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Abstract
1.	 Litter decomposition is a key ecological process that determines carbon (C) and 

nutrient cycling in terrestrial ecosystems. The initial concentrations of C and nu-
trients in litter play a critical role in this process, yet the global patterns of litter in-
itial concentrations of C, nitrogen (N) and phosphorus (P) are poorly understood.

2.	 We employed machine learning with a global database to quantitatively assess 
the global patterns and drivers of leaf litter initial C, N and P concentrations, as 
well as their returning amounts (i.e. amounts returned to soils).

3.	 The medians of litter C, N and P concentrations were 46.7, 1.1, and 0.1%, respec-
tively, and the medians of litter C, N and P returning amounts were 1.436, 0.038 
and 0.004 Mg ha−1 year−1, respectively. Soil and climate emerged as the key pre-
dictors of leaf litter C, N and P concentrations. Predicted global maps showed that 
leaf litter N and P concentrations decreased with latitude, while C concentration 
exhibited an opposite pattern. Additionally, the returning amounts of leaf litter C, 
N and P all declined from the equator to the poles in both hemispheres.

4.	 Synthesis: Our results provide a quantitative assessment of the global concentra-
tions and returning amounts of leaf litter C, N and P, which showed new light on 
the role of leaf litter in global C and nutrients cycling.
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1  |  INTRODUCTION

The decomposition of plant litter, which is the main source of soil car-
bon (C) and nutrients, is a crucial ecological process that determines 
the C and nutrient cycling in terrestrial ecosystems (Guo et al., 2021; 
Hobbie, 2015). It is also the main way by which plants return C and 
nutrients to soil, driving the accumulation and formation of soil 
organic matter (Berg & McClaugherty,  2020; Elser et  al.,  2003). 
Nitrogen (N) and phosphorus (P) are recurrent limiting nutrients in 
terrestrial ecosystems and are crucial for the physiological and met-
abolic activities involved in plant growth (Chave et al., 2010; Yuan 
et al., 2011). While many studies have assessed the litter decompo-
sition process and associated releases of C and nutrients (Manzoni 
et al., 2008; Xie et al., 2022; Yue et al., 2018; Zhang et al., 2020), few 
have evaluated the initial concentrations of C, N and P (i.e. concen-
trations of C, N and P in freshly fallen litter) and the quantity of these 
elements returned to the soil at the global scale. This lack of data has 
hindered our ability to quantitatively assess the role of litter in global 
C and nutrient cycling across terrestrial ecosystems.

Globally, changes in climate factors induced by latitude, such as 
temperature and precipitation, result in varied patterns of nutrient 
accumulation in vegetation. Thus, litter initial concentrations of C, 
N and P are likely to differ across taxonomic divisions (Cornwell 
et al., 2008; Pietsch et al., 2014; Zhang et al., 2012). Moreover, plants 
with different lifeform exhibit diverse growth and nutrient use strat-
egies (Killingbeck, 1996; Zhang et  al., 2022). In contrast to herba-
ceous plants, slow-growing woody plants exhibit lower nutrient 
uptake rates and greater nutrient resorption (Carrera et al., 2000; 
Huang et al., 2018). Additionally, mycorrhizal association represents 
a crucial factor influencing litter initial C, N and P concentrations, 
owing to the varied strategies employed by mycorrhizal fungi for 
plant nutrients uptake (Chen et al., 2019; Frey, 2019), as more than 
90% of the vascular plants on earth are associated with mycorrhizal 
fungi, with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) 
fungi being the dominant types (Brundrett & Tedersoo, 2018; Keller 
& Phillips, 2019). Nevertheless, the effects of these factors on the 
initial concentrations of litter C, N and P remain elusive at the global 
scale.

The return of plant litter to soil supplies a large proportion of 
nutrients, such as N and P required for plant growth, while their 
returning amounts (i.e. amounts returned to soils) are determined 
by their initial concentrations (Geng et al., 2022; Qin et al., 2019). 
Evidence suggests that litter production and nutrient return are 
important drivers of ecosystem processes, including nutrient cy-
cling (Muqaddas & Lewis,  2020), soil and water conservation 
(Dunkerley, 2015), and soil fertility (Pandey et al., 2007). Moreover, 
these processes exhibit high spatiotemporal heterogeneity and are 
influenced by vegetation type, species composition and climate con-
dition (Jasińska et al., 2020; Kitayama et al., 2021; Zhu et al., 2019). 
Recent studies indicated that plant litter elements in terrestrial eco-
system had clear geographical patterns at region and global scales, 
which are jointly driven by climate, soil properties and vegetation 
(Ochoa-Hueso et  al.,  2019; Xie et  al.,  2022; Yuan & Chen,  2009). 

