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1 | INTRODUCTION
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Rhizobacteria, the bacterial communities associated with plant
roots, are recognized as integral parts of the plant microbiome, and
important contributors to plant productivity and health (Bahram
et al., 2018; Lugtenberg & Kamilova, 2009; van der Heijden &
Schlaeppi, 2015). Many rhizobacteria directly and indirectly affect
plant resource availability through processes such as nitrogen (N)
fixation or phosphorus (P) solubilization, while others contribute to
plant pathogen defences or stimulate root growth. The broad group
of beneficial soil bacteria known as plant-growth-promoting rhizo-
bacteria (PGPR) have been identified and functionally characterized
across many systems (Leff et al., 2015; Luo et al., 2014; Ramirez
etal., 2017). For example, bacteria in the order Rhizobiales have long
been known as symbiotic N-fixers with plants in the Fabaceae, but
a vast diversity of free-living N-fixing bacteria such as Pseudomonas,
Azospirillum, Enterobacter and many Bacillus in the rhizosphere are in-
creasingly recognized for their importance to the N or P nutrition of
plants and being adopted as amendments in agriculture and ecologi-
cal restoration (Reed et al., 2011; Smercina et al., 2019). Importantly,
rhizobacteria can be affected by multiple environmental drivers, in-
cluding plant diversity, local soil properties and also altered resource
availability resulting from global changes including elevated atmo-
spheric CO, and nitrogen deposition.

Plant richness, composition and functional identity have nota-
ble impacts in terrestrial ecology (Tilman et al., 2014), and confer
important effects on soil physical structure and processes such as
carbon and nutrient cycling, but these plant properties can also
alter soil microbial communities in various ways (Trivedi et al., 2020;
Xiong et al., 2021). Microbes in the rhizosphere simultaneously com-
pete for resources in soil and facilitate their acquisition and transfer
to plants (Bonfante & Anca, 2009), but prior to microbiome filtering
based on trade and functional rewards (i.e. Kiers et al., 2011), they
are structured by the composition of root chemicals and physical
deposits in the soil (Semchenko et al., 2021). Importantly, root ex-
udates and rhizodeposits are species-specific and have the poten-
tial to drastically shape rhizosphere microbial community assembly
(Sasse et al., 2018), and it has been shown that the abundance of
certain bacterial taxa are selectively increased by host-specific rhi-
zodeposits (Dennis et al., 2010; Paterson et al., 2007). Therefore,
the diversity and richness of plant roots in soil, or presence of dif-
ferent plant functional groups, such as C; or C, grasses, forbs or le-
gumes that maintain different physiological strategies and resource
requirements, are likely to exert strong and distinctive controls on
rhizobacterial communities (Berg et al., 2014).

Abiotic factors such as soil pH or precipitation rates are known
to structure rhizobacterial communities across ecosystems (Bahram
et al., 2018; Lozupone & Knight, 2007), and there is gaining evidence
that soil bacteria respond to global change factors such as elevated
atmospheric CO, (eCO,) and anthropogenic N deposition (+N) (He
et al.,, 2012; Jansson & Hofmockel, 2020; Ramirez et al., 2012).
Recently, studies have shown that eCO, can alter bacterial taxo-
nomic abundances as well as shift microbial functions associated

RIGHTSE LI MN iy

with carbon and nutrient cycling. In an agricultural setting, eCO,
was shown to shift bacterial community composition, mostly by
promoting taxa specifically associated with increased N cycling
functionality, including members of the Rhizobiales, Burkholderiales
and Pseudomonadales (Usyskin-Tonne et al., 2021). In temperate
grassland, Tu et al. (2017) showed that eCO, selectively affected N
cycling functions, stimulating the abundance of N,-fixation as well
as nitrate reduction and nitrite reduction genes. In a large meta-
analysis investigating the global effects of N deposition on soil
microbes, Zhang et al. (2018) revealed that microbial biomass and
microbial respiration decreased with N deposition and that increas-
ing N deposition increased the relative abundance of gram-positive
bacteria. Globally, +N has also been shown to shift microbial diver-
sity in a way that breaks the prior positive association between soil C
and microbial functions, with implications for the long-term effects
of N enrichment (Yang et al., 2022). In most cases, the enrichment
of CO, or N increases plant productivity through shifts in alloca-
tion of photosynthetically-derived carbon (i.e. greater shoot or root
biomass, or increased rhizodeposition and microbial recruitment;
Wang et al., 2021), but importantly, while resource enrichment can
alleviate growth-limitations, it can also shift resource requirements
to other nutrients (i.e. e€CO,-induced N-limitation, or +N-induced P-
limitation; Terrer et al., 2019; Vitousek et al., 2010).

Given the foundational importance of soil microbial services in-
cluding decomposition, carbon sequestration, nutrient cycling and
pathogen protection, it will be critical to understand the factorial
impacts of plant diversity, eCO, and +N on soil prokaryotic diversity
and functions (Delgado-Baquerizo et al., 2020). Guerra et al. (2020)
recently identified large research ‘blind spots’ that miss the links
among multiple aboveground biotic and abiotic factors to microbial
diversity or function, suggesting that exploring multi-factor effects
in soil ecology, particularly in the context of environmental change,
is of high importance. Despite this, there are surprisingly few stud-
ies that have examined the interactive influence of plant diversity
metrics on rhizobacterial communities experiencing resource en-
richments such as eCO, or +N (Fitzpatrick et al., 2018). Further,
long-term studies of global change can provide an important glimpse
into the Anthropocene and help us better predict the ways biological
communities will develop and interact in our changing world (Reich
etal., 2018).

