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Abstract

Biomimetic underwater robots use lateral periodic oscillatory motion
to propel forward, which is seen in most fishes known as body caudal
fin (BCF) propulsion. The lateral oscillatory motion makes slender-
bodied fish-like robots roll unstable. Unlike the case of human-engineered
aquatic robots, many species of fish can stabilize their roll motion
to perturbations arising from the periodic motions of propulsors. To
first understand the origin of the roll instability, the objective of this
paper is to analyze the parameters affecting the roll-angle stability of
an autonomous fish-like underwater swimmer. Eschewing complex mod-
els of fluid-structure interaction, we instead consider the roll motion
of a nonholonomic system inspired by the Chaplygin sleigh, whose
center of mass is above the ground. In past work, the dynamics of
a fish-like periodic swimmer have been shown to be similar to that
of a Chaplygin sleigh. The Chaplygin sleigh is propelled by periodic
torque in the yaw direction. The roll dynamics of the Chaplygin sleigh
are linearized and around a nominal limit cycle solution of the pla-
nar hydrodynamic Chaplygin sleigh in the reduced velocity space. It is
shown that the roll dynamics are then described as a nonhomogeneous
Mathieu equation where the periodic yaw motion provides the paramet-
ric excitation. We study the added mass effects on the sleigh’s linear
dynamics and use the Floquet theory to investigate the roll stability
due to parametric excitation. We show that fast motions of the model
for swimming are frequently associated with roll instability. The paper
thus sheds light on the fundamental mechanics that present trade-offs
between speed, efficiency, and stability of motion of fish-like robots.

Keywords: Chaplygin sleigh, Parametric oscillations, Mathieu equation,
Nonholonomic constraints, Floquet theory

1

http://arxiv.org/abs/2307.05491v2


Springer Nature 2021 LATEX template

2

1 Introduction

In this paper, we investigate the parametric roll dynamics of a hydrodynamic
nonholonomic system inspired by a Chaplygin sleigh that is completely sub-
merged in water and moves on the bed of a body of water. The Chaplygin
sleigh is a well-known planar 3 degree of freedom nonholonomic system with a
configuration manifold SE2, see [1–3] for a review. The hydrodynamic model
of the Chaplygin sleigh considered in this paper is motivated by applications
to autonomous bioinspired underwater robots and robots that can crawl on
the floor of a water body. The locomotion of fish and other aquatic swimmers
has many desirable characteristics such as energy efficiency, agility, and stealth
[4–7], which have inspired the design of many biomimetic robots such as in
[8–12] to name a few. Simplified models of fish-like swimming are crucial for
improving the design and control of such robots. The dynamics of the Chaply-
gin sleigh bear a surprising similarity to fish-like swimming. The nonholonomic
constraint on the Chaplygin sleigh has been shown to be qualitatively similar to
the vortex shedding Kutta-Joukowski condition in inviscid flows [13, 14]. Fur-
ther work showed that a planar swimming hydrofoil propelled by an internal
rotor [15] has limit cycle dynamics similar to that of a planar Chaplygin sleigh
with viscous drag and periodic yaw torque [16–18]. This similarity between the
dynamics of the Chaplygin sleigh and a fish-like swimmer has led to several
control models for path tracking [19, 20] and formation control [21] of planar
fish-like robots.

Planar simplified models completely ignore the three-dimensional roll
motion of biological swimmers and bioinspired robots. A large number of
aquatic animals use some form of an undulatory motion to generate the so-
called body caudal fin propulsion (BCF), which causes cyclic yawing moments
and sideways recoil forces owing to the mechanics of producing forward thrust.
It has been understood through experiments that this makes fish roll unsta-
ble and that this instability increases their maneuverability, [22, 23]. This
paper proposes and investigates a more complex model of a Chaplygin sleigh
whose center of mass is not at ground height with a configuration manifold
S1 × SE(2). Such a rigid body, when placed on the ground (without any sur-
rounding water), has a tendency to “fall down” since the upward position of
the center of mass is an unstable equilibrium. When placed in water, the sleigh
may be statically stable due to buoyancy depending on the height of the center
of buoyancy and center of gravity. We further assume in our model that the
sleigh is subject to a periodic torque in the body yaw direction that generates
a propulsive thrust. The interaction of hydrodynamic effects like added mass
and buoyancy with the nonholonomic constraint and periodic actuation leads
to complex parametric oscillations.

The main contribution of this paper is to show that the equation governing
the roll motion of the hydrodynamic Chaplygin sleigh can be approximated
as a nonhomogeneous forced Mathieu equation, with the forcing and the non-
homogenous terms being defined by the limit cycle solutions in the reduced
velocity space of the planar nonholonomic sleigh. We have shown using Floquet
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theory that the hydrodynamic model, which incorporates only the buoyancy
force as a hydrodynamic effect, has similar regions of instability in a nondimen-
sionalized parameter space as the Mathieu oscillator. When the hydrodynamic
model is improved by incorporating the added mass tensor, the existence of
the resonance regions in the parameters space may disappear. The added mass
tensor also has the curious effect of inducing a negative damping, leading to
unbounded oscillations for slender bodies like a prolate ellipsoid. Only small
regions in the parameter space for such bodies lead to bounded oscillations.
The proposed model and findings in the paper shed light on the interplay
between body morphology, gaits, and control in fish locomotion and the bioin-
spired robots [22, 24, 25]. The frequency and amplitude of the periodic yaw
motion of the Chaplygin sleigh are related to the speed of the sleigh, and thus,
the findings in the paper also shed light on the often competing relationship
between the speed of swimming and roll stability.

