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Abstract—The presence of exascale computers has pushed a
new boundary in computing capability, which poses performance
challenges in parallel programming models on how to exploit
such systems efficiently. A dominant programming model for
running parallel programs is the Message Passing Interface.
Among primitives provided by MPI, Alltoall is a communication-
intensive operation, which is utilized by many applications and is
well-known for being difficult to optimize. Alltoall algorithms can
be mainly classified into flat and hierarchical. The hierarchical
designs avoid the slowdown of intra-node communication by
inter-node communication by decoupling them. The hierarchical
designs also reduce network congestion by reducing concurrently
injected messages into the network. This work demonstrates
an additional benefit of hierarchical designs to improve con-
nection scalability in RDMA networks. This is attributed to
the cache thrashing happening inside network adapters. All of
these advantages of hierarchical schemes collectively contribute
to the network scalability of Alltoall. This motivates us to
propose a further optimized hierarchical design to enhance
performance and network scalability. The design is network-
agnostic and evaluated on clusters with InfiniBand and Omni-
Path network adapters. The proposed design achieves average
latency improvements of 61.13%, 56.40%, 37.49%, and 51.90%
over Open MPI + UCX, HPC-X, Intel MPI, and MVAPICH2-X
at micro-benchmark level with up to 7168 cores, respectively. In
addition, the evaluation at application-level with Car-Parrinello
Molecular Dynamics code shows 24.98%, 40.44% and 50.48 %
improvement in the simulation time, compared to MVAPICH2-
X, Open MPI + UCX, and Intel MPI, respectively.

Index Terms—Alltoall, Collective, MPI, Optimization, Perfor-
mance, Scalability, Network Agnostic, Transport Protocol

I. INTRODUCTION

Contemporary high-performance clusters are equipped with
powerful CPUs with a high processor count per node. An
AMD system featuring Milan or Rome architectures supports
up to 128 cores per node, while the Intel Ice Lake architecture
offers a maximum of 80 cores. Such nodes are then connected
together with high-performance networks such as InfiniBand,
Omni-Path, and RoCE. These networks distinguish themselves
from traditional Ethernet with Remote Direct Memory Access
(RDMA) in providing high-performance zero-copy and kernel
bypass message transfers. To fully exploit supercomputers, an

efficient and robust programming model is required to catch
up with the trend of such systems in the number of core counts
per node, network speed, and system size.

Among parallel programming models, Message Passing
Interface (MPI) [1] is the de-facto model that is utilized
on many high-performance clusters to execute applications
in a parallel and distributed fashion. The MPI standard is
continuously evaluated by its community to closely follow
the trend of modern clusters. MPI provides a set of primi-
tives for point-to-point and collective communication. Among
collective operations, Alltoall is the most communication-
intensive collective that injects a huge amount of data into the
network; it is not only utilized in traditional high-performance
computing applications [2], [3] but also in emerging Artificial
Intelligence/ Machine Learning applications [4], [5]. Alltoall
is well-known for being difficult to scale and optimize due to
its global communication pattern. As a result, providing good
Alltoall performance and scaling it on a large RDMA network
is not trivial, especially at the exascale level with millions of
cores.

RDMA networks play an important role in optimizing
communication, especially Alltoall. Many studies have shown
that RDMA networks suffer performance degradation as the
number of connections crosses a certain threshold [6]-[9]. The
root cause of the issue in RDMA network is attributed to
the cache thrashing inside the adapters. An RDMA network
adapter, also known as RDMA NIC (RNIC) or Host Channel
Adapter (HCA), can create a certain number of connections,
represented by QPs (Queue Pairs), and cache a subset of them
within its local cache. Figure 1 illustrates RNIC architecture
and how it uses its SRAM to cache information, such as
virtual-to-physical address translation for the registered mem-
ory regions as well as QP-related information. To retrieve
the connection-related information, the adapter has to read
from the CPU’s main memory, leading to an increase in
traffic going through PCle. As reported in [9], InfiniBand
ConnectX-4 and ConnectX-5 have a cache size of around
2M B. In Mellanox’s implementation, each RC connection
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consumes 3758, allowing the RNIC to accommodate ap-
proximately 5000 connections (1.8M B). In addition, there is
an upper bound on the number of QPs an RDMA adapter
can create. For instance, the max number of QPs supported
on InfiniBand ConnectX-6 adapters is 131072. However, this
number is considered small, considering the exascale era we
have entered. Several studies have shown that performance
degradation happens even sooner, after a certain threshold, i.e.
256 QPs, which is significantly less than the estimated number
(5000 QPs) [7], [8].

