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Abstract
1.	 Improved understanding of bacterial community responses to multiple environ-

mental filters over long time periods is a fundamental step to develop mechanistic 
explanations of plant–bacterial interactions as environmental change progresses.

2.	 This is the first study to examine responses of grassland root-associated bacterial 
communities to 15 years of experimental manipulations of plant species richness, 
functional group and factorial enrichment of atmospheric CO2 (eCO2) and soil 
nitrogen (+N).

3.	 Across the experiment, plant species richness was the strongest predictor of 
rhizobacterial community composition, followed by +N, with no observed effect 
of eCO2. Monocultures of C3 and C4 grasses and legumes all exhibited dissimilar 
rhizobacterial communities within and among those groups. Functional responses 
were also dependent on plant functional group, where N2-fixation genes, NO3−-
reducing genes and P-solubilizing predicted gene abundances increased under 
resource-enriched conditions for grasses, but generally declined for legumes. In 
diverse plots with 16 plant species, the interaction of eCO2+N altered rhizobac-
terial composition, while +N increased the predicted abundance of nitrogenase-
encoding genes, and eCO2+N increased the predicted abundance of bacterial 
P-solubilizing genes.

4.	 Synthesis: Our findings suggest that rhizobacterial community structure and func-
tion will be affected by important global environmental change factors such as 
eCO2, but these responses are primarily contingent on plant species richness and 
the selective influence of different plant functional groups.
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1  |  INTRODUC TION

Rhizobacteria, the bacterial communities associated with plant 
roots, are recognized as integral parts of the plant microbiome, and 
important contributors to plant productivity and health (Bahram 
et  al.,  2018; Lugtenberg & Kamilova,  2009; van der Heijden & 
Schlaeppi, 2015). Many rhizobacteria directly and indirectly affect 
plant resource availability through processes such as nitrogen (N) 
fixation or phosphorus (P) solubilization, while others contribute to 
plant pathogen defences or stimulate root growth. The broad group 
of beneficial soil bacteria known as plant-growth-promoting rhizo-
bacteria (PGPR) have been identified and functionally characterized 
across many systems (Leff et  al.,  2015; Luo et  al.,  2014; Ramirez 
et al., 2017). For example, bacteria in the order Rhizobiales have long 
been known as symbiotic N-fixers with plants in the Fabaceae, but 
a vast diversity of free-living N-fixing bacteria such as Pseudomonas, 
Azospirillum, Enterobacter and many Bacillus in the rhizosphere are in-
creasingly recognized for their importance to the N or P nutrition of 
plants and being adopted as amendments in agriculture and ecologi-
cal restoration (Reed et al., 2011; Smercina et al., 2019). Importantly, 
rhizobacteria can be affected by multiple environmental drivers, in-
cluding plant diversity, local soil properties and also altered resource 
availability resulting from global changes including elevated atmo-
spheric CO2 and nitrogen deposition.

Plant richness, composition and functional identity have nota-
ble impacts in terrestrial ecology (Tilman et  al.,  2014), and confer 
important effects on soil physical structure and processes such as 
carbon and nutrient cycling, but these plant properties can also 
alter soil microbial communities in various ways (Trivedi et al., 2020; 
Xiong et al., 2021). Microbes in the rhizosphere simultaneously com-
pete for resources in soil and facilitate their acquisition and transfer 
to plants (Bonfante & Anca, 2009), but prior to microbiome filtering 
based on trade and functional rewards (i.e. Kiers et al., 2011), they 
are structured by the composition of root chemicals and physical 
deposits in the soil (Semchenko et al., 2021). Importantly, root ex-
udates and rhizodeposits are species-specific and have the poten-
tial to drastically shape rhizosphere microbial community assembly 
(Sasse et  al., 2018), and it has been shown that the abundance of 
certain bacterial taxa are selectively increased by host-specific rhi-
zodeposits (Dennis et  al.,  2010; Paterson et  al.,  2007). Therefore, 
the diversity and richness of plant roots in soil, or presence of dif-
ferent plant functional groups, such as C3 or C4 grasses, forbs or le-
gumes that maintain different physiological strategies and resource 
requirements, are likely to exert strong and distinctive controls on 
rhizobacterial communities (Berg et al., 2014).

Abiotic factors such as soil pH or precipitation rates are known 
to structure rhizobacterial communities across ecosystems (Bahram 
et al., 2018; Lozupone & Knight, 2007), and there is gaining evidence 
that soil bacteria respond to global change factors such as elevated 
atmospheric CO2 (eCO2) and anthropogenic N deposition (+N) (He 
et  al.,  2012; Jansson & Hofmockel,  2020; Ramirez et  al.,  2012). 
Recently, studies have shown that eCO2 can alter bacterial taxo-
nomic abundances as well as shift microbial functions associated 

with carbon and nutrient cycling. In an agricultural setting, eCO2 
was shown to shift bacterial community composition, mostly by 
promoting taxa specifically associated with increased N cycling 
functionality, including members of the Rhizobiales, Burkholderiales 
and Pseudomonadales (Usyskin-Tonne et  al.,  2021). In temperate 
grassland, Tu et al. (2017) showed that eCO2 selectively affected N 
cycling functions, stimulating the abundance of N2-fixation as well 
as nitrate reduction and nitrite reduction genes. In a large meta-
analysis investigating the global effects of N deposition on soil 
microbes, Zhang et  al.  (2018) revealed that microbial biomass and 
microbial respiration decreased with N deposition and that increas-
ing N deposition increased the relative abundance of gram-positive 
bacteria. Globally, +N has also been shown to shift microbial diver-
sity in a way that breaks the prior positive association between soil C 
and microbial functions, with implications for the long-term effects 
of N enrichment (Yang et al., 2022). In most cases, the enrichment 
of CO2 or N increases plant productivity through shifts in alloca-
tion of photosynthetically-derived carbon (i.e. greater shoot or root 
biomass, or increased rhizodeposition and microbial recruitment; 
Wang et al., 2021), but importantly, while resource enrichment can 
alleviate growth-limitations, it can also shift resource requirements 
to other nutrients (i.e. eCO2-induced N-limitation, or +N-induced P-
limitation; Terrer et al., 2019; Vitousek et al., 2010).

