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Abstract

The use of trait-based approaches to understand ecological communities has increased in

the past two decades because of their promise to preserve more information about commu-

nity structure than taxonomic methods and their potential to connect community responses

to subsequent effects of ecosystem functioning. Though trait-based approaches are a pow-

erful tool for describing ecological communities, many important properties of commonly-

used trait metrics remain unexamined. Previous work with simulated communities and trait

distributions shows sensitivity of functional diversity measures to the number and correlation

of traits used to calculate them, but these relationships have yet to be studied in actual plant

communities with a realistic distribution of trait values, ecologically meaningful covariation of

traits, and a realistic number of traits available for analysis. To address this gap, we used

data from six grassland plant communities in Minnesota and New Mexico, USA to test how

the number of traits and the correlation between traits used in the calculation of eight func-

tional diversity indices impact the magnitude of functional diversity metrics in real plant com-

munities. We found that most metrics were sensitive to the number of traits used to

calculate them, but functional dispersion (FDis), kernel density estimation dispersion (KDE

dispersion), and Rao’s quadratic entropy (Rao’s Q) maintained consistent rankings of com-

munities across the range of trait numbers. Despite sensitivity of metrics to trait correlation,

there was no consistent pattern between communities as to how metrics were affected by

the correlation of traits used to calculate them. We recommend that future use of evenness

metrics include sensitivity analyses to ensure results are robust to the number of traits used
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to calculate them. In addition, we recommend use of FDis, KDE dispersion, and Rao’s Q

when ecologically applicable due to their ability to produce consistent rankings among com-

munities across a range of the numbers of traits used to calculate them.

Introduction

Trait-based diversity measures have advanced the field of community ecology by increasing

our understanding of both community assembly and diversity impacts on ecosystem functions

[1, 2]. Functional diversity metrics allow researchers to quantify multiple facets of diversity,

place an emphasis on mechanisms of community assembly, and provide a ‘common currency’

by which communities can be compared across sites and ecosystems [3, 4].Traditional mea-

sures for characterizing communities, such as species richness and species ordinations, use

species’ taxonomic classifications as discrete units, but functional diversity metrics can pre-

serve more information about community assembly and function by including traits of species

organized on continuous axes [5, 6].

Several aspects of functional and taxonomic diversity have been extensively studied. Scien-

tists have probed functional diversity’s correlation with species richness [7, 8] and ecosystem

functioning [4], the importance of intraspecific trait variation for diversity [4, 9, 10], and the

ecological hypotheses that functional diversity metrics can test, such as optimal strategies or

functional turnover [6, 11]. Many taxonomic measures of community diversity have been

extensively studied for their mathematical properties to allow these metrics to be comparable

across sites and ecosystems, such as Shannon’s diversity and Simpson’s evenness that have

mathematical characteristics linked to species number [12, 13]. Similarly, functional diversity

metrics have mathematical characteristics that may cause the number or type of traits used to

calculate the metric to impact the measure. For example, multidimensional metrics are calcu-

lated with additional dimensions for each additional trait included, and the correlation

between traits affects the importance of each dimension to the metric [14]. Therefore, func-

tional diversity could differ among replicate plots or sites simply because of the number or

types of traits used to calculate the metric without any underlying ecological basis. Though sin-

gle-trait indices are an effective tool for linking trait diversity to specific ecosystem processes

[15, 16], indices based on multiple traits may better match ecological theories of community

assembly around multidimensional niche space [17–19]. As use of multi-trait functional diver-

sity increases, it is important to determine the conditions under which they reflect ecological

processes as opposed to mathematical patterns.

Studies using simulated communities have tested whether the number and correlation of

traits used in functional diversity metrics can impact the magnitude of the metric [7, 20].

Using simulated data, Legras et al. [20] showed that functional richness and functional diver-

gence metrics decreased with increased trait number, but functional evenness metrics were

not responsive to increasing trait numbers. Also using simulated data, Cornwell et al. [7]

showed that convex hull volume (commonly referred to as “functional richness”) tended to

decrease with increasing correlation among traits included in the metric calculation, and that

the decrease was greater in more species-rich communities. The limitations of functional

diversity metrics described in these studies with simulated community data could be exacer-

bated when applied in natural communities. Calculating functional diversity measures in natu-

ral communities poses additional challenges both ecological and practical. Real plant

communities are non-random assemblages of species which are influenced by competitive
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interactions, coexistence, mutualisms, niche partitioning, and environmental filtering among

many other processes of community assembly [21–26]. Functional diversity metrics are likely

to exhibit patterns due to ecologically meaningful correlation of traits in real communities, in

particular, among suites of traits typically used in community ecology such as the leaf eco-

nomic spectrum and root economic spectrum [27, 28]. Moreover, real data collection intro-

duces constraints on trait data, such as realistic numbers of traits collected given limited

resources and missing trait data, particularly for rare species. Functional diversity metrics,

therefore, are most often calculated with fewer traits and fewer species than those in studies

based on simulated communities.