CPU
RNIC
o NIC
PCle Cache
Last level cache QPs
MTT

Memory Bus

MTT

QPs

Memory
Fig. 1: RDMA NIC (RNIC) Architecture. RNIC caches QP-related informa-
tion, as well as the memory translation table (MTT). Upon NIC cache misses,
RNIC fetches the data from main memory via DMA over PCle.

The connection scalability issue can be overcome with
other types of transport such as unreliable datagrams (UD).
Specifically, while the throughput of RC drops significantly
as the number of connections increases, the throughput of UD
remains constant [10], [11]. This motivates the adoption of
UD in communication runtime like MPI. However, UD neither
guarantees packet transmission nor provides packet reordering.
This requires software solutions that add some extra overhead
and can lead to performance degradation. Besides RC and UD,
Dynamic Connection (DC) is another transport that attempts
to retain both the performance of RC and the scalability of UD
[12]. However, this transport protocol is specific to InfiniBand
and not supported in Omni-Path, RoCE, or other networks.

A. Motivation

An Alltoall operation of an N-node network requires
O(N?) number of messages and its algorithms can mainly
classified into flat and hierarchical schemes. For flat algorithms
such as Bruck [13], they work well for single-processor nodes;
communication is performed at the network level [14]. Over
time, more resources are put into a processor; hence the arrival
of multi/many-core processors. The number of messages in
an Alltoall increases up to O(N? x PPN?) with PPN as
the number of cores per node. This leads to the creation of
hierarchical designs attributed to the performance difference
with processor interconnect (intra-node) faster than network
interconnect (inter-node) [15], [16]. This is the first benefit
of hierarchical designs - avoiding communication slowdown
when decoupling intra-node and inter-node communication.
Another benefit is the reduction in network congestion with
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less concurrently injected messages into the network [16]—
[18]. In hierarchical schemes, there will be a leader within a
node in charge of gathering data and communicating on behalf
of all processes in the node. The number of messages sent to
the network decreases from O(N?2 * PPN?) to O(N?).

In fact, hierarchical designs provide an additional benefit
related to the connection scalability in RDMA networks be-
sides the two well-studied advantages commonly cited in the
literature. They together contribute to the network scalability
of Alltoall. RDMA network adapters face a scalability issue as
the number of reliable connections (RC) scales up [7], [8]. In
order to send a message to a remote process, an RC connection
must be established. Hierarchical designs decrease the number
of connections from (N — 1) x PPN to (N — 1) when
compared to flat designs. As a result, this leads to a reduction
in the number of PCle read transactions to retrieve connection
data structures stored in main memory. This motivates us
to further improve hierarchical designs for overall network
scalability due to the three aforementioned benefits. In this
work, we explore, analyze the benefit from RDMA connection
scalability angle that is not well-known in MPI literature, and
propose an optimized hierarchical design.

Table I summarizes well-known alltoall algorithms and
highlights their differences with the final proposed design.
While some algorithms are hierarchical, other increases re-
source utilization by overlapping intra-node and inter-node
communication. Nevertheless, few prior works take into ac-
count of both connection scalability in an RDMA network
and communication overlap when designing Alltoall algo-
rithms, which leads to low performance at a large scale.
More importantly, there is a plethora of works that study
the scalability of such networks and the interplay between
network transport protocols and communication performance,
notably [6], [7], [11], [20]. Our proposed design overcomes the
challenge by reducing the number of QPs as well as posted
requests per node while preserving the benefits of hierarchy
and communication overlap.

B. Contribution

To the best of our knowledge, this is the first work that
studies the benefit of hierarchical designs from connection
scalability angle in the context of MPI for Alltoall. In this
work, we propose OHIO - an Optimized Hierarchical
and Intra/Inter-Node Communication Overlap design to
improve the network scalability of Alltoall with a focus
on small messages. The proposed solution applies to any
RDMA network. It not only scales as well as UD but also
maintains all the reliability of RC. We thoroughly discuss
and analyze the techniques used in the designs. They are
evaluated with micro-benchmark and application. As a result,
this paper makes the following contributions:

1) We propose high-performance and scalable network-

aware Alltoall design.