Given the foundational importance of soil microbial services in-
cluding decomposition, carbon sequestration, nutrient cycling and 
pathogen protection, it will be critical to understand the factorial 
impacts of plant diversity, eCO2 and +N on soil prokaryotic diversity 
and functions (Delgado-Baquerizo et al., 2020). Guerra et al. (2020) 
recently identified large research ‘blind spots’ that miss the links 
among multiple aboveground biotic and abiotic factors to microbial 
diversity or function, suggesting that exploring multi-factor effects 
in soil ecology, particularly in the context of environmental change, 
is of high importance. Despite this, there are surprisingly few stud-
ies that have examined the interactive influence of plant diversity 
metrics on rhizobacterial communities experiencing resource en-
richments such as eCO2 or +N (Fitzpatrick et  al.,  2018). Further, 
long-term studies of global change can provide an important glimpse 
into the Anthropocene and help us better predict the ways biological 
communities will develop and interact in our changing world (Reich 
et al., 2018).

In this study, we utilize the BioCON (biodiversity, CO2, N) envi-
ronmental change experiment (Reich, Knops, et al., 2001) and next-
generation sequencing to examine how plant richness and changing 
resource availability influences communities of root-associated bac-
teria. We focus on plant richness levels of 16, 9 and 1 (hereafter 
referred to as R16, R9, and R1), and factorial combinations of am-
bient and enriched CO2 (eCO2) and ambient and enriched N (+N) 
treatments (Figure  S1). We ground our predictions in the concept 
of optimal resource allocation, which posits that plant–microbial re-
lationships will be selected through preferential plant C allocation 
that optimizes the acquisition of resources most limiting growth, 
either directly through roots or indirectly through the microbiome 
(Bloom et al., 1985; Friel & Friesen, 2019; Johnson et al., 2013). By 
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alleviating C or N limitations through the enrichment of CO2 and +N, 
plants may preferentially select functionally important bacterial taxa 
or passively alter the rhizobacterial community via shifting plant C 
allocation to either above- or below-ground biomass (Figure 1).

Given the notable effects of plant diversity metrics and plant 
functional groups on the selection of specific rhizobacterial consor-
tia, as well as the observed impacts of elevated atmospheric CO2 and 
N deposition on plant–microbial interactions, we hypothesize that 
H1: plant species richness will exert a strong influence in shaping 
rhizobacterial community composition and shift the predicted abun-
dance of bacterial functional genes at BioCON to alleviate plant-
specific nutrient limitation. R16 plots are composed of many plant 
taxa, but also maintain more consistent compositionality across 
plots, and are therefore predicted to host more homogenous rhizo-
bacterial communities than R1 plots, which are predicted to maintain 
the most dissimilar and phylogenetically distant consortia of bacte-
rial taxa. We also predict that H2: distinct rhizobacterial communities 
can be expected to develop on the roots of C3 and C4 grasses, forbs 
and legumes. Finally, as plant functional groups can exhibit distinct 
growth responses to eCO2 and +N (Reich et  al., 2004, 2018; Wei 
et al., 2017), we propose that H3: the composition of the rhizobac-
terial community will also respond to eCO2 and +N in such a way 
that acquisition of the most limiting resources can be optimized by 
the plant functional groups via selection of beneficial rhizobacte-
rial taxa and associated functions such as phosphate solubilization, 
N2-fixation, or NO3-reduction (Figure 1). With this research, we aim 
to highlight the mediating role of plant properties on rhizobacte-
rial community response to long-term, multi-factor environmental 

change, and promote a more mechanistic framing of plant–microbial 
interactions for future global change impact studies.

2  |  MATERIAL S AND METHODS

2.1  |  Study site

We studied a long-term (15 year) environmental change experiment 
in a temperate grassland to begin to elucidate how changes in re-
source availability and plant community structure have affected the 
composition of rhizobacterial communities. BioCON is a field ex-
periment that began in 1997 at the Cedar Creek Ecosystem Science 
Reserve (East Bethel, MN, USA) to examine the effects of three 
globally occurring environmental changes; decreasing plant species 
diversity, elevated atmospheric CO2 and increasing N deposition 
rates (Reich, Knops, et  al.,  2001). BioCON was designed to deter-
mine the environmental change effects on individual plant species 
and across plant functional groups in monoculture (R1) plots, while 
the more species-rich, R9 and R16 plots simulate the community 
and functional responses from diverse native prairie grass systems 
of the Midwestern United States. We acknowledge there are dif-
ferences between planted richness and observed richness, and 
perform supplementary analyses to show that both metrics induce 
similar effects on rhizobacterial communities. The Free-Air Carbon 
dioxide Enrichment (FACE) treatments increase atmospheric CO2 
by 180 μmol mol−1 daily, during daylight hours, for the full growing 
season (May–October). We sampled from two ambient CO2 rings 
and two eCO2 rings. The +N treatment applies 4 g m−2 year−1 via 
34% NH4NO3 pellets three times per growing season to half of all 
1 m × 1 m planted plots within ambient and eCO2 FACE rings (see 
Figure  S1 for study schematic). Notably, the soil at BioCON is N-
limited, where available soil N equals ~10 μg NH4-N + NO3-N g−1. In 
this study, we use root samples from 132 plots consisting of three 
factorial treatments; plant species richness levels of R16, R9 or R1, 
ambient and eCO2, and unfertilized or +N plots.