The field lacks clear guidelines for researchers to follow when choosing the number and

types of traits to include when calculating functional diversity metrics. Decisions are often

based on researcher intuition and the practices of similar studies, but such intuition and inter-

pretation of trait selection can be improved by rigorous exploration of the impact of trait selec-

tion on diversity metrics [4, 29, 30]. These decisions can fall along a spectrum of options

ranging from selecting the minimum number of traits needed to calculate a metric to using

every trait available. For example, some studies suggest that researchers use a small number of

traits related to certain ecosystem properties or other topics of interest (e.g., [8]), regardless of

how correlated they may be. Other studies use all available traits in order to maximize the

dimensions of diversity being studied in an effort to comprehensively assess the niche space

that species and communities occupy (e.g., [31]). Choosing traits that are highly correlated can

result in an underrepresentation of the diversity of functions present by overemphasizing

groups of traits which describe similar processes, such as traits involved in the leaf economics

spectrum [32]. Further, functional diversity metric calculation in high dimensional space can

require dimensionality reduction–another decision that can impact the metrics. However, few

studies scrutinize how these decisions can impact conclusions when using functional diversity

metrics to characterize communities.

Here, we aimed to understand how the number of traits and correlation between traits

impact functional diversity values. We focused on eight measures of functional diversity that

express principal facets of community trait composition (see Table 1 for more details on each

metric): functional richness (FRich), functional evenness (FEve), functional divergence

(FDiv), functional dispersion (FDis), Rao’s quadratic entropy (Rao’s Q), kernel density estima-

tion (KDE) richness, KDE evenness, and KDE dispersion [33–35]. We used trait data from

real (natural/intact and experimental) plant communities, which allowed us to understand

how these metrics respond to a realistic spread of traits and species richness. In this study, we

used trait data collected from six U.S. grassland communities at two sites to test impacts of

trait number and identity in functional diversity metric values. Our dataset included plant

traits collected on location at these sites that include both naturally assembled and planted

communities.

Specifically, we asked:

(1) Do functional diversity metrics exhibit specific patterns with respect to the number and

correlation of traits used? Based on findings from [20], we expect functional richness, KDE

richness, functional dispersion, and functional divergence to decrease with increasing num-

bers of traits, but for Rao’s Q to increase [36] and functional evenness to be unresponsive to

the number of traits. We do not have a priori hypotheses for KDE evenness and KDE disper-

sion since properties of these metrics have yet to be explicitly studied. Based on [7], we expect

that functional richness will be greater when traits are less correlated. However, we do not

have directional hypotheses with respect to effects of trait correlation on the rest of the

metrics.
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(2) Is metric sensitivity to trait number/type consistent across sites and experiments? If

metric sensitivity is consistent across sites, it will be easier to standardize functional diversity

metrics across different studies. If sensitivity is not consistent across sites, further caution will

be needed in interpreting cross-site comparisons of functional diversity.

Methods

We performed methods as described in the Registered Report Protocol [37]. Alterations to the

protocol are explained in Table 2 and the following methods represent only those methods

performed for this study.

Site descriptions

Here we used data from six communities in two United States grasslands that span a range of

species diversity. Two communities were from a site with natural species assemblages and four

communities were from a site with planted species assemblages in order to be representative of

the state of grassland studies where some use naturally assembled communities while others

use planted communities. Cedar Creek Ecosystem Science Reserve (CDR; East Bethel, Min-

nesota, USA; latitude = 45.4, longitude = -93.2) is in central Minnesota and classified as a

tallgrass prairie. According to Koppen and Geiger classification, the climate is characterized

as cold continental with hot summer, but without a dry season [38]. The mean growing sea-

son (May–August) precipitation is approximately 420 mm, mean minimum growing season

temperature is 12˚C, and mean maximum growing season temperature is 25˚C (1982–2016

Table 1. Description of tested trait metrics and examples of usage.

Functional diversity

metric

Abbreviation Ecological relevance Examples of usage Citations

Functional richness FRich Functional space filled by the community De Vries and Bardgett

2016 [54]

De la Riva et al. 2018 [55]

Lourenco Jr. et al. 2021

[56]

Cornwell et al. 2006 [7], Villéger et al.

2008 [8]

Kernel density richness KDE richness Functional space filled by the community Soares et al. 2022 [57]

Piano et al. 2020 [58]

Pavlek & Mammola 2021

[59]

Blonder 2018 [14], Mammola and

Cardoso 2020 [35]

Functional evenness FEve The similarity trait abundances within the

community

Bello et al. 2013 [60]

Niu et al. 2016 [61]

Biswas et al. 2019 [62]

Villéger et al. 2008 [8]

Kernel density

evenness

KDE evenness Similarity of trait abundances within the

community

Soares et al. 2022 [57]

Piano et al. 2020 [58]

Mammola and Cardoso 2020 [35]

Functional dispersion FDis Average trait difference between individuals within

the community

Zuo et al. 2021 [63]

Shovon et al. 2020 [64]

Griffin-Nolan et al. 2019

[53]

Laliberte and Legendre 2010 [34]

Functional divergence FDiv Average trait difference between individuals within

the community

Jäschke et al. 2020 [65]

Ebeling et al. 2018 [66]

Thakur & Chawla 2019

[67]

Villéger et al. 2008 [8]

Rao’s quadratic entropy Rao’s Q Average trait difference between individuals within

the community

De Bello et al. 2009 [68]

Ebeling et al. 2014 [69]

Pillar et al. 2013 [70]

Wang et al. 2018 [71]

Rao 1982 [73], Botta-Dukát 2005 [47]

