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Urgent climate action is needed to ensure
effectiveness of protected areas for biodiversity

benefits

Graphical abstract

Question 1) At present:
Are protected areas (PAs) effective in conserving tree diversity-dependent productivity (AP)?
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Question 2) Future 30% PA scenario (within each ecoregion):
Are protected areas (PAs) still effective in conserving tree diversity-dependent productivity (AP)
under the baseline greenhouse gas (GHG) warming?

Highlights
e Protected areas preserve tree productivity and carbon
capture through biodiversity

e Anthropogenic climate change threatens effectiveness of this

tree diversity effect

e Optimized protected areas still vulnerable without climate
change mitigation

e Mitigating climate change is essential for achieving global
biodiversity targets
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In brief

Biodiversity loss and climate change are
interlinked challenges. This study shows
that, while protected areas can preserve
forest productivity and carbon capture
through tree diversity, failing to mitigate
climate change diminishes their
effectiveness, especially in warmer
biomes. Thus, mitigating climate change
is crucial for conservation efforts aimed at
achieving global biodiversity targets.
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SCIENCE FOR SOCIETY Biodiversity loss and climate change are closely intertwined because changes in
climate directly affect habitats, disturbance, and species distribution while biodiversity helps regulate the
climate through processes like carbon capture. Yet, their connection is understated in policy discussions.
Protected areas are crucial for preserving forest productivity and carbon capture, both of which depend
on tree diversity. However, without efforts of climate change mitigation—such as reducing greenhouse
gas emissions, enhancing carbon sequestration, and adopting sustainable land management—the effective-
ness of these areas can be compromised. This could be true even if the goal of protecting 30% of land by 2030
under the Global Biodiversity Framework of the Convention on Biological Diversity is achieved. Our study
highlights the importance of integrating climate change mitigation into conservation policies to maintain
and enhance the ecosystem benefits that biodiversity provides to society.

SUMMARY

The intertwined crises of biodiversity loss and climate change pose a significant sustainability challenge,
threatening ecosystems and human well-being globally. Yet, the nuanced interplay between these chal-
lenges is often understated in policy dialogs. Global biodiversity targets, including 30% protection of the
Earth’s surface by 2030, may fall short without robust climate change mitigation. Here, we illustrate that con-
servation through protected areas can effectively preserve forest productivity and carbon capture, which
depend on tree diversity. However, failing to mitigate climate change diminishes the effectiveness of these
areas, especially in warmer biomes. Even with optimal protected area selection, preserving tree diversity-
dependent productivity could be compromised without significant climate change mitigation. Our findings
emphasize the need to integrate climate change mitigation into biodiversity conservation policies to ensure
the success of the 30 x 30 targets and sustain the ecosystem benefits biodiversity provides to society.
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INTRODUCTION

Climate change and biodiversity loss are interconnected, dual
environmental challenges of our time."? Their interconnectedness
has been increasingly acknowledged across various sectors,
including policy,>® health,”'° business,'’ and academia.'*"”
The joint workshop by the Intergovernmental Science-Policy Plat-
form on Biodiversity and Ecosystem Services (IPBES) and the
Intergovernmental Panel on Climate Change emphasized
the inseparable connection between climate and biodiversity for
the future of human development.'”® Despite this knowl-
edge,'>''® there is an imbalance in attention given to these
twin challenges in science and policy,>'%%? with climate change
currently receiving more prominence on the international
agenda.”® The interdependence of climate change and biodiver-
sity loss means that addressing one issue successfully cannot
be achieved without considering the other.'? Therefore, it is imper-
ative to further recognize the importance of biodiversity conserva-
tion in effectively tackling climate change. In fact, a focus on biodi-
versity can provide nature-based solutions that support mitigation
and adaptation actions.?'* 152425

Currently, there is a scarcity of evidence quantifying the role of
biodiversity as a modifier in mitigating climate change.?° This is
in contrast to the extensive body of evidence highlighting the
impact of anthropogenic climate change on life on Earth.>’-2°
Nonetheless, biodiversity is increasingly regarded as an impor-
tant countermeasure in mitigating the ongoing climate
crisis.'® %39 One of the strongest rationales for this lies in the
positive relationship between plant diversity, primary productiv-
ity,>' and thus carbon storage across different biomes.?®-%-3¢
The relationship provides the backbone of nature-based climate
solutions, which are increasingly incorporated into international
policies because of the potential environmental, social, and eco-
nomic benefits.®'*'° In a recent study, we discovered substan-
tial feedbacks between biodiversity and climate stabilization. '
Specifically, our study demonstrated that, in terrestrial biomes,
reducing the adverse impacts of climate change on tree diversity
is crucial because diverse forests play a significant role in carbon
sequestration, thereby contributing to further climate stabiliza-
tion. This feedback loop holds significant implications at the
global scale, suggesting that solving one environmental problem
may help solve the other, whereas not addressing either problem
would further degrade both biodiversity and climate.'?