In this study, we utilize the BioCON (biodiversity, CO,, N) envi-
ronmental change experiment (Reich, Knops, et al., 2001) and next-
generation sequencing to examine how plant richness and changing
resource availability influences communities of root-associated bac-
teria. We focus on plant richness levels of 16, 9 and 1 (hereafter
referred to as R16, R9, and R1), and factorial combinations of am-
bient and enriched CO, (eCO,) and ambient and enriched N (+N)
treatments (Figure S1). We ground our predictions in the concept
of optimal resource allocation, which posits that plant-microbial re-
lationships will be selected through preferential plant C allocation
that optimizes the acquisition of resources most limiting growth,
either directly through roots or indirectly through the microbiome
(Bloom et al., 1985; Friel & Friesen, 2019; Johnson et al., 2013). By
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alleviating C or N limitations through the enrichment of CO, and +N,
plants may preferentially select functionally important bacterial taxa
or passively alter the rhizobacterial community via shifting plant C
allocation to either above- or below-ground biomass (Figure 1).
Given the notable effects of plant diversity metrics and plant
functional groups on the selection of specific rhizobacterial consor-
tia, as well as the observed impacts of elevated atmospheric CO, and
N deposition on plant-microbial interactions, we hypothesize that
H,: plant species richness will exert a strong influence in shaping
rhizobacterial community composition and shift the predicted abun-
dance of bacterial functional genes at BioCON to alleviate plant-
specific nutrient limitation. R16 plots are composed of many plant
taxa, but also maintain more consistent compositionality across
plots, and are therefore predicted to host more homogenous rhizo-
bacterial communities than R1 plots, which are predicted to maintain
the most dissimilar and phylogenetically distant consortia of bacte-
rial taxa. We also predict that H,: distinct rhizobacterial communities
can be expected to develop on the roots of C; and C, grasses, forbs
and legumes. Finally, as plant functional groups can exhibit distinct
growth responses to eCO, and +N (Reich et al., 2004, 2018; Wei
et al., 2017), we propose that H,: the composition of the rhizobac-
terial community will also respond to eCO, and +N in such a way
that acquisition of the most limiting resources can be optimized by
the plant functional groups via selection of beneficial rhizobacte-
rial taxa and associated functions such as phosphate solubilization,
N,-fixation, or NO,-reduction (Figure 1). With this research, we aim
to highlight the mediating role of plant properties on rhizobacte-

rial community response to long-term, multi-factor environmental

Ambient +N

,.

2IFA . — — = =

: ngﬂers NH, oxidizers NH, oxidizers

~ PSB NO, reducers NO, reducers NO, reducers
B Increase N, fixers N, fixers N, fixers

® Decrease P solubilizers P solubilizers P solubilizers

FIGURE 1 Effects of nitrogen fertilization (+N), elevated CO,
(eCO,), and the combination of both treatments on plant biomass
allocation, microbial functional gene abundances, as well as relative
composition of putative functional bacteria on roots predicted

by the optimal resource allocation model of the extended plant
phenotype. Dashed lines represent baseline above- and below-
ground biomass allocation predictions under ambient conditions.
NFB, nitrogen-fixing bacteria; PSB, phosphate-solubilizing bacteria.
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change, and promote a more mechanistic framing of plant-microbial

Journal of Ecology

interactions for future global change impact studies.

2 | MATERIALS AND METHODS
2.1 | Studysite

We studied a long-term (15year) environmental change experiment
in a temperate grassland to begin to elucidate how changes in re-
source availability and plant community structure have affected the
composition of rhizobacterial communities. BioCON is a field ex-
periment that began in 1997 at the Cedar Creek Ecosystem Science
Reserve (East Bethel, MN, USA) to examine the effects of three
globally occurring environmental changes; decreasing plant species
diversity, elevated atmospheric CO, and increasing N deposition
rates (Reich, Knops, et al., 2001). BioCON was designed to deter-
mine the environmental change effects on individual plant species
and across plant functional groups in monoculture (R1) plots, while
the more species-rich, R9 and R16 plots simulate the community
and functional responses from diverse native prairie grass systems
of the Midwestern United States. We acknowledge there are dif-
ferences between planted richness and observed richness, and
perform supplementary analyses to show that both metrics induce
similar effects on rhizobacterial communities. The Free-Air Carbon
dioxide Enrichment (FACE) treatments increase atmospheric CO,
by 180;1mo|mo|'1 daily, during daylight hours, for the full growing
season (May-October). We sampled from two ambient CO, rings
and two eCO, rings. The +N treatment applies 4gm‘2year'1 via
34% NH,NO, pellets three times per growing season to half of all
1mx1m planted plots within ambient and eCO, FACE rings (see
Figure S1 for study schematic). Notably, the soil at BioCON is N-
limited, where available soil N equals ~10pg NH,-N+NO,-N g’l. In
this study, we use root samples from 132 plots consisting of three
factorial treatments; plant species richness levels of R16, R or R1,
ambient and eCO,, and unfertilized or +N plots.