2.2  |  Sampling and rhizobacterial 
processing methods

Next-generation sequencing was performed on DNA extracted 
from dry roots that were not surface-sterilized, and therefore 
retained an intact rhizoplane community along with endophytic 
bacteria. Samples were collected from two eCO2 FACE rings 
(#3, #5) and two ambient control rings (#2, #4) at BioCON, and 
included all R16, R9 and R1 plots that were either unfertilized 
or +N (n = 132). Roots were collected in summer 2013 by root-
coring (5 cm) to a depth of 20 cm. No licensing or permits were 
required for field work. The roots of three replicate cores from 
each plot were homogenized, rinsed with DI water at Cedar 
Creek Ecosystem Science Reserve and dried in solar ovens at 
~35°C in plot-specific wax-paper bags. Dried root samples were 

F I G U R E  1  Effects of nitrogen fertilization (+N), elevated CO2 
(eCO2), and the combination of both treatments on plant biomass 
allocation, microbial functional gene abundances, as well as relative 
composition of putative functional bacteria on roots predicted 
by the optimal resource allocation model of the extended plant 
phenotype. Dashed lines represent baseline above- and below-
ground biomass allocation predictions under ambient conditions. 
NFB, nitrogen-fixing bacteria; PSB, phosphate-solubilizing bacteria.
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bagged individually by plot number and shipped to Northern 
Arizona University and were then processed for DNA extraction 
using sterile technique. DNA was extracted from roots using the 
MO BIO PowerSoil® DNA Isolation Kit (MO BIO Laboratories, 
Carlsbad, CA, USA) with a slightly modified protocol. Briefly, five 
sterile stainless steel beads (2 mm) were added to each well during 
cellular lysis, and 96-well plates were heated to 60°C for 15 min 
after mechanical lysis. Genomic DNA was measured by NanoDrop 
and purified using magnetic beads. PCR was carried out utilizing 
the 515F-806R primers to amplify the V4 region of the 16S SSU 
rRNA (Gilbert et al., 2014). Final DNA quantitation was performed 
using PicoGreen (Thermo Fisher Scientific, Inc., Waltham, MA, 
USA), and all samples were normalized to 2 ng DNA/μL prior to 
sequencing. Samples were 150 bp paired-end sequenced using 
MiSeq (Illumina, Inc., San Diego, CA, USA).

2.3  |  Data processing

Read pairs were merged in akutils using the join_paired_reads com-
mand. Demultiplexing and quality filtering was carried out with the 
split_libraries_fastq.py command in QIIME 1.9.1 (Caporaso, 2010) 
using a minimum quality threshold of q20, 0 bad characters al-
lowed, and retaining only reads which satisfied these require-
ments for at least 95% of their length. OTU picking was performed 
de novo with Swarm (Mahé et al., 2014) at d4 resolution (~98.4% 
similarity for bacteria/archaea), providing similar resolution to the 
QIIME2 DADA2-ASV approach for 16S rRNA (Bolyen et al., 2019). 
Taxonomic identities were assigned with BLAST against the 97% 
Greengenes database (McDonald et al., 2012). 16S OTU sequences 
were aligned using PyNAST (Caporaso et al., 2010), and phyloge-
netic tree was constructed with FastTree (Price et al., 2009). Taxa 
tables were rarefied to the lowest sample depth (5442) for alpha 
diversity analyses. Relative abundance of rhizobacterial taxa by 
treatments was analysed within the different plant species rich-
ness levels (R16, R9, R1), environmental change treatments (for 
R16 plots) and environmental change treatments under four plant 
functional groups (R1 plots) using the group_significance.py com-
mand in QIIME. Tests of β-diversity and differential abundance 
were performed on OTU tables after cumulative sum scaling 
(CSS) normalization (Paulson et al., 2013). Diversity analyses were 
conducted with the core_diversity command in akutils. Analyses 
were performed using NAU Advanced Research Computing High-
Performance Computing cluster (https://​in.​nau.​edu/​arc/​). R sta-
tistical software was used for all analyses unless described (R Core 
Team, 2020).

2.4  |  Phylogenetic dispersion

Phylogenetic clustering of rhizobacterial taxa relative to plant spe-
cies richness, eCO2, +N or eCO2 +N was analysed to determine 
whether rhizobacterial taxa (OTUs) become more related to each 

other as richness decreases or resource availability shifts than 
would be predicted by random models. We utilized net related-
ness index (NRI) to measure rhizobacterial phylogenetic dispersion 
under the treatments at BioCON. NRI values were calculated (−
mpd.obs.z) to provide an index of basal clustering of taxa on the 
phylogenetic tree. Phylogenies were created with FastTree as 
above and ‘pruned’ to match representative taxa in this study in R 
(R Core Team, 2020) using the ape and picante packages (Kembel 
et al., 2010; Paradis et al., 2004). The function ses.mpd was used 
in R, and negative values of the standardized effects size of mean 
phylogenetic distance versus null communities (−(mpd.obs–mpd.
rand.mean)/mpd.rand.sd) were calculated for NRI. NRI > 0 indi-
cates phylogenetic clustering, and NRI < 0 indicates phylogenetic 
over-dispersion, while NRI no different than zero indicates a ran-
dom phylogenetic dispersion.

2.5  |  Predicted bacterial metagenomic expression

The PICRUSt2 method provides a predicted metagenomic profile 
of the rhizobacterial community, which can be compared with pre-
vious functional gene profiling studies from BioCON or generate 
hypotheses for future work utilizing qPCR and measured N-cycling 
rates (e.g. N mineralization, nitrification and denitrification). 
Protocol for PICRUSt2 was followed as in Douglas et  al.  (2020) 
and tutorials on https://​github.​com/​picru​st/​picrust2 for 97% simi-
larity OTUs. The OTU table was normalized by copy, and a ‘vir-
tual’ metagenome of KEGG Ortholog (KO) relative abundances 
for each sample in the provided OTU table was predicted. Below, 
we will refer to gene ‘abundances’, but are aware that predicted 
KOs are proxies calculated from relative abundances and are not 
absolute. Metagenome contributions by rhizobacterial taxa were 
calculated for N-cycling genes: nifH, napA, narG, nirK, and nosZ, 
and P solubilizing genes: acid phosphatase, glucose dehydronase, 
phoD and phytase. Bacterial taxonomic contributions to predicted 
functional genes are presented using only bacterial families that 
contributed >20% abundance per sample to respective predicted 
functional genes. Weighted nearest sequence taxon index (NSTI) 
values were calculated as a means of determining confidence in 
the metagenome prediction in this study. Figures are presented 
with treatments (+N, eCO2 or eCO2+N) as per cent change from 
the control (ambient CO2, unfertilized), and calculated as (treat-
mentmean – controlmean/controlmean)*100, though statistical analy-
ses were performed on raw data. See Douglas et al.  (2020) for a 
detailed explanation of PICRUSt2.