The Kunming-Montreal Global Biodiversity Framework (GBF)
includes 23 action targets aimed at protecting and restoring
biodiversity and fostering its benefits by 2050.°” However, the
current targets of the GBF, including the climate-focused Target
8, do not consider the potential changes in the distribution of
biodiversity and its future contribution to humanity under
different climatic conditions. These targets implicitly assume
an equilibrium, which needs to be rectified by considering the
potential disequilibrium between climate and ecological sys-
tems.*® Even if global targets, such as protecting 30% of lands
and waters for all ecoregions by 2030 (Target 3), are achieved
based on target metrics, the absence of adequate measures to
address anthropogenic climate change could undermine the
climate impacts of these conservation efforts. More specifically,
anthropogenic climate change could disrupt habitat conditions
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for many taxa, especially for most plants as sessile organisms,
resulting in long-term climate extinction debts® in these pro-
tected areas (PAs).

Despite the growing recognition of the importance of consid-
ering climate velocity in the design of PAs,'"*** there has
been a notable absence of explicit evaluations regarding the
impact of diverse climate scenarios on the benefits derived
from biodiversity in terms of ecosystem functions and services.
In this context, we aim to elucidate the intricate intersections be-
tween biodiversity and climate.’® We here revisit previous as-
sessments of potential losses in forest productivity that are
dependent on tree species richness (hereafter called tree diver-
sity-dependent productivity [AP]),? and introduce a pioneering
perspective by scrutinizing both existing and prospective expan-
sions of PAs under diverse future scenarios. Indeed, this quanti-
tative approach is of paramount importance to address the
growing demands for achieving multiple objectives in selecting
PAs that could contribute to enhanced equity in our society.'”**

Here, we relied on the model used in our prior work,'? which
estimated the effects of possible future climate change and
associated land-use changes on tree diversity’* and the re-
sulting forest productivity®® at fine spatial resolution (30 arc-
seconds; n = ~115 million grid cells). The study considered
two contrasting greenhouse gas (GHG) emission scenarios—
baseline and mitigation—in the form of representative con-
centration pathways (RCPs), along with five different shared
socio-economic pathways (SSPs). The baseline scenario rep-
resents a business-as-usual trajectory, and we explored how
deviating from this pathway can help conserve AP, thereby
supporting nature-based climate solutions.'® Building upon
this model, we here examined the consequences for AP inside
and outside of PAs (Figure 1A) under different future sce-
narios. In the context of the aim of the GBF to increase the
area under protection, we examined the present and future
optimized allocation of PAs to quantify the effect of
conserving biodiversity on global efforts to mitigate climate
change. By conducting this forward-looking assessment, we
quantified the potential synergies and antagonisms between
climate change and biodiversity change. Specifically, we
found that conservation through PAs can effectively preserve
AP. Yet, we also found that failing to mitigate climate change
diminishes the effectiveness of these areas, including a sce-
nario with optimal PA selection. Our findings emphasize the
need to integrate climate change mitigation into biodiversity
conservation policies to ensure and sustain the ecosystem
benefits biodiversity provides to society.

RESULTS AND DISCUSSION

We found that existing PAs in different terrestrial ecoregions world-
wide have been designated in locations that also effectively
conserve tree species in the future. They thus reduce the
potential loss of AP compared to unprotected areas, irrespective
of the societal pathways (SSP scenarios) considered (Figures 1B
and S1). There is thus a potential opportunity to protect places
that may be a win-win for conserving both biodiversity and produc-
tivity. While the role of existing PAs in alleviating the loss of
forest productivity in the future (PA effect, quantified as
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A Changes in tree diversity-dependent productivity in a hypothetical ecoregion
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Figure 1. Effectiveness of PAs in alleviating the loss of AP
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(A) lllustration of our analytical approach using a hypothetical ecoregion with two PAs. The estimated future loss of forest productivity (based on a relationship
between tree species richness and primary productivity) was compared between PAs (dark gray areas) and unprotected areas (light gray areas), yielding the
effect size of biodiversity conservation on forest-based climate regulation (inverse of log(APproTecTED/ APUNPROTECTED))-

(B) Effect sizes for each ecoregion (colored points), considering different climate scenarios based on the two emission scenarios (mitigation and baseline) and the
five shared socioeconomic pathways (SSPs). Positive values indicate that PAs are more effective at alleviating the loss of AP under climate change compared to
unprotected areas. For visual interpretation, only values between —1 and 1 are shown (covering 95.5% of the data; refer to Figure 3 for complete results). Open
circles and bars indicate means and 90% confidence intervals across all ecoregions, respectively.