Kernel density

dispersion

KDE

dispersion

Average trait difference between individuals within

the community

Piano et al. 2020 [58]

Greenop et al. 2021 [72]

Mammola and Cardoso 2020 [35]

https://doi.org/10.1371/journal.pone.0306342.t001
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period; http://www.cedarcreek.umn.edu/research/data). Soils at Cedar Creek are character-

ized as nutrient-poor entisols derived from a glacial outwash sand plain [38]. The study

from Cedar Creek consists of artificially planted communities. The Sevilleta National Wild-

life Refuge (SEV) is in central New Mexico at the northern edge of the Chihuahuan Desert

(latitude = 34.4, longitude = -106.7). The Sevilleta includes desert grasslands, and the cli-

mate is characterized as cold semi-arid according to the Koppen and Geiger classification

[38]. The growing season is characterized by two rainy periods (March—May and July—

September) split by a dry period. The mean monsoon growing season precipitation is

approximately 150 mm and the mean monsoon growing season temperature is 22˚C.

Table 2. Summary of methodological changes from registered report doi.org/10.1371/journal.pone.0272791.

Proposed method Used method Rationale for change

Data sources from Cedar Creek, Konza Prairie, and

Sevilleta

Data sources from only Cedar Creek

and Sevilleta

Trait data from Konza Prairie did not meet our 80% threshold

of coverage of the community as stated in the registered report

and therefore was not used. Specifically, the annually burned

community had a maximum trait coverage of 77%, the

annually burned and grazed community has a maximum trait

coverage of 56%, the community burned every 20 years had a

maximum trait coverage of 33%, and the community burned

every 20 years that was grazed had a maximum trait coverage

of 34%.

At Cedar Creek, trait data come from the monoculture

plots of the BioCON experiment that correspond to the

CO2 and N treatments to match with 16-species

community plots

Trait values for select species were

pulled from an adjacent experiment to

ensure total trait coverage.

SLA was not available for two species (Poa pratensis and

Bouteloua gracilis). Seed mass was not available for five species

(Achillea millefolium, Amorpha canescens, Anemone cylindrica,

Asclepias tuberosa, and Petalostemum villosum). These two

traits were calculated from the Big Biodiversity experiment

trait dataset and substituted for all CO2 and N communities.

Root %C and %N was only available for Anemone cylindrica in

one of the CO2 and N communities in monoculture. The other

communities were filled in with this value.

Use ten traits for Cedar Creek Used nine traits for Cedar Creek We miscounted the number of traits available. The registered

report only named nine traits to be used.

Compare linear, quadratic, cubic, and quartic models Compare null, linear, and quadratic

models

Many of the best-fitting linear models had a slope close to 0.

We decided to add the intercept-only null model to be able to

interpret between linear models that had a slope and those

with slopes close to 0. The null model indicates that the

independent variables did not describe the variation of the

response variable.

Cubic and quartic models were initially included to mimic the

methods of Legras et al. (2020). We did not use cubic and

quartic fits as we could not interpret the meaning of these

higher-order model fits as it relates to the use of these indices.

Perform correction for multiple comparisons No correction for multiple comparisons We are not focusing on the p-values of our best-fit lines, rather

just comparing model fits. We only used p-values to determine

the best fit of a line and not in the traditional sense of

determining whether a certain variable was statistically

significant. Therefore, there was no need to use multiple

comparison corrections in our analysis.

Sensitivity analysis of PCoa No sensitivity analysis We tried to run an initial sensitivity analysis calculating FRic

with different m values—the parameter in the FDiv package

that sets the number of dimensions. However, dimensions

were automatically reduced to two since you cannot have more

axes than species and our data have numerous plots with very

few species. Therefore, we could not perform a full sensitivity

analysis.

https://doi.org/10.1371/journal.pone.0306342.t002
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Community composition data

We used community composition data from two communities at the Sevilleta and four at

Cedar Creek (n = 6 communities total) collected within a single year (2018 for Sevilleta, 2020

for Cedar Creek) to characterize the functional diversity of grassland plant communities.

At Cedar Creek, we used community composition data from all 16-species plots in a biodi-

versity, CO2, and nitrogen addition experiment (BioCON, n = 48; 12 plots for each CO2-N

combination). All 16-species plots were originally planted with the same mixture of species

(Achillea millefolium, Amorpha canescens, Andropogon gerardii, Anemone cylindrica, Asclepias
tuberosa, Bouteloua gracilis, Bromus inermis, Elymus repens, Koeleria cristata, Lespedeza capi-
tata, Lupinus perennis, Petalostemum villosum, Poa pratensis, Schizachyrium scoparium, Soli-
dago rigida, and Sorghastrum nutans) such that all species were seeded at the same density in

1997. Plots were weeded every year to remove invading species. Through time, the plots can

lose species (and regain those) but could never gain new species. Further, species abundances

shifted from the equal proportion planted in the first year. Every August, species abundances

were visually estimated in a 1 m2 permanent plot.

