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Abstract—Public emergencies pose catastrophic casualties
and financial losses in densely populated areas, rendering
communities such as cities, towns, and universities particularly
susceptible due to their intricate environments and high pedes-
trian traffic. While simulation analysis offers a flexible and
cost-effective approach to evaluating evacuation procedures,
conventional evacuation models are often limited to specific
scenarios and communities, overlooking the diverse range of
emergencies and evacuee behaviors. Thus, there is an urgent
need for an evacuation model capable of capturing complex
structures of communities and modeling evacuee responses to
various emergencies. This paper presents a novel approach to
simulating responsive evacuation behaviors for multiple emer-
gency situations in public communities through spatial network
modeling and multi-agent modeling. Leveraging a community
network framework adaptable to different community layouts
based on map data, the proposed model employs a multi-
agent approach to characterize responsive and decentralized
evacuation decision-making. Experimental results show the
model’s efficacy in representing pedestrian flow and pedes-
trians’ reactive behavior across various campuses based on
real-world map data. Additionally, the case study highlights
the potential of the proposed model to simulate pedestrian
dynamics for a variety of heterogeneous emergencies. The
proposed community evacuation model holds strong promise
for evaluating evacuation policies and providing insights into
resilient plans during public emergencies, thereby enhancing
community safety.

Index Terms— Distributed decision, evacuation simulation,
multi-agent modeling, network modeling, pedestrian flow.

I. INTRODUCTION

In recent years, the frequency of public incidents and
natural disasters has increased, leading to substantial finan-
cial damage and casualties, especially in densely populated
areas with complex structures and high pedestrian flow.
These environments are particularly vulnerable due to their
numerous buildings, intricate pathways, and high pedestrian
traffic. Some public emergencies have necessitated evacua-
tions, significantly impacting community mental health and
disrupting regular operations [1]. Effective evacuation poli-
cies are essential to mitigate these disruptions. However, for-
mulating such policies in large-scale communities, including
cities, towns, and campuses, presents significant challenges
due to their complex layouts and the unpredictable nature
of emergencies. Factors like traffic flow, infrastructure con-
straints, and potential chaos during emergencies exacerbate
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these challenges, rendering large-scale training impractical.
Simulation modeling offers a valuable solution for evaluating
evacuation policies, allowing the exploration of diverse sce-
narios without the risks and costs associated with physical
drills. Nevertheless, conventional evacuation models often
lack the versatility to assess evacuation processes across
different environments. Therefore, it is crucial to develop
a comprehensive model that captures the diverse structural
characteristics and scenarios of heterogeneous communities
for effective emergency planning and response.

Evacuation simulation models are inherently complex,
incorporating non-linear pedestrian flow dynamics and the
spread of hazards. Pedestrians, characterized by diverse
demographic factors, exhibit different behaviors influenced
by individual personality traits and travel purposes. The
decision-making process of each pedestrian is not only
influenced by their immediate surroundings and interactions
with others but also distributed across the entire population,
further complicating model development. Moreover, real-
world emergencies often overlap, with one incident trigger-
ing subsequent emergencies. For instance, a severe fire may
erupt following an explosion. In such scenarios, improper
evacuation procedures can precipitate stampedes, exacer-
bating casualties. Hence, an evacuation model is urgently
needed to account for pedestrian flow dynamics and multiple
occurrences of diverse emergencies.

Building upon the complexities inherent in evacuation
simulation models, this paper presents a novel approach
to simulating responsive evacuation behaviors for multiple
emergency situations in public communities through spatial
network modeling and multi-agent modeling. The main con-
tributions are as follows:

1) We develop a community network model derived from
real-world map data, comprehensively capturing struc-
tural features of diverse communities.

2) We design human agents to reflect pedestrians’ re-
sponsive and decentralized decision-making, as well
as hazard agents to represent the impact and spread of
emergencies as each agent interacts within the model.

Simulation experiments on university campuses demonstrate
the proposed model’s effectiveness in representing pedestrian
flow and reactive behavior across diverse settings. Further-
more, the case study results demonstrate the potential of
the proposed model to evaluate key performance metrics for
evacuation effectiveness in various environments.