Climate factors, such as precipitation and temperature have a di-
rect impact on plant physiology, phenology, and ecology, including 
the uptake of C, N and P (Tjoelker et al., 1999; Woods et al., 2003). 
Similarly, soil nutrients are directly linked to plant growth and their 
corresponding concentrations in plant tissues (Isaac & Borden, 2019; 
Moreau et al., 2019), and thus modulate the concentrations of plant 
litter C, N and P, either individually or interactively with climate. For 
instance, slow decomposition and mineralization of organic matter 
under cold climate can reduce soil nutrient availability, leading to 
reduced nutrient concentrations in plant tissues and consequently 
in litter (Reich & Oleksyn, 2004; Yuan et al., 2011). In addition, el-
evation is another important environmental factor affecting litter 
concentrations of C, N and P, because it is closely related to climate 
(Weemstra et al., 2021). However, up to date, the global patterns and 
drivers of litter initial C, N and P concentrations and their return-
ing amounts have not been quantitatively assessed (Hu et al., 2021; 
Muqaddas & Lewis, 2020), thus limiting our in-depth understanding 
of the role of litter in terrestrial C and nutrient cycling.

Here, to explore the global patterns of litter concentrations and 
returning amounts of C, N and P, we constructed a global database 
of 22,998 records from 2575 sites (Figure 1 and Figure S1). Because 
limited data available of bryophytes and ferns in our database, we 
focused our analysis on angiosperm and gymnosperm plants only, 
as these two groups contained 2099 and 122 species, respectively 
(Figures S2 and S3). In addition, due to the scarcity of data on other 
types of litter apart from leaf litter (Figure S4), we focused our sta-
tistical analysis primarily on leaf litter.

We used machine learning techniques to identify the key envi-
ronmental variables and develop the most effective predictive mod-
els for leaf litter initial concentrations of C, N and P. Specifically, we 
constructed linear and non-linear predictive models for predicting 
leaf litter production and initial concentration of C, N and P based on 
the best predictors. These models were then used to generate pre-
dictions for leaf litter initial concentrations and returning amounts 
of C, N and P at the global scale. We hypothesised that litter initial 
concentrations of C, N and P are significantly influenced by lifeform, 
mycorrhiza association, and taxonomic division. The objectives of 
this study were to (1) evaluate the leaf litter initial concentrations of 
C, N and P at the global scale; (2) determine the relative importance 
of factors on leaf litter initial concentrations of C, N and P; and (3) 
use eight approaches to predict the global patterns of leaf litter ini-
tial concentrations and returning amounts.

2  | MATERIALS AND METHODS

2.1  | Data collection and preprocessing

Peer-reviewed articles, book chapters and academic dissertations 
including the data of litter initial concentrations of carbon (C), nitro-
gen (N), and phosphorus (P) were searched on Web of Science, Google 
Scholar and China National Knowledge Infrastructure in November 
2021 using the search terms of (“plant litter” OR “leaf litter” OR 
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“foliar litter” OR bark OR branch OR deadwood OR “woody debris” 
OR “root litter”) and their equivalents in Chinese. To avoid publica-
tion bias, only studies meeting the following criteria were included 
in the database: (1) data were obtained through field experiments or 
observational studies rather than been estimated or remote sensed; 
(2) at least one of the concentrations of C, N or P was reported; 
and (3) the Latin names of plants and litter types should be clearly 
reported. We focused on terrestrial natural ecosystems, excluding 
ecosystems such as croplands, urban forests and mangroves. We 
only considered freshly fallen litter and did not collect senescent or 
decomposed litter. Specifically, we did not gather data with a de-
composition time of 0 days in litter bags, as we consider them not to 
be initial litter. If different locations or sampling time were studied 

within the same paper, they were considered as independent obser-
vations. Data were obtained from tables, main texts, supplementary 
materials or figures (using GetData software, https://​getda​ta.​com). 
To avoid data repetition, we cleaned the data by removing records 
with identical initial litter C, N and P concentrations in samples taken 
at the same geographical coordinates. After extraction and compila-
tion, a total of 20,032 data points (5722 for C, 8572 for N and 5738 
for P) from 1798 publications (Figure 1; Notes S1) were included in 
our study. Meanwhile, we used several published databases of global 
litter production (Holland et al., 2015; Jia et al., 2016; Liu et al., 2019; 
Neumann et  al.,  2018), which included 2966 data points in total 
(Figure S1), for calculating the returning amounts of leaf litter C, N 
and P.

