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Abstract— Public emergencies pose catastrophic casualties
and financial losses in densely populated areas, rendering
communities such as cities, towns, and universities particularly
susceptible due to their intricate environments and high pedes-
trian traffic. While simulation analysis offers a flexible and
cost-effective approach to evaluating evacuation procedures,
conventional evacuation models are often limited to specific
scenarios and communities, overlooking the diverse range of
emergencies and evacuee behaviors. Thus, there is an urgent
need for an evacuation model capable of capturing complex
structures of communities and modeling evacuee responses to
various emergencies. This paper presents a novel approach to
simulating responsive evacuation behaviors for multiple emer-
gency situations in public communities through spatial network
modeling and multi-agent modeling. Leveraging a community
network framework adaptable to different community layouts
based on map data, the proposed model employs a multi-
agent approach to characterize responsive and decentralized
evacuation decision-making. Experimental results show the
model’s efficacy in representing pedestrian flow and pedes-
trians’ reactive behavior across various campuses based on
real-world map data. Additionally, the case study highlights
the potential of the proposed model to simulate pedestrian
dynamics for a variety of heterogeneous emergencies. The
proposed community evacuation model holds strong promise
for evaluating evacuation policies and providing insights into
resilient plans during public emergencies, thereby enhancing
community safety.

Index Terms— Distributed decision, evacuation simulation,
multi-agent modeling, network modeling, pedestrian flow.

I. INTRODUCTION

In recent years, the frequency of public incidents and

natural disasters has increased, leading to substantial finan-

cial damage and casualties, especially in densely populated

areas with complex structures and high pedestrian flow.

These environments are particularly vulnerable due to their

numerous buildings, intricate pathways, and high pedestrian

traffic. Some public emergencies have necessitated evacua-

tions, significantly impacting community mental health and

disrupting regular operations [1]. Effective evacuation poli-

cies are essential to mitigate these disruptions. However, for-

mulating such policies in large-scale communities, including

cities, towns, and campuses, presents significant challenges

due to their complex layouts and the unpredictable nature

of emergencies. Factors like traffic flow, infrastructure con-

straints, and potential chaos during emergencies exacerbate
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these challenges, rendering large-scale training impractical.

Simulation modeling offers a valuable solution for evaluating

evacuation policies, allowing the exploration of diverse sce-

narios without the risks and costs associated with physical

drills. Nevertheless, conventional evacuation models often

lack the versatility to assess evacuation processes across

different environments. Therefore, it is crucial to develop

a comprehensive model that captures the diverse structural

characteristics and scenarios of heterogeneous communities

for effective emergency planning and response.
Evacuation simulation models are inherently complex,

incorporating non-linear pedestrian flow dynamics and the

spread of hazards. Pedestrians, characterized by diverse

demographic factors, exhibit different behaviors influenced

by individual personality traits and travel purposes. The

decision-making process of each pedestrian is not only

influenced by their immediate surroundings and interactions

with others but also distributed across the entire population,

further complicating model development. Moreover, real-

world emergencies often overlap, with one incident trigger-

ing subsequent emergencies. For instance, a severe fire may

erupt following an explosion. In such scenarios, improper

evacuation procedures can precipitate stampedes, exacer-

bating casualties. Hence, an evacuation model is urgently

needed to account for pedestrian flow dynamics and multiple

occurrences of diverse emergencies.
Building upon the complexities inherent in evacuation

simulation models, this paper presents a novel approach

to simulating responsive evacuation behaviors for multiple

emergency situations in public communities through spatial

network modeling and multi-agent modeling. The main con-

tributions are as follows:

1) We develop a community network model derived from

real-world map data, comprehensively capturing struc-

tural features of diverse communities.

2) We design human agents to reflect pedestrians’ re-

sponsive and decentralized decision-making, as well

as hazard agents to represent the impact and spread of

emergencies as each agent interacts within the model.