Two other areas of research are related to the problem investigated in this
paper, and we set the novelty of the current work within their context. The first
is the classic problem of parametric roll oscillations of a surface vessel due to
periodic heave oscillation or pitch oscillations [26–29]. A simplified model for
the vertical dynamics of a surface vessel is that of an inverted pendulum with
possible base motion. A surface vessel subjected to waves has a periodic vertical
motion (heave), inducing periodic changes to the height of the center of the
buoyancy and thus the effective natural frequency. The resulting parametric
oscillations can be described by a Mathieu equation. The origin of the roll
oscillations investigated in this paper is distinct from these and is coupled to
the nonholonomic constraint and the yaw oscillations of the swimmer. A second
related class of problems comes from the dynamics of a unicycle [30–33]. The
unicycle is roll stable at high speeds due to the spin angular momentum about
the pitch axis [30, 33], which is not present for the Chaplygin sleigh, and only
needs to be stabilized at low speeds. This is achieved by changing the inertia
tensor through an additional internal degree of freedom [30, 33] or by applying
a yaw torque which decays to zero [31] as the unicycle’s roll angle converges to
zero. The present paper considers the effect of periodic yaw oscillations on the
open loop stability of a hydrodynamic Chaplygin sleigh with roll and shows
that the system behaves as a parametric oscillator, which is a distinct result
compared to the existing literature on the control of unicycle dynamics.

The rest of the paper is organized as follows. In 2.1 the kinematic model
of a Chaplygin sleigh with roll dynamics is derived, and in 2.2, its equations
of motion are derived. In 2.3, the equation of approximate roll dynamics of
the Chaplygin sleigh is derived by assuming a prescribed limit cycle in the
reduced velocity space. In section 3.1, the roll equation is linearized about the
vertically upward equilibrium position, and in 3.2, the linearized equation is
shown to be a nonhomogeneous damped Mathieu equation. The response of the
homogeneous and nonhomogeneous Mathieu equation is analyzed in 3.3 and
3.4, respectively using Floquet theory, and stability charts are constructed in
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parameter space. In section 4, a comparison is made of the solutions obtained
via direct numerical simulation and analytical solutions from 3.3 and 3.4.

2 Mathematical Model

2.1 Kinematics

A conceptual model of a Chaplygin sleigh is shown in fig.1; it is an extruded
body with a small inertia-less knife-edge wheel that is in contact with a rigid
flat surface (the bottom of a pool) at point P . The sleigh is supported by a
single caster at the front that allows motion in any direction. We assume that
the sleigh is subject to a periodic torque in the body yaw direction. This is an
approximation of the torque generated by the sinusoidal spin oscillations of an
internal rotor whose angular acceleration can transfer an input torque on the
sleigh. The sleigh is assumed to be on the bottom of a body of water pool while
being completely submerged, and the water is modeled as an inviscid fluid.

Fig. 1: A Chaplygin sleigh with roll motion containing an internal rotor is
shown on the left. In our idealized model (shown in the right two panels), we
assume a periodic torque along the body Z-axis.

The configuration manifold of the physical system is Q = SE(2) × S1

parameterized locally by q = (x, y, θ, ψ), with generalized velocities q̇ = Tq ∈ Q
the tangent space to q ∈ Q. The spatial frame is denoted by FS with axes
XS − YS − ZS and associated unit vectors (̂i, ĵ, k̂). The center of mass of
the sleigh is at point C with coordinates (xb, yb + h sinψ,−h cosψ) in the
spatial frame FS and point B is its projection on the ground with coordinates
(xb, yb, 0). Additionally, the body frame collocated at B and rotated by the
yaw angle θ with respect to the spatial frame is denoted by FB with axes
XB − YB − ZB and associated unit vectors (̂ib, ĵb, k̂b); body frame attached
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at point C and rotated by the roll angle ψ with respect to the frame B is
denoted by FC with axes XC−YC−ZC and associated unit vectors (̂ic, ĵc, k̂c).
The coordinates of P in frame FB are (−b, 0, 0). The XB axis is chosen to
cross point B and P while the ZB axis is directed towards the ground so that
clockwise rotation is positive. The rotation transformation RBS maps vectors
from frame FS to FB and RCB maps vectors from frame FB to FC ,

RBS =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 , RCB =





1 0 0
0 cosψ sinψ
0 − sinψ cosψ



 .

The angular velocity of the frame FC with respect to the spatial frame is

ωC =





ψ̇

θ̇ sinψ

θ̇ cosψ



 . (1)

The velocity (ẋb, ẏb) in the spatial frame transform to (u, v) in the FB

frame as,

V B
B =

[

u
v

]

=

[

cos θ sin θ
− sin θ cos θ

]

·
[

ẋb

ẏb

]

. (2)

The velocity of the center of mass C in body frame FB is

V B
C = V B

B + ṡBCB + ωB × sBBC ,

where ωB =
˙
θk̂ is the angular velocity at point B and sBCB = h sin(ψ)ĵ −

h cos(ψ)k̂ is the position of point C from point B in frame FB. Therefore
velocity of the center of mass is

V B
C =





u− hθ̇ sinψ

v + hψ̇ cosψ

hψ̇ sinψ



 . (3)

We assume that the rear wheel at P prevents slipping in the transverse YB

direction but rolls without any slipping in the longitudinal direction along the
axis XB. While dim(TqQ) = 4, the nonholonomic constraint at point P given
by

V B
P = [− sin θ cos θ − b 0][ẋb ẏb θ̇ ψ̇ 0]⊺ = 0

or v − bθ̇ = 0 (4a)

with pfaffian one form being

(− sin θ)dxb + (cos θ)dyb − bdθ = 0. (4b)
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The constraint restricts the generalized velocity q̇ ∈ W (q) ⊂ TqQ, where

dim(W (q)) = 3. Therefore a reduced set of velocities η = [u, θ̇, ψ̇] span the
space W (q) of allowable velocities.