F IGURE  1 Map of study sites where the data of litter carbon (C), nitrogen (N) and phosphorus (P) concentrations are compiled in our 
database.
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To determine mycorrhizal association of litter-producing plants, 
we used a currently published peer-reviewed database named 
FungalRoot (Soudzilovskaia et al., 2020) and divided them based on 
their Latin names according to the World Flora Online (www.​world​
flora​online.​org). We divided mycorrhizal association into three 
types, namely arbuscular mycorrhizal fungi (AM), ectomycorrhizal 
fungi (ECM) and dual (i.e. species associated with both AM and ECM 
fungi), because the roots of more than 90% of terrestrial plant species 
are associated with either AM or ECM fungi (Brundrett, 2009). Also, 
we determined lifeform (woody vs. herbaceous) according to Latin 
names following a previous review (Richardson & Rejmánek, 2011) 
and classified taxonomic division (angiosperm vs. gymnosperm) ac-
cording to online botanical databases of Missouri Botanical Garden 
(http://​www.​misso​uribo​tanic​algar​den.​org), eFloras (http://​www.​
eflor​as.​org), and Identification guide for the wild trees of the Canary 
Archipelago (https://​www.​arbol​appca​narias.​es).

To assess the effects of litter type, lifeform, mycorrhizal asso-
ciation and taxonomic division on litter initial concentrations of C, 
N and P, we used generalised linear mixed-effects model using the 
“lme4” package (Bates et al., 2015). Each predictor was fitted as a 
fixed-effects factor and the identity of primary studies from which 
data were collected as a random-effects factor to account for the 
potential dependence of data points collected from a single primary 
study. For factors that showed significant effects, we then tested 
post hoc comparisons at α = 0.05 using the “emmeans” package 
(Russell et al., 2018).

2.2  | Variable selection

To determine the essential factors that control the patterns of 
leaf litter initial concentrations of C, N and P at the global scale, 
we collected data of climate, plant, topography and soil proper-
ties that were reported to affect plant C and nutrient concentra-
tions (Steidinger et al., 2019; Vallicrosa et al., 2022; Xie et al., 2022). 
Among them, 21 climate variables represented average for the years 
of 1970–2000. Gross primary production (GPP) data were average 
for the years of 1988–2020 in remote sensing datasets. The soil data 
encompassed 32 variables for the 0–45 cm soil layer. Additionally, 
elevation and slope data were included (see Table  S1 for details). 
Data for climate, plant, topographic and soil were added to leaf litter 
production and initial concentrations of C, N and P using the “raster” 
package (Hijmans, 2023) based on the geographic coordinates from 
the studies.

To minimise the effects of multicollinearity, the variance inflation 
factors (VIF) of all independent predictor variables were estimated, 
and the maximum variance inflation factor was eliminated until the 
variance inflation factor of all independent variables were below a 
threshold of five using the “car” package (Fox et al., 2007). We then 
used “VSURF” package (Genuer et al., 2015) for variable selection 
procedure through random forest, which used a variable profile 
based on random forests permutation-based score of importance 
and using a stepwise forward strategy. This strategy added a variable 

only when the reduction in error was greater than a threshold, that 
is the reduction in out-of-bag (OOB) error must be significantly 
greater than the average change obtained by adding noisy variables. 
Consequently, we final selected subsets of 6, 7 and 6 environmental 
variables for leaf litter C, N and P concentrations, respectively, to 
minimise redundancy and maximise model performance (Figure S5). 
Notably, multicollinearity among the selected variables was limited, 
as no pair of predictor variables had a Pearson coefficient greater 
than 0.64 (Figure S6).