The paper proceeds as follows: Section II introduces the
background of evacuation simulation studies; Section III de-
tails the proposed methodology of the community evacuation
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model; Section IV presents experimental design and results;
and Section V concludes the research.

II. RESEARCH BACKGROUND

Simulation approaches have extensively assessed evacu-
ation strategies, primarily focusing on indoor environments.
Xu et al. developed a simulation model for evacuation during
fires in a college building [2]. Zhou et al. introduced a force
model to capture decentralized pedestrian behavior during
subway station evacuations [3]. Zhang et al. proposed an
event-based method to optimize building evacuation policies,
integrating complex building structures into a queuing net-
work [4]. Li et al. employed multi-agent reinforcement learn-
ing for real-time evacuation decision-making in complex
buildings [5]. However, outdoor community environments
pose distinct challenges due to their intricate path networks
and high pedestrian flow. In large-scale emergencies affecting
multiple buildings, evacuating from a single building may
not ensure safety. Evacuees must navigate to shelters beyond
hazardous areas, necessitating new modeling approaches.
Previous studies on outdoor evacuations, such as those in
public squares [6] and high school complexes [7], often relied
on models specific to those environments, underscoring the
need for more versatile solutions.

Leveraging geographical data from open sources like
OpenStreetMap [8] enables the creation of network models
that represent community topologies [9]. These models ef-
fectively illustrate complex system patterns, connectivity, and
decentralized decision-making processes [10], [11]. For in-
stance, spatial network models facilitate the analysis of virus
spread and human mobility impacts [12], [13], while social
contact networks assess COVID-19 transmission dynamics
[14]. In manufacturing, networks of heterogeneous agents
provide insights to optimize process flow [15]. Therefore,
in this study, network modeling is developed to depict

TABLE I
NOMENCLATURES

Notation | Definition
v; Node
Su; Coordinate of the location of v;
Cu; Capacity of v;

fo, (t) Pedestrian flow on v; at t
€ij Edge between v; and v;
le; j Total length of e;;
Ceyj Capacity of e;;

fe;; (t) | Pedestrian flow on e;; at ¢
h; Hazard agent
tg i Time when h; is emerged in the network
Ch; Lifespan of h;

sp, (1) Center of area impacted by h; at ¢

ap, (t) Radius of area impacted by h; at ¢
Vh, Movement speed of sy, (t)
Vi, Expansion speed of ay,; (t)
i Human agent
dp, Destination node of p;

sp,; (1) Location of p; at ¢

Vp, (t) | Traveling velocity of p; at ¢

Sp, (t) State of p; at t
€p; Panic rate of p;
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Fig. 1. Flowchart of the proposed multi-agent community network
model and dynamic interactions between the components of the community
network, human agents, and hazard agents.

community structures as pathways linking buildings and
intersections, capturing pedestrian-environment interactions
through networks of autonomous decision-making agents.
In evacuation modeling research, multi-agent approaches
have proven essential for effectively capturing diverse pedes-
trian actions and interactions. For example, the agent-based
model employing rule-based techniques was developed to
simulate stadium evacuations during fires [16]. Luh et al.
proposed a multi-agent modeling approach to scrutinize
congestion effects and enhance evacuation strategies by
simulating independent decision-making among pedestrians
[17]. Furthermore, multi-agent modeling was employed to
study psychological interactions, focusing on anxiety’s im-
pact on fire evacuations via virtual reality [18]. However,
these studies often overlook the heterogeneous composition
of pedestrian groups, influenced by demographic factors
affecting behaviors such as panic likelihood and travel speed.
Given the diversity and potential simultaneous or sequential
emergencies in communities, it is crucial to develop a respon-
sive evacuation model that accommodates various pedestrian
behaviors and addresses cumulative emergency impacts.

III. METHODOLOGY

This section introduces a community evacuation model
designed to simulate evacuation processes in large communi-
ties. The model captures pedestrian reactions to community
networks and dynamic emergencies. As illustrated in Fig.
1, the proposed model consists of three components: 1) a
community network representing pathways connecting build-
ings and intersections; 2) hazard agents simulating emer-
gency spread and impact; and 3) human agents reflecting
pedestrians’ responsive behaviors to emergencies. Technical
notations are outlined in Table I.

