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Localization of Upstream
Obstacles by Learning From
Spectra of the Koopman Operator
Objects moving in water or stationary objects in streams create a vortex wake. An
underwater robot encountering the wake created by another body experiences disturbance
forces andmoments. These disturbances can be associatedwith the disturbance velocity field
and the bodies creating them. Essentially, the vortex wakes encode information about the
objects and the flow conditions. Underwater robots that often function with constrained
sensing capabilities can benefit from extracting this information from vortex wakes. Many
species of fish do exactly this, by sensing flow features using their lateral lines as part of their
multimodal sensing capabilities. Besides the necessary sensing hardware, a more important
aspect of sensing is related to the algorithms needed to extract the relevant information
about the flow. This paper advances a framework for such an algorithm using the setting of a
pitching hydrofoil in the wake of a thin plate (obstacle). Using time series pressure
measurements on the surface of the hydrofoil and the angular velocity of the hydrofoil, a
Koopman operator is constructed that propagates the time series forward in time. Multiple
approaches are used to extract dynamic information from the Koopman operator to estimate
the plate position and are bench marked against a state-of-the-art convolutional neural
network (CNN) applied directly to the time series. We find that using the Koopman operator
for feature extraction improves the estimation accuracy compared to the CNN for the same
purpose, enabling “blind” sensing using the lateral line. [DOI: 10.1115/1.4066009]
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1 Introduction

The locomotion of fish and other aquatic swimmers has many
desirable characteristics such as energy efficiency, agility, and
stealth [1,2], which have inspired mimicry in bioinspired robots
[3,4]. Closely related to and aiding the locomotion is the ability of
fish to sense and process the spatiotemporal information in the water
around them. Objects moving in water or stationary objects in
streams create a vortex wake. An underwater robot encountering the
wake created by another body experiences disturbance forces and
moments. These disturbances can be associatedwith the disturbance
velocity field and the bodies creating them. Essentially, information
about fluid flow and the objects that create these flows is encoded in
the spatiotemporal evolution of the vortical structures, whether the
bodies creating them are cylinders, hydrofoils, underwater robots, or
fish. Underwater robots that often function with constrained sensing
capabilities can benefit from extracting this information from vortex
wakes.Many species of fish do exactly this, by sensing flow features
using their lateral lines as part of their multimodal sensing [1,5,6].

The complexity and high (infinite) dimensionality of fluid flows
around a swimmer present significant challenges to emulate fish-like
hydrodynamic sensing and extract the relevant information from
sensor data of the flow. This particular challenge is not restricted to
bioinspired fish-like swimmers, but has been present in the broad
areas of fluid flow estimation, model reduction, and active flow

control. Proper orthogonal decomposition (POD) [7,8] and gappy
POD [9] have been tools for model reduction in turbulent flows for
decades and have also been applied for unsteady flow sensing past an
hydrofoil and estimation of surface pressure [10,11]. Model
reduction of complex flows using the Koopman operator approach
has extended the POD approach to a dynamical systems framework
[12,13]. Subsequent developments in the application of machine
learning in dynamical systems have created algorithms for learning
the dynamic modes or Koopman modes of a dynamical system from
often sparse data [14–16]. Similar methods combining machine
learning with dynamical systems are increasingly playing an
important role in model reduction in fluid mechanics, flow
reconstruction, and flow classification, see, for instance, Refs.
[17–26]. Flow estimation in the near field of a body by selecting
fromknownfluidmodesby the dynamicmodedecomposition (DMD)
using surface pressure data has been studied in Ref. [27], and
incorporating traditional filtering into this approach was recently
shown to allow updating the estimation in real-time [28,29].
This paper considers a different but related problemmotivated by