2.2 | Sampling and rhizobacterial
processing methods

Next-generation sequencing was performed on DNA extracted
from dry roots that were not surface-sterilized, and therefore
retained an intact rhizoplane community along with endophytic
bacteria. Samples were collected from two eCO, FACE rings
(#3, #5) and two ambient control rings (#2, #4) at BioCON, and
included all R16, R9 and R1 plots that were either unfertilized
or +N (n=132). Roots were collected in summer 2013 by root-
coring (5cm) to a depth of 20cm. No licensing or permits were
required for field work. The roots of three replicate cores from
each plot were homogenized, rinsed with DI water at Cedar
Creek Ecosystem Science Reserve and dried in solar ovens at
~35°C in plot-specific wax-paper bags. Dried root samples were
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bagged individually by plot number and shipped to Northern
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Arizona University and were then processed for DNA extraction
using sterile technique. DNA was extracted from roots using the
MO BIO PowerSoil® DNA Isolation Kit (MO BIO Laboratories,
Carlsbad, CA, USA) with a slightly modified protocol. Briefly, five
sterile stainless steel beads (2 mm) were added to each well during
cellular lysis, and 96-well plates were heated to 60°C for 15min
after mechanical lysis. Genomic DNA was measured by NanoDrop
and purified using magnetic beads. PCR was carried out utilizing
the 515F-806R primers to amplify the V4 region of the 16S SSU
rRNA (Gilbert et al., 2014). Final DNA quantitation was performed
using PicoGreen (Thermo Fisher Scientific, Inc., Waltham, MA,
USA), and all samples were normalized to 2ng DNA/uL prior to
sequencing. Samples were 150bp paired-end sequenced using
MiSeq (Illumina, Inc., San Diego, CA, USA).

2.3 | Data processing

Read pairs were merged in akutils using the join_paired_reads com-
mand. Demultiplexing and quality filtering was carried out with the
split_libraries_fastg.py command in QIIME 1.9.1 (Caporaso, 2010)
using a minimum quality threshold of q20, O bad characters al-
lowed, and retaining only reads which satisfied these require-
ments for at least 95% of their length. OTU picking was performed
de novo with Swarm (Mahé et al., 2014) at d4 resolution (~98.4%
similarity for bacteria/archaea), providing similar resolution to the
QIIME2 DADA2-ASV approach for 16S rRNA (Bolyen et al., 2019).
Taxonomic identities were assigned with BLAST against the 97%
Greengenes database (McDonald et al., 2012). 16S OTU sequences
were aligned using PyNAST (Caporaso et al., 2010), and phyloge-
netic tree was constructed with FastTree (Price et al., 2009). Taxa
tables were rarefied to the lowest sample depth (5442) for alpha
diversity analyses. Relative abundance of rhizobacterial taxa by
treatments was analysed within the different plant species rich-
ness levels (R16, R9, R1), environmental change treatments (for
R16 plots) and environmental change treatments under four plant
functional groups (R1 plots) using the group_significance.py com-
mand in QIIME. Tests of g-diversity and differential abundance
were performed on OTU tables after cumulative sum scaling
(CSS) normalization (Paulson et al., 2013). Diversity analyses were
conducted with the core_diversity command in akutils. Analyses
were performed using NAU Advanced Research Computing High-
Performance Computing cluster (https://in.nau.edu/arc/). R sta-
tistical software was used for all analyses unless described (R Core
Team, 2020).

2.4 | Phylogenetic dispersion
Phylogenetic clustering of rhizobacterial taxa relative to plant spe-

cies richness, eCO,, +N or eCO, +N was analysed to determine
whether rhizobacterial taxa (OTUs) become more related to each
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other as richness decreases or resource availability shifts than
would be predicted by random models. We utilized net related-
ness index (NRI) to measure rhizobacterial phylogenetic dispersion
under the treatments at BioCON. NRI values were calculated (-
mpd.obs.z) to provide an index of basal clustering of taxa on the
phylogenetic tree. Phylogenies were created with FastTree as
above and ‘pruned’ to match representative taxa in this study in R
(R Core Team, 2020) using the ape and picante packages (Kembel
et al., 2010; Paradis et al., 2004). The function ses.mpd was used
in R, and negative values of the standardized effects size of mean
phylogenetic distance versus null communities (-(mpd.obs-mpd.
rand.mean)/mpd.rand.sd) were calculated for NRI. NRI>0 indi-
cates phylogenetic clustering, and NRI <O indicates phylogenetic
over-dispersion, while NRI no different than zero indicates a ran-

dom phylogenetic dispersion.

2.5 | Predicted bacterial metagenomic expression

The PICRUSt2 method provides a predicted metagenomic profile
of the rhizobacterial community, which can be compared with pre-
vious functional gene profiling studies from BioCON or generate
hypotheses for future work utilizing gPCR and measured N-cycling
rates (e.g. N mineralization, nitrification and denitrification).
Protocol for PICRUSt2 was followed as in Douglas et al. (2020)
and tutorials on https://github.com/picrust/picrust2 for 97% simi-
larity OTUs. The OTU table was normalized by copy, and a ‘vir-
tual’ metagenome of KEGG Ortholog (KO) relative abundances
for each sample in the provided OTU table was predicted. Below,
we will refer to gene ‘abundances’, but are aware that predicted
KOs are proxies calculated from relative abundances and are not
absolute. Metagenome contributions by rhizobacterial taxa were
calculated for N-cycling genes: nifH, napA, narG, nirK, and nosZ,
and P solubilizing genes: acid phosphatase, glucose dehydronase,
phoD and phytase. Bacterial taxonomic contributions to predicted
functional genes are presented using only bacterial families that
contributed >20% abundance per sample to respective predicted
functional genes. Weighted nearest sequence taxon index (NSTI)
values were calculated as a means of determining confidence in
the metagenome prediction in this study. Figures are presented
with treatments (+N, eCO, or eCO,+N) as per cent change from
the control (ambient CO,, unfertilized), and calculated as (treat-

X
ment_ .- controlmean/controlmean)

100, though statistical analy-
ses were performed on raw data. See Douglas et al. (2020) for a
detailed explanation of PICRUSt2.