2.2 Equations of Motion

The Lagrange function for the system is given by the difference in kinetic and
potential energy L = T − V , here potential energy (V) of the system is given
by the difference in work done by gravitational and buoyancy force,

V = (m− ρwVb) · gh cosψ

ρw is the density of water and Vb is the volume of the body. The buoyancy
force is the weight of the water displaced by the sleigh. The center of buoyancy
and the center of gravity coincides with the center of mass as the sleigh is fully
immersed in water and is also assumed to be of uniform density. The total
kinetic energy (T ) is the sum of linear and rotational kinetic energies,

T =
1

2

(

(V B
C )⊺ ·M · V B

C + ω⊺

C · I · ωC

)

An additional hydrodynamic effect we consider in our model is that of added
mass. In a physical sense, added mass is the inertia added to the system to
compensate for the work done in changing the kinetic energy of the surround-
ing fluid as the body moves through it [34, 35]. The sleigh has a mass m and
moment of inertia about the center of mass Ic. We assume our body to be pro-
late spheroid and hence has three planes of symmetry which makes the added
mass and moment of inertia tensors diagonal. Ma = diag(m11,m22,m22),
Ia = diag(m44,m55,m55). The transformed mass and inertia matrix are,

M = mI3×3 +Ma =





m+m11 0 0
0 m+m22 0
0 0 m+m22



 ,

I = Ic + Ia =





Ix +m44 0 0
0 Iy +m55 0
0 0 Iz +m55





When substituting velocities, mass, and moments of inertia in the Lagrange
function, we get

L =
1

2

[

ψ̇2
(

Ix +m44 + (m+m22)h
2)
)

+
(

m+m11

)(

u2 − hθ̇u sinψ
)

+

θ̇2
(

Iy sin
2 ψ + Iz cos

2 ψ + (m+m11)h
2 sin2 ψ +m55

)

+

(

m+m22

)(

v2 − hψ̇v cosψ
)

− (m− ρwVb)gh · cosψ
]

(5)
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The viscous dissipation in the system is

R =
1

2
c1(ẋ

2 + ẏ2) +
1

2
c2θ̇

2 +
1

2
cψψ̇

2.

The Euler-Lagrange equations are given by

d

dt

( ∂L
∂q̇k

)

− ∂L
∂qk

= λCk − ∂R

∂qk
+ Γk (6)

where, Γk are the generalized forces, λ is Lagrange multiplier and Ck is the
coefficient of the one form dqk (4b).

Straightforward calculations on (6) yield four second-order differential
equations, which can be transformed into eight first-order equations. Here we
make the observation that the Lagrangian is independent of x, y, and θ, and
therefore the accelerations ẍ, ÿ and θ̈ are independent of x, y and θ. Using the
nonholonomic constraint (4a), eliminating the Lagrange multiplier and trans-
forming to the body velocities (u, v) using (2), we can reduce the number of
equations of motions by one. The dissipation function can also be rewritten
in body frame velocities using the transformations ẋ = u cos θ − v sin θ and
ẏ = u sin θ + v cos θ and the nonholonomic constraint v = bθ̇ as

R =
1

2
Cuu

2 +
1

2
Cθ θ̇

2 +
1

2
Cψψ̇

2. (7)

The reduced equations can be written in the form

M(ψ)η̇ + C(ψ, ψ̇, θ̇)η + G(ψ) = Γ (8)

where η = [u, θ̇, ψ̇] is the reduced generalized velocity, M the mass matrix, C
the Coriolis and Centrifugal terms and G the gravitational term. We assume
that the sleigh is subject to a periodic torque A sinΩt (frequency Ω and time
period T = 2π

Ω ) aligned with the body z− axis in frame FC . The terms in the
matrices M C, G and Γ are

M11 = −m−m11 , M12 = M21 = (m+m11) · h sinψ

M22 = −
(

(m+m11)h
2 sin2 ψ + (m+m22)b

2 + Iy sin
2 ψ + Iz cos

2 ψ +m55

)

M23 = M32 = −(m+m22)bh cosψ , M33 = −
(

Ix +m44 + (m+m22)h
2
)

C11 = −Cu , C12 = (m+m22)bθ̇ + (2m+m11 +m22)hψ̇ cosψ

C21 = (m11 −m22)hψ̇ cosψ − (m+m22)bθ̇ , C23 = (m+m22)bhψ̇ sinψ

C22 = −Cθ − ψ̇ sin 2ψ((m+m11)h
2 + Iy − Iz) , C31 = −(m+m11)hθ̇ cosψ

C32 =
θ̇ sin 2ψ((m+m11)h

2 + Iy − Iz)

2
, C33 = −Cψ

Γ = [0 −A sinΩt cosψ 0]⊺ , G = [0 0 (m− ρwVb)gh sinψ]
⊺.
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2.3 Approximation of parametric roll motion

When a planar Chaplygin sleigh (therefore one without any roll motion) with
viscous dissipation is subjected to a sinusoidal torque with period T , the
velocity u and the yaw angular velocity θ̇ converge to a limit cycle in the
reduced velocity space spanned by (u, θ̇) see, for instance, [16, 36]. Further-
more, numerical simulations showed that u and θ̇ are kT -periodic, and their
solution converges to a limit cycle with a figure-8 shape, which implies that
the frequency of oscillation in u is double the frequency of oscillations in θ̇.
Using the harmonic balance method, an approximate solution for u and θ̇ were
constructed in [16], showing that u has only second harmonics, while yaw rate
θ̇ has only first harmonic with zero means.