At Sevilleta, we used community composition data from two observational sites, one in a

Great Plains grassland ecosystem and the other in a desert grassland ecosystem. The Great

Plains grassland is dominated by Bouteloua gracilis (blue grama), a long-lived, caespitose, C4

perennial grass common throughout much of the United States and Canada. The desert grass-

land is dominated by B. eriopoda (black grama), a stoloniferous C4 perennial grass common in

the southwestern United States and Mexico. These two dominant perennial grasses account

for about 80% of vegetative cover in their respective ecosystems. Each site has 28 1 m2 quadrats

which were sampled in September of 2018, at the peak of the post-monsoon growing season.

In each quadrat, plants were identified to species and their percent ground cover was visually

estimated.

Trait data

Trait data were collected on individuals found at each of the different sites. Thus, our trait data

are representative of the traits actually found in the given community and not just an average

independent of location. Traits include measurements from leaves (e.g. specific leaf area),

stems (e.g. stem dry matter content), roots (e.g. root dry matter content), whole-plant (e.g.

height), and ecological attributes (e.g. amount of nitrogen in monoculture). Including traits

across these measurement categories provides a more-complete representation of community

assemblages [39–42]. For detailed descriptions of trait collection protocols at each site, see the

S1 and S2 Figs.

At Cedar Creek, we used trait data collected in the monoculture plots of the BioCON exper-

iment that correspond to the CO2 and N treatments to match with 16-species community

plots. Trait data were collected between 1998 and 2020. Some traits were collected over multi-

ple years whereas others were only collected once. In total, there were 9 distinct traits: specific

leaf area (SLA), I* (the amount of light at the soil surface in monoculture), R* (the amount of

nitrogen in monoculture), root %C, root %N, total root biomass, shoot %N, shoot %C, and

seed mass.

At Sevilleta, we used trait data collected from 2017–2021 on individuals growing under

ambient conditions near permanent ambient plots used to monitor plant communities. The

full suite of traits were often measured on the same individuals, up to 10 individuals per spe-

cies. In total there were 10 distinct traits: maximum plant height, leaf dry matter content, spe-

cific leaf area, d15N, d13C, leaf %N, leaf %C, stem dry matter content, root dry matter content,

and photosynthetic pathway.
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For each trait at each site, we calculated an average trait value based on all the measure-

ments for the given species and trait. We acknowledge that this obscures variation within a

given trait (intraspecific variation) for a species; such variation can be quite important for

some questions [43–46]. The impacts of intraspecific variation in this study are minimized by

only using trait values collected at each site, but sufficient data were not collected for each trait

of each species to include intraspecific variation into our analysis. Before analysis, we removed

species that had less than 100% trait coverage. We made sure that the communities were still

represented by at least 80% of species abundance–this approach de-emphasizes the importance

of rare species, but is a logistical constraint faced by many researchers doing trait analyses.

This ensured that we represented the community to the best of our ability with the given trait

data.

Brief background on functional diversity metrics

We focused our analyses on eight common functional diversity metrics: functional richness

(FRich) [8], functional evenness (FEve) [9], functional dispersion (FDis), functional diver-

gence (FDiv), Rao’s quadratic entropy (Rao’s Q), kernel density estimation (KDE) richness,

KDE evenness, and KDE dispersion [34]. FRich is the multidimensional equivalent of a range

[8]. It is calculated as the convex hull volume that is made from all trait values for up to n traits

in the community. The number of dimensions used to calculate the final volume can be

reduced from the total trait number [45]. FEve is the minimum spanning tree to quantify the

regularity of branch lengths and the evenness in trait relative abundances. For each branch, l,
of the minimum spanning tree, the weighted evenness (EW) is calculated as EWl ¼

distði;jÞ
wiþwj

where i and j are species, and wi is the relative abundance of species i. Then, the partial

weighted evenness (PEW) is calculated for each branch as PEWl ¼
EWlPS�1

l¼1
EWl

, where S is the

total number of species in the community. FEve is then defined as

PS�1

l¼1
min PEWl ;

1
S�1ð Þ� 1

S�1

1� 1
S�1

[8].

FDis is the weighted mean distance between species and a weighted-centroid. It is calculated

as

P
ajzjP
aj

where aj is the relative abundance of species j and zj is the distance species j is from the

weighted centroid [34]. FDiv is a relative abundance-weighted spread of traits along a trait axis

independent of functional richness and is calculated as Ddþ �dG
Djdjþ �dG where �dG is the mean distance of

species to the weighted-centroid and Δd is the sum of relative abundance-weighted deviances

from the weighted-centroid [9]. Rao’s Q measures the pairwise differences in traits between

species in a community and is calculated as Ss�1

i�1
SS

j¼iþ1
dijpi where S is the number of species in

the community, dij is the functional difference between the i-th and j-th species, and p is a vec-

tor of relative abundance values [46]. These five functional diversity metrics commonly incor-

porate distance measures by reducing dimensionality using principal coordinates analysis

(PCoA) to return PCoA axes which are used to calculate the functional diversity metrics. How-

ever, we will avoid this dimensionality reduction for all metrics except FRich, see discussion in

Functional Diversity Calculations section. n-dimensional hypervolumes use Gaussian kernel

density estimation (KDE) to create a relative abundance-weighted probability distribution of

traits in multidimensional space [35]. KDE richness is the total volume of the n-dimensional

hypervolume created from unweighted trait values present in the community. KDE evenness

is the overlap between the abundance-weighted n-dimensional hypervolume and a similar

hypervolume in which all traits and abundances are distributed evenly. KDE dispersion is the

average distance between random points within the n-dimensional hypervolume and the

hypervolume centroid.
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Functional diversity calculations