underwater robots where on-board sensors such as inertial motion
units and pressure sensors can measure only dynamic and kinematic
variables of the robot itself or pressure on the surface of the robot but
not measure the ambient pressure and velocity fields. We consider
the problem of the estimation of the spatial location of an upstream
obstacle in a flow past a pitching hydrofoil. It is assumed that
pressure on the surface of the hydrofoil can be measured at a small
number of fixed locations on the body. This is related to the problems
considered in Refs. [30] and [31], where pressure sensors were used
to localize a body and a dipole, respectively, by assuming potential
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flow which allows for the application of analytical methods.
However, frequently fluid–structure interaction is driven by
significant viscous effects including vortex shedding which make
purely potential flow models inaccurate. Vortex induced vibrations
and coupled fluid–structure models cannot in general be described
by simple mathematical models. This motivates data-driven
approaches, such as the one introduced in Ref. [32] to localize a
source in three dimensions. However, in that work, only a single
time snapshot of velocity data is used to perform each estimation,
which is possible because the flow was steady except for the
movement of the source; for the fluid–structure interaction problem
considered in this paper, using a time series of pressure data is
necessary due to the unsteady wake generated by the both obstacle
and the trailing hydrofoil itself. The field of soft sensing [33] has
techniques for regression from time series data, which typically
resolve the high-dimensionality of the time series by taking as
features its statistical moments (such as mean and variance) or data
from a few selected time instants [34]. This approach discards much
of the dynamic information from the data, which is often acceptable
for systems that are roughly steady, but is a significant drawback
when applied to an unsteady fluid system. Based on the success of
modal approaches for extracting information about the underlying
dynamics of fluid data, we propose a method that extracts
information about the system dynamics from the pressure time
series, and uses that information as features to identify the location
of the obstacle. Using time series pressure measurements on the
surface of the hydrofoil, a Koopman operator is constructed that
propagates the snapshots of pressure data forward in time, thereby
encoding the system dynamics. Multiple approaches are considered
to extract the encoded information for use in estimating the position
of an upstream obstacle. These include the “direct mode estimation”
approach, where the most important modes (eigenvectors) of the
operator are input into a dense neural network (DNN), the “spectral
image estimation” approach where the spectrum (or the singular
vectors) of the operator is extracted and input into a convolutional
neural network (CNN), and the “mode-kernel estimation” approach,
where the modes constructed from training data are compared to a
dictionaryofknownmodes.This is benchmarkedagainst the timeCNN
[35], a recent black-boxCNNarchitecture designed for classification of
multivariate time series, in the “CNN-based estimation” approach.
The remainder of the paper is organized as follows. In Sec. 2, we

define the exact fluid-interaction problem considered and discuss its
implementation in simulation. In Sec. 3, we review the theory
behind standard and exact DMD and its connection to the Koopman
operator, and their relevance to the estimation problemare explained
in Sec. 4. The training speed and accuracy of the estimationmethods
are investigated on the training data in Sec. 5.

2 Problem Definition

We consider the problem of flow past a symmetric NACA-0018
hydrofoil of unit chord length, representing a streamlined swimmer,
pinned at its leading edgewith a linear spring of stiffness k ¼ 6N�m/
rad and damping coefficient c ¼ 2 N�m s/rad. When the spring is at
rest, the hydrofoil is horizontal with the leading edge pointing left.
The hydrofoil is immersed in a freestream flow with velocityU1 ¼
10m/s. The fluid is of unit density (equal to that of the hydrofoil) and
has viscosity is � ¼ 0:001 m2/s. A rectangular bluff body of unit
height and width 0.1m is placed upstream of the hydrofoil and
disturbs the incoming freestream flow by shedding and unsteady
wake in the fluid. This disturbed flow interacts with the downstream
hydrofoil, inducing angular motion and a time-varying pressure
profile on the surface. The relative position of the two bodies is
defined by the tuple ðb, dÞ as shown in Fig. 1. Along the body, Ns

pressure sensors are placed that are evenly spaced in the horizontal
direction and record the absolute pressure at a frequency of 40Hz.

Theproblemconsidered in this paper is the estimation of the parameters
ðb, dÞ using only measurements of pressure made at theNs locations on
the hydrofoil.