Numerical simulations show that such limit cycles persist even when the
sleigh possesses hydrodynamic added mass. A limit cycle shaped as a figure-8
is shown (in blue) fig.2(a) for the case when a planar Chaplygin sleigh with
dissipation and hydrodynamic added mass is given a periodic torque, while the
other subfigures in fig.2 showing the evolution of the configuration variables
and velocities. The same figures show (in red) the respective velocities and
configuration variables when the Chaplygin sleigh also has roll motion. It can
be seen that the u and θ̇ are largely unaffected by the roll motion, but the roll
angle ψ and roll velocity ψ̇ are affected by the periodic velocity u and yaw rate
θ̇.
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Fig. 2: Blue Trajectory: Numerical simulation of a planar hydrodynamic
Chaplygin sleigh, Red Trajectory: Numerical simulation of hydrodynamic
Chaplygin sleigh with roll dynamics. Sinusoidal force input in both the sys-
tems has an amplitude of A = 0.103 and frequency as Ω = 0.77

We therefore use the approximation that u and θ̇ are uncoupled from the
roll dynamics of the sleigh, but they affect the roll motion. This partial decou-
pling means that u and θ̇ can be approximated as similar to the solution in
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[16] but including the effect of the hydrodynamic added mass.

up = uc + αs sin(2Ωt) + αc cos(2Ωt)

θ̇p = βs sin(Ωt) + βc cos(Ωt).
(9)

In (9) the parameters uc, αs, αc, βs and βc can be determined by direct
substitution of the assumed solution (9) in (8) while approximating (ψ ≈
0, h = 0). This leads to the following non-linear equations where we denote
σ4 = Iz +m55 + b2(m+m22).

0 = b(m+m22)(βc
2 + βs

2)− 2Cuuc (10a)

−4Ωαc(m+m11) = 2bβcβs(m+m22)− 2Cuαs (10b)

4Ωαs(m+m11) = b(m+m22)(βc
2 − βs

2)− 2Cuαc (10c)

−2Ωβcσ4 = 2A− 2Cθβs − b(m+m22)(αsβc − αcβs + 2βsuc) (10d)

Ωβsσ4 = − 2Cθβc − b(m+m22)(αcβc + αsβs + 2βcuc) (10e)

The nominal limit cycle solution of u and θ̇ can then be used to obtain
a single second-order differential equation describing the roll motion of the
Chaplygin sleigh, which is of the form,

ψ̈ = F (u(t), θ̇(t), ψ, ψ̇) = F (ψ, ψ̇, t; A,Ω, uc, αs, αc, βs, βc) (11)

where the substitution of the limit cycle solution for u(t) and ˙θ(t) leaves the
function F dependent on the parameters [A,Ω, uc, αs, αc, βs, βc] associated
with the limit cycle (9).

3 Roll motion of the Chaplygin sleigh - Linear
Analysis

3.1 Linearization

Simulations such as those shown in fig.2 suggest that the hydrodynamic Chap-
lygin sleigh with roll motion has a topologically similar limit cycle in the
reduced velocity space as that of planar Chaplygin sleigh while the roll angle
is in the neighborhood of its upper equilibrium where (ψe = 0). Therefore, to
analyze the parameters that affect the stability of roll angle at this equilib-
rium, we linearize the nonlinear vector field F in (11) about the equilibrium
position.

ψ̈ ≈ Fψ(ψe, ψ̇e) +
[

∂Fψ

∂ψ

∂Fψ

∂ψ̇

]

∣

∣

∣

∣

(ψe,ψ̇e)

·
(

ψ − ψe

ψ̇ − ψ̇e

)

+O(ψe, ψ̇e)
2 (12)
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The equilibrium point we want to analyze for stability is the upright position
([ψe, ψ̇e] = [0, 0]) of the modified hydrodynamic Chaplygin sleigh. By alge-
braic manipulation and simplification of (12) we get a non-homogeneous linear
second-order differential equation with periodic coefficients given as

ψ̈ +
(

δm + ǫm · cos(2Ωt− γm)
)

ψ + ξm(t) · ψ̇ = C(t) (13)

Where
√
δm is the natural frequency of the system, and ǫm is the amplitude of

the parametric excitation. If we re-scale time as τ = 2Ωt, and ∂2ψ
∂t2

= 4Ω2 ∂2ψ
∂τ2 .

The linearized governing equation for the roll motion of the modified hydro-
dynamic Chaplygin sleigh (13) is non-dimensionalized and can be written
as

ψ̈ +
(

δ + ǫ · cos(τ − γ)
)

ψ + ξ(τ) · ψ̇ = C(τ) (14)

The natural frequency of the linearized parametric oscillator is

δ =
−1

4Ω2σ1

(

(

(m+m22)b
2 + Iz +m55

)

(m− ρwVb)gh

+ (m+m22)Cuucbh
2 + σ3

(β2
c + β2

s

2

)

) (15)

The small parameter ǫ is

ǫ =

√

γ2
c + γ2

s

4Ω2σ1
, γ =arccos

( γc
√

γ2
c + γ2

s

)

(16)

where

σ1 =(Iz +m55)
(

(m+m22)h
2 + Ix +m44

)

+ (Ix +m44)(m+m22)b
2

σ2 =
(

(Iz +m55)(m+m11) + (m+m22)(m11 −m22)b
2
)

σ3 =(Iy − Iz)
(

(m+m22)b
2 + Iz +m55

)

+ σ2h
2

γc =−
(

σ3(
β2
c − β2

s

2
) + Cu(m+m22)bh

2αc

)

γs =−
(

σ3βsβc + Cu(m+m22)bh
2αs

)

.

The effective damping coefficient is

ξ(τ) =
1

2Ωσ1

(

(m+m22)(m11 −m22)bh
2(uc + αc cos τ + αs sin τ)

+ Cψ

(

(m+m22)b
2 + Iz +m55

)

)

.

(17)
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The natural frequency δ, damping coefficient ξ, and parametric amplitude
ǫ all depends on the parameters of the limit cycle; in particular, the amplitude
√

β2
c + β2

s of the limit cycle θ̇(t), αc and αs that determine the amplitude of
the limit cycle solution u(t) and also the added mass parameters m11, m22 and
m55. The damping coefficient ξ also varies periodically with a frequency equal
to the fundamental frequency of the limit cycle in (9). The natural frequency
also depends on the drift velocity uc and decreases with the increase in drift
velocity. The natural frequency is positive only if (m−ρwVb) < 0, i.e., when the
body is lighter than water. This is, however not a sufficient condition and the
natural frequency may still be negative depending on the relative magnitudes
of the amplitude of limit cycles, the mean value of u on the limit cycle, and
the added mass. The non-homogeneous (or forcing) term in (14) arises as a
result of linearizing the roll equation about a limit cycle solution of the planar
Chaplygin sleigh with equilibrium approximation (ψe ≈ 0, ψ̇e ≈ 0).