2.3  |  Predictive modelling

To quantify the relationships between leaf litter initial concentra-
tions of C, N and P and environmental predictors, we fitted several 
linear regression and machine learning models. Specifically, we con-
structed a total of four linear regression models and four machine 
learning models to evaluate their efficacy in predicting leaf litter C, 
N and P concentrations, with the aim of identifying the best models 
for predicting leaf litter C, N and P concentrations. Linear regression 
models included linear regression (LM) model and linear regression 
model with (LEAPS) stepwise selection (Ziegel, 2003), least angle re-
gression (LARS) model (Efron et al., 2004), and Elastic Net (ENET) 
model (Zou & Hastie, 2005). On the other hand, machine learning 
models included boosted tree (BOOSTED; Friedman, 2001), random 
forest (RF; Breiman,  2001), extreme gradient boosting (XGBoost; 
Chen et  al.,  2015) and cubist (CUBIST; Quinlan,  1992) models. All 
models except for the LM model incorporated built-in tuning pa-
rameters (i.e. hyperparameters), which could determine the train-
ing strategy and the relevant efficiency of the algorithm (Bergstra 
& Bengio, 2012). And we used “train” function from “caret” package 
(Kuhn, 2008) to optimise the model tuning parameters.

More specifically, LEAPS models were trained for the maximum 
number of variables. LARS and ENET models were trained with 0, 
0.01 and 0.1 quadratic penalty parameter. For each RF models, we 
set the 500 regression trees for maximum number. In XGBoost mod-
els were trained with learning rate of 0.1, 0.2 and 0.3 with two to five 
maximum depth of a tree, 100, 150 and 200 max number of boosting 
iterations, 0 of minimum loss reduction required to make a further 
partition on a leaf node of the tree, and 0.6, 0.7 and 0.8 of subsample 
ratio of columns when constructing each tree and subsample ratio 
of the training instance. CUBIST models were trained with between 
1 and 9 by 2 neighbours and 1, 5, 10, 50, 75, and 100 communities. 
The package “leaps” was used to fit Leaps, “lars” to fit Lars, “elastic-
net” to fit ENET, “plyr” and “mboost” to fit Boosted, “randomForest” 
to fit RF, “XGBOOST” to fit XGBoost, “Cubist” to fit CUBIST.

To evaluate the predictive accuracy of model and minimise the 
risk of overfitting, we conducted tenfold cross-validation repeated 
10 times with 80% training to 20% validation data for all models to 
find out the best model hyperparameters by the lowest rooted mean 
squared error (RMSE). Finally, we assessed RMSE and determination 
coefficient (R2) for all tuned models and ranking model performance 
to find out best model (lowest RMSE and highest R2). The results 
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showed that the random forest models performed the best for all 
leaf litter initial concentrations of C, N and P, and were subsequently 
used for all subsequent analyses (Table S2).

2.4  | Variable importance

To estimate the relative influence of each environmental vari-
ables for predicting leaf litter initial concentrations of C, N and P, 
we evaluated the importance of variables using “caret” package for 
best-performing random forest models, which enables reciprocal 
measures of variable importance through the variable importance 
tool. Specifically, the results of the variable importance in random 
forest models indicated the influence of predictor variables on the 
model results (Wei et al., 2015), where each of the predictor vari-
ables was normalised within a range of 0%–100% to represent the 
relative importance to the model results. Specifically, to assess the 
prediction error in the model, the arrangement variable importance 
measure used OOB estimation to calculate the RMSE for each given 
regression tree (Breiman, 2001; Grömping, 2009). The derived vari-
able importance measure for the random forest model presents the 
impact of the environmental predictors to the model results (Wei 
et al., 2015).

To visualise the relationships between leaf litter production and 
initial concentrations of C, N and P, and the single environmental 
predictors, we used partial dependence analyses using the “pdp” 
package (Greenwell, 2017). The partial dependence plot can demon-
strate the influence of individual predictors on the outcome of the 
machine learning model by displaying the predicted response to a 
predictor while holding all other predictors at their average values 
(Friedman, 2001).

2.5  | Global prediction

To calculate leaf litter returning amounts of C, N and P, we also per-
formed the random forest model with 4 selected soil and climate 
predictors (Figure  S7) for leaf litter production (i.e. yearly leaf lit-
terfall), which showed a better fit (R2 = 0.72).To identify the global 
distribution of vegetation (i.e. trees, shrubs and herbs), we used land 
cover map from 2018 ESA CCI-LC v2 at 300 m original resolution, 
and selected “forest”, “shrubland” and “grassland” classes using the 
table of correspondence between the IPCC land categories and the 
CCI-LC classes to be extracted at 0.5° × 0.5° resolution (Table S3). 
We precluded areas from our prediction maps in which (1) any of the 
environmental predictors had missing data, and (2) the land cover 
type varied from the integrated land cover systems illustrated above. 
Accordingly, we employed the best random forest models to predict 
leaf litter production (Figure S8) and initial concentrations of C, N 
and P, and exhibited the projections by predicting pixel geographic 
coordinates (i.e. latitude and longitude) at 0.5° × 0.5° resolution. And, 
we can calculate annual C, N and P returning amounts of leaf litter as 
follows (Vitousek, 1982):

where NR is the annual returning amount of litter C, N or P 
(Mg ha−1 year−1); C is concentration (%) of litter C, N or P; and M is the 
annual litter production amount (Mg ha−1 year−1).