2) In addition, the design itself is network-agnostic. In

this paper, we have taken InfiniBand and Omni-Path
networks as a case study.
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TABLE I: Existing and Proposed Designs for Alltoall Communication

. Optimal message . . Intra/inter-node Number of QPs used per Number of posted send
Algorithm range Hierarchical communication Overlap node requests per node
Bruck [13] Small X X ~ PPN %log2(N * PPN) | ~ PPN *log:(N * PPN)
Scatter Destination Large X X (N —1)% PPN? (N —1) x PPN?
Pairwise Large X X (N —1)* PPN? (N —1)* PPN?
Khorassani et al. [19] Large v 4 (N —-1)« PPN (N —1)« PPN
TY&fT et al. [15] Small v X (N-1T) (N=-1)
Chochia et al. [16] Small v X (N-1) (N-1)
Proposed Design Small 4 4 (N-1) (N-1)
E’;Bg;]?n I(I[}D(ihiim};::i%ﬁd (Xdi)etgfsble Connection (RC) and Unreliable reguiring packetization for larger Packets, but it scales better
i Sert e e with constant resource consumption. Between RC and UD
. ne-side erbs Wo-s1de erbns . . . .
Transport Protocol | MTU Size oo e e lies the dynamically connecteFl (DC) transport service, .whlch
RC 2GB 7 7 7 7 balances performance, one-sided verbs, and scalability by
UD 4 KB X x X v reducing the number of system-wide QPs through dynamic
. connections.
3) We conduct a thorough performance evaluation of the . . .
. . . . . Figure 2 depicts the connection models of RC, UD and
design with various MPI implementations, namely Intel DC. Given a communication eroup of N nodes and PPN
MPI, Open MPI, HPCX, and MVAPICH2 on clus- : group of ¥
. . . . . processes per node. To have a connection to any remote
ters with different types of interconnects using micro- . L
process, each process requires ((N — 1) x PPN) QPs. Within
benchmarks. .
4) The scalability of the design is also studied against a node, PPN processes share the same HCA, which means the
e Y gn 15 ak 4 HCA needs to handle (N — 1) * PPN?) QPs. As a result,
different transport protocols, namely, RC, DC, and UD. . . ol
. L7, . as the number of nodes increases, RC will have a scalability
5) The design shows benefits at application-level with Car- . .
. . issue because of the explosion in the number of QPs needed as
Parrinello Molecular Dynamics code when compared .
inst other MPI implementation well as memory to store them. With these many QPs, the HCA
agawnst othe tmpiementations. cannot fit them all in its cache and will result in extra PCle
II. BACKGROUND traffic to fetch them. For UD, a process only requires a QP
A. Remote Direct Memory Access (RDMA) to communicate with any remote processes, which means Fhe
. number of QPs handled by the HCA is PPN and it remains
RDMA is a network feature that bypasses the kernel to constant as more nodes participate in the communication.
allow direct access to. the memory of a remote host, enab?mg Finally, for DC, it requires the same number of QPs as UD,
zero-copy transfers with low latency. It offers high bandwidth but its connections are reliable while UD ones are not.
and reduces CPU cycles for network operations. Popular
high-performance RDMA networks include InfiniBand (IB), III. DESGIN AND IMPLEMENATION OF OHIO
RDMA over Converged Ethernet (RoCE), and Omni-Path This section presents step by step a series of design choices
Express (OPX). RDMA-enabled machines communicate with from naive to high-performance and memory-optimized algo-
remote peers through a Queue Pair (QP), which includes a rithms that are scalable and RDMA network agnostic.
Send Queue and a Receive Queue. To send a message, a work A Version 1+ Naive Desi
queue element (wqe) is posted to the Send Queue via the user- - version 1o Naive Design
level verbs API. Each QP is linked to a Completion Queue The key idea to achieve scalability is to reduce the number
(CQ). Upon request completion, a completion queue element of QPs used during the Alltoall communication operation. In
(cqe) is added to the CQ, which applications can poll to check other words, we need to reduce the number of communicating
the request status. pairs of processes to avoid cache thrashing happening with the
NIC itself. In the very first design, a process leader within a
B. RDMA Transport Protocols node is responsible to exchange data of its local processes
RDMA networks support various transport protocols, such and itself to other peer leaders in other nodes. Figure 3
as Reliable Connection (RC) and Unreliable Datagram (UD). demonstrates the design which is comprised of two phases:
RDMA includes two types of verbs: channel semantics and (1) processes stage send data to shared memory region and
memory semantics. Channel semantics, or two-sided verbs, (2) leader process posts send/receive requests to exchange
involve send and receive operations between a sender and data with remote leader processes while all processes copying
a receiver. Memory semantics, or one-sided verbs, include data from shared memory to their receive buffers. Since the
RDMA read, write, and atomic operations, allowing direct process leader cannot directly access data in the address
memory access on a remote host without its involvement. space of the local processes, they are required to stage their
Table II summarizes features of RC and UD protocols. RC data to a shared memory region. In this paper, it is referred
supports both one- and two-sided verbs with a large Maximum to as shared send buffer (SSB). The leaders then initiate a
Transmission Units (MTU) of 2GB, offering high performance data exchange with other leaders using Pairwise algorithm.
but limited scalability and a higher memory footprint. UD Specifically, leader of node (i) communicate with the one of
supports only basic send/receive operations with a 4KB MTU, node (7 zor j) in which (j) is a communication step that runs
49
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Fig. 2: Connection models for different transport protocols in RDMA networks. For RC, each process requires a dedicated QP for a remote connection. UD
and DC can share a QP for connecting to any node. However, UD requires an extra software layer for reliability. Additionally, DC needs to tear down and