7Iog(APPROTECTED/APUNPROTECTED)) varies SUbStantia”y across
ecoregions (Figures S2 and S3), the effectiveness of existing PAs
tends to increase under the mitigation scenario compared to the
baseline scenario (Figures 1B and S1). This variability among the
scenarios can be attributed to multiple plausible factors, likely re-
flecting the differing potential and impacts of the GHG mitigation
efforts.*> When quantifying this effect using the baseline emissions
scenario as a control (—log(APymeaTion/APsaseLINE), We also
found that AP is conserved more effectively under the mitigation
scenario, particularly in areas currently under official protection
at both the global (Figure S4) and ecoregion scales (Figure S5).
Additionally, when we incorporated another scenario involving
random selection of PAs from 2005 to 2021 (see experimental pro-
cedures), we found that the actual, realized allocations of PAs has
been more effective overall in reducing the loss of AP in compari-
son to random selection of PAs, especially under the mitigation
scenario (Figures S4 and S5). Taken together, our findings highlight
that mitigating GHG warming can further enhance the positive
impact of terrestrial PAs.

The effectiveness of PAs in mitigating the loss of AP varied
across different ecoregions, with the potential for both synergistic
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and antagonistic consequences (Figure 2). To identify possible
moderators that determine the effectiveness of PAs, we conduct-
ed a meta-regression analysis. Initially, we examined the time
since establishment of PAs (PA age; Figure S6) and found little in-
fluence on the effect size (_IOg(APPROTECTED/APUNPROTECTED»
(Figure S7). Subsequently, we delved into the interaction between
biodiversity and climate change by examining climatic variables.
The analysis revealed that the effect size (—log(APproTeCTED/
APynProTECTED)) Significantly decreased with increasing mean
annual temperature, mostly under the baseline scenarios of
GHG emissions (Figure 3). In contrast, under the mitigation sce-
nario, this change in effect size was only observed for SSP2.
These results indicate that the failure to mitigate the impacts of
climate change on biodiversity can reduce or even negate the
effectiveness of PAs for conserving forest productivity, especially
in warmer ecoregions. This would lead to a missed opportunity
offered by nature-based climate solutions.

In warmer areas, biodiversity is particularly vulnerable to local
extinction due to lagged responses to climate change, especially
among plant species that are unable to disperse rapidly enough
to keep pace with changing climate conditions.*°“® This climate



One Earth

>

SSP1
1.00 {pmpmpn

SSP2 SSP3 SSP4 SSP5

|
0.75 1 ‘
J
0.50 1

0.25 4

0.00 4

GFDL

HadGEM2
GFDL

HadGEM2
GFDL

HadGEM2 -
GFDL

HadGEM2
GFDL

MIROC A

MIROCH

MIROC 4
HadGEM2

MIROC

o

)

Proportion of synergistic/antagonistic outcomes
(by number)
MIROC

[lAntagonistic  No intereaction [ Synergetic

D
SSP1

1.00 ;

SSP2 SSP3 SSP4 SSP5

0.75 4

0.50

0.25 4

0.00

GFDL |

GFDL
HadGEM2+ |

HadGEM2+
GFDL+

HadGEM2+
GFDLH

HadGEM2
GFDL|

MIROCH
MIROCH
MIROCH
HadGEM2 4
MIROCH
MIROCH

GCM
Synergistic outcome: PA effect [-1 x log(&P, .. /AP

Proportion of synergistic/antagonistic outcomes
(by area)

UNPROTECTED!

Antagonistic outcome: PA effect [-1 x log(AP, ... .../AP

UNPROTECTED

¢? CellPress

OPEN ACCESS

C Synergy

Vote count 5 10 15

Antagonism

)1 is higher under GHG mitgation than baseline scenario
)] is higher under GHG baseline than mitigation scenario

Figure 2. Interactions between conservation and climate change mitigation

(A and B) Proportion of synergistic, neutral, and antagonistic outcomes in each ecoregion in terms of the effect of protected areas (PAs) and greenhouse gas
(GHG) emission scenarios. Synergistic effects reflect that the PA effect on climate regulation (inverse of log(APprotecTED/APUNPROTECTED)) IS Significantly (p < 0.1)
higher under the GHG mitigation scenario than the baseline scenario of GHG emissions; antagonistic effects reflect the opposite signal. Results are shown for the
five shared socioeconomic pathways (SSPs) based on the three global climate models (GCMs; MIROC, HadGEM2, and GFDL). The results are summarised by