Simulation experiments on university campuses demonstrate

the proposed model’s effectiveness in representing pedestrian

flow and reactive behavior across diverse settings. Further-

more, the case study results demonstrate the potential of

the proposed model to evaluate key performance metrics for

evacuation effectiveness in various environments.
The paper proceeds as follows: Section II introduces the

background of evacuation simulation studies; Section III de-

tails the proposed methodology of the community evacuation
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model; Section IV presents experimental design and results;

and Section V concludes the research.

II. RESEARCH BACKGROUND

Simulation approaches have extensively assessed evacu-

ation strategies, primarily focusing on indoor environments.

Xu et al. developed a simulation model for evacuation during

fires in a college building [2]. Zhou et al. introduced a force

model to capture decentralized pedestrian behavior during

subway station evacuations [3]. Zhang et al. proposed an

event-based method to optimize building evacuation policies,

integrating complex building structures into a queuing net-

work [4]. Li et al. employed multi-agent reinforcement learn-

ing for real-time evacuation decision-making in complex

buildings [5]. However, outdoor community environments

pose distinct challenges due to their intricate path networks

and high pedestrian flow. In large-scale emergencies affecting

multiple buildings, evacuating from a single building may

not ensure safety. Evacuees must navigate to shelters beyond

hazardous areas, necessitating new modeling approaches.

Previous studies on outdoor evacuations, such as those in

public squares [6] and high school complexes [7], often relied

on models specific to those environments, underscoring the

need for more versatile solutions.

Leveraging geographical data from open sources like

OpenStreetMap [8] enables the creation of network models

that represent community topologies [9]. These models ef-

fectively illustrate complex system patterns, connectivity, and

decentralized decision-making processes [10], [11]. For in-

stance, spatial network models facilitate the analysis of virus

spread and human mobility impacts [12], [13], while social

contact networks assess COVID-19 transmission dynamics

[14]. In manufacturing, networks of heterogeneous agents

provide insights to optimize process flow [15]. Therefore,

in this study, network modeling is developed to depict

TABLE I

NOMENCLATURES

Notation Definition
vi Node
svi Coordinate of the location of vi
cvi Capacity of vi

fvi (t) Pedestrian flow on vi at t
eij Edge between vi and vj
leij Total length of eij
ceij Capacity of eij

feij (t) Pedestrian flow on eij at t
hi Hazard agent

t
hi
0 Time when hi is emerged in the network
ζhi

Lifespan of hi

shi
(t) Center of area impacted by hi at t

ahi
(t) Radius of area impacted by hi at t

Vhi
Movement speed of shi

(t)
Vs
hi

Expansion speed of ahi
(t)

pi Human agent
dpi Destination node of pi

spi (t) Location of pi at t
Vpi (t) Traveling velocity of pi at t
Spi (t) State of pi at t
εpi Panic rate of pi

Fig. 1. Flowchart of the proposed multi-agent community network
model and dynamic interactions between the components of the community
network, human agents, and hazard agents.

community structures as pathways linking buildings and

intersections, capturing pedestrian-environment interactions

through networks of autonomous decision-making agents.

In evacuation modeling research, multi-agent approaches

have proven essential for effectively capturing diverse pedes-

trian actions and interactions. For example, the agent-based

model employing rule-based techniques was developed to

simulate stadium evacuations during fires [16]. Luh et al.

proposed a multi-agent modeling approach to scrutinize

congestion effects and enhance evacuation strategies by

simulating independent decision-making among pedestrians

[17]. Furthermore, multi-agent modeling was employed to

study psychological interactions, focusing on anxiety’s im-

pact on fire evacuations via virtual reality [18]. However,

these studies often overlook the heterogeneous composition

of pedestrian groups, influenced by demographic factors

affecting behaviors such as panic likelihood and travel speed.

Given the diversity and potential simultaneous or sequential

emergencies in communities, it is crucial to develop a respon-

sive evacuation model that accommodates various pedestrian

behaviors and addresses cumulative emergency impacts.

III. METHODOLOGY

This section introduces a community evacuation model

designed to simulate evacuation processes in large communi-

ties. The model captures pedestrian reactions to community

networks and dynamic emergencies. As illustrated in Fig.