2.6 | Plant biomass allocation

Above-ground and below-ground plant biomass, and per cent tissue
N and C data are sampled annually in all BioCON plots (e.g. Reich
et al.,, 2018; Reich & Hobbie, 2013). To minimize biomass anomalies

across years and to match our sampling in 2013, we calculated the
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mean values of each plot used in this study (n=132) for the years
2012-2014. Per cent change from control plots (ambient CO,, un-
fertilized) was calculated for plant responses to treatments as (treat-

ment - control /control

mean mean
ease of interpretation, though statistical analyses were performed

)*100 and presented in figures for

mean

on raw data.

2.7 | Statistical analyses

Analyses were performed across plant species richness levels
(R16, R9, R1), and within R16 and R1 plots to determine the role
of diverse plant communities and the effects of plant functional
groups; respectively. Plant biomass, nutrient concentration, soil
net N mineralization, NRI values and predicted gene abundances
were all tested using ANOVA and Tukey's HSD post hoc (aov and
TukeyHSD in R) to determine main treatment effects of eCO,, +N
or eCO,+N relative to control. Linear models were used to de-
termine relationships between predicted relative abundances of
NO,_-reducing genes and P-solubilizing genes. Estimated mar-
ginal means were calculated to determine pairwise effects of
+N, eCO, or eCO,+N on slopes of linear regressions with em-
means in R (Lenth et al., 2017). A t-test was performed on NRI
values to determine statistical difference from zero. Data were
log-transformed to meet normality assumptions. Rhizobacterial
community alpha diversities were compared across treatments
with Wilcoxon rank-sum test, and t-test for between treatment
comparisons. Differences in rhizobacterial g-diversity were as-
sessed by PERMANOVA (Anderson, 2001) using weighted and un-
weighted UniFrac (Lozupone & Knight, 2005), a p-diversity metric
that accounts for phylogenetic distance between communities,
and visualized using principal coordinate analysis. PERMANOVA
was initially performed across all species richness levels (n=132),
to determine species richness and resource enrichment treat-
ment (+N and eCO,) effects despite variation in plant functional
group. Permuted (n=999) pairwise group dispersion centroids
were calculated in Jupyter Notebook on weighted and unweighted
UniFrac dissimilarities from R16 plots to obtain confidence in-
tervals; ANOVA was then performed on these values to confirm
PERMANOVA results. Within R1 plots, a pairwise PERMANOVA
function was used to determine rhizobacterial dissimilarities
between and within functional groups under enrichment treat-
ments (https://github.com/pmartinezarbizu/pairwiseAdonis).
Additionally, we performed PERMANOVA on unweighted UniFrac
dissimilarity against observed plant species richness (mean from
2012 to 2014) to determine whether planted and observed rich-
ness affected rhizobacterial community composition in a similar
manner. Measures of rhizobacterial diversity under R9 plots did
not significantly differ from those in the R16 plots, and therefore,
broader comparisons regarding plant species richness were drawn
between the diverse R16 and R1 monoculture plots. All taxa an-
notated from sequencing were used for analyses of rhizobacterial
communities, phylogenetic dispersion or predicted functions.
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3 | RESULTS

3.1 | Experiment-wide rhizobacterial community
responses

Across the study, the strongest effects on rhizobacterial communi-
ties came from plant species richness and the addition of N. The main
effects of plant species richness and + N significantly influenced un-
weighted UniFrac rhizobacterial g-diversity (pseudo—F2)130=5.45,
p<0.001; pseudo-F1y131=2‘8, p<0.005, respectively), while we
observed no main effect from 15years of eCO, on rhizobacterial
diversity (Figure S2). As predicted in H,, rhizobacterial p-diversity
under R16 plots was significantly different than R1 plots (Figure 2;
pseudo—F2’94:2.62, p<0.005). Despite differences in planted rich-
ness and observed richness at the time of sampling (see Table S1),
observed plant richness revealed the same significant pattern found
for planted species richness, where community dissimilarity de-
creased as species diversity increases (Figure S3; pseudo-F1,131=3.4,
p<0.001). The main effect of planted species richness in shaping
rhizobacterial betadiversity after 15years (Figure 2) suggests a
strong selective force in temperate grassland soils, and by focusing
on original planted richness we highlight the long-term influence of
diverse or monoculture root systems on belowground rhizobacte-
ria. Across the study, both R16 and R? plots had more phylogeneti-
cally clustered rhizobacterial communities than R1 plots (Figure S4;
F2,130: 14.01, p <0.001), while rhizobacterial NRI under R1 plots was
not significantly different than zero, suggesting a random phyloge-

netic dispersion of rhizobacterial taxa.

3.2 | Plantrichness-dependent responses of
rhizobacterial communities

Under the diverse R16 plots, +N and the interaction eCO,+N had the
strongest effects on rhizobacteria. +N significantly altered rhizobacte-
rial community composition (pseudo-F3131=2.3, p=0.05), while eCO,
had no significant effect on p-diversity (Figure S5). Rhizobacterial
community dissimilarity (unweighted UniFrac) was significantly dif-
ferent between the control and +N treatments (Figure S5; pseudo-
F1108=7.03, p<0.01) and also between +N and eCO,+N treatments
(Figure S5B; pseudo-F, 105=5.08, p<0.05). Abundance-weighted
UniFrac dissimilarity was significantly affected by the eCO,+N treat-
ment (Figure Sé; pseudo—FMOB: 11.655, p<0.001) suggesting strong
interaction effects for resource enrichments on rhizobacterial com-
munity organization under more diverse plant communities. We ob-
served a strong effect of N on rhizobacterial phylogenetic dispersion
in R16 plots, where +N and the interaction of eCO,+N both increased
phylogenetic clustering of rhizobacterial taxa (Figure 3b; Fy,6=241,
p=0.02; Fa,ze: 2.74, p=0.01; respectively).