A. Community Network

The community map is structured into a multi-graph flow
network denoted by G = (V, E), where V and E represent
the sets of nodes and edges, respectively. Every community
possesses a distinct geographical boundary, ensuring a finite
node set V' defined as:

V =A{uvili € [1,n.]} (D
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TABLE 11
STATES OF THE HUMAN AGENT

Sp, (t) Description
Normal p; is traveling unaffected.
Queuing  p; is traveling but is in congestion.

Impacted  p; is traveling but is impacted by hazards.

Arrival p; arrives at the destination without being impacted.
Survival — p; arrives at the shelter after impacted by hazards.
Casualty  p; becomes a casualty due to the effects of hazards.

where n,, denotes the number of nodes in the network. Each
node v; in the network is defined as follows:

Uy = (vacvmfvi (t>) (2)

where s,, is the geographical coordinate of v;, and ¢, repre-
sents the pedestrian capacity estimated based on open-source
community amenity data. Pedestrian flow f,,(¢) denotes the
pedestrian flow at node v; at time t.

Nodes are classified into buildings or non-buildings. Build-
ing nodes encompass community buildings, whereas non-
building nodes represent intersections, parks, lawns, and
parking lots. Evacuees can traverse these nodes unless im-
peded by hazards or congestion. During emergencies, routes
redirect to shelters provided by community authorities. These
shelters also serve as command centers for coordinating
support and relief efforts.

In the community network, an edge represents a pathway
between two nodes. The edge set E is defined as follows:

E = {eij = (vi,05)|vi,v; € VZ,i # j} 3)

where each edge e;; is denoted as follows:
eij = (leyy» Coryo feiy (1)) )
where [, represents the practical distance for pedestrians

traveling along e;;. The edge length [, is estimated as
le,; = |12, - we,;| where I2 represents the Euclidean
distance between v; and wv;, and We, is the degree of
curvature of e;;. The edge capacity c.,; is formally defined
as Ce;; = le;; * Dmax Where Dy is the maximum pedestrian
volume sustainable per each unit length. Pedestrian flow
Je,; (t) reflects the number of pedestrians moving along e;;

at time t.

B. Hazard Agent

The set of hazard agents impacting the network is denoted
as H = {h;|1 <i < Hmax}, Where Hpax is the maximum
number of emergencies during evacuation. Hazards are char-
acterized by their causes and circular impact areas, with
severity determined by both source and impact area char-
acteristics. Each hazard agent h; is defined by the following
tuple of parameters:

hi= (' G Vi Vi (0,00, (0) )

where 1" denotes the emergence time of h;, and (, repre-
sents the duration cessation. Vj,, and Vj =~ are the movement
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and spread speeds within the impact area, respectively. Haz-
ard agents contain two dynamic properties: s, (t) denotes
the coordinate of the impact area center at time ¢, and ap, (t)
corresponds to the radius of the circular impact area.

C. Human Agent

Pedestrian flow is represented as a set of human agents
denoted by P = {p;|1 < i < Ppax}, Where Ppax denotes
the maximum volume of pedestrian flow in the community.
To capture the reactive behavior of pedestrians, each human
agent p; is defined as follows:

pi = (dpi’ Sp; (t>7 Vpi (t)’ S;Di (t>7 epi) (6)

where d,,, denotes the destination of p;, and s, (t) represents
the current location of p; at time ¢. Each human agent
updates their traveling routes from s, (t) to d,, based
on its observations of the community network and hazard
occurrence. V), (t) is the traveling speed of p; at time ¢. The
state of p; is represented as Sp,(t), which is a set of six
states: Normal, Queuing, Impacted, Arrival, Survival, and
Casualty. Detailed descriptions of each state are outlined in
Table II.