1, the proposed model consists of three components: 1) a

community network representing pathways connecting build-

ings and intersections; 2) hazard agents simulating emer-

gency spread and impact; and 3) human agents reflecting

pedestrians’ responsive behaviors to emergencies. Technical

notations are outlined in Table I.

A. Community Network

The community map is structured into a multi-graph flow

network denoted by G = (V,E), where V and E represent

the sets of nodes and edges, respectively. Every community

possesses a distinct geographical boundary, ensuring a finite

node set V defined as:

V = {vi|i ∈ [1, nv]} (1)
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TABLE II

STATES OF THE HUMAN AGENT

Spi (t) Description
Normal pi is traveling unaffected.
Queuing pi is traveling but is in congestion.
Impacted pi is traveling but is impacted by hazards.
Arrival pi arrives at the destination without being impacted.
Survival pi arrives at the shelter after impacted by hazards.
Casualty pi becomes a casualty due to the effects of hazards.

where nv denotes the number of nodes in the network. Each

node vi in the network is defined as follows:

vi = (svi , cvi , fvi(t)) (2)

where svi
is the geographical coordinate of vi, and cvi

repre-

sents the pedestrian capacity estimated based on open-source

community amenity data. Pedestrian flow fvi(t) denotes the

pedestrian flow at node vi at time t.
Nodes are classified into buildings or non-buildings. Build-

ing nodes encompass community buildings, whereas non-

building nodes represent intersections, parks, lawns, and

parking lots. Evacuees can traverse these nodes unless im-

peded by hazards or congestion. During emergencies, routes

redirect to shelters provided by community authorities. These

shelters also serve as command centers for coordinating

support and relief efforts.

In the community network, an edge represents a pathway

between two nodes. The edge set E is defined as follows:

E =
{
eij = (vi, vj)|vi, vj ∈ V 2, i �= j

}
(3)

where each edge eij is denoted as follows:

eij =
(
leij , ceij , feij (t)

)
(4)

where leij represents the practical distance for pedestrians

traveling along eij . The edge length leij is estimated as

leij = �lbeij · weij� where lbeij represents the Euclidean

distance between vi and vj , and weij is the degree of

curvature of eij . The edge capacity ceij is formally defined

as ceij = leij ·Dmax where Dmax is the maximum pedestrian

volume sustainable per each unit length. Pedestrian flow

feij (t) reflects the number of pedestrians moving along eij
at time t.

B. Hazard Agent

The set of hazard agents impacting the network is denoted

as H = {hi|1 ≤ i ≤ Hmax}, where Hmax is the maximum

number of emergencies during evacuation. Hazards are char-

acterized by their causes and circular impact areas, with

severity determined by both source and impact area char-

acteristics. Each hazard agent hi is defined by the following

tuple of parameters:

hi =
(
thi
0 , ζhi

,Vhi
,Vs

hi
, shi

(t), ahi
(t)

)
(5)

where thi
0 denotes the emergence time of hi, and ζhi

repre-

sents the duration cessation. Vhi
and Vs

hi
are the movement

and spread speeds within the impact area, respectively. Haz-

ard agents contain two dynamic properties: shi
(t) denotes

the coordinate of the impact area center at time t, and ahi
(t)

corresponds to the radius of the circular impact area.

C. Human Agent

Pedestrian flow is represented as a set of human agents

denoted by P = {pi|1 ≤ i ≤ Pmax}, where Pmax denotes

the maximum volume of pedestrian flow in the community.

To capture the reactive behavior of pedestrians, each human

agent pi is defined as follows:

pi = (dpi , spi(t),Vpi(t), Spi(t), εpi) (6)

where dpi
denotes the destination of pi, and spi

(t) represents

the current location of pi at time t. Each human agent

updates their traveling routes from spi(t) to dpi based

on its observations of the community network and hazard

occurrence. Vpi
(t) is the traveling speed of pi at time t. The

state of pi is represented as Spi
(t), which is a set of six

states: Normal, Queuing, Impacted, Arrival, Survival, and

Casualty. Detailed descriptions of each state are outlined in

Table II.