establish a new connection when sending data to a different process.
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Fig. 3: Node level view of Naive Design with two phases: (1) stage data to
SSB (2) send/receive operations to/from remote leader processes overlapped
with memories copies to receive buffers from SRB.

from one to the number of nodes in a communication group
(communicator) with power-of-two size. For the non-power-
of-two case, in each communication step, the node leader
transfers data to the right peer and receive from the left one.
When the process leader exchanges data with a remote peer,
it sends all of the data needed by that peer from the shared
send buffer, receives the data from it and writes to another
shared buffer, called shared receive buffer (SRB). While the
send/receive operations progressed by HCA, processes can
perform memory copies from the shared receive buffer to their
receive buffers accordingly. The inter-node data transfers and
memory copies are overlapped with each other in a pipelined
fashion, i.e. data exchange with a current node overlapped with
memory copies of data from the previous node.

Figure 4 depicts the changes in states of the shared
send/receive buffers and receive buffers and how data are
organized for the first design. In this example, send buffers
are copied to shared send buffer in the order shown by the
green zigzag. In other words, send buffers of process 0 and
1 (node 0) are written to the first and second halves of the
shared send buffer. Note that shared send/receive buffers are
contiguous one-dimensional arrays. In phase two, the purple
data block consisting of four cells is sent to a remote leader
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process 3 (node 1) and written to its shared receive buffer in
the same order as the shared send buffer of process 0. Because
the data block is not contiguous, we need two send operations.
Once the data arrive, process 2 and 3 copy out from the shared
receive buffer and re-arrange to correctly place data in receive
buffers, which results in the data block is being transposed.

Memory copy
Send buffers /\ Shared send buffer of node 0

PO o1 o1
[Noceo] o R T]  CElBiLiib)

“‘2 send
Shared recv buffer of node 1/ operations

; HEBEEB
P3
sl T T T T]

Node 3

m T
Fig. 4: State changes of the shared send/receive buffers and receive buffers
for the first design. The green zigzags represent memory copy order from
send buffer to the shared send buffer. Data order changes of a block are
shown through changes in colors. Multiple send operations are required to

communicate with a remote node. A data block is referred to as all the pieces
of data needed by a remote node.

2 memory copies

Recv buffers of node 1 /‘eaCh process

P2 [o]2]
Ps [1]3] I

B. Version 2: Performance Optimized Design

Now that we can achieve high scalability by reducing the
number of communicating pairs of processes through the
leader-based scheme in the first design, the next step is to
further optimize the performance. In the naive design, it takes
multiple network operations to send all the data to a remote
node due to the data not being contiguous as shown in Figure
4. Each message transfer is associated with a startup overhead
which includes reading the work request element (wqe) stored
in send queue of the corresponding QP. This can be an
expensive operation, which leads QP cache thrashing if the
QP is not currently stored in the NIC’s cache. The HCA has
to go through PCle to access the main memory where the QP is
stored. The second design focuses on optimizing the number of
posted requests to HCA through request coalescing. Instead
of invoking multiple send requests of small data size with
multiple startup costs, when staging data to shared send buffer
in phase (1), data are re-arranged so that it only takes a single
send operation to communicate with a remote node.
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Figure 5 describes in detail how data are manipulated
and state changes in shared send/receive buffers and receive
buffers. For the purple data block of four cells to be transferred
to node 2 in a single network transfer, it is first copied to the
shared send buffer from send buffers with re-arrangement in
the order shown by the green zigzag, which requires multiple
memory copies to re-order data. Since the data block is now
contiguous, it can be directly placed into the shared receive
buffer in a single send operation. After that, just like the naive
design, once the data arrive, they can be copied out to receive
buffers by individual processes. It is worthwhile to mention
that even though we can transpose the data required by each
node when copying data to the shared send buffer in Phase (1),
which leads to a single network operation and a single memory
copy by each process once data have arrived in shared receive
buffer, this approach results in heavy strided memory access,
which causes CPU cache thrashing when running a large scale.