This flow simulation domain D is a rectangle of width 30m and
height 16m. The leading edge of the hydrofoil defines the origin of
the rectangular domain and is located 1m to the left of and vertically
collocated with the domain’s center. The center of the rectangular
obstacle is placed bm to the left and dm above the origin. At the left
boundary of the domain, the horizontal velocity, u ¼ 20 m/s, and a
vertical velocity, v ¼ 0 m/s, are imposed. To allow unimpeded exit
of the flow at the right boundary, a zero gradient condition is
imposed on the velocity, soru ¼ rv ¼ 0. At the top and bottom of
the domain, a “slip” condition enforces that no flow passes through
the boundary (v ¼ 0) and that there is no shear force at the boundary
(@u=@y ¼ 0Þ. On the walls of the plate and hydrofoil, a no-slip
condition ensures that the velocity of the flow relative to the bodies is
zero at the surface.
The system is simulated in the open-source computational fluid

dynamics software OPENFOAM 9. The fluid is modeled by the
incompressible two-dimensional Navier–Stokes equations

q
@u

@t
þ u � ru

� �
¼ �rpþ lr2u (1)

r � u ¼ 0 (2)

These are numerically solved with the pressure-implicit with
splitting of operators algorithm [36] over finite volumes of fluid.
Turbulence is modeled by a large eddy simulation with k � x shear
stress transport. The fluid domain is discretized with a finite volume
square mesh, as shown in Fig. 2. The mesh consists of two identical
two-dimensional meshes stacked on top of each other, resulting in a
single layer of volumes. Two layers of mesh refinement are used to
improve the simulation fidelity in the region between the bodies and

Fig. 1 A hydrofoil is pinnedwith a torsional spring at its leading
edge downstream from a vertical plate, with relative position
parameterized by b and d. On the hydrofoil, Ns510 pressure
sensors are placed evenly whose locations are shown by the
filled circles. The figure is not to scale.

Fig. 2 The computationalmesh,with a highdensity in important
flow regions near surfaces and between the bodies
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their immediate wake. A further three layers of refinement are
applied to capture the flow near the surface. This refinement results
inN ¼ 15, 493mesh grid pointswith 80 of these on the surface of the
hydrofoil. Themoment fm on the hydrofoil about the pin is calculated
by integrating the pressure on its surface. This moment then allows
solving the hydrofoil equations of motion

Ip€hþ c _hþ kh ¼ fm (3)

where h is the angle of the hydrofoil, and Ip is the mass moment of
inertia of the hydrofoil about the pin. Through the forcing term and a
surface boundary condition, this equation is coupled with the fluid
equations (1) and (2), resulting in complex fluid–body interaction.
This interaction is solved by iteratively solving the flowfield and
body acceleration until convergence is achieved. These states are
then integrated forward using the forward Euler method with
an adaptive time-step Dt selected such that the Courant number
C < 0:85 and Dt � 0:02. This is repeated until time t ¼ 50 s. When
the hydrofoil rotates, the mesh points in a region of 0.3m from its
surface rotate rigidly with it, while the mesh points greater than 1m
from the surface remain fixed.
The pressure field from a sample simulation is shown in Fig. 3(a).

Regions of alternating low pressure to the right of the flat plate show
a 2S vortex street. As the vortices interact with the hydrofoil, a high-
pressure region is generated that, when combined with the low
pressure inside the vortex, generates a net moment on the hydrofoil
and thusmotion. This pattern repeats in time, symmetrically on both
sides of the hydrofoil for d ¼ 0 and asymmetrically for d 6¼ 0. The
time-varying pressure measured at four of the Ns ¼ 10 sensor
locations is shown Fig. 3(b). The nonzero value of d results in an
asymmetrical pressure profile in time: pressure measured at the top
center and bottom center of the hydrofoil show differences in
temporal evolution besides the obvious phase difference.