Spi
(t) governs the decision-making process of pi during

the evacuation. The initial state of pi is Normal. If a critical

situation prevents pi from continuing their current travel due

to traffic congestion or inaccessibility to nodes or edges,

Spi
(t) becomes Queuing. The Queuing state impedes the

movement of pi with a possible detour and reduced traveling

speed. When pi is influenced by a hazardous impact from an

emergency, Spi(t) turns to Impacted. Impacted pi changes

their destination to a nearby shelter and begins evacuation. pi

Algorithm 1: Human-Network Interaction Algorithm

forall pi ∈ P do
if spi (t) �= dpi then

if spi (t) is located at vk , for vk ∈ V then
if fvk (t) ≥ cvk then

if fej ≥ cej , ∀ej ∈ E(vk(t)) then
Spi (t+ 1) ← Queuing and Vpi (t) ← 0

else Not all surrounding edges are congested
if pi is in panic then

pi randomly selects ej ∈ E(vk(t))
else pi is not in panic

pi re-routes
end
Update spi (t+ 1) based on Vpi (t)

end
else no congestion

Update spi (t+ 1) based on Vpi (t)
end

else pi is located at ew , for ew ∈ E
if fek (t) ≥ cek then

Spi (t+ 1) ← Queuing and Vpi (t) ← 0
else no congestion

Update spi (t+ 1) based on Vpi (t)
end

end
else pi reaches dpi

if Spi (t) = Normal then
Spi (t+ 1) ← Arrival

else Spi (t) = Impacted
SEnd
pi

← Survival
end

end
end
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Algorithm 2: Human-Hazard Interaction Algorithm

forall pi ∈ P do
if spi (t) ∈ ahj

(t), ∀hj ∈ H then
Spi (t+ 1) ← Impacted
Compute whether pi becomes casualty
if pi becomes casualty then

Spi (t+ 1) ← Casualty
else pi is evacuating

Compute εpi
Determine if pi is in panic based on εpi

end
end

end

can exit the model with one of three ending states: Arrival,
Survival, or Casualty.

The panic rate εpi
represents the likelihood of panic when

Spi
(t) becomes Impacted. The design of εpi

is based on

the understanding that panic is positively related to the

degree of uncertainty. When panicked, human agents deviate

from optimal evacuation routes. The level of panic depends

on the characteristics of pedestrians and the completeness

of observation required for evacuation. These observations

include knowledge of community structures and the presence

of executive agencies.

During the evacuation, pedestrians rely on up-to-date ob-

servations of their immediate surroundings to make informed

decisions. These observations include information about

community structures and hazards. To reflect the process of

collecting this information and making evacuation decisions,

we design two algorithms: (1) Human-Network Interaction

Algorithm and (2) Human-Hazard Interaction Algorithm.

Interactions between human agents and the community

network are systematically modeled for each pi at every

time t, as outlined in Algorithm 1. These interactions are

critical in shaping pedestrian flow, directly affecting the

overall evacuation outcome. At each time t, the properties of

each pi are updated simultaneously, considering the current

status of the community network and previous observations.

This interaction mechanism ensures that the behavior of each

human agent is dynamically influenced by evolving network

conditions and observed information, thereby allowing a

more realistic representation of pedestrian dynamics during

the evacuation process.

Interactions between human agents and hazard agents are

modeled for each pi at each time t, as described in Algorithm

2. This algorithm details how each pi actively observes

hazard agents in their immediate vicinity while making

limited observations of the community network and currently

existing hazards. Additionally, this algorithm captures the

detrimental effects of hazard agents on the survivability and

decision-making of pi during evacuation. The adverse effects

of hazard agents on human agents manifest in two aspects.

First, human agents initiate evacuation when they directly

encounter or detect the negative effects of any hazard agents

within a predetermined radius. Second, prolonged panic

states lead to irrational behavior in which pi persistently

deviates from prescribed evacuation routes.

Fig. 2. Experimental design with three control factors and four performance
metrics in the case study.

IV. EXPERIMENTAL DESIGN AND RESULTS

A. Experimental Design

The proposed evacuation model is evaluated in two steps.