For each site, we followed the same protocol for calculating functional diversity metrics. We

calculated FRich, FEve, and FDis, FDiv, and Rao’s Q using the ‘FD’ package in R [46] using

both Gower and Euclidean dissimilarity as the distance measure, along with using the hyper-

volume package in R to calculate KDE n-dimensional hypervolumes which are passed to the

‘bat’ package to create KDE richness, KDE evenness, and KDE dispersion [35, 48]. Functional

diversity metrics from the ‘FD’ package and kernel density estimation are among the most-

used metrics for quantifying trait-based diversity within communities due to both ease of use

and ecological relevance [35, 45]. To understand the impact of trait number on functional

diversity, each functional diversity metric was calculated using all possible combinations of

two traits up to all possible combinations of the maximum number of traits at each site. For

example, at Sevilleta there are 10 different traits so there are 45 2-trait calculations, 120 3-trait

calculations, 210 4-trait calculations, and so forth up to 10 9-trait calculations and 1 10-trait

calculation. This allows us to focus on the impact of trait number independent of the constitu-

ent set of traits used to calculate the metric.

To calculate the five metrics using the ‘FD’ package, we first calculated a species-trait dis-

tance matrix using both Gower (categorical and continuous traits) and Euclidean (continuous

traits only) distances. These distance matrices were calculated with both scaled and centered

and non-scaled trait data for each community. Centering was done by subtracting the trait

mean from each observation and scaling was done by dividing the centered traits by their stan-

dard deviations (as in the ‘FD’ package). These distance matrices along with a species-abun-

dance matrix are the input for the ‘FD’ package. The ‘FD’ package performs a principal

components analysis on the full species-trait distance matrix. Dimensionality reduction only

occurs for FRic and FDiv metric calculation. For all FRich and FDiv analyses, we hold the

number of dimensions equal to 2, similar to Legras et al. [20]. Because some communities only

had two species, we did not perform a sensitivity analysis to look at how increased dimension-

ality impacted our results since these species depauperate communities would be excluded.

Further, when running the analyses for FRic, FEve, and FDiv, one plot from each Sevilleta

community with only one species present was removed because FRic, FEve, and FDiv are

undefined in monoculture communities. For calculation of KDE metrics, a species-abundance

matrix and a species-trait matrix were loaded for each of the six communities while the dis-

tance matrix was set to either Gower or Euclidean depending on the calculation being per-

formed. To measure the effects of trait correlation on functional diversity, we focused on

metrics calculated with four traits only to standardize between sites. We calculated the mini-

mum, maximum, and mean correlation between the traits at each community. Only combina-

tions of four traits were used as a balance between reduction of noise in the evaluation of

minimum and maximum correlation (calculated as the pairwise correlation of just two traits)

and the lower end of the number of traits likely to be used to calculate these metrics in the

literature.

Statistical analyses

For each community separately, we ran mixed effects models to test the dependence of the

eight functional trait metrics on trait number and on trait correlation using the lme function

from the ‘nlme’ package in R [48]. To examine how trait number impacts the values of a given

functional trait metric, we ran the model Metric ~ trait number for 2–10 unique traits. To

examine how trait-trait correlation impacts the values of a given functional diversity metric,

calculated three metrics of trait correlation for each unique combination of four traits: 1) min

trait correlation is the minimum two-trait correlation among the set of four traits, 2) max trait
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correlation is the maximum two-trait correlation among the set of four traits, and 3) mean

trait correlation is the average of all trait-trait correlations among the set of four traits. Next,

we ran three models for each community: Metric ~ min trait correlation, Metric ~ max trait

correlation, Metric ~ mean trait correlation. We explored which functional form of the predic-

tor variables best fit the spread of the functional metric data by fitting null (e.g., intercept

only), linear, and quadratic fits. We selected models based on best fit using AIC values. We

accounted for repeated samples within plots by fitting plot as a random effect and using an

autoregressive correlation structure. Raw model outputs for the total 1,152 models are gener-

ated by scripts n_traitStats_simplified.R, n_traitStats_euc_simplified.R, max_corrStats_

simplified.R, max_corrStats_euc_simplified.R,min_corrStats_simplified.R, min_corrStats_

euc_simplified.R, mean_corrStats_simplified.R, mean_corrStats_euc_simplified.R’ in this

GitHub repository <https://github.com/kaitkimmel/FDiv/tree/master/R>.

Results

Data processing summary

Cedar Creek and Sevilleta had adequate trait coverage to proceed with the analyses. At Cedar

Creek, all plots from all communities had 100% trait coverage. Overall, we included data from

four different communities (defined as different nitrogen fertilization and carbon dioxide enrich-

ment treatments) each with 16 total plots. At Sevilleta, the minimum plot-level trait coverage

from the ‘Blue grama’ communities was 79.96%. We included all the plots as 79.96% was close to

the 80% trait-coverage threshold. Thus, we had 28 individual plots within this community. The

minimum plot-level trait coverage from the ‘Black grama’ communities at Sevilleta was 77.72%.

We removed this one plot and had a total of 27 plot from the ‘Black grama’ community.