To evaluate the uncertainty associated with map creation, we 
computed the mean and standard deviation (SD) for coefficient of 
variance (CV), that is the ratio of SD to mean, of leaf litter production 
and initial concentrations of C, N and P in each pixel by randomly 
sampling 500 trees from global predicted random forest model. 
Subsequently, we employed the 500 estimates of litter nutrient 
concentrations and litter production in each pixel to derive 500 es-
timates of litter nutrient returning amounts, from which we can cal-
culated the mean, SD, and CV (Figure S9).

2.6  |  Spatial autocorrelation

Spatial autocorrelation is a common issue in spatial data analysis, 
and neglecting it can result in an overestimation of the model's pre-
dictive performance (Cai et al., 2023; Ploton et al., 2020). Thus, we 
performed semivariograms to identify the spatial autocorrelation 
patterns in our plant litter data before conducting spatial analyses 
(Figure S10), and examined the model residuals for spatial autocor-
relation (Figure S11). Results indicated that spatial autocorrelation 
had minimal impact on our prediction models. All statistical analyses 
were performed with R v.4.2.2 (R Core Team, 2022).

3  |  RESULTS

3.1  |  Litter C, N and P concentrations

The initial concentrations of C, N and P differed significantly among 
litter types. Specifically, wood litter had the highest C concentration, 
with a median of 48.4%. Likewise, the concentration of N was found 
to be the highest in flower litter as compared to other litter types, 
with a median value of 1.5%. Root litter exhibited the highest initial 
concentration of P, with a median value of 0.1% (Figure S4).

Leaf litter initial concentrations exhibited a wide range of C, N 
and P, with values ranging from 16.1% to 71.4% (median 46.7%), 
from 0% to 6.8% (median 1.1%), and 0% to 1.8% (median value 0.1%), 
respectively (Figure S12). The initial concentrations of C, N and P in 
leaf litter were found to be significantly influenced by lifeforms, my-
corrhizal associations and taxonomic divisions. Specifically, leaf litter 
C concentration in woody plants was higher than that in herbaceous 
plants. Gymnosperm plants had higher litter C concentration than 
angiosperm plants. Additionally, leaf litter from plants associated 
with ECM or both AM and ECM fungi exhibited higher C concentra-
tions as compared to AM fungi (Figure 2). Leaf litter N concentration 
was higher from angiosperm plants and plants associated with AM 
or both AM and ECM fungi, but was not significantly affected by 
lifeforms. In addition, leaf litter P concentration showed an opposite 

(1)NR = Ci ×Mi × 100,
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trend compared to C concentration, with higher P concentrations in 
herbaceous, AM or both AM and ECM fungi, and angiosperm plants 
than in woody, ECM, and gymnosperm plants.

3.2  | Drivers of leaf litter C, N and P concentrations

Our study successfully developed the best random forest regres-
sion models, which showed that leaf litter initial concentrations of 
C, N and P could be predicted by a combination of global-scale soil 
and climate interactions (Figure 3). Non-linear model approach per-
formed significantly better than linear models for all leaf litter initial 
concentrations of C, N and P (Table S2). The results also showed that 
soil properties only explained a relatively small proportion (32.8%) 

but climate explained a majority proportion (67.2%) of leaf litter C 
concentration. The most important factor for leaf litter C concen-
tration was isothermality (Figure  3d). Similarly, isothermality was 
also identified as the most significant factor influencing leaf litter N 
concentration (Figure 3e), and it was primarily controlled by climate 
(57.5%) and soil properties (42.5%). Although mean diurnal range 
emerged as the most important factor for leaf litter P concentration 
(Figure 3f), only a relatively small portion of it was influenced by cli-
mate (48.4%) as compared to leaf litter P concentration regulated by 
soil properties (51.6%). To better understand the direction of these 
relationships, we created partial dependence plots that revealed 
non-linear increasing or decreasing trends in leaf litter initial con-
centrations of C, N and P in response to soil and climate predicted 
factors, indicating a strong interaction between these environmen-
tal variables (Figure 4).