C(τ ) =
−h

8Ω2σ1

(

(

σ2(2βcuc + αsβs + αcβc)− 2Cθ(m+m22)bβc

)

cos(
τ

2
)

+ σ2

(

αcβc − αsβs

)

cos(
3

2
τ) + σ2

(

αsβc + αcβs

)

sin(
3

2
τ)

+
(

2b(A− Cθβs)(m+m22) + σ2(2βsuc + αsβc − αcβs)
)

sin(
τ

2
)

)

.

(18)

3.2 The Mathieu oscillator approximation

When the elements of the added mass tensor m11 = m22, and the hydrody-
namic effects other than buoyancy are negligible or when the shape of the
Chaplygin sleigh is almost a sphere. We can ignore the added mass tensor
in our initial analysis. In this case the damping coefficient ξ = ξc becomes
constant,

ξc =
Cψ(mb2 + ICz

)

2Ω
(

ICz
(mh2 + ICx

) + ICx
mb2

) (19)

and the linearized equation is then,

ψ̈ + ξc · ψ̇ +
(

δ + ǫ · cos(τ − γ)
)

ψ = C(τ) (20)

The homogeneous component of the linear equation is a Mathieu-type oscilla-
tor. The well-known Mathieu equation (20) has been extensively studied and is
seen in the stability studies of periodic motions in nonlinear autonomous sys-
tems similar to the one in this paper. Floquet-Lyapunov theory, perturbation
theory, and Hill’s method of infinite determinants can be applied for stabil-
ity analysis of linear homogeneous equations with periodic coefficients [37–41].
We ignore the non-homogeneous term C(τ) to analyze stability of oscillatory
solutions of only the homogeneous Mathieu equation using Floquet theory.
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Fig. 3: Stability chart for the Mathieu equation (20) in δ− ǫ parameter space
numerically obtained using Floquet theory.

Theorem 1 [39] (Floquet-Lyapunov theorem) - Any state-transition matrix
Ψ(t) of equation (20) with T -periodic coefficients is expressible in the form of

Ψ(t) = P (t)eKt

where P (t) is a non-singular continuous T -periodic n × n matrix function
whose derivative is an integrable piece-wise continuous function and such that
P (0) = In, also K = ln[Ψ(T )]/T is some constant n× n matrix.

For any initial condition, the solution for the equation (20) can be expressed
using the state transition matrix, η(t) = Ψ(t, t0)η(t0). The state transition
matrix evaluated for time period T is known as the Monodromy matrix, M =
Ψ(T, 0). Then for all t ≥ 0 and k ∈ Z+ we can obtain solution for equation
(20) as

η(t) = Ψ(kT + τ, kT )Mkη(0).

Hence the stability of the orbits of the homogeneous system (20) depends
on the eigenvalues of Monodromy matrixM known as Floquet or characteristic
multipliers λ(M) see [39, 41]. The Mathieu equation (20) has an asymptoti-
cally stable solution if all of the multipliers lie inside the unit circle, that is
if |λ(M)| < 1, and it is bounded if the multipliers are semi-simple eigenval-
ues with |λ(M)| = 1. The solutions diverge if one or more of the eigenvalues
of matrix M lie outside the unit circle (|λ(M)| > 1) or if on the unit circle
eigenvalues are not semi-simple.

To construct a stability chart in two-parameter (δ − ǫ) space for the
Mathieu oscillator (20); we first calculate the value of the parameters
[A, Ω, uc, αs, αc, βs, βc] for each point in the δ − ǫ space by solving the
set of seven non-linear equations (10)(a-e), (15) and (16). These equations
have a unique solution for real and positive values of parameters [A, Ω]. Then
using these planar limit cycle parameters we numerically simulate the system
(20) with arbitrary initial conditions for period T and obtain the Monodromy
matrix and Floquet multipliers.
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The Floquet multipliers tell us about the stability of the system for the cho-
sen parameters. Stability conditions on characteristic multipliers obtained from
Floquet−Lyapunov theorem are used to construct stable-unstable regions in
the two-parameter space (δ − ǫ) shown in fig.(3). The green region (labeled
as S) is where the parameter values produce stable roll motion around the
equilibrium point, and the red region (labeled as U) represents the unstable
region. The instability is caused due to parametric resonance, which results
from the frequency of parameter variation and the natural frequency of the
system. The curves defined by the stable-unstable region in the Mathieu chart
starting at δ = n2/4, n = 0, 1, 2, ... and ǫ = 0 have one of the Floquet multipli-
ers equal to 1 which corresponds to T periodic solutions. The curves starting
at δ = (2n + 1)2/4 and ǫ = 0 have λ(M) = −1 which corresponds to 2T
periodic solutions.

3.3 Linear homogeneous parametric oscillator with

periodic damping

If we consider the effects of added mass in the linear system (14) and consider
first only the homogeneous equation ignoring the effects of the direct forcing
term C(τ) we can still represent the linear parametric oscillator as η̇ = Aη
where A is T -periodic.

[

ψ̇

ψ̈

]

=

[

0 1

−
(

δ + ǫ · cos(τ − γ)
)

ξ(τ)

]

[

ψ

ψ̇

]

(21)

The presence of added mass coefficient activates the time-periodic term in
the damping coefficient ξ(τ) (17). Linear parametric oscillators with time-
periodic damping coefficient (21) have been analyzed for their stability using
the strained parameter method and Floquet theory in [42, 43] where it is
observed that a stability chart different from the Mathieu stability chart is
possible due to the presence of periodic damping.
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(a) Cψ = 7 × 10−3 (b) Cψ = 9 × 10−3 (c) Cψ = 1 × 10−2

Fig. 4: Stability chart for the linear equation (21) in δ − ǫ parameter space
numerically obtained using Floquet theory.