Sensitivity of functional diversity metrics to trait number

FDis calculated with Gower dissimilarity was insensitive to the number of traits used to calculate

it across all six communities (Fig 1I; Table 3). KDE richness, KDE dispersion, and Rao’s Q with

Gower dissimilarity were negatively correlated with the number of traits (Fig 1B, 1J and 1M).

However, the rankings of communities from low to high values remained consistent. That is,

community order was maintained within these three metrics across the range of trait numbers.

Similarly, FRich, KDE richness, FDis, KDE dispersion, and Rao’s Q calculated with Euclidean dis-

similarity maintained rankings among communities throughout the range of trait numbers,

though these metrics all increased with the number of traits (Fig 1C, 1D, 1K, 1L and 1O; Table 3).

For both Gower and Euclidean dissimilarity, FEve, KDE evenness, and FDiv had different rank-

ings among communities depending upon the number of traits used to calculate them.

Sensitivity of functional diversity metrics to trait correlations

Trait correlations (mean, maximum, and minimum trait-trait correlation for combinations of

four traits) had limited power to predict the calculated metrics for both dissimilarity matrices

and the relationships between metrics and trait correlation varied widely among communities

(Fig 2, S1 and S2 Figs). Consequently, we observed inconsistent rankings among communities

with respect to trait correlation (Fig 2, S1 and S2 Figs). For example, for FRich calculated with

an Euclidean matrix at maximum correlation of 0.40, FRich of the CDR2 community was

greater than that of CDR1, whereas at maximum correlation of 0.75, the reverse was true,

FRich of CDR1 was greater than that of CDR2 (Fig 2C). Such reorganizations of community

rankings were common across functional diversity metrics, distance matrices, and correlation

metrics (max, min, mean) (Fig 2). In some cases, metrics were not responsive to trait
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correlations (e.g., null models were the best fit for 19% of all max correlation models, 20% of

min correlation models, 18% of mean correlation models).

Distance matrices

Overall, metrics calculated with Gower and Euclidean distance matrices maintained consistent

results with respect to the ranking of the six communities (four experimental planted commu-

nities from Cedar Creek and two natural communities at Sevilleta) for different metrics. The

Euclidean distance matrix tended to amplify the differences among communities as the num-

bers of traits increased for KDE richness, FDis, Rao’s Q, and KDE dispersion. Certain func-

tional diversity metrics were poor at maintaining the ranking of communities across ranges of

Fig 1. The relationship between trait number and functional diversity metrics using both Gower (columns 1 & 2) and Euclidean (columns 3 & 4)

dissimilarity matrices. Each point represents the mean value for the given community for a certain number of traits used to calculate the metric. Solid lines are

the predicted fits of the best model and shaded regions are +/- SE of the predicted fit. Different colors represent the six communities used in this study (four

experimental communities at Cedar Creek Ecosystem Science Reserve, CDR, and two natural communities at Sevilleta National Wildlife Refuge, SEV).

N = 6,024 observations for each Cedar Creek community (432 2-trait combinations, 1,008 3-trait combinations, 1,512 4-trait, 1,512 5 trait combinations, 1,008

6-trait combinations, 432 7-trait combinations, 108 8-trait combinations, 1 9-trait combination); n = 27,351 observations for SEV1; n = 28,364 observations for

SEV2.

https://doi.org/10.1371/journal.pone.0306342.g001
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the number and correlation of traits (e.g. FEve; Figs 1E, 1G, 2E and 2G). However, for

instances in which the ranking of communities changed, neither Gower nor Euclidean dis-

tance improved the issues.

Discussion

Sensitivity to the number of traits

Our study aimed to understand the sensitivity of functional diversity metrics to trait inputs.

Here, we found that FDis had consistent values when calculated with Gower dissimilarity such

Table 3. Counts of the number of best fit models for different predictor variables and functional diversity metrics calculated using Gower and Euclidean distances.

For six communities, each of eight metrics was calculated across a range of the four predictor variables using both Gower and Euclidean dissimilarity matrices. Three func-

tional forms of models were tested: intercept only, linear, and quadratic. In this table, counts underneath those functional form columns display the number of communi-

ties (out of six) for which that functional form was the best model. For example, FRich predicted by trait number and calculated with Gower dissimilarity was best

predicted by a linear model for three communities and best predicted by a quadratic model for three communities. In total, this table summarizes the results of 384

models.

Predictor Metric Intercept Only Linear Quadratic

Gow Euc Gow Euc Gow Euc

Trait Number FRich 0 0 3 3 3 3

KDE richness 0 0 2 1 4 5

FEve 1 1 3 2 2 3

KDE evenness 2 2 1 3 3 1

FDis 6 0 0 0 0 6

KDE dispersion 0 0 1 0 5 6

FDiv 0 0 2 0 4 6

Rao’s Q 0 0 0 6 6 0

Maximum Correlation FRich 0 1 2 1 4 4

KDE richness 1 0 2 2 3 4

FEve 4 1 1 2 1 3

KDE evenness 2 2 1 3 3 1

FDis 1 0 0 1 5 5

KDE dispersion 1 1 2 1 3 4

FDiv 1 2 3 2 2 2

Rao’s Q 0 1 2 2 4 3

Minimum Correlation FRich 0 1 0 0 6 5

KDE richness 1 0 0 1 5 5

FEve 3 4 3 1 0 4

KDE evenness 1 2 1 2 4 2

FDis 0 1 1 0 5 5

KDE dispersion 1 0 2 3 3 3

FDiv 3 2 1 1 2 3

Rao’s Q 0 0 1 2 5 4

Mean Correlation FRich 1 0 1 0 4 6

KDE richness 1 1 1 0 4 5

FEve 2 1 3 1 1 4

KDE evenness 3 3 1 0 2 3

FDis 1 0 2 1 3 5

KDE dispersion 2 1 0 0 4 5

FDiv 1 0 0 2 5 4

Rao’s Q 0 0 4 2 2 4

https://doi.org/10.1371/journal.pone.0306342.t003
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that, across all communities, there was no correlation with the number of traits used (e.g., it