Memory copy
&re-arrange Shared send buffer of node 0

0 e O s e e e 2 2
[Moweo] o o pfa 1] CEEELLEL

Shared recv buffer of node 1

Send buffers

1send
operation

2 memory copies
/ each process
JUENEEEE }/

pofafa] [ [

Recv buffers of node 1

Fig. 5: State changes of the shared send buffers and receive buffers for the
second design. The green zigzags represent the memory copy order from
the send buffer to shared send buffer. Data order changes of a block are
shown through changes in colors. Only a single send operation is required to
communicate with a remote node. A data block is referred to as all the pieces
of data needed by a remote node.

C. Version 3: Performance and Memory Optimized Design

The focus of the final design is to further reduce the memory
footprint while retaining scalability and performance from the
previous designs. The main idea behind the final design is
to reuse the space in shared receive buffer for memory
copy operations and network transfers in contrast to the second
design which required extra shared memory to store all data
received from other remote nodes. Figure 6 demonstrates the
design idea in which the shared receive buffer only requires
the space to contain two blocks of data. A data block in this
paper is referred to all the pieces of data needed by a remote
node. In Figure 6, when exchanging data with node (N), the
first half of the shared receive buffer is used to receive the
data block from node (V) while the second half of the shared
buffer contains the data block from node (N —1) that is copied
to receive buffers. In the next communicating step to node
(N + 1), the roles of these shared regions are swapped. The
second region contains the data from receive operations while
the first region is now used for memory copy. Pseudocode of
the design is presented in Algorithm 1.

D. Analysis of Proposed Designs

Table III summarizes the discrepancies between existing
algorithms and the proposed designs on various metrics, QPs

Recv buffers

Recv buffers
(-G 1]

[ Memory copy  ghared send buffer

* Memory copy  ghared send buffer

Shared recv buffer Shared recv buffer

Recv Send Recv Send

Exchange data with node N Exchange data with node N+1

Fig. 6: Performance and Memory Optimized Design: in contrast to the second
design which required extra shared memory to store all receive data from
other leader processes, in this design, the shared receive buffer only requires
the space to contain two blocks of data. One block is for memory copy and
another is for send operation. A data block is referred to as all the pieces of
data needed by a remote node.

Algorithm 1: Performance and Memory Optimized

1 N < number of nodes
2 PPN < processes per nodes
3 M < message size
4 Irank < local rank in a node
/* Get shared buffers */
5 shm_recv_buf < get_shared_buf()
6 shm_send_buf < get_shared_buf()
/+ Copy send buf to shared send buf in the
order shown in Fig. 5 */
7fori+ 0to N—1do
3 src_add « addr_to_copy_from_send_buf
9 dst_add < addr_to_copy_to_shm_send_buf
10 mem_copy(dst_add, src_add, M « PPN)

1 M PI_Barrier(node_comm)
12 for i <— 0 to N do

/+ Process leaders do pairwise exchange */
13 if i < N AND Ilrank = 0 then
/+ Pairwise pattern */
14 src < dst < node_num @ i
/* Send buf to node ’src’ */
15 tmp_send
addr_to_send_from_shm_send_buf
/* Recv buf from node ’dst’ */
16 tmp_recv <
addr_to_recv_from_shm.,ecv_buf
17 MPI_Irecv(tmp_recv, src)
18 MPI_Isend(tmp_send, dst)
/* Copy from shared recv buf to recv buf =/
19 for j < 0to PPN —1 do
20 src_addr <
address_to_copy_from_shmem_recv_buf
dst_addr <+ address_to_copy_to_recv_buf
mem_copy(dst_addr, src_addr, M)

21 | MPI_Barrier(node_comm)

usage, the number of posted requests to HCA, and extra mem-
ory footprint. Given a communicator of N nodes and PPN
processes per node doing an Alltoall of message size M, the
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TABLE III: Analysis of Proposed Designs for Alltoall Communication

Number of Number of
Algorithm QPs used posted send Extra memory
& per node requests per footprint
node
Proposed Naive Design N_1 N —1)« PPN 2% M *ZV *
PPN
Proposed Performance 2% M* N *
Optimized Design (V2) (V-1 (V-1 PPN?
Final Proposed
Performance and . (M +2) % N«
Memory Optimized (N-1) (N-1) PPN?
Design (V3)