3.3  | Global maps of leaf litter C, N and P 
concentrations and returning amounts

At the global scale, leaf litter C concentration was higher in Northern 
and Eastern Asia, central Africa, Northern and Southern America, 
and Central Europe compared with other regions. On the other 
hand, leaf litter N concentration was higher in Oceania, southern 
Asia, Africa, and southern America. P concentration was found to be 
higher in central and northern Africa, and southern Asia (Figure 5). 
In addition, we observed that leaf litter initial concentrations of C, 
N and P showed latitudinal patterns, with N and P concentrations 
increasing from the equator to both poles while leaf litter C con-
centration decreased from the poles to the equator (Figure S13a–c).

Our analysis of leaf litter C, N and P returning amounts across 
different regions revealed distinct spatial patterns (Figure  5). 
Specifically, leaf litter C returning amount was predicted to be high-
est in Central America, Central Africa, Southern Asia and Northern 
Oceania compared with other regions. Conversely, both leaf litter N 
and P returning amounts were lowest in Central and Northern Asia, 
Southern Oceania and Northern America. Furthermore, we founded 
that leaf litter C, N and P returning amounts also showed a latitudinal 
gradient, decreasing from the equator to the poles (Figure S13d–f).

4  | DISCUSSION

Supporting our hypothesis, the results showed that leaf litter initial 
concentrations of C, N and P were significantly affected by lifeforms 
(woody and herbaceous plants), mycorrhizal associations (AM, ECM 
and plants with both AM and ECM fungi), and taxonomic divisions 
(gymnosperms and angiosperms). Our results indicated that litter 
derived from woody plants had a higher C concentration to that 
of herbaceous plants, whereas no significant difference was ob-
served in N concentration. Carbon is an important element invested 
in plant structure and defence through the synthesis of cellulose 
and lignin (Freschet et al., 2012). In general, leaves of woody plants 

F IGURE  2 Comparison of leaf litter C (a), N (b) and P (c) 
concentrations within lifeform, mycorrhizal association and 
taxonomic division. The box spans form the first to the third 
quartile, with median and mean marked as the black horizontal line 
and red solid circle of the box. Different letters indicate significant 
differences among various plant mycorrhizal associations at 
*p < 0.05, **p < 0.01 and ***p < 0.001. ns, not significant between 
groups (p > 0.05); AM, arbuscular mycorrhiza; ECM, ectomycorrhiza; 
Dual, plant associated with both AM and ECM fungi.

*** *** ***
c a b

30

40

50

60

Le
af

 li
tte

r C
 (%

)
(a)

*** ***a

b

a

0

1

2

3

Le
af

 li
tte

r N
 (%

)

(b)

*** ** ***
b

a ab

0.0

0.1

0.2

0.3

Le
af

 li
tte

r P
 (%

)

(c)

Mycorrhizal DivisionLifeform

Woody

Herbaceous

AngiospermAM
ECM

Dual

Gymnosperm

ns

 13652745, 2024, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.14250 by U

niversity O
f M

innesota Lib, W
iley O

nline Library on [31/10/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://besjournals.onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2F1365-2745.14250&mode=


    | 723YUAN et al.

typically exhibit greater thickness and contain more cells, along with 
cell wall components such as lignin, cellulose and hemicellulose (Li 
et al., 2016; Peng et al., 2022; Popper et al., 2011). These constitu-
ents may contribute to the higher C concentration in the leaf litter 
of woody plants. The P concentration in leaf litter of woody plants 
were observed to be lower compared to that of herbaceous plants, 
which may be attributed to the higher demand of herbaceous plants 
for P to maintain their leaf structure and function as compared to 
woody plants (Kerkhoff et al., 2006).