Sp, (t) governs the decision-making process of p; during
the evacuation. The initial state of p; is Normal. If a critical
situation prevents p; from continuing their current travel due
to traffic congestion or inaccessibility to nodes or edges,
Sy, (t) becomes Queuing. The Queuing state impedes the
movement of p; with a possible detour and reduced traveling
speed. When p; is influenced by a hazardous impact from an
emergency, Sy, (t) turns to Impacted. Impacted p; changes
their destination to a nearby shelter and begins evacuation. p;

Algorithm 1: Human-Network Interaction Algorithm

forall p; € P do
if sp, (t) # dp, then
if sp, (t) is located at vy, for vi, € V' then
if fy, (t) > cy,, then
if fe; > ce;,Ve; € E(vy(t)) then
J Sp; (t + 1) <= Queuing and Vp, (t) < 0
else Not all surrounding edges are congested
if p; is in panic then
| p; randomly selects e; € E(vg(t))
else p; is not in panic
| p; re-routes
end
Update sy, (t + 1) based on Vp, (t)
end
else no congestion
| Update sp, (t + 1) based on Vp, (t)
end
else p; is located at e, for ey, € F
if fe, (t) > ce, then
| Sp;(t+ 1) < Queuing and Vp, (t) < 0
else no congestion
| Update sp, (t + 1) based on Vp, ()
end

end
else p; reaches dp,
if Sp, (t) = Normal then
| Sp,(t+1) < Arrival
else Sy, (t) = Impacted
‘ Sg;‘d < Survival
end

end
end
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Algorithm 2: Human-Hazard Interaction Algorithm

forall p; € P do
if sp, (t) € ap (t),Yh; € H then
Sp; (t + 1) < Impacted
Compute whether p; becomes casualty
if p; becomes casualty then
| Sp,(t+ 1) < Casualty
else p; is evacuating
Compute €p,
‘ Determine if pi is in panic based on €p,
end

end

end

can exit the model with one of three ending states: Arrival,
Survival, or Casualty.

The panic rate ¢, represents the likelihood of panic when
Sp, (t) becomes Impacted. The design of ¢, is based on
the understanding that panic is positively related to the
degree of uncertainty. When panicked, human agents deviate
from optimal evacuation routes. The level of panic depends
on the characteristics of pedestrians and the completeness
of observation required for evacuation. These observations
include knowledge of community structures and the presence
of executive agencies.

During the evacuation, pedestrians rely on up-to-date ob-
servations of their immediate surroundings to make informed
decisions. These observations include information about
community structures and hazards. To reflect the process of
collecting this information and making evacuation decisions,
we design two algorithms: (1) Human-Network Interaction
Algorithm and (2) Human-Hazard Interaction Algorithm.

Interactions between human agents and the community
network are systematically modeled for each p; at every
time t, as outlined in Algorithm 1. These interactions are
critical in shaping pedestrian flow, directly affecting the
overall evacuation outcome. At each time ¢, the properties of
each p; are updated simultaneously, considering the current
status of the community network and previous observations.
This interaction mechanism ensures that the behavior of each
human agent is dynamically influenced by evolving network
conditions and observed information, thereby allowing a
more realistic representation of pedestrian dynamics during
the evacuation process.

Interactions between human agents and hazard agents are
modeled for each p; at each time ¢, as described in Algorithm
2. This algorithm details how each p; actively observes
hazard agents in their immediate vicinity while making
limited observations of the community network and currently
existing hazards. Additionally, this algorithm captures the
detrimental effects of hazard agents on the survivability and
decision-making of p; during evacuation. The adverse effects
of hazard agents on human agents manifest in two aspects.
First, human agents initiate evacuation when they directly
encounter or detect the negative effects of any hazard agents
within a predetermined radius. Second, prolonged panic
states lead to irrational behavior in which p; persistently
deviates from prescribed evacuation routes.
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Fig. 2. Experimental design with three control factors and four performance
metrics in the case study.