(A) number of ecoregions and by (B) area represented by these ecoregions.
(C and D) The result of vote counts under the three GCMs and the five SSPs.

debt forces species to migrate into previously cooler areas in
response to climate warming,”” especially under baseline condi-
tions where climatic stress most likely exceeds their toler-
ance.®*“® Given that the thermophilization of plant communities
has already been observed in many parts of the world,3%:46:48:4°
our findings regarding the temperature effects, particularly
prominent under the baseline scenario, align with expectations.
Also, because these warmer areas are often prone to further
land-use change, even under a scenario of climate change miti-
gation,”®*? tree species in these areas could be more vulnerable
than those in cooler areas. Urgent climate action is required to
avoid a severe loss of the functional contributions of plant diver-
sity to ecosystem productivity and carbon storage.

Another effect size (_Iog(APPROTECTED—BASELINE/
APUNPHOTECTED—MlTlGATION)) was calculated to further disen-
tangle possible synergies and antagonisms between the ef-
forts of biodiversity conservation (through PAs) and climate
change mitigation. This allowed us to assess whether efforts

to mitigate the impacts of GHG warming outweigh the effec-
tiveness of PAs (negative values of the effect size) or not (pos-
itive values of the effect size; see experimental procedures).
While the effect size was both negative and positive among
ecoregions, the global mean was significantly negative,
regardless of the SSP (Figure 4A). This indicates that, in the
absence of mitigation efforts, there will be a significant loss
of 18.7%-24.5% in AP within the existing areas under official
protection compared to areas outside these reserves under a
hypothetical future scenario where climate change mitigation
will be implemented. Although there may still be some areas
where conservation efforts can effectively preserve species
and their contributions to ecosystem functioning, overall
area-based conservation efforts cannot be successful without
simultaneous efforts to avoid a business-as-usual pathway of
anthropogenic warming.

This analysis was further extended in light of the GBF Target 3 of
protecting 30% by 2030.°” We hypothetically designated currently

One Earth 7, 1874-1885, October 18, 2024 1877
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Figure 3. Relationship between mean annual temperature and the effect size of PAs (inverse of 10g(APproTeCcTED/ APUNPROTECTED)) at the

ecoregion scale

Solid lines and shaded areas represent the mean trend and 90% confidence intervals, respectively. If not significant (o > 0.1), only dotted lines are shown. Gray
dots indicate values for each ecoregion (n = 627). The meta-regressions were conducted for different climate scenarios and models, separately. Climate sce-
narios were based on the two emission scenarios (mitigation and baseline) and the five SSPs, calculated using the three GCMs (MIROC, HadGEM2, and GFDL).
There was no significant trend between mean annual precipitation and the effect size for all combinations of future climate scenarios, and, thus, results are

not shown.

unprotected grids as protected (until reaching 30% within all ecor-
egions) to maximize the benefits of biodiversity in conserving forest
productivity. Thirty-arcsecond grids that were expected to be
minimally affected by climate change in terms of primary produc-
tivity were prioritized for protection within each ecoregion; that is,
these selected grids represented the areas with the lowest adverse
effects among all grids in each ecoregion (see experimental pro-
cedures). Here, we specifically examined whether mitigating
GHG warming has a greater impact on AP occurring outside of
PA compared to the effect observed inside PAs under a baseline

1878 One Earth 7, 1874-1885, October 18, 2024

scenario where warming proceeds without mitigation. Our analysis
revealed that, even under the optimized designation of PAs with a
quality assessment specifically aimed at maximizing productivity
conservation (albeit with unrealistic exaggeration in extending
the areas under protection), climate change mitigation remains a
priority in order to avoid losing AP (Figure 4B). This finding high-
lights the crucial need to address climate change; otherwise, exist-
ing and future efforts to conserve biodiversity and their benefits to
society, including initiatives to foster other effective area-based
conservation measures, could be in vain.
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Figure 4. Effectiveness of PAs in alleviating the loss of tree diversity-
dependent productivity (AP) under different scenarios

Results are shown for the five SSPs.

(A) The estimates of future loss of AP were compared between protected and
unprotected areas by combining different emission scenarios, leading to the
effect size as a log response ratio (inverse of log(APproTECTED-BASELINE/
APyNPROTECTED-MITIGATION))- The violin and point plots show values of each
ecoregion, with black dots and bars representing means and 90% confidence
intervals, respectively. Negative values indicate that GHG warming mitigation
efforts, even without the contributions of PAs, have a greater impact on alle-
viating the loss of AP compared to the effect observed inside PAs under a
baseline scenario where warming proceeds without mitigation. The mean
values of the log response ratios indicate an estimated 18.7-24.5% loss of AP
within existing PAs under the baseline scenario, as opposed to outside areas
with another hypothetical climate mitigation effort.

