationship suggests a strong
interaction between the impact of N addition rate and the impact of time,
further indicating a shift in the relative importance of biodiversity effects,
from complementarity to selection effects, under N addition. This shift in
relative importance occurs regardless of the pathway of N addition, i.e.,
atmospheric N deposition or fertilization. Similar convex relationships
between net biodiversity effects and cumulative N addition are found from
experimental addition (at higher levels, generally 40–400 kg/ha/year) or
atmospheric deposition (at lower levels, generally 0–40 kg/ha/year) alone.
These two convex relationships may result in a non-significant relationship
betweennet biodiversity effects and cumulativeNadditionwhen combining
both pathways of N inputs.

The shift in the relative importance of complementarity and selection
effects under increasing cumulative N addition may be due to changes in
community structure, i.e., changes in evenness. That is, the reduction of
N-limitation over extended periods may favor large and fast-growing spe-
cies, leading to an increase in selection effects36,71,72. Additionally, N addition

Fig. 3 | The impacts of nitrogen addition rate on overyielding. The impacts of N
addition rate (from both experimental addition and atmospheric deposition) on net
biodiversity effects (a, d), complementarity effects (b, e) and selection effects (c, f)

including (a–c) or excluding (d–f) the ambient plots. Black lines indicate fixed effect,
colored lines indicate randomeffect based on individual study. TheX-axes are on the
log scalewith unit kg/ha/year, the y-axes are on the original scalewith unit g/m2/year.
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may lead to asymmetric competition for light in mixtures. This increased
asymmetric competition may simultaneously reduce opportunities for
species complementarity in resource use and intensify the effects of com-
petitive hierarchies on species relative abundances47,65,73. Furthermore,
communities dominated by highly productive species are usually more
susceptible to climate change, leading to higher variation through time3,74.
However, our analysis does not account for potential indirect effects of N
addition through species composition on overyielding75,76.We also note that
our estimates of cumulative N addition do not account forN losses due toN
leaching or biomass removal. Some experiments included in the present
study, e.g., the Jena Experiment and the PaNDiv experiment, remove all
aboveground biomass annually, while others do not, e.g., BioCON. Removal
of biomass and the associatednitrogenmay lead to a decrease in soilN that is
accessible to plants over time, which would have otherwise been recycled
within the system48,77,78. Additionally, biodiversity effects on soil N miner-
alization rates also have been found to shift from negative to positive over
time, indicating that species rich communities couldhavehigherNretention

than species poor communities with increasing N addition duration79. The
interaction between N addition and species richness found in our study
implies that future studies should consider the cumulative amount of N
when assessing the impacts of N addition on overyielding. This involves
incorporatingNrates andduration ina full factorial design andmeasuringN
content in litter, in removed biomass, or within the plant-soil system.

To sumup, our study reveals that cumulativeN addition influences the
ecological mechanisms underlying overyielding, thereby expanding our
understanding of how global change affects biodiversity-ecosystem func-
tioning relationships across grasslands. Specifically, with increased cumu-
lative N addition, we observe a shift in the relative importance of the
components of net biodiversity effects from complementarity to selection
effects. While cumulative N addition boosts selection effects, it does not
generate a net impact on overyielding due to the diminishing role of com-
plementarity effects in high diversity communities. Our results suggest that
the effect of biodiversity on productivity becomes increasingly reliant on a
small number of dominant species rather than on overall species richness38,

Fig. 4 | The impacts of cumulative nitrogen addition on overyielding.The impacts
of cumulativeN addition on net biodiversity effects (a,d, g), complementarity effects
(b, e, h) and selection effects (c, f, i). Cumulative N addition includes inputs from
experimental addition (a–c), atmospheric deposition (d–f) and both (g–i). Black

lines indicate fixed effect, colored lines indicate random effect. The x-axes are on the
log scale with unit kg/ha, the y-axes are on the original scale with unit g/m2/year.
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thereby amplifying ecosystem susceptibility to environmental fluctuations
associated with global change, such as disease outbreaks80–82, climate
variability74,83,84, and disturbance65.

Methods
Data collection
Weconducted ameta-level synthesis to explore the impact ofN addition on
overyielding in grassland ecosystems. We had three requirements for
datasets to be included in this study: 1) the experiments needed to cross a
gradient of sown plant species richness with a N addition treatment; 2) the
experimentsneeded tomeasure species-level biomass (g/m2) at theplot scale
for each plant community, including monocultures; 3) biomass should be
measured at earliest in the second year after the establishment of experi-
ments establishment. For studies that collected biomass in the same location
more than once a year (No. 4, 5, 7–15 in Supplementary Table S1), we
summed biomass from multiple harvests per year as a proxy for above-
ground annual productivity (g/m2/year), to enable comparison across stu-
dies. In total, 15 grassland studies met our criteria, with observations from
1504 plots. The selected studies were distributed across ten countries, with
the richness of sown species ranging from 1 to 20; the number of years for
which we had biomass data ranging from 1 to 23 years; and N addition rate
ranging from 0 to 500 kg/ha/year.