2.6  |  Plant biomass allocation

Above-ground and below-ground plant biomass, and per cent tissue 
N and C data are sampled annually in all BioCON plots (e.g. Reich 
et al., 2018; Reich & Hobbie, 2013). To minimize biomass anomalies 
across years and to match our sampling in 2013, we calculated the 
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mean values of each plot used in this study (n = 132) for the years 
2012–2014. Per cent change from control plots (ambient CO2, un-
fertilized) was calculated for plant responses to treatments as (treat-
mentmean – controlmean/controlmean)*100 and presented in figures for 
ease of interpretation, though statistical analyses were performed 
on raw data.

2.7  |  Statistical analyses

Analyses were performed across plant species richness levels 
(R16, R9, R1), and within R16 and R1 plots to determine the role 
of diverse plant communities and the effects of plant functional 
groups; respectively. Plant biomass, nutrient concentration, soil 
net N mineralization, NRI values and predicted gene abundances 
were all tested using ANOVA and Tukey's HSD post hoc (aov and 
TukeyHSD in R) to determine main treatment effects of eCO2, +N 
or eCO2+N relative to control. Linear models were used to de-
termine relationships between predicted relative abundances of 
NO3−-reducing genes and P-solubilizing genes. Estimated mar-
ginal means were calculated to determine pairwise effects of 
+N, eCO2 or eCO2+N on slopes of linear regressions with em-
means in R (Lenth et  al.,  2017). A t-test was performed on NRI 
values to determine statistical difference from zero. Data were 
log-transformed to meet normality assumptions. Rhizobacterial 
community alpha diversities were compared across treatments 
with Wilcoxon rank-sum test, and t-test for between treatment 
comparisons. Differences in rhizobacterial β-diversity were as-
sessed by PERMANOVA (Anderson, 2001) using weighted and un-
weighted UniFrac (Lozupone & Knight, 2005), a β-diversity metric 
that accounts for phylogenetic distance between communities, 
and visualized using principal coordinate analysis. PERMANOVA 
was initially performed across all species richness levels (n = 132), 
to determine species richness and resource enrichment treat-
ment (+N and eCO2) effects despite variation in plant functional 
group. Permuted (n = 999) pairwise group dispersion centroids 
were calculated in Jupyter Notebook on weighted and unweighted 
UniFrac dissimilarities from R16 plots to obtain confidence in-
tervals; ANOVA was then performed on these values to confirm 
PERMANOVA results. Within R1 plots, a pairwise PERMANOVA 
function was used to determine rhizobacterial dissimilarities 
between and within functional groups under enrichment treat-
ments (https://​github.​com/​pmart​ineza​rbizu/​​pairw​iseAd​onis). 
Additionally, we performed PERMANOVA on unweighted UniFrac 
dissimilarity against observed plant species richness (mean from 
2012 to 2014) to determine whether planted and observed rich-
ness affected rhizobacterial community composition in a similar 
manner. Measures of rhizobacterial diversity under R9 plots did 
not significantly differ from those in the R16 plots, and therefore, 
broader comparisons regarding plant species richness were drawn 
between the diverse R16 and R1 monoculture plots. All taxa an-
notated from sequencing were used for analyses of rhizobacterial 
communities, phylogenetic dispersion or predicted functions.

3  |  RESULTS

3.1  |  Experiment-wide rhizobacterial community 
responses

Across the study, the strongest effects on rhizobacterial communi-
ties came from plant species richness and the addition of N. The main 
effects of plant species richness and + N significantly influenced un-
weighted UniFrac rhizobacterial β-diversity (pseudo-F2,130 = 5.45, 
p < 0.001; pseudo-F1,131 = 2.8, p < 0.005, respectively), while we 
observed no main effect from 15 years of eCO2 on rhizobacterial 
diversity (Figure  S2). As predicted in H1, rhizobacterial β-diversity 
under R16 plots was significantly different than R1 plots (Figure 2; 
pseudo-F2,94 = 2.62, p < 0.005). Despite differences in planted rich-
ness and observed richness at the time of sampling (see Table S1), 
observed plant richness revealed the same significant pattern found 
for planted species richness, where community dissimilarity de-
creased as species diversity increases (Figure S3; pseudo-F1,131 = 3.4, 
p < 0.001). The main effect of planted species richness in shaping 
rhizobacterial betadiversity after 15 years (Figure  2) suggests a 
strong selective force in temperate grassland soils, and by focusing 
on original planted richness we highlight the long-term influence of 
diverse or monoculture root systems on belowground rhizobacte-
ria. Across the study, both R16 and R9 plots had more phylogeneti-
cally clustered rhizobacterial communities than R1 plots (Figure S4; 
F2,130 = 14.01, p < 0.001), while rhizobacterial NRI under R1 plots was 
not significantly different than zero, suggesting a random phyloge-
netic dispersion of rhizobacterial taxa.

3.2  |  Plant richness-dependent responses of 
rhizobacterial communities

Under the diverse R16 plots, +N and the interaction eCO2+N had the 
strongest effects on rhizobacteria. +N significantly altered rhizobacte-
rial community composition (pseudo-F3,31 = 2.3, p = 0.05), while eCO2 
had no significant effect on β-diversity (Figure  S5). Rhizobacterial 
community dissimilarity (unweighted UniFrac) was significantly dif-
ferent between the control and +N treatments (Figure  S5; pseudo-
F1,108 = 7.03, p < 0.01) and also between +N and eCO2+N treatments 
(Figure  S5B; pseudo-F1,108 = 5.08, p < 0.05). Abundance-weighted 
UniFrac dissimilarity was significantly affected by the eCO2+N treat-
ment (Figure S6; pseudo-F1,108 = 11.655, p < 0.001) suggesting strong 
interaction effects for resource enrichments on rhizobacterial com-
munity organization under more diverse plant communities. We ob-
served a strong effect of N on rhizobacterial phylogenetic dispersion 
in R16 plots, where +N and the interaction of eCO2+N both increased 
phylogenetic clustering of rhizobacterial taxa (Figure 3b; F3,28 = 2.41, 
p = 0.02; F3,28 = 2.74, p = 0.01; respectively).