remained consistent regardless of trait number). This suggests that FDis provides reliable val-

ues across different communities and sets of traits, making it a potentially valuable tool for

assessing patterns of functional diversity across communities and ecosystems. Similarly, Rao’s

Q, KDE dispersion, and KDE richness maintained consistent ordered rankings of metrics

among communities across the range of trait numbers for both Gower and Euclidean dissimi-

larity matrices along with FDis calculated with Euclidean dissimilarity. Other metrics (FEve,

KDE evenness, FDiv) had less consistency across the range of traits used to calculate them as

relative rankings of different communities changed with the number of traits used in con-

structing the metrics.

A previous simulation study found no sensitivity to the number of traits for FEve and FDiv

and magnitude decreases with increasing trait number for FRich, KDE richness, FDis, and

Fig 2. The relationship between the maximum trait-trait correlation for each set of 4 traits and functional diversity metrics using both Gower (columns

1 & 2) and Euclidean (columns 3 & 4) dissimilarity matrices. Each point represents the mean value for the given community at that correlation. Solid lines

are the predicted fits of the best model and shaded regions are +/- SE of the predicted fit. Different colors represent the six communities used in this study (four

experimental communities at Cedar Creek Ecosystem Science Reserve, CDR, and two natural communities at Sevilleta National Wildlife Refuge, SEV).

N = 1,512 observations for each CDR community; n = 3,402 for SEV1; n = 3,528 for SEV2.

https://doi.org/10.1371/journal.pone.0306342.g002
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Rao’s Q calculated with Gower dissimilarity [20]. Our results were consistent with Legras et al.

[20] for Rao’s Q and KDE richness, but we found FDis unresponsive to the number of traits

and FDiv, FEve, and KDE evenness to have inconsistent slopes among communities. These

differences in findings might be attributed to the inherent complexity and noise present in

real-world data. Real communities often contain anomalous species with outlier trait values

(e.g. a gymnosperm among angiosperms, a tree seedling among herbaceous plants, or other

rare species outlier values), which can exert considerable influence on evenness indices.

We found further discrepancies with previous studies reporting results using Euclidean dis-

similarity. Previous studies found no sensitivity of FEve and FDiv [20, 36], and increases with

increasing trait number for KDE richness, Rao’s Q [35], and FRich [20] when calculated with

Euclidean dissimilarity. Our results of increasing FDis with the number of traits matches

Legras et al. [20] while Zhang et al. [36] reported no sensitivity. A potential explanation for

this discrepancy is the difference in the number of traits considered. Our study and the simu-

lated data in Legras et al. [20] were limited to a maximum of 10 traits while Zhang et al. [36]

used a maximum of 34 traits. While there may indeed be no sensitivity of FDis calculated with

Euclidean dissimilarity at numbers of traits as high as 34, studies employing these metrics

more often use fewer than 10 traits, within the range in which we found sensitivity.

Some metrics may be unreliable measures for comparing functional diversity among com-

munities since comparisons are dependent upon the number of traits used to calculate them.

Specifically, FRich, FEve, and KDE evenness showed crossing slopes among communities (i.e.

ranking of communities changed with the number of traits) for both Gower and Euclidean dis-

tance matrices. The inconsistency of communities’ relationships to one another across the

range of the number of traits raises concerns. For example, community CDR4 had a greater

FEve than community SEV1 when using four traits, but CDR4 had a smaller FEve than SEV1

when calculated with eight traits. Such discrepancies have the potential to introduce discor-

dant results in the literature, even when otherwise identical studies have been conducted. This

is particularly concerning given the often-arbitrary nature of selecting the number of traits

used in a study. The number of traits is often dictated by the resources available to collect data

or the completeness of publicly available data [49, 50]. Therefore, additional analyses are war-

ranted when using these metrics to ensure that results are not merely an artifact of the number

of traits used to calculate the metrics. Interestingly, the more consistent indices—such as KDE

alpha, FDis, Rao’s Q, and KDE dispersion—measure similar ecological properties (e.g., the

range of traits expressed in the community) as FRich [6, 33, 35] and therefore, these indices

could be substituted for FRich in analyses. However, evenness metrics, both FEve and KDE

evenness, quantify a different type of ecological property, the relative homogeneity of traits

within a community [35]. These indices do not have obvious substitutes for measuring these

ecological properties among the metrics studied here.

Trait correlation concerns in calculating metrics: Much ado about nothing?