We again use Floquet theory to construct a stability chart for the system
(21) in the two-parameter space (δ − ǫ) as shown in fig.(4). The parameter
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range where the characteristic multiplier is greater than 1 is shown in red (and
labeled by U). The stability chart fig.(4) is qualitatively different from the
stability chart in fig.(3) due to the periodic damping. The damping coefficient
ξ(t) given in (17) can be rewritten compactly as

ξ(τ) =
1

Ω

(

ξ1Cψ + ξ2(uc + αc cos τ + αs sin τ)
)

(22)

where constants ξ1 =
((m+m22)b

2+ICz+m55)
2σ1

, ξ2 = (m+m22)(m11−m22)bh
2

2σ1

and
parameters αc, αs < uc. The time-averaged damping is

ξ =
1

T

∫ T

0

ξdτ =
1

Ω
(ξ1Cψ + ξ2uc). (23)

When the added mass coefficients m11 < m22 (which is the case for prolate
spheroid or other slender body shapes), the term ξ2 < 0; this combined with
sufficiently high values of average longitudinal velocity (uc) will make the aver-
age damping ξ negative. The black curve in the fig.(4), which divides the graph
into two sections, represents the locus of ξ = 0; to the right side of this curve,
the time average damping is positive. To the left of this curve in the (δ, ǫ)
parameter space, the averaged damping is negative, and this leads to character-
istic multipliers λ(M) > 1. Even if the ξ > 0, but ξ(t) < 0 for some t ∈ [0, T ],
then it is possible for λ(M) > 1 as shown by the small unstable parametric
region to the left of the black curve in fig.(4). The parametric region in red
(indicated by U) on the left of the black line has average damping less than
zero (ξ < 0), and the region on the right (indicated by S) has positive average
damping (ξ > 0). Also, with the increase in the value of Cψ , the damping term
increases, which increases the stable region as shown in fig.(4b). The figure
also shows that the linear system is unstable for the negative values of the
average damping as it propagates motion in the roll direction [44]. Interest-
ingly we observe a small unstable region on the right side of the ξ = 0 curve.
This region is part of the parametric resonance instability around δ = 0.25
and δ = 1. The unstable region due to average negative damping happens to
be overlaid on the usual unstable region due to parametric resonance.

To investigate the unstable region due to parametric resonance, we choose
to consider parameters such that the average damping remains positive.
To construct the stability graph we first find out the parameter values
[A, Ω, uc, αs, αc, βs, βc, Cψ ] for each point in δ−ǫ space using the equations
(10)(a-e), (15) and (16) along with average damping equation (23) and then
perform Floquet analysis. The fig.(5) shows the stability chart for the linear
homogeneous parametric oscillator (21) for constant average damping. The sta-
bility chart in fig.(5) resembles the Mathieu stability chart with some variations
in the size of the instability tongue, which occurs due to periodic damping.
We observe that the system near marginal stability is susceptible to the phe-
nomenon in which instability may be caused due to modulation of the damping
coefficient, which is negative for a fraction of the cycle. This phenomenon is
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Fig. 5: Keeping average of damping term ξ constant we observe stability chart
for the equation (20) in δ − ǫ parameter space is numerically obtained using
Floquet theory.

also an example of parametric resonance [44]. The system instability cannot
be dynamically stabilized by periodically modulating the damping term ξ(τ)
because the constant term is much larger than the periodic term in ξ(τ).

The damping in the homogeneous system (21) effectively reduces the unsta-
ble region as shown in figs.(3,4 and 5) and through numerical simulation it
could also be shown that damping reduces the magnitude of response. All of
the simulations used the following numerical values; we assume that the sleigh
has a uniform density of 990 Kg/m3, which is slightly lighter than water, and
also it has the shape of a prolate spheroid with a ratio of major and minor
axis equal to 2.5. We further assume b = 0.125 m, h = 0.05 m, Cu = 0.5 kg/s
and Cθ = 0.3 kg/s.

3.4 Linearized non-homogeneous parametric oscillator

The effect of non-homogeneous term C(τ) on the solution of Hill’s equation
has been studied in the past, for instance by [45–48]. Slane and Tragesser
in [47] modified Floquet theory to use Floquet multipliers for analytically
examining transitory and steady-state behavior of the non-homogeneous sys-
tem, in which parametric and forcing excitations have the same time period
(C(τ + T ) = C(τ)). The introduction of forced excitation changes the fun-
damental behavior of the homogeneous system in only two ways. First, when
|λ(M)| < 1 the solution of the non-homogenous Hills equations changes to
bounded from asymptotic stability. The numerical simulation of the linear
system without the forcing (21) and with forcing (14) shows the anticipated
solution where an asymptotic stable solution in fig.(6a) changes to a bounded
solution fig.(6b).

The second way in which the forced excitation affects the response is when
the unit characteristic multipliers are simple roots of the minimal polynomial
of the Monodromy matrix. Under this condition, the solution of the system
changes from Lyapunov stable to unbounded. Linear resonance also occurs if
the natural frequency of the roll oscillation is equal to the frequency of the



Springer Nature 2021 LATEX template

16

0 20 40 60 80 100
time(s)

0

0.05

0.1

0.15
C  = 0.01
C  = 0.05

(a) Linear Homogeneous system (21)
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(b) Linear Non-Homogeneous system ((14))

Fig. 6: Part (a) shows the response of linear homogeneous system (21) and
part (b) shows the response of Linear non-homogeneous system (14) with
parameters δ = 0.7 and ǫ = 0.02 with varying the Cψ value. For dotted blue
trajectory Cψ = 0.01 and for solid red line Cψ = 0.05

direct forcing term C(τ). For (14) we have non-homogeneous term (18) which
we can represent compactly as

C(τ) =
∑

k=1&3

νc,k · cos(k · τ
2
) + νs,k · sin(k · τ

2
) (24)

where (νc,k, νs,k) are constants dependent on limit-cycle parameters. The
direct forcing term has time period 2T and 2T

3 where T = 2π. It is known
through corollary to Floquet-Lyapunov theorem in [41], stable regions in
fig.(5) of the homogeneous system (21) has non-trivial kT -periodic solutions
k ∈ N > 2; but the solutions corresponding to period 2T and 2T

3 are already
in the unstable region and hence we do not observe linear resonance.