Similar to the more diverse R16 plots, +N significantly altered rhi-
zobacterial composition in R9 plots (pseudo-F2,38 = 4.25, p = 0.001). 
Relative to controls, eCO2 and eCO2+N had no significant effects on 
rhizobacterial β-diversity at the R9 level, and no treatments affected 
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rhizobacterial alpha diversity, using either nonparametric phylogenetic 
distance (PD; Faith & Baker, 2006) or observed ‘species’ metrics.

3.3  |  Plant functional group strongly influenced 
rhizobacterial community responses

Across the R1 monoculture plots, the strongest effects on rhizobacte-
rial community composition were observed for plant functional group 

(Figure 4) and the eCO2+N treatment (pseudo-F3,61 = 3.27, p < 0.001; 
pseudo-F3,61 = 1.99, p < 0.001, respectively). We also observed a mar-
ginally significant interaction between plant functional group and 
eCO2+N (pseudo-F3,61 = 1.14, p = 0.061), suggesting some important 
differences the responses to resource enrichments for plant func-
tional groups. Between functional group comparisons are presented 
in Table 1, but briefly, C3 and C4 grass rhizobacterial communities were 
significantly, albeit weakly, different from each other, while rhizobac-
teria associated with C3 and C4 grass were significantly different from 

F I G U R E  2  Principal coordinate analysis 
of rhizobacterial unweighted UniFrac 
community dissimilarity under three 
plant species richness levels, R16, R9 
and R1 (n = 132). Ellipses represent 95% 
confidence areas of plant species richness 
level, with value densities on respective 
axes.
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both forb or legume communities. Forb and legume rhizobacterial 
communities were not different from each other (Table 1, Figure 4a). 
Analysis of phylogenetic dispersion shows that clustering of rhizo-
bacterial taxa under C4 grasses with +N was greater than in control 
and eCO2 plots (Figure  S7; F3,15 = 5.1, p < 0.05; F3,15 = 5.1, p = 0.04; 

respectively). For legumes, phylogenetic clustering was greater in the 
eCO2+N treatment than in +N (Figure S7; F3,15 = 3.6, p = 0.046).

Environmental change treatments differentially affected the rhi-
zobacterial communities associated with particular plant functional 
groups, with grass rhizobacteria tending to respond most strongly. We 
observed significant effects of +N and eCO2+N on rhizobacterial com-
munities associated with C3 and C4 grasses, and a significant effect of 
eCO2 on rhizobacterial communities for legumes (Table 1; Figure 5). 
Plant functional group also significantly altered rhizobacterial alpha 
diversity, where we observed both lower PD and fewer observed bac-
terial taxa under forbs and legumes than C3 and C4 grasses (Forb-C3: 
t = −3.74, p = 0.006; Forb-C4: t = −5.03, p < 0.005; Legume-C3: t = −3.38, 
p < 0.05; Legume-C4: t = −4.48, p = 0.006). Across all plant species in 
monoculture, we observed distinct rhizobacterial communities for two 
plant species, Lupinus perennis and Petalostemum villosum (Figure 4b; 
pseudo-F1,63 = 2.11, p < 0.05; pseudo-F1,63 = 1.7, p = 0.05, respectively).

3.4  |  Plant richness-dependent responses of 
rhizobacterial functional genes to environmental 
change factors

Across the study, few predicted gene abundances were significantly 
affected by resource enrichment treatments in this study, but as pre-
dicted, +N and eCO2+N had particularly strong effects. Given the im-
portance of plant species richness to rhizobacterial diversity, analyses 
of predicted gene abundances were performed in the context of the 
diverse R16 plots and the within the R1 monoculture plots. In the R16 
plots, +N significantly increased predicted gene abundance of nitroge-
nase encoding nifH gene (N2-fixation) by 40% (Figure 6a; F3,26 = 3.095, 

F I G U R E  4  Principal coordinate analysis of rhizobacterial betadiversity under different plant functional groups and plant species from 
monoculture plots (n = 64). (a) Unweighted UniFrac community dissimilarity coloured by the four plant functional groups: C3 grasses are 
green, C4 grasses are blue, forbs are yellow, and legumes are red. Ellipses represent 95% confidence areas around respective plant functional 
group. Densities of principal coordinates are presented along respective x- and y-axes. (b) Unweighted UniFrac community dissimilarity for 
all plant species. Large points are mean dispersion centroids with standard error bars for each plant species, while small points represent 
individual plants. Plant species are coloured along a gradient within plant functional group, similar to those in 4A. Plant species in bold 
correspond to centroids with black error bars and indicate significantly dissimilar rhizobacterial communities.
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TA B L E  1  Significant results from between and within plant 
functional group effects on rhizobacterial community dissimilarity 
(unweighted UniFrac) from monoculture plots calculated using 
pairwise PERMANOVA.

Pseudo-F r2 p-value

Between functional group

C3 versus C4 2.07 0.05 0.018

C3 versus Forb 3.43 0.13 0.001

C4 versus Forb 4.17 0.14 0.001

C3 versus Legume 3.30 0.10 0.001

C4 versus Legume 3.89 0.11 0.001

Within functional group

C3

Control versus +N 1.77 0.16 0.032

Control versus eCO2+N 1.53 0.14 0.051

C4

Control versus +N 1.61 0.17 0.032

Control versus eCO2+N 1.52 0.23 0.025

eCO2 versus +N 1.65 0.14 0.008

eCO2 versus eCO2+N 1.52 0.17 0.022

Legume

Control versus eCO2 2.27 0.311 0.039
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p < 0.05), and although eCO2+N increased nifH abundance by 29%, 
this effect was not significant. The predicted gene abundance of the 
nitrite-reductase encoding nirK gene increased by 32% under +N 
(Figure 6b; F3,26 = 2.41, p = 0.05). eCO2+N significantly increased total 
P-solubilizing gene abundance by 10% (Figure 6c; F3,26 = 3.06, p < 0.05). 
Across the R16 plots, we also identified a significant, positive correlation 
between the predicted abundance of total P-solubilizing genes and total 
NO3− reducing genes (Figure 6f; F1,28 = 13.84, adj-r2 = 0.31, p < 0.001). 
Within this relationship, we observed a significant interaction effect of 
eCO2 (Figure 6f; F2,27 = 16.77, adj-r2 = 0.52, p = 0.002), and determined 
that the slope of the relationship between P-solubilizing genes and total 
NO3− reducing genes under eCO2 decreased significantly when com-
pared to ambient CO2 conditions (Figure 6f; t = −3.42, p < 0.005).