First, the community network model is verified through

simulation experiments conducted in five representative mu-

nicipal communities: the University Park campus of the

Pennsylvania State University (PSU-UP), the Charlottesville

campus of the University of Virginia (UVA-C), the Blacks-

burg campus of Virginia Tech (VT-B), Reading, PA (RA-PA),

and King of Prussia, PA (KOP-PA). These communities were

selected for their varying structural layouts and demographic

characteristics, providing a comprehensive assessment of the

model’s applicability. Simulation outcomes provide a de-

tailed analysis of network attributes and offer visualizations

of pedestrian flow on community maps. These insights are

crucial for understanding pedestrian navigation patterns and

decision-making processes in both routine and emergency

contexts.

Second, the multi-agent modeling approach is validated

through a case study assessing evacuation effectiveness under

varying panic levels. This study identifies three control

factors to evaluate the impact of panic levels on evacuation

outcomes, considering uncertainties in pedestrian flow and

hazard occurrence, as shown in Fig. 2. The panic rate

(εpi
) quantifies the negative impact on evacuation decisions

due to imperfect observations. Pedestrian flow and hazard

occurrence are regulated by two control factors: maximum

pedestrian flow within the community (Pmax) and maximum

TABLE III

HUMAN AGENT GROUP PARAMETERS

Identity Age Range Speed (m) Panic Rate (%) portion (%)
Group 1 [18,25] 96 60 60
Group 2 [25,50] 84 50 20
Group 3 [40,60] 72 20 20

TABLE IV

HAZARD AGENT TYPE PARAMETERS

Type
Lifespan Area as Radius Expansion Movement
(minute) (m) Speed (m/s) Speed (m/s)

Type 1 [130,170] [150,200] [25,35] [30,42]
Type 2 [30,50] [20,80] [0,10] [90,102]
Type 3 [120,170] [200,400] [100,120] [102,204]
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TABLE V

NETWORK STATISTICS

Network
Building Node Non-building Node Edge

Count Count Count
PSU-UP 953 6,670 19,799
UVA-C 412 5,677 7,095
VT-B 445 6,511 6,929

RA-PA 473 2,068 16,432
KOP-PA 277 2,240 17,216

number of hazard occurrences (Hmax). Four performance

measures are analyzed: impacted rate (RI), evacuation suc-

cess rate (RS), casualty rate (RC), and leftover rate (RL). RI

defined as the ratio of affected pedestrians to the maximum

pedestrian flow, RI =
nI

Pmax
, where nI represents the number

of pedestrians affected by any hazards. Other three metrics

assess evacuation effectiveness as ratios to nI: RS = nS

nI
,

RC = nC

nI
, and RL = nI−nS−nC

nI
, where nS and nC denote the

number of survivors and casualties, respectively. Diversity

inherent in pedestrian behavior is modeled by defining three

human agent groups, as outlined in Table III. These group

parameters are designed to reflect variations in age, likeli-

hood to panic, and travel speed. Additionally, three hazard

types are characterized by diversified impacts and spreading

behavior among hazards, as presented in Table IV.

B. Simulation Studies for Community Network Model

As presented in Table V, each municipal community is

represented by a network characterized by varying numbers

of building and non-building nodes, as well as edges. PSU-

UP exhibits the most intricate network structure with 953

building nodes, 6,670 non-building nodes, and 19,799 edges.

Across all communities studied, each community includes

more than 200 buildings, over 2,000 intersections and open

grounds, and around 6,500 edges. This underscores signifi-

cant variability in the distribution of buildings, intersections,

and pathways among communities, despite similarities in

function, demographic profiles, and pedestrian patterns.

Community maps and corresponding spatial network rep-

resentations of PSU-UP, UVA-C, VT-B, RA-PA, and KOP-

PA are illustrated in Fig. 3. nodes are represented by white

dots, and edges denote pathways. Despite each commu-

nity having a unique network topology, the arrangement

of buildings, intersections, and pathways follows a non-

Fig. 3. Illustrations of spatial networks and campus maps of PSU-UP,
UVA-C, VT-B, RA-PA, and KOP-PA.