All bounded solutions are not necessarily desirable solutions for the phys-
ical system described by (14). Large amplitude roll oscillations can also be
produced due to the coefficients (νc,i, νs,i) of the direct forcing term. To see
the effect of forcing term on the linear parametric oscillator system (14), an
analysis using multiple scale method [37, 38] is presented. The stretched time
scale will be denoted by t0 = τ and the slow time scale t1 = ǫτ . The solution
for ψ can be expanded into a power series as

ψ = ψ0(t0, t1) + ǫψ1(t0, t1) + ǫ2ψ2(t0, t1) +O(3) (25)

For the system (14) let’s consider the case where ξ = 0. Then we can rewrite
the system (14) as

ψ̈+
(

δ+ǫ cos(τ−γ)
)

ψ+
(

α′

c cos τ+α′

s sin τ
)

ψ̇ = C1 cos(
τ

2
−ν1)+C3 cos(

3τ

2
−ν3)

(26)
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Where, α′

s = ξ2αs and α′

c = ξ2αc are of the order ǫ. We choose the following
transformations to compactly represent the equation (26).

C1 =
√

ν2c,1 + ν2s,1 ν1 = arccos

(

νc,1
√

ν2c,1 + ν2s,1

)

C3 =
√

ν2c,3 + ν2s,3 ν3 = arccos

(

νc,3
√

ν2c,1 + ν2s,3

)

A direct substitution of Eq.(25) into Eq.(26) and setting d
dτ

= ∂
∂t0

+ǫ ∂
∂t1

. Then

equating terms of O(ǫ0) and O(ǫ1) yield the following equations,

∂2ψ0

∂t20
+ δψ0 = C1 cos

( t0
2
− ν1

)

+ C3 cos
(3t0

2
− ν3

)

(27)

∂2ψ1

∂t20
+ δψ1 = −2

∂2ψ0

∂t0∂t1
− cos(t0 − γ)ψ0 −

(

α′

c cos τ + α′

s sin τ
)∂ψ0

∂t0
(28)

The solution to Eq.(27) is

ψ0(t0, t1) =A(t1) cos
√
δt0 +B(t1) sin

√
δt0 +

4C1

4δ − 1
cos

( t0
2
− ν1

)

+
4C3

4δ − 9
cos

(3t0
2

− ν3

)

(29)

which when substituted in Eq.(28) we get,

∂2ψ1

∂t20
+ δψ1 =

∂A

∂t1

√
δ sin

√
δt0 −

∂B

∂t1

√
δ cos

√
δt0−

cos(
√
δ − 1)t0
2

(

A cos γ +B sin γ + α′

cB
√
δ − α′

sA
√
δ
)

−

cos(
√
δ + 1)t0
2

(

A cos γ −B sin γ + α′

cB
√
δ + α′

sA
√
δ
)

+

sin(
√
δ − 1)t0
2

(

A cos γ −B sin γ + α′

cB
√
δ + α′

sA
√
δ
)

−

sin(
√
δ + 1)t0
2

(

A cos γ +B sin γ − α′

cB
√
δ + α′

sA
√
δ
)

+

C1

4δ − 1

(

cos
t0
2

(

− 2 cos(γ − ν1)− α′

c sin ν1 + α′

s cos ν1

)

+

sin
t0
2

(

2 sin(γ − ν1)− α′

c cos ν1 − α′

s sin ν1

)

)

+ (30)
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C2

4δ − 9

(

cos
t0
2

(

2 cos(ν3 − γ) + 3α′

c sin ν3 − 3α′

s cos ν3

)

+

sin
t0
2

(

2 sin(ν3 − γ) + 3α′

c cos ν3 + 3α′

s sin ν3

)

)

+

C1

4δ − 1

(

cos
3t0
2

(

− 2 cos(ν1 + γ)− α′

c sin ν1 − α′

s cos ν1

)

+

sin
3t0
2

(

2 sin(ν1 + γ) + α′

c cos ν1 − α′

s sin ν1

)

)

C2

4δ − 9

(

cos
5t0
2

(

− 2 cos(ν3 + γ)− 3α′

c sin ν3 − 3α′

s cos ν3

)

+

sin
5t0
2

(

2 sin(ν3 + γ) + 3α′

c cos ν3 − 3α′

s sin ν3

)

)

We observe from the above eq.(30) that the resonant terms occur for four pos-
sible values of non-dimensional frequency δ. The first, when δ = 1 and the
resonant terms are cos

√
δt0 and sin

√
δt0. The second case occurs when δ = 1

4

and the resonant terms are cos(
√
δ − 1)t0, sin(

√
δ − 1)t0, cos t0

2 and sin t0
2 .

Also for δ = 9/4 and δ = 25/4 we have resonant terms [cos 3t0
2 , sin 3t0

2 ] and

[cos 5t0
2 , sin 5t0

2 ] respectively. The unstable regions in the parameter space for

the system (26) emanate with their vertex at (δ = n2

4 , ǫ = 0) for n > 0; these
critical values of (δ, ǫ) around which the solutions to ψ diverge are same as
those of the homogeneous Mathieu equation [37]. However, interestingly the
resonances occurring at δ = 9/4 and δ = 25/4 show up in the O(ǫ) equation
(30) as opposed to higher order equation. Even more importantly, the coeffi-
cient terms such as C1

4δ−1 and C2

4δ−9 will diverge at δ = 1
4 and δ = 9

4 respectively
and have large values outside the parametric resonant unstable regions. Figure
(7) shows the range of values of the coefficient C1

4δ−1 over the δ−ǫ space; it shows
that the forcing coefficient is very high even outside but adjacent to the reso-
nance tongue of instability. This causes large amplitude roll oscillations even
outside the unstable resonant parametric regions of the Mathieu equation.