(B) The analyses were extended to the optimized 30% protection within
all ecoregions. The black dots and bars indicate means and 90%
confidence intervals of the effect size as a log response ratio (inverse of
log(APproTeCTED-BASELINE/ APUNPROTECTED-MITIGATION)), FESPectively. Same as
above, negative values indicate that actions to counteract GHG warming are
more effective at preserving AP than what happens in PAs where no such
actions are taken. Blue and red dots and bars represent means and 90%
confidence intervals for the estimates at present (mitigation and baseline
scenarios; Figure 1) and are displayed for visual comparison. The mean values
of the log response ratios indicate an estimated 4.7%-15.0% loss of AP within
the optimized and expanded PAs under the baseline scenario compared to
areas outside these reserves with another hypothetical future implementation
of climate change mitigation efforts.

The results of this study have major implications for different
GBF Targets and are also informative for related global initia-
tives. For instance, GBF Target 2 is for restoration. Even if
ecosystem restoration is successful in terms of the targeted
area-based measure (30% restoration), accelerated global
warming could offset the outcomes of this effort. Recently, the
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United Nations (UN) Decade on Ecosystem Restoration in
2021-2030 (www.decadeonrestoration.org) was launched to
ensure the continuity of ecosystem services, including carbon
sequestration.® Likewise, there is increasing recognition of the
importance of ecological restoration in achieving the combined
benefits of carbon sequestration and biodiversity.>*°® For
many efforts to be fully effective, urgent action to mitigate the im-
pacts of global climate change must be taken. Even though there
already exist many important measures of mitigation—including
nature-based solutions and geoengineering approaches—to
achieve the challenging targets of GHG emission reduction
and carbon neutrality,?'?'4245750 these actions should coin-
cide with global efforts to attain a nature-positive future. These
actions include reconsidering our daily lifestyle, such as food

habits and energy consumption®'~°%; changing business models

to reduce remote impacts by supply chains®~°; and adopting
international policy that disincentivizes actions of climate change
mitigation at the expense of local biodiversity.

Undoubtedly, uncertainties remain in the assessment of the in-
teractions between climate change and biodiversity conserva-
tion. First, the effectiveness of PAs for biological conservation
varies substantially across regions,***°” which may partly explain
why both synergistic and antagonistic consequences were
observed. Further, the effectiveness of PAs to conserve the pro-
ductivity of tree communities decreases uniformly with
increasing mean annual temperature under the baseline scenario
of GHG emission. While warmer ecoregions were identified as
more vulnerable, there might be other influencing factors that
could not be revealed in this study. Moreover, there is still a
lack of comprehensive data on biodiversity and ecosystem ser-
vices, which can limit the accuracy of the model and its ability to
make informed decisions.®® While our future estimates of diver-
sity-related changes in productivity are likely conservative, as we
have shown previously,'? the possible synergistic and antago-
nistic consequences of biodiversity conservation and climate
change mitigation highlight the manifold possible interactions.
Additionally, similar assessments should be conducted for
different types of ecosystem functions and services beyond pri-
mary productivity and carbon sequestration so as to meet multi-
ple objectives.'”**> Many of them are supported by various or-
ganism groups beyond trees,***®"? which are not assessed
here, and PAs play an indispensable role in supporting them
and their contributions to ecosystem functions and services.
Last, our scenarios do not assume potential carbon dioxide
enrichment and its fertilizing effects on trees, which could alter
carbon storage by forests.”® By acknowledging the uncertainties
and limitations of the current assessment, future studies may
build upon this work and refine its understanding of the complex
interactions between biodiversity conservation and climate
change mitigation.

Conclusions

In conclusion, our study emphasizes the significance of taking
action to halt biodiversity loss and ensure its continued benefits
to humanity through nature-based solutions. We take a signifi-
cant step beyond previous research by demonstrating that,
while protecting and restoring biodiversity is essential to
achieving global goals for climate action, the effectiveness of
PAs in conserving forest productivity varies across ecoregions

One Earth 7, 1874-1885, October 18, 2024 1879
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and is vulnerable to the impacts of climate change, particularly in
warmer regions. Failing to mitigate global warming could
compromise the efficacy of PAs and the benefits of biodiversity
conservation to people and the biosphere, even when the most
extensive efforts of protecting 30% of the Earth are pursued.
Therefore, it is essential to further examine how the efficacy of
different conservation efforts and initiatives are inherently
dependent upon climate change. The interdependence of
climate change and biodiversity loss underscores the urgent
need for integrated actions that recognize the complex relation-
ships between the two issues.'*’* Addressing these twin chal-
lenges in an integrated manner is crucial, as they cannot be
solved effectively in isolation.