Our results revealed that the initial concentrations of C in leaf 
litter from plants associated with ECM fungi and gymnosperms 
were higher than those in plants associated with AM fungi and an-
giosperms, while N and P concentrations showed an opposite trend 
compared with C concentration. Plants associated with ECM fungi 
typically have more branched root systems, which can lead them to 
take up more C in the soil (Cheng et  al.,  2016). Also, plants asso-
ciated with ECM fungi generally grow in organic matter-rich forest 
soil, which may have higher C stocks, resulting in higher C concentra-
tion in the leaf litter of ECM plants (Tedersoo & Bahram, 2019; van 
der Heijden et al., 2015). In general, angiosperm plants had higher 
nutrient uptake capacity and growth rate (Hobbie et  al.,  2006; 
Prescott et al., 2004), and the growth rate hypothesis indicates that 
fast-growing plants usually have higher leaf N:P ratio, as N is key 
limiting factor for boreal forests that are required for the metabolic 

activity of plants (Kerkhoff et  al.,  2006; Reich & Oleksyn,  2004; 
Tian et al., 2018). Moreover, the mycorrhizal associations of plants 
were found to be closely linked to taxonomic divisions and ac-
knowledged as a significant factor influencing ecosystem functions 
(Soudzilovskaia et al., 2019). Our results reveal that leaf litter derived 
from plants associated with AM fungi possesses higher litter quality 
compared to litter from plants associated with ECM fungi. This dis-
tinction can be attributed to the prevalence of angiosperm plants 
with AM fungi in tropical and subtropical regions, where nutrient cy-
cling occurs at a rapid pace. In contrast, ECM fungi tend to dominate 
in high-latitude ecosystems characterised by slower nutrient cycling 
processes (Soudzilovskaia et al., 2015; Zhang et al., 2018).

According to our predicted global map, leaf litter initial concen-
tration of C increased with latitude in both hemispheres, whereas 
litter C returning amount demonstrated an inverse relationship. 
Conversely, both leaf litter initial concentrations of N and P exhib-
ited a decline with increasing latitude, consistent with previous find-
ings (Xie et al., 2022). This may be associated with the nutrient use 
efficiency of plants. Plants growing in soils with low nutrient use ef-
ficiency tend to have higher N and P absorption efficiency compared 
to species in fertile soils (Lü et al., 2012; Richardson et al., 2005), 
which results in nutrients residing longer within the plant, adopting 
a more conservative nutrient use strategy (Silla & Escudero, 2006). 
Consequently, nutrient-poor soils receive fewer nutrients from 

F IGURE  3 Prediction performance and variable relative importance of leaf litter C, N and P concentrations. (a–c) Predictions for leaf litter 
C (a), N (b), and P (c). The grey dashed lines indicate the 1:1 line, and the red solid lines indicate the regression line between predicted and 
observed values. (d–f) Relative importance assessed by random forest models run with the most important environmental variables for leaf 
litter C (d), N (e) and P (f) concentrations. Environment variable abbreviations are listed in Table S1.
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plant litter, increasing the plant nutrient use efficiency and creating 
a further feedback effect on plant litter decomposition (Kitayama 
et al., 2004; Kobe et al., 2005). However, in contrast to the trend 
of leaf litter concentrations of N and P, fresh leaf and soil P concen-
tration increased with latitude (Reich & Oleksyn, 2004; Shangguan 
et  al.,  2014; Vallicrosa et  al.,  2022; Xie et  al.,  2022). Low-latitude 

regions are predominantly characterised by tropical rainforests and 
subtropical broadleaf evergreen forests, which are typically lim-
ited by P, while high-latitudes regions are dominated by coniferous 
forests, which are limited by N. Furthermore, fast-growing tropical 
broad-leaved plants tend to have higher N and P concentrations 
(FAO, 2020; Sardans & Peñuelas, 2013). The observed patterns of 

F IGURE  4 Partial dependence plots of the predicted variables for leaf litter C, N and P concentrations. The black solid lines indicated the 
locally weighted regression. Environment variable abbreviations are listed in Table S1.
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leaf litter initial N and P concentrations in gymnosperm and angio-
sperm species align with previous findings that highlights the impor-
tance of C in the synthesis of structural (e.g. cellulose) and defensive 
(e.g. polyphenols) compounds in terrestrial plants, and coniferous 
plants with conserved nutrient strategies tend to have high C con-
centration (Freschet et al., 2012). Additionally, differences in growth 
strategies may contribute to the observed trend, as leaf litter initial 
concentration of C is typically much higher in hot and rainy tropical 
areas than in high latitudes.