4 Numerical simulations of the nonlinear
equations

The analysis of the reduced linear parametric oscillator (14) in section 3 first
relies on the reduction of the dimension of the dynamical system (8) to a
reduced one degree of freedom oscillator (11) and then linearizing this equation
about its fixed point. The solutions of ψ(t) from such analysis are compared
to the numerical solution of the roll oscillations of the unreduced non-linear
hydrodynamic Chaplygin sleigh (8). To demonstrate the validity of the linear
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(a) ξ = 0 (b) ξ = 0.2

Fig. 7: A magnitude plot of C1

4δ−1 over a range of ǫ and δ for (a) ξ = 0 and

(b) ξ = 0.2. Parametric regions where C1

4δ−1 becomes unbounded are shown in
white.

analysis, we choose parameters (δ = 0.7, ǫ = 0.02) and Cψ = 0.01 (dotted
blue line) and Cψ = 0.05 (solid red line) and plot the roll angle ψ(t) from a
simulation of equation (8) in fig. 8. Comparing the solutions in fig. 8 with the
solution of the reduced parametric nonhomogeneous oscillator in fig. 6(b), it
can be seen that the frequency and amplitude of the two solutions are nearly
indistinguishable.

0 20 40 60 80 100
time(s)
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-0.5

0

0.5

1 C  = 0.01
C  = 0.05

Fig. 8: Shows response of non-linear hydrodynamic Chaplygin sleigh with
roll dynamics (8) simulated with similar parameters in fig.(6) that is δ =
0.7, ǫ = 0.02. Again for dotted blue trajectory Cψ = 0.01 and for red solid
line Cψ = 0.05.

The parameters (δ, ǫ) for this comparison were chosen so as to lie in a
region where the coefficient C1

4δ−1 ≈ 1 (see fig. 7). If (δ, ǫ) is chosen such that
C1

4δ−1 is large, the amplitude of the linear solution becomes large, rendering
the linearization a poor approximation. Figure 9 shows the amplitude of the
roll oscillations of the linear non-homogeneous system (14) obtained through
a direct numerical simulation. We can observe looking at fig. 9 and 7 the
amplitudes of ψ are high where the magnitude of the forcing in (14) is high.
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(a) ξ = 0 (b) ξ = 0.2

Fig. 9: A plot for the amplitude of ψ over a range of δ and ǫ obtained from
the solution of linear non-homogeneous (20) system for (a) ξ = 0 and (b)
ξ = 0.2. Parametric regions where amplitudes of ψ are large enough to make
the system unstable due to the term C1

4δ−1 (refer fig.7).

5 Conclusion

The hydrodynamic Chaplygin sleigh model considered in this paper is moti-
vated by applications to robotic locomotion at the bottom of a body of water
and fish-like swimming robots where the propulsion is made possible through
periodic torques. For simplicity, we considered the motion of a single rigid body
as opposed to an articulated body. The analysis of this four degrees of freedom
system is simplified first by the presence of a nonholonomic constraint and
then further by observing the existence of limit cycles in the velocity space of a
planar Chaplygin sleigh. When the four-degree of freedom Chaplygin sleigh is
subject to a periodic torque, its longitudinal velocity and yaw angular velocity
closely track the limit cycles of the planar Chaplygin sleigh. This observation
leads to the approximation where the planar motion is independent of the
roll dynamics, but the roll dynamics are coupled with the planar motion. Lin-
earization of the roll equation then leads to a parametric oscillator. Stability
analysis of these linear homogeneous systems using Floquet theory leads to a
stability chart in two parameter spaces. When the hydrodynamic added mass
tensor is purely diagonal, and all the diagonal terms are equal (such as for a
sphere), the roll dynamics are modeled by a Mathieu equation, and the sta-
bility chart is identical to that of the Mathieu oscillator. A different stability
chart than the Mathieu stability chart is obtained for the case where added
mass terms are not the same. These charts show that the condition for instabil-
ity is always satisfied if the time average damping is negative and parametric
resonance can exist for positive average damping. This analysis further showed
that higher average longitudinal velocity (uc) reduces the effects of damping
and increases the amplitude of roll direction.

The trade-off between stability, maneuverability, and speed in the locomo-
tion of fish is a phenomenon that is observed in several species of fish [49].
A fish or a robot shaped as slender body usually can be a faster swimmer
but at the same time, this geometry renders it susceptible to roll instability
due to perturbations arising from fish-like body-caudal fin (BCF) propulsion
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can cause instability in the roll motion. The design of various biomimetic fish
robots is often faced with the trade-off between stability on the one hand and
speed and maneuverability on the other. While such trade-offs and the effect
of the shape on roll stability have been observed in different species of fish and
can be expected to occur in both free-swimming robots and robots that move
on the bottom of a body of water, a systematic analysis from the perspective
of nonlinear dynamics has been absent. The analysis of the parametric roll
dynamics of the hydrodynamic Chaplygin sleigh in this paper is the first inves-
tigation of such phenomena. The Chaplygin sleigh considered in this paper
has much of the physics applicable for a body crawling with a nonholonomic
constraint on the bottom of a pool and has similarities to models of fish-like
motion. While the model does not necessarily simulate the fluid-body inter-
action fully, it captures the inviscid effects imposed by added mass and the
Kutta-Joukowski condition, and the results in this paper have utility for the
design of swimming robots. Design considerations such as shape, the inertia
tensor, added mass tensor, and choice of periodic excitation and gaits can be
informed by the framework of the analysis in this paper. Further work moti-
vated by this paper can extend the results to the case of articulated slender
bodies with elastic joints and coupling of the roll, pitch, and yaw dynamics
with rigid body motion and provide a more detailed picture of the stability
and agility of a fish-like swimmer.
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