IV. EXPERIMENTAL DESIGN AND RESULTS

A. Experimental Design

The proposed evacuation model is evaluated in two steps.
First, the community network model is verified through
simulation experiments conducted in five representative mu-
nicipal communities: the University Park campus of the
Pennsylvania State University (PSU-UP), the Charlottesville
campus of the University of Virginia (UVA-C), the Blacks-
burg campus of Virginia Tech (VT-B), Reading, PA (RA-PA),
and King of Prussia, PA (KOP-PA). These communities were
selected for their varying structural layouts and demographic
characteristics, providing a comprehensive assessment of the
model’s applicability. Simulation outcomes provide a de-
tailed analysis of network attributes and offer visualizations
of pedestrian flow on community maps. These insights are
crucial for understanding pedestrian navigation patterns and
decision-making processes in both routine and emergency
contexts.

Second, the multi-agent modeling approach is validated
through a case study assessing evacuation effectiveness under
varying panic levels. This study identifies three control
factors to evaluate the impact of panic levels on evacuation
outcomes, considering uncertainties in pedestrian flow and
hazard occurrence, as shown in Fig. 2. The panic rate
(ep;) quantifies the negative impact on evacuation decisions
due to imperfect observations. Pedestrian flow and hazard
occurrence are regulated by two control factors: maximum
pedestrian flow within the community (Ppax) and maximum

TABLE III
HUMAN AGENT GROUP PARAMETERS

Identity Age Range  Speed (m) Panic Rate (%)  portion (%)
Group 1 [18,25] 96 60 60
Group 2 [25,50] 84 50 20
Group 3 [40,60] 72 20 20
TABLE IV
HAZARD AGENT TYPE PARAMETERS

Type Lifespan ~ Area as Radius Expansion Movement

P (minute) (m) Speed (m/s)  Speed (m/s)
Type 1 | [130,170] [150,200] [25,35] [30,42]
Type 2 [30,50] [20,80] [0,10] [90,102]
Type 3 | [120,170] [200,400] [100,120] [102,204]
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TABLE V
NETWORK STATISTICS

Building Node  Non-building Node Edge
Network Count Count Count
PSU-UP 953 6,670 19,799
UVA-C 412 5,677 7,095
VT-B 445 6,511 6,929
RA-PA 473 2,068 16,432
KOP-PA 271 2,240 17,216

number of hazard occurrences (Hyax). Four performance
measures are analyzed: impacted rate ([?), evacuation suc-
cess rate ([Ig), casualty rate (R¢), and leftover rate (Ry). Ry
defined as the ratio of affected pedestrians to the maximum
pedestrian flow, Ry = pm , where n; represents the number
of pedestrians affected by any hazards. Other three metrics
assess evacuation effectiveness as ratios to np: Rs = Z—?,
Rc = %f, and R} = %SI*”C, where ng and nc denote the
number of survivors and casualties, respectively. Diversity
inherent in pedestrian behavior is modeled by defining three
human agent groups, as outlined in Table III. These group
parameters are designed to reflect variations in age, likeli-
hood to panic, and travel speed. Additionally, three hazard
types are characterized by diversified impacts and spreading

behavior among hazards, as presented in Table IV.

B. Simulation Studies for Community Network Model

As presented in Table V, each municipal community is
represented by a network characterized by varying numbers
of building and non-building nodes, as well as edges. PSU-
UP exhibits the most intricate network structure with 953
building nodes, 6,670 non-building nodes, and 19,799 edges.
Across all communities studied, each community includes
more than 200 buildings, over 2,000 intersections and open
grounds, and around 6,500 edges. This underscores signifi-
cant variability in the distribution of buildings, intersections,
and pathways among communities, despite similarities in
function, demographic profiles, and pedestrian patterns.

Community maps and corresponding spatial network rep-
resentations of PSU-UP, UVA-C, VT-B, RA-PA, and KOP-
PA are illustrated in Fig. 3. nodes are represented by white
dots, and edges denote pathways. Despite each commu-
nity having a unique network topology, the arrangement
of buildings, intersections, and pathways follows a non-

Spatial
Network

Map

PSU-UP UVA-C KOP-PA RA-PA

Community

Fig. 3. Illustrations of spatial networks and campus maps of PSU-UP,
UVA-C, VT-B, RA-PA, and KOP-PA.
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Fig. 4. Pedestrian flow and evacuation progress over time from 0 to 120
during evacuation on each campus.

linear pattern. The intricacy of communities emphasizes
the necessity of employing network modeling to assess
community-wide evacuation processes. The proposed com-
munity network model demonstrates flexibility and accuracy
in representing the structural characteristics of each campus
as a corresponding network when providing geographical
indicators of the community.