Predicted abundance of genes associated with N and P cycling re-
sponded variably to resource enrichments within plant functional groups, 
and we observed the strongest rhizobacterial functional responses under 
the C3 and C4 grasses (Figure 7). The nitrogenase encoding gene, nifH, 

increased by approximately 80% under eCO2 for C3 grasses (Figure 7a; 
F3,14 = 3.38, p = 0.049), while NO3−-reducing genes increased by ~140% 
for C3 grasses and ~70% for C4 grasses under eCO2+N (Figure  7b; 
F3,14 = 4.57, p = 0.01; F3,17 = 3.95, p = 0.04, respectively). For C4 grasses, 
P-solubilizing genes increased by approximately 100% under eCO2+N 
(Figure  7c; F3,17 = 3.0, p = 0.049). Interestingly for legumes, eCO2+N 
decreased both NO3−-reducing and P-solubilizing genes by ~50% 
(Figure  7b,c; F3,10 = 3.57, p = 0.05, F3,10 = 3.1, p = 0.05; respectively), 
suggesting a potentially decreased reliance on bacterial nutrient cycling 
functions when both C and N limitations are alleviated.

3.5  |  Plant optimal resource allocation responses 
were dependent on plant richness, but inconsistent

Patterns emerged that occasionally aligned with optimal alloca-
tion predictions for plant productivity and biomass allocation 

F I G U R E  5  Rhizobacterial community composition of plant functional groups from monoculture plots (n = 64) under control or resource-
enriched conditions. Relative abundance of bacterial families, facetted by four plant functional groups (C3, C4, forb, legume). Here, we 
present only those taxa that contributed greater than 5% relative abundance to each sample. Bars represent rhizobacterial communities 
under control, +N, eCO2, and eCO2+N treatments.
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shifts in the diverse R16 plots. For example, as predicted, eCO2 
marginally increased total plant biomass by 21%, and the combina-
tion of eCO2+N increased total plant biomass by 31% (Figure S9A; 
F3,32 = 2.67, p < 0.05). Contrary to optimal allocation predictions, 
eCO2+N only marginally increased plant root: shoot biomass ratio 
by 5% (Figure S9B; p = 0.07). Aboveground percent N increased by 
~22% under +N, but this was not significant (p = 0.08). Plant C:N 
ratio decreased under all resource enrichment treatments, but these 
changes were also not significant (Figure S9D).

In the R1 monoculture plots, the expected optimal alloca-
tion predictions of plant productivity, biomass allocation, %N, 
or plant C:N ratio were not consistently observed within plant 
functional groups. For example, pairwise comparisons within C3 
grasses show, as expected, that total plant biomass under eCO2+N 
was marginally higher than controls (Figure  S10A; F3,14 = 2.65, 
p = 0.069, Tukey adj-p = 0.061); but, contrary to predictions, C3 
grass root: shoot ratio was lower under eCO2 than all other treat-
ments (Figure  S10B; see Table  S2), and aboveground plant %N 
was 45% higher under eCO2 than in control plots (Figure  S10; 
F3,14 = 4.9, p = 0.015, Tukey adj-p = 0.049). Based on optimal al-
location predictions, we would have expected consistent eCO2 

and eCO2+N increases in biomass in C3 grasses where any alle-
viation of C limitation would have drastically increased produc-
tivity, above- and below-ground, but instead we only observed 
increased C3 plant biomass after eCO2+N (Figure  S10A). For C4 
grasses, total plant biomass was marginally higher under eCO2+N 
than other treatments (Figure  S8); with no observed changes in 
root: shoot ratios, aboveground %N, or tissue C:N ratio. Forb total 
biomass increased by 33% under eCO2+N, but this was not sig-
nificant. Legume total biomass increased by approximately 60% 
under all enrichment treatments, but not significantly, and legume 
root: shoot ratio was marginally higher than controls under +N 
and eCO2+N treatments (Table S2; Figure S10B; F3,10 = 3.8, model 
p = 0.047, Tukey adj-p = 0.63; F3,10 = 3.8, model p = 0.047, Tukey 
adj-p = 0.069; respectively).

4  |  DISCUSSION

Overall, our findings from this long-term environmental change 
study highlight the importance of interpreting rhizobacterial re-
sponses to resource enrichment in the context of plant diversity. 

F I G U R E  6  (a–e) Percentage change of mean predicted rhizobacterial gene abundance from control (zero bar) under nitrogen fertilization 
(+N), elevated atmospheric CO2 (eCO2), or eCO2+N from diverse R16 plots (n = 32). (a) Responses of predicted nifH gene abundance, (b) 
nitrite reductase-coding gene nirK, (c) total P-solubilizing genes (pho + acid phosphatase + phytase + glucose dehydronase), (d) the nitrate 
reductase-coding genes (napA + narG), and (e) nitric oxide reductase-coding gene nosZ. (f) Linear regression of total P-solubilizing genes 
on total nitrate (NO3−) reducing genes, with value densities on respective axes and coloured as aggregated ambient CO2 and aggregated 
elevated CO2, with no treatment factor considered in grey (‘All’). 95% confidence intervals are shaded areas around regression line, and 
correlation statistics for each treatment are in the top left of the panel. In (a–e), *significant differences from control with ANOVA (p ≤ 0.05).
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While we were unable to define the exact mechanisms influencing 
functional group-specific rhizobacterial responses to environmen-
tal change, our study is to our knowledge, the first to comprehen-
sively describe the long-term interactive effects of plant diversity, 
elevated CO2, and nitrogen deposition on rhizosphere bacteria. We 
show that plant species richness and functional group composition 
had a stronger influence on rhizobacterial community structure than 
15 years of enriched N or atmospheric CO2. The enrichment of N 
or the interaction of eCO2+N consistently affected rhizobacterial 
communities and functional genes in our study, and we suspect this 
was largely due to the relative N-limitation at our study site, but also 
from changes in plant resource requirements leading to the selection 
of functionally unique microbial consortia. Together, our results lead 
us to prescribe future work that more finitely identifies the interac-
tions between resource enrichment, plant C allocation and microbial 
selectivity by diverse plant assemblages or functional groups.