Fig. 4. Pedestrian flow and evacuation progress over time from 0 to 120
during evacuation on each campus.

linear pattern. The intricacy of communities emphasizes

the necessity of employing network modeling to assess

community-wide evacuation processes. The proposed com-

munity network model demonstrates flexibility and accuracy

in representing the structural characteristics of each campus

as a corresponding network when providing geographical

indicators of the community.

In a scenario where Pmax = 2000, Hmax = 5, and

εp = 10%, the dynamic distribution of pedestrian flow on

each campus is shown in Fig. 4, with red dots symbolize

pedestrians. The observed distribution closely corresponds to

structural features depicted by the campus’s spatial network,

validating the accuracy of the proposed community network

model in predicting dynamic pedestrian flow patterns. Fur-

thermore, as the simulation progresses, a noticeable decrease

in pedestrian flow is evident on each campus. This decrease

suggests the successful evacuation and effective route navi-

gation of pedestrians while utilizing the flow-based network.

C. Case Study: Evacuation Performance across Panic Levels

The effect of Pmax and Hmax on the impacted rate (RI)

is depicted in Fig. 5. The analysis reveals that RI exhibits

no discernible correlation with Pmax but increases as the

Hmax rises. For instance, when Hmax = 5, the RI values for

each Pmax level are 34.3%, 27.5% and 34.4%. However, with

Hmax increasing to 10, these values increase to 56.5%, 51.8%

and 54.4%, respectively. Subsequently, with Hmax = 15,

the RI values further increase to 68.4%, 64.4% and 66.2%,

respectively. This trend suggests a higher frequency of emer-

gencies affecting the community, resulting in an expansion

of hazardous impact areas within the community network.

Consequently, the cumulative impact areas expand, leading

to an increased number of affected nodes and edges within
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Fig. 5. Impacted rate of pedestrians according to maximum pedestrian
flow and maximum number of hazard occurrences.

the network. Given that pedestrians are spatially distributed

within the community network based on a fixed Pmax level,

the surge in Hmax results in a pronounced escalation in the

number of pedestrians impacted by hazards.

The degree of background panic rate influences the evac-

uation effectiveness as illustrated in Fig. 6. First, a distinct

negative relationship is observed between εp and RS. Specif-

ically, when εp = 10%, 96.6% of evacuees successfully

reach shelters within 120 minutes. However, a rise in εp
exacerbates the panic level among impacted pedestrians,

leading to confusion in their evacuation decision-making

process. This trend is supported by the decrease in RS

observed at higher εp levels. For example, when the εp
parameters are set to 50% and 90%, only 88.3%, and 64.6%

of the impacted pedestrians, respectively, manage to safely

evacuate. Furthermore, another observation is the increase

in the probability of casualties among impacted pedestrians

as εp rises. A lower value of εp indicates that pedestrians

possess most of the information necessitated for successful

evacuation. In particular, when εp is set to 10%, 2.5% of

affected pedestrians become casualties. On the other hand,

RC increases to 7.2% and 13.3% when εp = 50% and

εp = 90%, respectively.

Moreover, an indication of the decreased rationality con-

cerning evacuation decisions emerges in the context of RL

as εp increases. Given the assumption that panic states are

irreversible, panicked pedestrians make minimal progress to-

ward nearby shelters. These individuals are unlikely to reach

any definitive end states, such as casualties or successful

evacuations, as they persist in following random paths once

panic occurs. Thus, a higher εp correlates with a greater

likelihood of pedestrians remaining within the network after

120 minutes. For example, when εp = 10%, RL remains

below 1%. However, if εp values become 70% and 90%, the

corresponding RL surges to 9.7% and 22.1%, respectively. It

is noteworthy that as εp rises, RL increases at a faster rate

than RC. The reason is the congestion caused by the con-

centration of panicked evacuees wandering aimlessly around

surrounding areas without proper evacuation progress.

Holding all other control factors constant, a rise in Pmax

proportionally increases nI, nS, and nC, while having min-

imal impact on RC, RL, and RS. Similarly, an increase in

Hmax results in a higher nI, which consequently elevates

Fig. 6. Proportional performance metrics (RS, RC, and RL) with respect
to background panic rate.