In a scenario where Pp.x = 2000, Hupax = 5, and
€, = 10%, the dynamic distribution of pedestrian flow on
each campus is shown in Fig. 4, with red dots symbolize
pedestrians. The observed distribution closely corresponds to
structural features depicted by the campus’s spatial network,
validating the accuracy of the proposed community network
model in predicting dynamic pedestrian flow patterns. Fur-
thermore, as the simulation progresses, a noticeable decrease
in pedestrian flow is evident on each campus. This decrease
suggests the successful evacuation and effective route navi-
gation of pedestrians while utilizing the flow-based network.

C. Case Study: Evacuation Performance across Panic Levels

The effect of Ppax and Hpax on the impacted rate (Ry)
is depicted in Fig. 5. The analysis reveals that R; exhibits
no discernible correlation with P, but increases as the
Hmax rises. For instance, when H . = 5, the R values for
each Pp.x level are 34.3%, 27.5% and 34.4%. However, with
Hmax increasing to 10, these values increase to 56.5%, 51.8%
and 54.4%, respectively. Subsequently, with Hy.x = 15,
the Ry values further increase to 68.4%, 64.4% and 66.2%,
respectively. This trend suggests a higher frequency of emer-
gencies affecting the community, resulting in an expansion
of hazardous impact areas within the community network.
Consequently, the cumulative impact areas expand, leading
to an increased number of affected nodes and edges within
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Impacted Rate ( RI)

Fig. 5. Impacted rate of pedestrians according to maximum pedestrian
flow and maximum number of hazard occurrences.

the network. Given that pedestrians are spatially distributed
within the community network based on a fixed P,y level,
the surge in Hy, results in a pronounced escalation in the
number of pedestrians impacted by hazards.

The degree of background panic rate influences the evac-
uation effectiveness as illustrated in Fig. 6. First, a distinct
negative relationship is observed between ¢, and Rs. Specif-
ically, when ¢, = 10%, 96.6% of evacuees successfully
reach shelters within 120 minutes. However, a rise in ¢,
exacerbates the panic level among impacted pedestrians,
leading to confusion in their evacuation decision-making
process. This trend is supported by the decrease in Rg
observed at higher ¢, levels. For example, when the ¢,
parameters are set to 50% and 90%, only 88.3%, and 64.6%
of the impacted pedestrians, respectively, manage to safely
evacuate. Furthermore, another observation is the increase
in the probability of casualties among impacted pedestrians
as €, rises. A lower value of ¢, indicates that pedestrians
possess most of the information necessitated for successful
evacuation. In particular, when ¢, is set to 10%, 2.5% of
affected pedestrians become casualties. On the other hand,
Rc increases to 7.2% and 13.3% when ¢, = 50% and
ep = 90%, respectively.

Moreover, an indication of the decreased rationality con-
cerning evacuation decisions emerges in the context of Ry
as ¢, increases. Given the assumption that panic states are
irreversible, panicked pedestrians make minimal progress to-
ward nearby shelters. These individuals are unlikely to reach
any definitive end states, such as casualties or successful
evacuations, as they persist in following random paths once
panic occurs. Thus, a higher ¢, correlates with a greater
likelihood of pedestrians remaining within the network after
120 minutes. For example, when ¢, = 10%, R; remains
below 1%. However, if €, values become 70% and 90%, the
corresponding Ry, surges to 9.7% and 22.1%, respectively. It
is noteworthy that as ¢, rises, R increases at a faster rate
than Rc. The reason is the congestion caused by the con-
centration of panicked evacuees wandering aimlessly around
surrounding areas without proper evacuation progress.

Holding all other control factors constant, a rise in Pp,x
proportionally increases nj, ns, and nc, while having min-
imal impact on Rc, Ry, and Rs. Similarly, an increase in
Hmax results in a higher ny, which consequently elevates
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Fig. 6. Proportional performance metrics (Rs, Rc, and Ry ) with respect
to background panic rate.