Similar to the more diverse R16 plots, +N significantly altered rhi-
zobacterial composition in R9 plots (pseudo—F2)38=4.25, p=0.001).
Relative to controls, eCO, and eCO,+N had no significant effects on
rhizobacterial g-diversity at the R9 level, and no treatments affected
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rhizobacterial alpha diversity, using either nonparametric phylogenetic
distance (PD; Faith & Baker, 2006) or observed ‘species’ metrics.

3.3 | Plant functional group strongly influenced
rhizobacterial community responses

Across the R1 monoculture plots, the strongest effects on rhizobacte-
rial community composition were observed for plant functional group
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(Figure 4) and the eCO,+N treatment (pseudo—F3’61=3.27, p<0.001;
pseudo-F3’61=1.99, p<0.001, respectively). We also observed a mar-
ginally significant interaction between plant functional group and
eCO,+N (pseudo-F3,61=1.14, p=0.061), suggesting some important
differences the responses to resource enrichments for plant func-
tional groups. Between functional group comparisons are presented
in Table 1, but briefly, C; and C, grass rhizobacterial communities were
significantly, albeit weakly, different from each other, while rhizobac-
teria associated with C; and C, grass were significantly different from
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FIGURE 4 Principal coordinate analysis of rhizobacterial betadiversity under different plant functional groups and plant species from
monoculture plots (n=64). (a) Unweighted UniFrac community dissimilarity coloured by the four plant functional groups: C, grasses are
green, C, grasses are blue, forbs are yellow, and legumes are red. Ellipses represent 95% confidence areas around respective plant functional
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correspond to centroids with black error bars and indicate significantly dissimilar rhizobacterial communities.

TABLE 1 Significant results from between and within plant
functional group effects on rhizobacterial community dissimilarity
(unweighted UniFrac) from monoculture plots calculated using
pairwise PERMANOVA.

Pseudo-F r p-value
Between functional group
C,versus C, 2.07 0.05 0.018
C, versus Forb 3.43 0.13 0.001
C, versus Forb 4.17 0.14 0.001
C, versus Legume 3.30 0.10 0.001
C, versus Legume 3.89 0.11 0.001
Within functional group
c3
Control versus +N 1.77 0.16 0.032
Control versus eCO,+N 1.53 0.14 0.051
c4
Control versus +N 1.61 0.17 0.032
Control versus eCO,+N 1.52 0.23 0.025
eCO, versus +N 1.65 0.14 0.008
eCO, versus eCO,+N 1.52 0.17 0.022
Legume
Control versus eCO, 2.27 0.311 0.039

both forb or legume communities. Forb and legume rhizobacterial
communities were not different from each other (Table 1, Figure 4a).
Analysis of phylogenetic dispersion shows that clustering of rhizo-
bacterial taxa under C, grasses with +N was greater than in control
and eCO, plots (Figure S7; F315=51, p<0.05; F;,5=5.1, p=0.04;
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respectively). For legumes, phylogenetic clustering was greater in the
eCO,+N treatment than in +N (Figure S7; F3y15:3.6, p=0.046).
Environmental change treatments differentially affected the rhi-
zobacterial communities associated with particular plant functional
groups, with grass rhizobacteria tending to respond most strongly. We
observed significant effects of +N and eCO,+N on rhizobacterial com-
munities associated with C, and C, grasses, and a significant effect of
eCO, on rhizobacterial communities for legumes (Table 1; Figure 5).
Plant functional group also significantly altered rhizobacterial alpha
diversity, where we observed both lower PD and fewer observed bac-
terial taxa under forbs and legumes than C, and C, grasses (Forb-C,:
=-3.74,p=0.006; Forb-C,: t=-5.03,p <0.005; Legume-C: t=-3.38,
p<0.05; Legume-C,: t=-4.48, p=0.006). Across all plant species in
monoculture, we observed distinct rhizobacterial communities for two
plant species, Lupinus perennis and Petalostemum villosum (Figure 4b;

pseudo—F1Y63=2.11, p<0.05; pseudo—F1y63= 1.7, p=0.05, respectively).

3.4 | Plantrichness-dependent responses of
rhizobacterial functional genes to environmental
change factors

Across the study, few predicted gene abundances were significantly
affected by resource enrichment treatments in this study, but as pre-
dicted, +N and eCO,+N had particularly strong effects. Given the im-
portance of plant species richness to rhizobacterial diversity, analyses
of predicted gene abundances were performed in the context of the
diverse R16 plots and the within the R1 monoculture plots. In the R16
plots, +N significantly increased predicted gene abundance of nitroge-
nase encoding nifH gene (N,-fixation) by 40% (Figure 6a; F; ,,=3.095,
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enriched conditions. Relative abundance of bacterial families, facetted by four plant functional groups (C,, C,, forb, legume). Here, we
present only those taxa that contributed greater than 5% relative abundance to each sample. Bars represent rhizobacterial communities

under control, +N, eCO,, and eCO,+N treatments.