RI, given a fixed pedestrian population. However, without

altering the panic rate εp, rasing Hmax does not significantly

influence RL, RC, or RS. Additionally, increasing Pmax

requires substantial computational resources for simulation

experiments due to the increased interactions among human

agents and hazard agents. Within a Python 3.7 simulation

environment running on a system with 16 GB of RAM

and an Apple M1 Pro chip (8-core CPU, 14-core GPU),

increasing Pmax from 2,000 to 8,000 extends the duration

of a single simulation run from 2.5 hours to 22 hours,

while keeping all other control factors constant. Despite this

increased computational demand, the enhanced interactions

provide decision-makers with valuable insights, particularly

in monitoring pedestrian flow and identifying areas suscep-

tible to congestion and potential stampedes.

D. Discussion

The proposed community evacuation model provides a

comprehensive framework for evaluating evacuation pro-

cesses in diverse outdoor and municipal environments char-

acterized by complex and dynamic pedestrian flow. However,

the current model has two limitations: it assumes that panic

is irreversible and that panicking pedestrians choose paths

randomly at nodes. These assumptions do not fully reflect the

nuanced behaviors observed during real-world evacuations.

Future research should aim to refine these assumptions to

more accurately capture the actual responses of pedestrians

during emergencies.

When integrated into emergency response systems, the

model is invaluable for proactively evaluating and optimizing

evacuation strategies before emergencies occur. Effective

deployment involves the strategic allocations of resources,

such as shelters, emergency responders, and relief personnel,

to maximize evacuee survival rates. By visualizing pedestrian

flow, decision-makers can identify high-density areas and ad-

just disaster relief efforts accordingly. Future enhancements

may include additional agent types, such as firefighters and

trained volunteers, to more accurately represent evacuees and

response activities.

Incorporating real-world map data into network modeling

allows the simulation of diverse community layouts, enhanc-

ing the model’s ability to reflect various structural character-

istics. The multi-agent modeling approach further improves
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the representation of individual decision-making processes

among evacuees and hazards, ensuring autonomous operation

and efficient computational performance. To advance the

model’s capability in simulating reactive evacuee behaviors

during panic, future research will explore the application

of foundational theories of human behavior, such as social

force models. Additionally, modeling irrational behaviors

triggered by evolving hazards could be refined by applying

probabilistic approaches like Markov Decision Processes.

V. CONCLUSIONS

In this paper, we presented the community evacuation

model designed to evaluate evacuation protocols within mu-

nicipal communities, achieved by simulating the responsive

behavior of evacuating pedestrians for multiple emergencies

through network modeling and multi-agent modeling. This

methodology furnishes novel features that contribute to effi-

cacy and adaptability through the integration of the following

modeling methods:

1) Community spatial network: The methodology incor-

porates network modeling, which represents the struc-

tural properties of communities through a network of

interconnected buildings, intersections, and pathways.

The proposed network model provides an effective

mechanism for modeling diverse community environ-

ments and simulating dynamic pedestrian flow by

leveraging real-world map data.

2) Human and hazard agents: Multi-agent modeling ad-

equately captures multifaceted characteristics and dy-

namics inherent in pedestrian behavior and emergency

spread. Hazard agents are designed to encapsulate

the dynamic propagation and impact of public emer-

gencies. Human agents reflect pedestrian behavior by

embodying their attributes and decision-making pro-

cesses in response to emergency scenarios, represent-

ing pedestrian flow.

The proposed modeling methodology is validated through

an experimental study with two phases. First, the community

network model effectively represented pedestrian flow within

spatial networks of three university campuses. Second, ex-

perimental outcomes of the case study evaluating evacuation

performance across different panic levels showed that the

proposed multi-agent modeling method proficiently reflects

the intricate dynamics of evacuation processes. This commu-

nity evacuation model is strongly promised to enhance life-

saving measures during community-wise exigent situations

with an approach to simulate and provide decision support

to both evacuation procedures and subsequent actions.
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