TABLE IV: Hardware Characteristics of Clusters Used in Experiments

Hardware Cluster A Cluster B

Processors Intel 8280 “Cascade Lake” Intel Xeon Platinum 8380 “Ice Lake”
Cores/Node 56 (28 per socket) 80 (40 cores/socket) 2.3 GHz
Clock Rate 2.7Ghz 23 GHz
Memory/Node 192GB DDR-4 256GB (3.2 GHz) DDR4
Network Mellanox Infiniband, HDR-100 Omni-Path, T00Gb/sec

numbers of QPs used and the numbers of posted requests to
HCA significantly affect the performance and scalability of an
algorithm. The final proposed design only requires (N — 1)
QPs as well as the number of posted requests, which are quite
small compared to other algorithms like Pairwise and Scatter
Destination. The higher the QPs usage, the more memory is
required and the greater chance that NIC’s cache cannot store
all of the QPs for communication, which leads to QP cache
thrashing. As a result, they suffer performance degradation and
are not able to scale well. In terms of memory footprint, we
trade off some extra memory to reduce the number of QPs
and posted requests. The final design leaves the least memory
footprint among the three proposed designs.

IV. EVALUATION
A. Experimental Setup

We conduct all the experiments on two clusters with differ-
ent interconnects, InfiniBand and Omni-Path, to support the
claim that the proposed designs are network-agnostic. Table
IV details the hardware characteristics of the two clusters.
The efficiency of the proposed designs is evaluated against
all major MPI implementations, open and closed source,
which have optimized designs being continuously developed in
their codebases. Specifically, we compare with MVAPICH2-X
version 2.3 [21], Intel MPI Version 2021.7 Build 20221022
[22], Open MPI 5.0.1al [23] + UCX version 1.15.0 [23],
and HPCX 2.13 [24]. The proposed designs are evaluated at
both micro-benchmark and application levels. We use OSU
Micro-Benchmarks 7.1 (OMB), which is widely adopted by
both academic and industrial communities for benchmarking
performance. To be certain that results are reproducible, all
of the experiments are run 5 times to remove any noise or
fluctuation. Within each OMB run, each message is an average
of 1000 iterations for small size and 100 iterations for large
size.

B. Performance Evaluation of Micro-benchmark

The three proposed designs, hereafter referred to as V1, V2
and V3, are first evaluated against Bruck’s and two state-of-
the-art hierarchical algorithms: Traff’s [15] and Chochia’s [16]
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Fig. 7: Performance Evaluation of the Proposed Designs (V1, V2 and V3)
with Existing Algorithms using RC on Cluster A (InfiniBand)

on Cluster A with InfiniBand adapters. Figure 7 demonstrates
the performance of the proposed solutions for an Alltoall
operation of 112, 224, 448 and 896 processes. Compared to
V1, naive design, V2 and V3 significantly outperform it as
the latter designs reduce the number of requests posted to the
HCA through the request coalescing technique. The degree of
improvement becomes larger as the process count increases.
Between V2 and V3, the final design (V3) performs better
than V2 as message size and process count increase. This is
attributed to the size optimization of the shared receive buffer.
The smaller the buffer is, the better it can fit into CPU’s cache.
Finally, the final design, V3, outperforms both flat design
(Bruck’s) and state-of-the-art hierarchical design (Traff’s and
Chochio’s), exhibiting an average latency improvement of
40%-50% and 9%-15%, respectively.
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Figure 8 compares the numbers of PCle read transactions
of the proposed design with Intel MPI and MVAPICH2-X.
We use Intel Performance Counter Monitor to gather these
performance numbers on our local clusters where we have root
access. The cluster has 8 nodes, equipped with Intel Xeon Gold
6132 CPU @ 2.60GHz 28 cores per node and Connect-X5
adapters (100 Gb/sec 4X EDR). The proposed design uses less
PCle reads than the two default MPI libraries in the cluster,
demonstrating the alleviation of unneeded QP traffic.

100
80
60
40
20

0

H Intel MPI

MVAPICH2-X m Proposed (V3)

# of PCle Read
transactions (million)

56 112

# of processes

228

Fig. 8: Evaluation of the numbers PCle read transactions

Now that the above experiment shows that the final design,
V3, delivers the best performance among the proposed ones,
V3 will be compared with other MPI implementations. Figure
9 demonstrates the efficiency of the proposed design (V3)
compared with Open MPI + UCX, HPC-X, Intel MPI and
MVAPICH2-X on Cluster A with InfiniBand interconnect
when performing Alltoall communication with 896, 1792,
3584 and 7168 processes. Overall, the proposed design outper-
forms all MPI implementations evaluated in this experiment.
On the largest scale with 7168 processes, the proposed
design performs 61.13%, 56.40%, 37.49% and 51.90% on
average better than Open MPI + UCX, HPC-X, Intel MPI
and MVAPICH2-X on InfiniBand cluster, respectively.