p<0.05), and although eCO,+N increased nifH abundance by 29%,
this effect was not significant. The predicted gene abundance of the
nitrite-reductase encoding nirK gene increased by 32% under +N
(Figure 6b; Fy06=241, p=0.05). eCO,+N significantly increased total
P-solubilizing gene abundance by 10% (Figure éc; F; 5,=3.06, p<0.05).
Across the R16 plots, we also identified a significant, positive correlation
between the predicted abundance of total P-solubilizing genes and total
NO,_ reducing genes (Figure 6f; F, ,;=13.84, adj-r?=0.31, p<0.001).
Within this relationship, we observed a significant interaction effect of
eCO, (Figure 6f; F,,,=16.77, adj-r?=0.52, p=0.002), and determined
that the slope of the relationship between P-solubilizing genes and total
NO,_ reducing genes under eCO, decreased significantly when com-
pared to ambient CO, conditions (Figure 6f; t=-3.42, p<0.005).
Predicted abundance of genes associated with N and P cycling re-
sponded variably to resource enrichments within plant functional groups,
and we observed the strongest rhizobacterial functional responses under
the C; and C, grasses (Figure 7). The nitrogenase encoding gene, nifH,
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increased by approximately 80% under eCO, for C, grasses (Figure 7a;
F3,4=3.38, p=0.049), while NO,_-reducing genes increased by ~140%
for C; grasses and ~70% for C, grasses under eCO,+N (Figure 7b;
F3’14=4.57, p=0.01; F3,17=3.95, p=0.04, respectively). For C, grasses,
P-solubilizing genes increased by approximately 100% under eCO,+N
(Figure 7¢; F3,,=3.0, p=0.049). Interestingly for legumes, eCO,+N
decreased both NO, -reducing and P-solubilizing genes by ~50%
(Figure 7b,c; F3,10=3.57, p=0.05, F3,10=3.1, p=0.05; respectively),
suggesting a potentially decreased reliance on bacterial nutrient cycling
functions when both C and N limitations are alleviated.

3.5 | Plant optimal resource allocation responses
were dependent on plant richness, but inconsistent

Patterns emerged that occasionally aligned with optimal alloca-
tion predictions for plant productivity and biomass allocation
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shifts in the diverse R16 plots. For example, as predicted, eCO,
marginally increased total plant biomass by 21%, and the combina-
tion of eCO,+N increased total plant biomass by 31% (Figure S9A;
F3,32=2.67, p<0.05). Contrary to optimal allocation predictions,
€CO,+N only marginally increased plant root: shoot biomass ratio
by 5% (Figure S9B; p=0.07). Aboveground percent N increased by
~22% under +N, but this was not significant (p=0.08). Plant C:N
ratio decreased under all resource enrichment treatments, but these
changes were also not significant (Figure S9D).

In the R1 monoculture plots, the expected optimal alloca-
tion predictions of plant productivity, biomass allocation, %N,
or plant C:N ratio were not consistently observed within plant
functional groups. For example, pairwise comparisons within C,
grasses show, as expected, that total plant biomass under eCO,+N
was marginally higher than controls (Figure S10A; F314=2.65,
p=0.069, Tukey adj-p=0.061); but, contrary to predictions, C,
grass root: shoot ratio was lower under eCO, than all other treat-
ments (Figure S10B; see Table S2), and aboveground plant %N
was 45% higher under eCO, than in control plots (Figure S10;
F3’14=4.9, p=0.015, Tukey adj-p=0.049). Based on optimal al-
location predictions, we would have expected consistent eCO,

RIGHTS LI N K}

and eCO,+N increases in biomass in C, grasses where any alle-
viation of C limitation would have drastically increased produc-
tivity, above- and below-ground, but instead we only observed
increased C, plant biomass after eCO,+N (Figure S10A). For C,
grasses, total plant biomass was marginally higher under eCO,+N
than other treatments (Figure S8); with no observed changes in
root: shoot ratios, aboveground %N, or tissue C:N ratio. Forb total
biomass increased by 33% under eCO,+N, but this was not sig-
nificant. Legume total biomass increased by approximately 60%
under all enrichment treatments, but not significantly, and legume
root: shoot ratio was marginally higher than controls under +N
and eCO,+N treatments (Table S2; Figure S10B; F3,10=3.8, model
p=0.047, Tukey adj-p=0.63; F310=3.8, model p=0.047, Tukey
adj-p=0.069; respectively).

4 | DISCUSSION

Overall, our findings from this long-term environmental change
study highlight the importance of interpreting rhizobacterial re-
sponses to resource enrichment in the context of plant diversity.
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While we were unable to define the exact mechanisms influencing
functional group-specific rhizobacterial responses to environmen-
tal change, our study is to our knowledge, the first to comprehen-
sively describe the long-term interactive effects of plant diversity,
elevated CO,, and nitrogen deposition on rhizosphere bacteria. We
show that plant species richness and functional group composition
had a stronger influence on rhizobacterial community structure than
15years of enriched N or atmospheric CO,. The enrichment of N
or the interaction of eCO,+N consistently affected rhizobacterial
communities and functional genes in our study, and we suspect this
was largely due to the relative N-limitation at our study site, but also
from changes in plant resource requirements leading to the selection
of functionally unique microbial consortia. Together, our results lead
us to prescribe future work that more finitely identifies the interac-
tions between resource enrichment, plant C allocation and microbial
selectivity by diverse plant assemblages or functional groups.