We found inconsistent and null relationships between metrics and the correlation of traits

used for their calculations. Despite suggestions in the literature that trait selection should mini-

mize correlation [35], lower levels of trait-trait correlation did not result in more or less clear

comparisons among communities. Though nonlinearity was prevalent in our analysis, most

trait metrics demonstrated similarity across the entire range of maximum trait-trait correlation

(i.e. the range of values was relatively small). Lefcheck et al. [29] utilized simulated data and

reported insensitivity of Rao’s Q, FEve, and FDis to trait correlation except at very high levels

of correlation (Pearson’s |R| > 0.95). However, they observed that FRich and FDiv decreased

with trait correlation—a trend that was not evident in our study. Additionally, Lefcheck et al.
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[29] noted that sensitivity to trait correlation became most apparent for FDiv and FRich when

larger numbers of traits were considered, whereas we only tested combinations of four traits.

Notably, Mammola and Cardoso [35] recommended avoiding the use of highly correlated

traits (Pearson |r| > = 0.8) when calculating KDE metrics. Though we did not find substantial

support for such a cutoff, our set of collected traits also had very few combinations with corre-

lation above 0.8. Overall, our results show no consistent link between trait correlation and the

values of functional diversity metrics.

Gower and Euclidean dissimilarity

Both Gower and Euclidean distances performed similarly, though diversity metric values var-

ied more with the number of traits under Euclidean distance. Metrics that preserved rankings

among communities across the trait number and correlation gradients did so with both Gower

and Euclidean matrices. The primary difference driving the use of these distance matrices in

the literature is that unlike Euclidean distance, Gower distance can conveniently accommodate

categorical data. Categorical traits, such as photosynthetic pathway, growth form, and nitrogen

fixation capacity, are often easy to collect and more reliably scored than continuous traits.

Moreover, trait databases typically have a great deal of missing data [50, 51] and categorical

traits are more reliably gap-filled ad-hoc (e.g. growth form may be determined from a picture

or nitrogen fixation capacity pulled from literature) than continuous traits. Given that both

distance matrices performed similarly across our broad range of functional diversity indices,

trait correlations, and trait numbers, there is no clear reason to favor use of a particular matrix

other than the ability of Gower matrices to include categorical trait types.

Ecological significance of methodology and recommendations

Perhaps most important is to center ecological significance and interpretation when choosing

traits and metrics. Though many metrics produced consistent results with respect to the rank-

ings of communities from two to ten traits, there are many sensible reasons to include more

than 2 traits in order to capture more dimensions of diversity [43, 52]. Similarly, though we

found no obvious difference of results when including highly correlated traits, this may not be

license to include the maximum number of traits available in all circumstances. One example

of responsible use of traits is found in Griffin-Nolan et al. [53] in which traits were used to

assess plant community responses to drought. In this case, the analyses focused solely on

hydrological traits, ignoring many other traits commonly used in the literature (e.g. seed

mass), but the authors correctly emphasized the importance of choosing only traits relevant to

the particular treatments and plant functions of interest. While use of the maximum number

of traits available may be justifiable when seeking to quantify diversity defined broadly, we dis-

courage inclusion of traits without ecological rationale.

Based on our findings, we recommend use of FDis, KDE dispersion, and/or Rao’s Q in

analyses of functional diversity as all of these measures provide consistent results among com-

munities at all numbers of traits tested. Additionally, due to the inconsistency of evenness met-

rics with respect to community rankings, we strongly recommend that any use of FEve or

KDE evenness metrics include supplemental analyses to test whether results are consistent

with different numbers of traits used to calculate them. Surprisingly, we found no rationale to

favor a particular distance matrix; we simply suggest that the number of traits used or correla-

tion of traits need not be a consideration when choosing between Gower and Euclidean dis-

similarity matrices. While functional diversity indices enrich the toolbox for exploring trait-

based plant diversity, it remains important to ensure that our findings and inferences are
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rooted primarily in ecological principles rather than being solely reflective of the metrics

employed in assessing functional diversity.
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S1 Fig. The relationship between mean trait-trait correlation for each set of 4 traits and

functional diversity metrics using both Gower (columns 1 & 2) and Euclidean (columns 3

& 4) dissimilarity matrices. Each point represents the mean value for the given community

for a specific number of traits. Solid lines are the predicted fits of the best model and shaded

regions are +/- SE of the predicted fit. Different colors represent the six communities used in

this study (four experimental communities at Cedar Creek Ecosystem Science Reserve, CDR

and two natural communities at Sevilleta National Wildlife Refuge, SEV). N = 1,512 observa-

tions for each CDR community; n = 3,402 for SEV1; n = 3,528 for SEV2.

(PDF)

S2 Fig. The relationship between the minimum trait-trait correlation for each set of 4 traits

and functional diversity metrics using both Gower (columns 1 & 2) and Euclidean (col-

umns 3 & 4) dissimilarity matrices. Each point represents the mean value for the given com-

munity at that correlation. Solid lines are the predicted fits of the best model and shaded

regions are +/- SE of the predicted fit. Different colors represent the six communities used in

this study (four experimental communities at Cedar Creek Ecosystem Science Reserve, CDR,

and two natural communities at Sevilleta National Wildlife Refuge, SEV). N = 1,512 observa-

tions for each CDR community; n = 3,402 for SEV1; n = 3,528 for SEV2.
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