We were surprised by the general lack of eCO2 effects across 
the study, particularly given the known effects of eCO2 on plant pro-
ductivity from studies across the world, including this experiment 
(Eisenhauer et  al.,  2012; Reich et  al.,  2004; Terrer et  al.,  2021). It 
has been shown that plant productivity responses to eCO2 are con-
strained by the vegetation type, the N or P status in soils, and the 
mycorrhizal type of the dominant plants (Reich & Hobbie,  2013; 
Terrer et al., 2019), which in many ways aligns well with our findings. 
Mycorrhizal status was a major factor modulating plant responses to 
eCO2 in a global analysis by Terrer et al. (2021), and this was partic-
ularly true in grasslands and for arbuscular mycorrhizal plants, which 
suggests that when grassland plants are N-limited, they must adopt 

strategies to alleviate growth constraints that involve their micro-
bial partners in soil. Importantly though, soil microbes also deal with 
their own set of nutrient limitations, for example, microbial decom-
position in a grassland under eCO2 was significantly lower when 
constrained by N availability (Chiariello et al., 2002). Therefore, it ap-
pears that not all responses of the complex plant–soil system (holo-
biont) to environmental change related resource enrichments can be 
easily predicted. Our study and others indicate that it will be critical 
for researchers to consider plant composition (both above- and be-
lowground), plant resource requirements in the local environment, 
and a finer-scale accounting of belowground C allocation by plants 
in order to identify the degree of control that plants and microbes 
exert over resource exchange in future environmental change re-
search (Kivlin et al., 2022).

We showed that in diverse grasslands it may prove most use-
ful to characterize plant-microbial interactions in the context of 
plant diversity and functional identity, particularly when experi-
encing long-term shifts in resource availability under environmen-
tal change. As predicted by H1, the rhizobacterial communities 
from R16 plots were more homogenous than those in the R1 
plots (Figure  2, Figure  S3). This suggests a strong influence of 
the functional groups comprising R1 plots to filter for particular 
rhizobacterial communities, and indeed, across all plant richness 
levels, plant functional group was more important in structuring 
rhizobacterial communities than the environmental change treat-
ments of +N and eCO2. Plant functional groups are notably im-
portant factors in temperate grasslands (Adair et al., 2009; Isbell 
et al., 2013; Reich et al., 2004, 2018), and their productivity has 

F I G U R E  7  Rhizobacterial gene abundance response (percent change) of nitrogen and phosphorus cycling genes under nitrogen 
fertilization (+N), elevated atmospheric CO2 (eCO2), or eCO2+N from R1 monoculture plots (n = 64), and facetted by plant functional group 
(C3, C4, forb, legume). Responses of (a) predicted nifH gene abundance, (b) nitrate reducing genes (napA + narG), and (c) total P-solubilizing 
genes (pho + acid phosphatase + phytase + glucose dehydronase). These data are presented as percent change relative to control treatment 
plots. *significant differences from control (zero line) with ANOVA (p ≤ 0.05).
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been previously shown to respond differentially when atmo-
spheric CO2 and soil N are enriched (Reich, Tilman, et al., 2001). 
As predicted by H2, distinctly different bacterial communities 
were observed on grasses and forbs (Figure  4), with C3 and C4 
grasses having similar rhizobacterial communities, while legume 
rhizobacterial communities were significantly different than those 
on grasses (Figure  4a; Table  1). Across all plant species, Lupinis 
perennis and Petalostemum villosum, exhibited statistically distinct 
rhizobacterial communities (Figure  4b), indicating a fine degree 
of rhizobacterial selectivity for these legumes. These results sug-
gest the need for analyses of plant-microbial interaction that span 
functional and taxonomic levels to identify ‘core’ grassland micro-
bial communities, and to specifically define microbial functions to 
best contextualize responses to changing environments.

Significant shifts in rhizobacterial taxa under different plant 
functional groups and environmental change treatments may in-
dicate shifts in plant resource requirements and subsequent al-
terations in plant C allocation. In the legume group, there was a 
distinct and significant decline in the relative abundance of the 
Enterobacteriaceae under resource enrichments (Figure  4b). 
Enterobacter is the most abundant PGPR found in legumes, and 
many species from the Enterobacteriaceae are commonly as-
sociated with N2-fixing nodule formation (Mishra et  al.,  2009). 
Further, in legumes under +N, eCO2, and eCO2+N, the rela-
tive abundance of Bradyrhizobiaceae, Burkholderiaceae, and 
Psuedomonadaceae increased significantly (Figure  4b). Each of 
these families have many putative free-living PGPR taxa that per-
form important N-cycling functions and are commonly found in 
PGPR inoculation studies (Lugtenberg & Kamilova,  2009; Rubin 
et al., 2017). While this observation is solely correlative, the dis-
tinct decline in the most abundant nodule-related bacterial taxa 
(Enterobaceriaceae) and increase in relative abundance of mul-
tiple bacterial families considered PGPR, including Rhizobiaceae 
in eCO2 plots, could suggest a shift in N acquisition strategy for 
legumes under +N or eCO2; from symbiotic nodule formation to 
increased reliance on free-living PGPR as shown in previous work 
highlighting legume control over nodule development and N nu-
trition (Ferguson et al., 2019; Liese et al., 2017). As suggested in 
Bulgarelli et al. (2013), it will be important to identify core sets of 
physiological traits of PGPR with whole genome information to 
best understand the direct and indirect effects of their recruit-
ment, colonization, and growth-promotion.