To demonstrate the network-agnostic property of the pro-
posed design, we also evaluate it on Cluster B with Omni-
Path network and Intel Ice Lake architecture of 80 cores
per node. In summary of the results presented in Figure 10,
we observe the same trend as with Cluster A (InfiniBand).
On 1280 and 2560 processes, the proposed design performs
better than other MPI implementations and competitively to
Intel MPI. When processor count per node increases from 56
(Cluster A) to 80 (Cluster B), the number of QPs required
per node for communication also increases. We observe some
jump in latency at 512 and 1024 bytes for Open MPI + UCX.
In addition, also at these message points, HPC-X is unable to
run due to QP errors output by the library. This is expected
as Alltoall is performed at large scale because we may be
running out of QPs and memory if Alltoall algorithms are not
QP-aware. Finally, the scalability of the design is evaluated
by comparing with different transport protocols, namely RC,
DC, and UD, ranging from the most high-performance and
least scalable to the opposite. In this experiment, we use the
MVAPICH2-X library as it has support for all three transport
protocols. Figure 11 demonstrates the scalability of the design
for Alltoall communication of 512 and 1024 bytes on 2 to
128 nodes (from 112 to 7168 process). When compared with
the tuned algorithm in MVAPICH2-X that picks the best
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Fig. 9: Performance Evaluation of the Proposed Design (V3) with MPI
libraries on Cluster A (InfiniBand).

transport among the three, RC, DC and UD depending
on message size and process count, the proposed design
outperforms by up 65.2% and 69.5% for 512 and 1024
byte Alltoall, respectively.

C. Performance Evaluation of CPMD Application

Car-Parrinello Molecular Dynamics (CPMD) [2] is a paral-
lelized plane wave/pseudopotential implementation of Density
Functional Theory, which is particularly designed for ab-initio
molecular dynamics. It brings together methods including
classical molecular dynamics, solid-state physics and quan-
tum chemistry. The application has undergone thorough
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Fig. 10: Performance Evaluation of the Proposed Design (V3) with MPI
libraries on Cluster B (Omni-Path).
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Fig. 11: Scalability Evaluation of the Proposed Design with Multiple Transport
Protocols on Cluster A (InfiniBand) from 2 to 128 nodes with 56 PPN.

analysis in the best practices documented by the HPC
Advisory Council [25]. Alltoall, being the predominant
communication pattern, is heavily utilized in the simu-
lation. Additionally, the message size falls within the small
range. Consequently, the performance of CPMD is closely
dependent on the efficiency of Alltoall operations. In this
experiment, CPMD is evaluated with Carbon-120-inp2, an
input set that is often used for testing its performance. Figure
12 demonstrates the performance improvement of the proposed
solution (V3) compared to MVAPICH2-X, Open MPI + UCX,
and Intel MPI on 160, 320 and 640 processes. We were unable
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to compare with HPC-X due to the mismatch between the
GNU versions used to compile HPC-X and CPMD. HPC-X
is a prebuilt package using 4.8.5 while CPMD requires a later
version, 7.1.0 in this case. In summary, the proposed design
(V3) outperforms MVAPICH2-X, Open MPI + UCX, and
Intel MPI by at most 24.98 %, 40.44% and 50.48%,
respectively in the simulation time.

@ Proposed (V3) @ MVAPICH2-X

°EJ 60 B OpenMPI + UCX B Intel MPI

'4: 45

S 30

& 15

=]

E°

@ 160 320 640

Process count

Fig. 12: Performance Evaluation of CPMD Application on Cluster B (Omni-
Path), ranging from 160 to 640 Processes.

V. DISCUSSION

Design Applicability to Other Collectives and Variants:
The design ideas presented in this paper are general and can
be expanded to encompass non-blocking collectives as well
as other variants such as MPI_Ialltoall, MPI_Alltoallv, and
MPI_Alltoallw. In the majority of open-source contemporary
MPI libraries (MPICH, OpenMPI, MVAPICH) blocking and
non-blocking Alltoall collectives utilize the same communi-
cation mechanisms underneath to transfer data. So, although
new implementations will be required, the design principles
should be applicable to MPI_Ialltoall. In addition, the current
designs can certainly be extended for MPI_Alltoallv and
MPI_Alltoallw to account for the distinct workload required
by each process.

Mitigating QP Explosion with MPI+X: MPI+X, where X
can be OpenMP, is widely considered a good alternative to
pure MPI-based applications. This approach tackles the QP
issue by ensuring that there is only one MPI process per
NUMA (Non-Uniform Memory Access) domain or node. As
a result, the number of QPs needed is minimized, resembling
the approach proposed in the designs. Nevertheless, there are
still hundreds of applications out there which cannot or do
not use OpenMP due to various performance and functionality
reasons. All of these would require application redesign which
most application developers are hesitant to do. Our technique,
on the other hand, is application-agnostic and requires no
application-level changes. Various publications, notably [26],
have also studied this and demonstrated that collective com-
munication is still heavily used. Thus, our proposed approach
at the middleware level will still be relevant.