Ry, given a fixed pedestrian population. However, without
altering the panic rate ¢, rasing Hy.x does not significantly
influence Ry, Rc, or Rs. Additionally, increasing Ppax
requires substantial computational resources for simulation
experiments due to the increased interactions among human
agents and hazard agents. Within a Python 3.7 simulation
environment running on a system with 16 GB of RAM
and an Apple M1 Pro chip (8-core CPU, 14-core GPU),
increasing Ppax from 2,000 to 8,000 extends the duration
of a single simulation run from 2.5 hours to 22 hours,
while keeping all other control factors constant. Despite this
increased computational demand, the enhanced interactions
provide decision-makers with valuable insights, particularly
in monitoring pedestrian flow and identifying areas suscep-
tible to congestion and potential stampedes.

D. Discussion

The proposed community evacuation model provides a
comprehensive framework for evaluating evacuation pro-
cesses in diverse outdoor and municipal environments char-
acterized by complex and dynamic pedestrian flow. However,
the current model has two limitations: it assumes that panic
is irreversible and that panicking pedestrians choose paths
randomly at nodes. These assumptions do not fully reflect the
nuanced behaviors observed during real-world evacuations.
Future research should aim to refine these assumptions to
more accurately capture the actual responses of pedestrians
during emergencies.

When integrated into emergency response systems, the
model is invaluable for proactively evaluating and optimizing
evacuation strategies before emergencies occur. Effective
deployment involves the strategic allocations of resources,
such as shelters, emergency responders, and relief personnel,
to maximize evacuee survival rates. By visualizing pedestrian
flow, decision-makers can identify high-density areas and ad-
just disaster relief efforts accordingly. Future enhancements
may include additional agent types, such as firefighters and
trained volunteers, to more accurately represent evacuees and
response activities.

Incorporating real-world map data into network modeling
allows the simulation of diverse community layouts, enhanc-
ing the model’s ability to reflect various structural character-
istics. The multi-agent modeling approach further improves
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the representation of individual decision-making processes
among evacuees and hazards, ensuring autonomous operation
and efficient computational performance. To advance the
model’s capability in simulating reactive evacuee behaviors
during panic, future research will explore the application
of foundational theories of human behavior, such as social
force models. Additionally, modeling irrational behaviors
triggered by evolving hazards could be refined by applying
probabilistic approaches like Markov Decision Processes.

V. CONCLUSIONS

In this paper, we presented the community evacuation
model designed to evaluate evacuation protocols within mu-
nicipal communities, achieved by simulating the responsive
behavior of evacuating pedestrians for multiple emergencies
through network modeling and multi-agent modeling. This
methodology furnishes novel features that contribute to effi-
cacy and adaptability through the integration of the following
modeling methods:

1) Community spatial network: The methodology incor-
porates network modeling, which represents the struc-
tural properties of communities through a network of
interconnected buildings, intersections, and pathways.
The proposed network model provides an effective
mechanism for modeling diverse community environ-
ments and simulating dynamic pedestrian flow by
leveraging real-world map data.

2) Human and hazard agents: Multi-agent modeling ad-
equately captures multifaceted characteristics and dy-
namics inherent in pedestrian behavior and emergency
spread. Hazard agents are designed to encapsulate
the dynamic propagation and impact of public emer-
gencies. Human agents reflect pedestrian behavior by
embodying their attributes and decision-making pro-
cesses in response to emergency scenarios, represent-
ing pedestrian flow.

The proposed modeling methodology is validated through
an experimental study with two phases. First, the community
network model effectively represented pedestrian flow within
spatial networks of three university campuses. Second, ex-
perimental outcomes of the case study evaluating evacuation
performance across different panic levels showed that the
proposed multi-agent modeling method proficiently reflects
the intricate dynamics of evacuation processes. This commu-
nity evacuation model is strongly promised to enhance life-
saving measures during community-wise exigent situations
with an approach to simulate and provide decision support
to both evacuation procedures and subsequent actions.
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