We have contributed new quantitative estimates of the inter-
dependency between biodiversity loss and climate change.
Even though IPBES”® and another independent study’® deter-
mined that climate change is not the largest direct threat to biodi-
versity per se (relative to land use and habitat loss), it could
potentially become a serious threat to the benefits biodiversity
provides to people in the long term. Because biodiversity loss
and ecosystem collapse are two of the fastest-growing global
risks over the next decade,'’ the functional roles of biodiver-
sity, 20337077783 \which are increasingly recognized as critical
for humanity,®* must be conserved effectively through urgent,
transformative actions at multiple scales.

EXPERIMENTAL PROCEDURES

Methodology

Species richness and productivity estimation

To quantify the effectiveness of the existing and the expanding terrestrial PAs, we
extended our previous analysis of species richness and productivity estimates for
the years 2005 and the 2070s.'? We estimated tree richness by projecting the pre-
sent and future spatial distribution of individual species at a spatial resolution of
30 arcseconds (fine grids; n = 115,426,714) by combining the approach of spe-
cies distribution modeling using MaxEnt v.3.3% and spatially explicit down-
scaling based on species-area and endemics-area relationships.® The projec-
tions were based on the potential future changes in both climate and land-use
variables. Climatic variables were obtained at a resolution of 30 arcseconds
from WorldClim data.?” Land-use variables were obtained at the same resolution
by combining the moderate-resolution imaging spectroradiometer (MODIS) land
cover type data from 2005 (glcf.umd.edu/data/Ic; as of February 19, 2018) with
land-use allocation models®*~° to estimate the changes in five land-use types
(cropland, pasture, forest, other natural land, and settled land) for the period be-
tween 2005 and the 2070s. These estimations considered 1,754 tree species
and, thus, cannot fully reflect the potential changes in all tree species existing
worldwide. However, the models to estimate future spatial distributions of individ-
ual species at the fine grid scale carefully considered coextinction and co-immi-
gration of rare species based on the explicitly simulated widespread species;
thus, the estimations presented here can be deemed conservative.'?

To estimate changes in AP, the projected estimates of tree species richness
were then merged with the parameters of elasticity of substitution, estimated
for forest biomes worldwide.** The elasticity of substitution can be used to es-
timate forest productivity based on proportional changes in woody species
richness (%). This made it possible to estimate the proportional changes in
AP (percent) between the two time points (i.e., 2005 and 2070s). Although
assumed to be scale independent, we note that the values of the elasticity
of substitution were originally estimated based on forest inventory datasets
collected at a local spatial scale.®® The estimated proportional changes in for-
est productivity (percent) at each fine grid were then converted to absolute
changes in productivity (g carbon m~2 yr~") between 2005 and 2070s by
relating them to a net primary productivity estimation derived from the
MODIS imagery for the year 2005.°" Full details of tree species richness and
productivity estimation are described in Mori et al.'®
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In the previous study,'? the changes in AP from 2005 to 2070s (AP) were
estimated for two future scenarios of predictor variables: a mitigation and
high-emission baseline scenario based on RCPs. The mitigation scenario
aimed to stabilize radiative forcing by the end of the 21st century, whereas
the baseline scenario assumed increasing GHG emissions over time.** Future
climatic variables were based on the global climate models (GCMs) included in
the Fifth Coupled Model Inter-Comparison Project experiment: MIROC-ESM-
CHEM (hereafter called MIROC), HadGEM2-ES (HadGEM2), and GFDL-CM3
(GFDL). These were downloaded from the WorldClim database.?’” The
changes in land use under the mitigation and baseline scenarios were as-
sessed with the AIM/CGE model,®® which was further downscaled to high
spatial resolution with the AIM/PLUM downscaling model.®® Future land-use
variables®® based on the SSP framework*® were used to estimate future distri-
butions of tree species. In the present study, the SSPs were based on five nar-
ratives describing how socioeconomic factors may change over the next cen-
tury, considering changes in population, gross domestic product, energy,
emissions, and land use (SSP1, sustainability; SSP2, middle of the road;
SSP3, regional rivalry; SSP4, inequality; SSP5, fossil-fueled development).
The SSPs employ a concept called scenario matrix architecture, which in-
volves a two-dimensional space comprising socioeconomic patterns and
climate mitigation levels defined by RCPs. A radiative forcing level of 2.6
W/m? was primarily used for the mitigation scenario. For SSP3, a 3.4 W/m?
forcing level was used instead because there was no scenario for 2.6 W/m?.
High-emission baseline conditions in each SSP were set for the baseline sce-
nario, assuming the absence of additional climate policy and efforts —busi-
ness-as-usual scenario. Additional details are described in Ohashi et al.**