Adaptability of Designs for Diverse High-Performance
Networks: Most modern interconnects have similar concepts
of communication end-points such as Queue Pairs. In this
paper, InfiniBand and Omni-Path are used as case studies
for the network-agnostic property of the presented designs.
We believe similar issues and challenges will exist in other
high-performance networks such as RoCE, making the designs
applicable.
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VI. RELATED WORK

Algorithmic Optimization of Alltoall with/without Net-
work Support: In [27], the authors improved Bruck’s [13] by
proposing a different way of shifting data blocks in the first
phase that eliminates the need to do data rotations in the last
phase. Additionally, by using derived datatype operations such
as pack and unpack, a zero-copy Bruck can be implemented
without any explicit memory copies for data re-organizations.
However, this optimization is not a true zero-copy. Inside
of pack and unpack primitives provided by MPI, there are
memory operations invoked to pack data to temporary buffers
before sending or unpack data after receiving.

Xu et al. [28] proposed novel data structures for optimizing
the performance of Alltoallv. The proposed structures can be
used to avoid local memory rotation and data movement. The
authors also proposed a hierarchical design to take advantage
of process locality. Fan et al. [29] pointed out the weaknesses
of [28] and presented their own implementations of Alltoall
and Alltoallv. Prisacari et al. [30] optimized Alltoall on hier-
archical networks, namely fat tree and dragonfly, for the case
of non-power-of-two processes where XOR communication
pattern cannot be applied. Venkata et al. [31] utilized CORE-
Direct to remove local data shifting and rotation performed
by memory copy operations in Bruck’s algorithm. CORE-
Direct is a network feature of InfiniBand that allows offloading
collectives to network adapters. It also allows to send data
stored in different buffers in a single network operation.

Li et al. [32] proposed cache-oblivious algorithms for All-
toall. Their work primarily focuses on optimizing for the CPU
cache, whereas our designs address the challenges of QP-
trashing in the NIC cache. Additionally, they require a shared
heap to see benefits, while our approach does not impose
such a requirement. [17] utilized shared memory in multi-
core systems to have better intra-node latency; in the inter-
node phase, all processes within a node exchange data with
remote ones, which increases the QP usage per node. Our
work leverages shared memory to stage data, enabling the node
leader to exchange data on behalf of others, which reduces QP
usage and mitigates NIC cache thrashing for better scalability.

RDMA Network Optimization: Many studies have fo-
cused on optimizing RDMA networks. Kalia et al. [6] provided
design guidelines to enhance RDMA performance by reducing
PCle transactions and considering NIC architecture. Monga et
al. [11] developed a scalable RPC system with RC-based QP
sharing to reduce QP cache thrashing and CPU overhead. Bae
et al. [20] introduced RDMA Box, including techniques like
request chaining/merging and adaptive polling to minimize
handshake overhead and load to NIC, and reduce CPU usage.

Friedley et al. [33] proposed using UD to address QP mem-
ory and scalability issues in MPI. Although UD is unreliable
and requires a software layer for reliability and fragmentation,
their results showed UD’s latency and bandwidth without the
reliability layer on top are comparable to RC. In contrast, our
approach retains the feature-rich RC and resolves QP issues
without the additional overhead of UD.
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VII. CONCLUSION AND FUTURE WORK

In this paper, three QP-aware designs are proposed to ad-
dress QP issues, from the naive to performance and memory-
optimized ones. Various techniques and insights that are pre-
viously studied for RDMA network optimizations are applied
These designs are RDMA network agnostic and can be applied
to any high-speed network The performance of the final
design is evaluated with different MPI implementations. Its
scalability is also assessed with different transport protocols.
In recapitulation, the final proposed design provides 61.13%,
56.40%, 37.49% and 51.90% on average better than Open
MPI + UCX, HPC-X, Intel MPI and MVAPICH2-X at micro-
benchmark level with up to 7168 cores, respectively. In addi-
tion, the evaluation at the application level with Car-Parrinello
Molecular Dynamics code shows 24.98%, 40.44% and 50.48%
improvement in the simulation time, compared to MVAPICH2-
X, Open MPI + UCX, and Intel MPI, respectively. In the
future, we plan to design a kernel-assisted solution that can
help eliminate the shared memory portion and encompass
large messages, resulting in a complete solution with high-
performance, good scalability and low memory footprint.
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