Broadly speaking, the plant litter initial nutrient concentration 
is an important factor influencing litter decomposition, while envi-
ronmental factors are of secondary importance (Ball et  al.,  2022; 
García-Palacios et  al.,  2013). Globally, litter decomposition shows 
faster rates near the equator, gradually decreasing towards the 
poles. This phenomenon is primarily attributed to the fact that lit-
ter from high-nutrient and low-C concentration plants tends to 
decompose more rapidly compared to litter from low-nutrient and 
high-C plants (Freschet et al., 2012; Zhang et al., 2008), which is in 
agreement with our results for predicting global leaf litter initial con-
centrations of C, N and P. Plant litter initial C and nutrients concen-
trations can also indirectly regulate the litter decomposition process 
by modulating microbial decomposers (Yue et al., 2018), where litter 
N and P concentrations are considered to be the main determinants 
of soil microbial colonization-degradation (Cornwell et  al.,  2008). 
Microbial stoichiometry underlies the nutrient requirements of mi-
crobial communities, and heterotrophic microbes in plant litter are 

thought to be N- or P-limited (Zechmeister-Boltenstern et al., 2015). 
Among these, gram-negative bacteria are considered the primary 
decomposers in litter with high organic matter and N availability 
(Fierer et al., 2003), while gram-positive bacteria and fungi are more 
abundant in litter with lower initial nutrient concentrations (Bray 
et al., 2012). Our results also indicated that soil microbial nutrients 
influence the litter initial concentrations of C, N and P. This is be-
cause microbes largely show homeostatic properties, allowing the 
microbial community to alleviate limitations imposed on plants by 
N and P (Zechmeister-Boltenstern et  al.,  2015). Furthermore, ter-
restrial litter serves as a significant source of freshwater litter, and 
their connection is closely intertwined. Interestingly, some studies 
suggest that the decomposition of freshwater litter is predominantly 
influenced by microbial communities and initial nutrient elements 
of the litter, rather than the physical properties of stream (Boyero 
et al., 2011; García-Palacios et al., 2016). Throughout both aquatic 
and terrestrial ecosystems, the decomposition of litter C and N is 
regulated by common driving factors (Yue et al., 2018). It is demon-
strated that the study on the distribution of initial concentrations 
and driving factors for terrestrial litter lays the foundation for a 
common model of litter decomposition dynamics in both terrestrial 
and aquatic ecosystems. Overall, the initial concentrations of litter 
significantly affect the decomposition rate and nutrient release, as 
well as microbial activity during litter decomposition. Therefore, our 
study established a global database of the initial litter concentrations 
and returning amounts of C, N and P, which need to be appropriately 

F IGURE  5 The global patterns of C, 
N and P concentrations and returning 
amounts in leaf litter. The maps on the left 
and right show the concentrations and 
returning amounts for C (a), N (b) and P 
(c), respectively. All maps are projected at 
0.5° resolution.
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parameterised into global litter decomposition models. It is better to 
simulate litter decomposition processes, aid in predicting nutrient 
cycling and C dynamics within litter layers, and enhance the accu-
racy of global C and nutrient cycling models.

Despite the overall patterns were found in our study, limita-
tions still exist because of the availability of data for certain vari-
ables or processes. For instance, we observed that plant lifeforms, 
mycorrhizal associations, and taxonomic divisions significantly in-
fluenced litter initial concentrations of C, N and P, but could not be 
included in the predicting models due to the lack of comprehensive 
global datasets for these variables. Also, the focus in plant litter 
studies have been primarily on leaf litter, with limited studies on 
other litter types, which limits our ability to further analyse and 
predict global litter C, N and P models in addition to leaf litter. In 
addition, a majority of the available study sites have been concen-
trated in the northern hemisphere, especially in China, Europe and 
the United States. This geographical bias may have limited the gen-
eralizability of the results to other regions. Therefore, future stud-
ies on litter elements should consider the impacts of factors like 
lifeforms, mycorrhizal associations and taxonomic divisions, and 
expand the scope of data coverage to focus more on litter types 
other than leaf litter.

5  |  CONCLUSIONS

Our study quantified the global patterns of litter C, N and P concen-
trations and returning amounts and found that leaf litter C, N and P 
concentrations were affected by mycorrhizal association, taxonomic 
division and/or lifeform. Among the factors that affect litter C, N and 
P concentrations, climate and soil were the most important ones. 
Globally, leaf litter C concentration increased with latitude in both 
hemispheres, while N and P concentrations as well as the returning 
amounts of leaf litter C, N and P decreased with latitude in both 
hemispheres. These results provide new insight for understanding 
the role of litter in biogeochemical cycling of terrestrial ecosystems, 
and could also improve the predictions of process-based models for 
terrestrial C, N and P cycling.
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