Our analysis of root-associated soil bacteria is the first to truly 
utilize the complex and long-term design testing the relative im-
portance of plant biodiversity, eCO2, and +N at BioCON, as previ-
ous studies analysing microbial communities and/or functions here 
have solely focused on the main effect of eCO2. A previous study 
found that eCO2 significantly increased Rhizobiaceae abundance 
in diverse R16 plots (He et al., 2012), which is consistent with our 
results (Figure S5B). Tu et al.  (2017) found that under diverse R16 
plots, eCO2 increased nifH gene abundance in bulk soil, but this does 
not agree with our results for rhizobacterial functions. We did find 
an ~80% increase in nifH abundance under C3 grass plots with eCO2 

(Figure 7a), which could explain a significant increase of nifH from 
bulk soil (i.e. Tu et al., 2017), as C3 grass roots account for ~40% of 
total root biomass in R16 plots. Along these lines, we feel that grass 
dominance in the root system, differentiation between C3 and C4 
type, and a focus on their specific resource-driven selection for mi-
crobial taxa and functions could have important implications for in-
terpretation of microbiome data in natural systems with high species 
diversity (Reich et al., 2018). Incongruities between our study and 
others may be attributed to different methodological approaches, 
sampling approaches (roots vs. soil), or changes over time in re-
sponse to treatments (the studies above were conducted ~5 years 
earlier). Despite this, we expect our findings will be important in 
driving hypotheses and future testing regarding grassland soil mi-
crobial functional responses to environmental change.

Despite previous research showing strong agreement with pre-
dictions of the optimal allocation model across multiple ecosystem 
types and functional groups (Allen et al., 2020; Friel & Friesen, 2019; 
Johnson et al., 2015), the allocation of plant biomass, and composi-
tion of bacterial communities and their associated predicted func-
tional genes did not consistently respond to eCO2 and +N in such 
a way to suggest that acquisition of the most limiting resources 
per plant functional group were optimized. We found that under 
eCO2+N, C4 grasses tended to decrease root biomass allocation 
and had significantly higher P-solubilizing and nitrate reducing gene 
abundance (Figure 6), supporting the optimal allocation expectation 
that increases in rhizobacterial functions could be adopted to alle-
viate P requirements when N is no longer limiting and productivity 
is constrained by P. But, as the majority of our results were neu-
tral or counter to predictions of optimal resource allocation for the 
extended plant phenotype, we believe that root biomass allocation, 
our proxy for C allocation belowground, was largely an insufficient 
measure. Venturi and Keel (2016) suggest that different forms and 
types of rhizodeposition, including root exudates, can have a signif-
icant influence on the formation of rhizobacterial community com-
position and function. And recently, Kong and Fridley (2019) found 
that carbon allocation to belowground exudate pools and fluxes that 
are not accounted for by root biomass can be substantial. Microbial-
mediated plant resource acquisition strategies are clearly complex 
and we know that opportunistic, free-living taxa make up the major-
ity of rhizobacteria (Noë & Kiers, 2018; Tedersoo et al., 2020), and 
so it will likely be best to study this system in the context of other 
more obligate microbial symbionts, such as mycorrhizal fungi (Terrer 
et al., 2021).

5  |  CONCLUSIONS

We propose that rooting the interpretation of community or func-
tional responses to environmental change in the context of plant 
diversity could be critical for future studies (Fitzpatrick et al., 2018; 
Revillini et al., 2019), and hope that our results can serve to gener-
ate hypotheses beyond descriptive analysis of bacterial structure 
and function to more ecologically relevant fields and timescales. For 
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example, what is the influence of dominant plant taxa on microbial 
community composition and function across multiple systems or 
global change factors? Fitzpatrick et al. (2017) showed that distinct 
assemblages of rhizobacteria can influence plant–soil feedback under 
drought conditions, again suggesting the importance of specificity. 
Might plant taxa have such a great influence on their rhizobacte-
rial communities that recruitment of beneficial PGPR by one spe-
cies can lead to the recruitment of more diverse plant communities, 
similar to the findings of Wubs et al. (2016)? A better understanding 
of plant functional group–specific responses of rhizobacterial com-
munities can also help inform future predictive models that scale-up 
and address multifactor environmental changes across grasslands 
globally (e.g. Guerra et al., 2021). As global changes will continue to 
alter the soil environment in the Anthropocene, this study provides 
a framework to understand how responses to elevated atmospheric 
CO2 and N deposition are locally constrained by soil nutrient status 
and plant community members, and may be best represented by an 
extended plant phenotype approach, which includes the soil micro-
biome (Kristin & Miranda, 2013; Vandenkoornhuyse et al., 2015).
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Schematic diagram of BioCON experimental FACE rings 
used in this study (eCO2 = #3, #5; ambient CO2 = #2, #4), indicating 
nitrogen fertilization, and plant richness treatments.
Figure S2. Principal coordinate analyses of unweighted UniFrac 
betadiversity of rhizobacterial communities from all soil samples in 
this study (n = 132).
Figure S3. Principal coordinate analyses of unweighted UniFrac 
betadiversity of rhizobacterial communities from all soil samples in 

this study (n = 132), colored by mean observed plant species richness 
from all plots in this study sampled from 2012 to 2014.
Figure S4. Net relatedness index of rhizobacterial communities 
under plant species richness levels of R16, R9, or R1.
Figure S5. Relative abundance of bacterial phyla (A) and families (B) 
from R16 plots. Presented are only those taxa that contributed more 
than (A) 2% or (B) 5% relative abundance to each sample.
Figure S6. (A) Principal coordinate analysis of rhizobacterial weighted 
UniFrac community dissimilarity under ambient CO2 (left panel) and 
elevated CO2 (right panel), and colored by nitrogen fertilization 
treatment.
Figure S7. Net relatedness index of rhizobacterial communities 
under control, nitrogen fertilized (+N), elevated atmospheric CO2 
(eCO2), or eCO2+N from monoculture plots, facetted by plant 
functional group.
Figure S8. Relative contribution of rhizobacterial orders (A) and 
families (B) to predicted N-cycling functional genes from 16 plant 
species plots: nifH, napA, narG, nirK, and nosZ.
Figure S9. Plant responses as percent change from control (zero line) 
under nitrogen fertilization (+N), elevated atmospheric CO2 (eCO2), 
or the combination of +N and eCO2 from 16 plant species plots 
averaged from years 2012–2014.
Figure S10. Plant growth and %N responses (percent change) under 
+N, eCO2, or +N + eCO2 from monoculture plots (n = 64), facetted 
by plant functional groups (C3, C4, forb, legume).
Table S1. Planted and mean observed richness values for all plots 
used in this study across the years 2012–2014.
Table S2. Results of pairwise ANOVA of plant growth and nutrient 
responses under plant functional groups (C3, C4, forb and legume).
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