We then tested our hypotheses using the studies meeting our selection
criteria (Supplementary Table S1). To test the impacts of N addition as a
binary factor (H1a), we used studies that included both unmanipulated
ambient plots and N addition plots (studies No. 1–5, 7, 12–14); to test
whether overyielding variedwith species richnessunderNaddition,weused
studies with more than two species richness levels, in addition to mono-
cultures (studies No. 1–3, 5, 7); H2); to test the interaction between the
effects ofNaddition (binary) and the effects of time (H2), data fromtheplots
with N but not CO2 enrichment at BioCoN experiment (study No. 1) was
used since it has run continuously for 23 years, while other studies lasted less
than 5 years (studies No. 2–15); and to test the effects of N addition rate
(H1b) and cumulative N addition (H3) on overyielding, the full dataset was
used (studies No. 1–15).

Diversity effects calculation
Relative yield of species i ðRYiÞ and the total relative yield of the mixture
ðRYTÞ were calculated as in Harper (1977)85:

RYi ¼ Yi=Mi

RYT ¼
X

RYi

where Yi andMi are the observed yield of species i in mixture and mono-
culture, respectively.

The change in the relative yield ðΔRYÞ, net biodiversity effect, com-
plementarity effect and selection effect were calculated as in Loreau and
Hector27:

ΔRY ¼ RYi � RYe;i

Net biodiversity effect ¼ ΣYi � Σ RYe;i ×Mi

� �

Complementarity effect ¼ n× �M ×ΔRY

Selection effect ¼ n× cov �M;ΔRY
� �

whereRYe;i is the sownproportionof species i, �M is themean above-ground
productivity (g/m2/year) in a monoculture of each sown species and n is
sown species richness. Note that we added 1 (the 1.25% left tail of
distribution in our full dataset) to all themonoculture yields in our analysis,

since relative yield approaches infinity with small monoculture yield.
Complementarity and selection effects were calculated via the partition-
BEFsp package with corrected covariance86.

Statistics and reproducibility
We fitted separate mixed effect models to assess the effect of N addition on
net biodiversity, complementarity, and selection effects.We partitioned the
net biodiversity, complementarity, and selection effects following Loreau
and Hector27, to capture both overyielding and underyielding. For the
general impact of N addition treatment (H1a), we included the N addition
treatment, experimental site (represented by different studies), and their
interaction as fixed effects, and study specific plot ID nested in year as
random effects.We also accounted for repeatedmeasurements on the same
plot via a first-order autoregressive temporal autocorrelation structure.
After fitting the model, we calculated the estimated mean response under
ambient or N addition treatments using the emmeans package87. We also
tested how biodiversity effects changed with species richness under N
addition by including N addition treatment (0, ambient; 1, N addition),
sown species richness and their interaction as fixed effects, and species
richness nested in study ID as a random effect. To be consistent with the
design of the diversity gradients, we used log2-transformed sown species
richness to represent species richness. To explore the impacts of N addition
rate (H1b),we includedNaddition rate as afixed effect and allowed random
intercepts and slopes among different studies. To better meet the assump-
tions of ourmodel, we used log-transformedN addition amount per year to
represent annual N addition rate. To disentangle the impacts of N addition
treatment (binary) and the impacts of N addition rate, we explored two
conditions: including plots both with and without N experimental addition
(Include ambient), or only plots with N addition (Exclude ambient). To
represent the actual N addition per plot (including on control plots) and to
account for spatial variation ofNdeposition rate, the annualN addition rate
was the sum of N addition from experimental addition and atmospheric
deposition. The total atmospheric deposition (NO−+NH+, both wet and
dry) rate was extracted according to the location of each study site88,89. A
static deposition rate was used here to cover spatial variation of deposition,
not its temporal variation.

To explore the interaction between impacts of N addition treatment
and the impacts of time (H2), we included N addition treatment, year and
their interaction as fixed effects, and species richness as a random effect.

To explore the effect of cumulative N addition (H3), we multiplied N
addition (experimental addition + atmospheric deposition, in kg/ha/year)
by the number of years over which inputs occurred. We also compared
models with cumulative N addition to those with an interaction of time and
N addition rate, and models with cumulative N addition performed better
based onAkaike information criterion (Supplementary Table S4). Based on
our hypothesis of an interaction between the effects of time and nitrogen
addition rates, we added a second order polynomial term for the impacts of
cumulative N addition and assessed its goodness of fit based on the Akaike
information criterion (Supplementary Table S5). The effects of evenness
change with cumulative nitrogen addition and time was tested (Supple-
mentary Table S6). Based on the goodness of fit, we set both the first and
second order terms of cumulative N addition as fixed effects and allowed
random intercepts and slopes among different studies (see Supplementary
Table S3 for fully detailedmodel settings). In addition, we exploredwhether
the impacts of cumulative N addition were regulated by different inputs:
only experimental addition, only atmospheric deposition or both
combined, due to the cascading effects of N from these inputs at different
rates. All of the analyses were conducted using R version 4.0.590, within
RStudio IDE91. The following packages were used: AICcmodavg92, dplyr93,
emmeans87, itsadug94, lme495, lmerTest96, magrittr97, MuMIn98, nlme99,
optimx100,101.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Data availability
The original data sets used in this data synthesis are available from data
repositories of included studies, or upon request to data owners. The
detailed information of included studies was documented on Table S1.

Code availability
All code used in this study available at the figshare repository with: https://
doi.org/10.6084/m9.figshare.25153151.
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