We were surprised by the general lack of eCO, effects across
the study, particularly given the known effects of eCO, on plant pro-
ductivity from studies across the world, including this experiment
(Eisenhauer et al., 2012; Reich et al., 2004; Terrer et al., 2021). It
has been shown that plant productivity responses to eCO, are con-
strained by the vegetation type, the N or P status in soils, and the
mycorrhizal type of the dominant plants (Reich & Hobbie, 2013;
Terrer et al., 2019), which in many ways aligns well with our findings.
Mycorrhizal status was a major factor modulating plant responses to
eCO, in a global analysis by Terrer et al. (2021), and this was partic-
ularly true in grasslands and for arbuscular mycorrhizal plants, which
suggests that when grassland plants are N-limited, they must adopt
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strategies to alleviate growth constraints that involve their micro-
bial partners in soil. Importantly though, soil microbes also deal with
their own set of nutrient limitations, for example, microbial decom-
position in a grassland under eCO, was significantly lower when
constrained by N availability (Chiariello et al., 2002). Therefore, it ap-
pears that not all responses of the complex plant-soil system (holo-
biont) to environmental change related resource enrichments can be
easily predicted. Our study and others indicate that it will be critical
for researchers to consider plant composition (both above- and be-
lowground), plant resource requirements in the local environment,
and a finer-scale accounting of belowground C allocation by plants
in order to identify the degree of control that plants and microbes
exert over resource exchange in future environmental change re-
search (Kivlin et al., 2022).

We showed that in diverse grasslands it may prove most use-
ful to characterize plant-microbial interactions in the context of
plant diversity and functional identity, particularly when experi-
encing long-term shifts in resource availability under environmen-
tal change. As predicted by H;, the rhizobacterial communities
from R16 plots were more homogenous than those in the R1
plots (Figure 2, Figure S3). This suggests a strong influence of
the functional groups comprising R1 plots to filter for particular
rhizobacterial communities, and indeed, across all plant richness
levels, plant functional group was more important in structuring
rhizobacterial communities than the environmental change treat-
ments of +N and eCO,. Plant functional groups are notably im-
portant factors in temperate grasslands (Adair et al., 2009; Isbell
et al., 2013; Reich et al., 2004, 2018), and their productivity has
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been previously shown to respond differentially when atmo-
spheric CO, and soil N are enriched (Reich, Tilman, et al., 2001).
As predicted by H,, distinctly different bacterial communities
were observed on grasses and forbs (Figure 4), with C; and C,
grasses having similar rhizobacterial communities, while legume
rhizobacterial communities were significantly different than those
on grasses (Figure 4a; Table 1). Across all plant species, Lupinis
perennis and Petalostemum villosum, exhibited statistically distinct
rhizobacterial communities (Figure 4b), indicating a fine degree
of rhizobacterial selectivity for these legumes. These results sug-
gest the need for analyses of plant-microbial interaction that span
functional and taxonomic levels to identify ‘core’ grassland micro-
bial communities, and to specifically define microbial functions to
best contextualize responses to changing environments.

Significant shifts in rhizobacterial taxa under different plant
functional groups and environmental change treatments may in-
dicate shifts in plant resource requirements and subsequent al-
terations in plant C allocation. In the legume group, there was a
distinct and significant decline in the relative abundance of the
Enterobacteriaceae under resource enrichments (Figure 4b).
Enterobacter is the most abundant PGPR found in legumes, and
many species from the Enterobacteriaceae are commonly as-
sociated with N,-fixing nodule formation (Mishra et al., 2009).
Further, in legumes under +N, eCO,, and eCO,+N, the rela-
tive abundance of Bradyrhizobiaceae, Burkholderiaceae, and
Psuedomonadaceae increased significantly (Figure 4b). Each of
these families have many putative free-living PGPR taxa that per-
form important N-cycling functions and are commonly found in
PGPR inoculation studies (Lugtenberg & Kamilova, 2009; Rubin
et al., 2017). While this observation is solely correlative, the dis-
tinct decline in the most abundant nodule-related bacterial taxa
(Enterobaceriaceae) and increase in relative abundance of mul-
tiple bacterial families considered PGPR, including Rhizobiaceae
in eCO, plots, could suggest a shift in N acquisition strategy for
legumes under +N or eCO,; from symbiotic nodule formation to
increased reliance on free-living PGPR as shown in previous work
highlighting legume control over nodule development and N nu-
trition (Ferguson et al., 2019; Liese et al., 2017). As suggested in
Bulgarelli et al. (2013), it will be important to identify core sets of
physiological traits of PGPR with whole genome information to
best understand the direct and indirect effects of their recruit-
ment, colonization, and growth-promotion.

Our analysis of root-associated soil bacteria is the first to truly
utilize the complex and long-term design testing the relative im-
portance of plant biodiversity, eCO,, and +N at BioCON, as previ-
ous studies analysing microbial communities and/or functions here
have solely focused on the main effect of eCO,. A previous study
found that eCO, significantly increased Rhizobiaceae abundance
in diverse R16 plots (He et al., 2012), which is consistent with our
results (Figure S5B). Tu et al. (2017) found that under diverse R16
plots, eCO, increased nifH gene abundance in bulk soil, but this does
not agree with our results for rhizobacterial functions. We did find
an ~80% increase in nifH abundance under C grass plots with eCO,
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(Figure 7a), which could explain a significant increase of nifH from
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bulk soil (i.e. Tu et al., 2017), as C, grass roots account for ~40% of
total root biomass in R16 plots. Along these lines, we feel that grass
dominance in the root system, differentiation between C; and C,
type, and a focus on their specific resource-driven selection for mi-
crobial taxa and functions could have important implications for in-
terpretation of microbiome data in natural systems with high species
diversity (Reich et al., 2018). Incongruities between our study and
others may be attributed to different methodological approaches,
sampling approaches (roots vs. soil), or changes over time in re-
sponse to treatments (the studies above were conducted ~5years
earlier). Despite this, we expect our findings will be important in
driving hypotheses and future testing regarding grassland soil mi-
crobial functional responses to environmental change.