Below is the additional data preparation for this study. Here, we primarily
relied on the tidyverse,”” data.table,® sf,°* and geodata® packages of the R
software.”® To summarize the estimations of potential changes in AP at the
ecoregion scale, we used RESOLVE Ecoregions 2017 (https://developers.
google.com/earth-engine/datasets/catalog/RESOLVE_ECOREGIONS_2017,
as of March 5, 2023).°” Within each ecoregion, fine grids were allocated to
either PAs or unprotected areas. Here, we used the World Database on Pro-
tected Areas (https://www.protectedplanet.net/en/thematic-areas/wdpa?
tab=WDPA, as of March 5, 2023),%® which is a joint project between the UN
Environment Program and the International Union for Conservation of Nature,
managed by the UN Environment Program World Conservation Monitoring
Center. According to its guideline, all sites with “proposed,” “established,”
and “not reported” status were classified as “unprotected.” Contrastingly,
sites with “designated” and “inscribed” status were categorized as “pro-
tected.” Last, to consider potential differences in climate sensitivity between
ecoregions (see Data Analysis, we obtained mean annual temperature and
precipitation values for each of the ecoregions by extracting data at a fine-
grid spatial resolution from the WorldClim database.®”

Data analysis

We primarily relied on the ARPobservation,” metafor,'® reshape2,®" tidy-
verse,”? data.table,® ggforce,’” and RColorBrewer'®® packages of the R
software®® for data organization, analyses, and visualization. This study’s pri-
mary aim was to compare the effectiveness of PAs to conserve AP in the
future; thus, we excluded ecoregions where comparison between protected
and unprotected areas was not possible due to the lack of PAs or existence
of very small PAs with limited coverage at the resolution of our analysis. Addi-
tionally, ecoregions that are not forested were also excluded. As a result, the
focal analyses considered 627 of the 2017 RESOLVE terrestrial ecoregions.

To quantify the PA effect, we calculated the reductions in local-scale loss of
productivity as a log-ratio scale, which assumes that zero corresponds to the
true absence of the outcome. Estimates based on the protected and unpro-
tected areas were used for the denominator (APprotecTED) @nd numerator
(APunpRoTECTED), respectively. By using the ARPobservation® package, we
obtained log-response ratios and the associated 90% confidence intervals
of all 627 ecoregions across different combinations of SSP scenarios and
GCMs. Smaller values of the effect size indicated more avoidance of the
loss of AP and vice versa. To facilitate interpretation, we multiplied the effect
sizes by —1, resulting in positive and negative values indicating higher and
lower effectiveness of PAs in conserving forest productivity, respectively (Fig-
ure 1A). Subsequently, we used a meta-analytical approach considering the
GCMs as a random effect; we used the metafor'® package to obtain global
means and the associated 90% confidence intervals for each SSP scenario
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(Figures 1B and S1-S3). Note that, generally, there were substantially more un-
protected areas than PAs, suggesting that the environmental variation in the
unprotected areas was much larger. To address this potential confounding ef-
fect, we subsampled fine grids to ensure an equal number of grids for both PA
and unprotected area statuses. We then obtained the effect size using the
same methodology as described above and found that the results were mini-
mally affected by this bias (Figure S1). We further checked whether the effect
sizes were affected by the proportion of PAs within each ecoregion and found
that the distribution of the effect sizes was funnel like Figure S2), indicating a
lower sampling bias.

To test whether the actual locations of PAs has had better, equal, or worse
outcomes than random placement of PAs, we reassigned the fine grids that
were designated as “protected” after 2005 until the year 2022 as “unpro-
tected.” From all unprotected fine grids (including those reassigned as “unpro-
tected”), we randomly chose fine grids to be assigned as “protected” until
reaching the same number of “protected” fine grids within each ecoregion.
The baseline year of 2005 for this random PA selection was selected because
the present estimations of species richness and associated forest productivity
were done with the year 2005 as a basis.'>** As the Kunming-Montreal GBF is
using 2010 as the baseline, careful interpretations are necessary. For this data-
set of random PA selection, we calculated the effect sizes (log response ratio)
of the PA effect in the same way as described previously. This allowed us to
compare how the actual selection of PAs differed from random PA selection
in terms of conserving AP (Figure S4). Additionally, we carried out a meta-
regression analysis, focusing on the time since the establishment of PAs (PA
age). Given that our evaluation of the effect sizes (log response ratio) was con-
ducted at the ecoregion level, where multiple PAs exist within a single ecore-
gion (Figure S6), it was not feasible to analyze individual PAs separately. There-
fore, for this meta-regression, we used the mean establishment year within
each ecoregion (Figure S7). Because many PAs were established in recent
years (Figure S6), PA ages were skewed, and, thus, they were Box-Cox trans-
formed to improve normality (note that we added the value of 1 to all PA ages,
as this transformation does not allow the value of 0). We also conducted a
meta-regression with the effect size as a response variable and climate condi-
tions (mean annual temperature or precipitation in each ecoregion) as a covar-
iate. This allowed us to identify how the PA effect changed along a climatic
gradient (Figure 3). Note that there was no significant trend between mean
annual precipitation and the effect size for all combinations of future climate
scenarios, and, thus, results are not shown. These meta-regressions were per-
formed using the metafor'*° package.

To assess the synergistic and antagonistic outcomes of conservation (PA ef-
fect) and climate change (GHG warming) in terms of future changes in AP, we
compared the effect sizes of the PA effect under the two emission scenarios
(mitigation versus baseline) within each ecoregion. We achieved this by
comparing the confidence intervals of the PA effect across the five SSPs
and three GCMs (15 comparisons). The vote count for these comparisons
was used to visualize the result for each ecoregion (Figure 2). To further test
possible synergistic and antagonistic effects of PAs and GHG warming, we
conducted a hypothetical calculation of their effect sizes using two extreme
cases of conservation/emission conditions. That is, to obtain the log response
ratio, PAs under the baseline scenario and unprotected areas under the miti-
gation scenario were used for the denominator (APproTECTED-BASELINE) @Nd
numerator (APynproTECTED-MITIGATION), FESPectively. This made it possible to
compare which factor (PA effect or GHG warming) outweighs the other (Fig-
ure 4A). For this effect size (multiplied by —1), positive values indicate that
PAs are still important in alleviating the loss of AP even under the baseline
emission scenario of GHG warming compared to unprotected areas under
the mitigation scenario. In contrast, negative values indicate that GHG warm-
ing mitigation outweighs the effectiveness of PAs to conserve forest productiv-
ity. To facilitate understanding of the magnitude of these effect sizes, we also
converted the log response ratio to a percentage scale.

The above combined assessment of the PA effect and GHG emission sce-
narios was further conducted for a possible future in which 30% of the land
surface are protected (to be consistent with Target 3 of the Kunming-
Montreal GBF®’). To select fine grids that are not currently designated as
PAs, we used an optimization method. Specifically, within each ecoregion,
we assigned “unprotected” fine grids as “protected” until the total protected
grids reached 30% within each ecoregion by prioritizing the fine grids with
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smaller values of AP (i.e., where the loss of forest productivity was expected
to be smaller). That is, areas that are expected to be more effective at
conserving AP in the future were given priority to be additionally included as
PAs. Because our model considered the influence of both climate and land-
use changes,’” these selected areas are expected to provide the most favor-
able conditions for tree species, thereby maximizing the conservation of their
contributions to forest productivity within a given future scenario. Under this
optimized PA selection, we calculated the effect size of the log response ratio
using PAs under the baseline scenario and unprotected areas under the miti-
gation scenario as the denominator (APproTecTED-BASELINE) @nd NUMerator
(APyunpROTECTED-MITIGATION), FESpectively. Here, negative values indicate that
GHG warming mitigation outweighs the effectiveness of PAs to conserve for-
est productivity even under the optimized PA selection; that is, despite the fact
that APynproTECTED-MITIGATION Feflected the least effective fine grids in terms of
alleviating the loss of AP (as in unprotected areas), the mitigation scenario was
identified to be more effective than APproTeCTED-BASELINE, WhiCh included the
most effective fine grids in the baseline GHG emission future (Figure 4B).
Again, to facilitate understanding of the magnitude of these effect sizes, we
converted the log response ratio to a percentage scale.

Last, the log response ratio (effect size) of the reductions in AP was esti-
mated by comparing baseline and mitigation scenarios of GHG emissions as
the denominator (APgaseiing) @and numerator (APymicaTion), respectively, as
done in a previous study.'? After multiplying the effect sizes by —1, positive
and negative values indicate more and less effectiveness of the climate mitiga-
tion policy in reducing the loss of AP, respectively. To analyze the ensemble
results across the three GCMs, we adopted a mixed effects meta-analytical
approach, as done for the comparison between protected and unprotected
areas, with GCMs as a random effect (Figure S4). Random PA selection was
again conducted in the same way as described previously, and then the effect
sizes across different scenarios of PA selection were compared (Figure S5).
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