Despite previous research showing strong agreement with pre-
dictions of the optimal allocation model across multiple ecosystem
types and functional groups (Allen et al., 2020; Friel & Friesen, 2019;
Johnson et al., 2015), the allocation of plant biomass, and composi-
tion of bacterial communities and their associated predicted func-
tional genes did not consistently respond to eCO, and +N in such
a way to suggest that acquisition of the most limiting resources
per plant functional group were optimized. We found that under
eCO,+N, C, grasses tended to decrease root biomass allocation
and had significantly higher P-solubilizing and nitrate reducing gene
abundance (Figure 6), supporting the optimal allocation expectation
that increases in rhizobacterial functions could be adopted to alle-
viate P requirements when N is no longer limiting and productivity
is constrained by P. But, as the majority of our results were neu-
tral or counter to predictions of optimal resource allocation for the
extended plant phenotype, we believe that root biomass allocation,
our proxy for C allocation belowground, was largely an insufficient
measure. Venturi and Keel (2016) suggest that different forms and
types of rhizodeposition, including root exudates, can have a signif-
icant influence on the formation of rhizobacterial community com-
position and function. And recently, Kong and Fridley (2019) found
that carbon allocation to belowground exudate pools and fluxes that
are not accounted for by root biomass can be substantial. Microbial-
mediated plant resource acquisition strategies are clearly complex
and we know that opportunistic, free-living taxa make up the major-
ity of rhizobacteria (Noé & Kiers, 2018; Tedersoo et al., 2020), and
so it will likely be best to study this system in the context of other
more obligate microbial symbionts, such as mycorrhizal fungi (Terrer
et al,, 2021).

5 | CONCLUSIONS

We propose that rooting the interpretation of community or func-
tional responses to environmental change in the context of plant
diversity could be critical for future studies (Fitzpatrick et al., 2018;
Revillini et al., 2019), and hope that our results can serve to gener-
ate hypotheses beyond descriptive analysis of bacterial structure
and function to more ecologically relevant fields and timescales. For
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example, what is the influence of dominant plant taxa on microbial
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community composition and function across multiple systems or
global change factors? Fitzpatrick et al. (2017) showed that distinct
assemblages of rhizobacteria can influence plant-soil feedback under
drought conditions, again suggesting the importance of specificity.
Might plant taxa have such a great influence on their rhizobacte-
rial communities that recruitment of beneficial PGPR by one spe-
cies can lead to the recruitment of more diverse plant communities,
similar to the findings of Wubs et al. (2016)? A better understanding
of plant functional group-specific responses of rhizobacterial com-
munities can also help inform future predictive models that scale-up
and address multifactor environmental changes across grasslands
globally (e.g. Guerra et al., 2021). As global changes will continue to
alter the soil environment in the Anthropocene, this study provides
a framework to understand how responses to elevated atmospheric
CO, and N deposition are locally constrained by soil nutrient status
and plant community members, and may be best represented by an
extended plant phenotype approach, which includes the soil micro-
biome (Kristin & Miranda, 2013; Vandenkoornhuyse et al., 2015).
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Figure S1. Schematic diagram of BioCON experimental FACE rings
used in this study (eCOZ:#S, #5; ambient CO,=#2, #4), indicating
nitrogen fertilization, and plant richness treatments.

Figure S2. Principal coordinate analyses of unweighted UniFrac
betadiversity of rhizobacterial communities from all soil samples in
this study (n=132).

Figure S3. Principal coordinate analyses of unweighted UniFrac

betadiversity of rhizobacterial communities from all soil samples in
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this study (n=132), colored by mean observed plant species richness

from all plots in this study sampled from 2012 to 2014.

Figure S4. Net relatedness index of rhizobacterial communities

Journal of Ecology

under plant species richness levels of R16, R9, or R1.

Figure S5. Relative abundance of bacterial phyla (A) and families (B)
from R16 plots. Presented are only those taxa that contributed more
than (A) 2% or (B) 5% relative abundance to each sample.

Figure S6. (A) Principal coordinate analysis of rhizobacterial weighted
UniFrac community dissimilarity under ambient CO, (left panel) and
elevated CO, (right panel), and colored by nitrogen fertilization
treatment.

Figure S7. Net relatedness index of rhizobacterial communities
under control, nitrogen fertilized (+N), elevated atmospheric Co,
(eCO,), or eCO,+N from monoculture plots, facetted by plant
functional group.

Figure S8. Relative contribution of rhizobacterial orders (A) and
families (B) to predicted N-cycling functional genes from 16 plant
species plots: nifH, napA, narG, nirK, and nosZ.

Figure S9. Plant responses as percent change from control (zero line)
under nitrogen fertilization (+N), elevated atmospheric CO, (eCO,),
or the combination of +N and eCO, from 16 plant species plots
averaged from years 2012-2014.

Figure S10. Plant growth and %N responses (percent change) under
+N, eCO,, or +N + eCO, from monoculture plots (n=64), facetted
by plant functional groups (C,, C,, forb, legume).

Table S1. Planted and mean observed richness values for all plots
used in this study across the years 2012-2014.

Table S2. Results of pairwise ANOVA of plant growth and nutrient
responses under plant functional groups (C,, C,, forb and legume).
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