3 Dynamic Mode Decomposition

Consider the bodies Bl (leading bluff body) and Bt (trailing
hydrofoil) immersed in a two-dimensional fluid flow. We assume
that the system has no explicit time dependence, i.e., the states,
including the pitch of the hydrofoil, evolve with time, but the
underlying dynamic system is time invariant or autonomous. While
the flow of the fluid is governed by the Navier–Stokes equation, we
will consider the spatially and temporally discretized solution to the
boundary value problem. The flow domain is discretized by N grid
points ðxi, yiÞ 2 R2 with sample times t 2 0,Dt, 2Dt,…,NtDtf g.
The numerical solutions in Sec. 2 provide the velocity field ðu, vÞ
and the pressure field p and the dynamical system _x ¼ uðx, y; b, dÞ,
_y ¼ vðx, y; b, dÞ that depends on the parameters b and d. We will
consider a time discretization of this dynamical system governed by
a flow map F as

znþ1 ¼ FðznÞ (4)

where zn ¼ ðxðtnÞ, yðtnÞÞ 2 M ffi R2 denotes the state at time
t ¼ nDt. Next, consider g 2 L2ðMÞ, the space of square integrable
real scalar valued functions. Koopman showed in Ref. [37] that an
observable function g : M7!R can be propagated by a linear
operator, K : L2ðMÞ 7!L2ðMÞ as

gðznþ1Þ ¼ KgðznÞ :¼ g � FðznÞ (5)

see Refs. [38] and [39] for a review. The operator K is linear and
known as the Koopman operator.
The scalar valued observable function of interest in the problem is

the pressure field, pðx, yÞ. The pressure at the Nmesh points at time
tn ¼ nDt is denoted by hf ðtnÞ ¼ pðxi, yi, tnÞ 2 RN . A subset of hf
measured at the pressure sensors on the hydrofoil (shown in Fig. 1)
located at the mesh points ðni, giÞ is denoted by hs. Its snapshot at
time tn is hsðtnÞ ¼ pðni, gi, tnÞ 2 RNs . As a result, the snapshots hf ðtÞ
also contain the snapshots hsðtÞ. We define two operators Kf and Ks

such that hf ðtnþ1Þ ¼ Kf hf ðtnÞ and hsðtnþ1Þ ¼ KshsðtnÞ. The matrices
Kf andKs are the representations of Koopman operatorK composed
with orthogonal projections on spaces spanned by elements of hf and
hs, respectively.
We use the DMD algorithm to construct an approximate operator

Ks that propagates the snapshots of hs. Consider first m time
snapshots of the surface pressure measurements pðni, giÞ, which are
few in number. We construct two matrices Xs 2 RNs�m and Ys 2
RNs�m of these measurements

Xs ¼ pðni, gi, tnÞ pðni, gi, tnþ1Þ � � � pðni, gi, tnþm�1Þ
� �

(6)

Ys ¼ pðni, gi, tnþ1Þ pðni, gi, tnþ2Þ � � � pðni, gi, tnþmÞ
� �

(7)

The operator Ks that propagates hs is then given by

Ks ¼ argmin
K

kYs � KXs k 2
F (8)

where k�kF denotes the Frobenius norm. When the measurements
are sufficiently large and richly sampled, the dominant spatiotem-
poral modes of the system are identified by Ks [12,40,41].
Essentially, as the number of sampling points increases, the
Koopman operator calculated by DMD or the extended dynamic
mode decomposition would converge to the orthogonal projection of
the action of the Koopman operator acting on the space of the
observables chosen as basis functions, see, for example, Ref. [41] for a
discussion.Wenote that other errors besides kYs � KXsk2F canbeused
to calculateKs. For example, instead of the average error considered in
Eq. (8), onemay prioritize having a tight upper bound on the error as in
Ref. [42]. When the argument of Eq. (8) is zero,Ks exactly propagates
the snapshots hs forward in time. This problem has a convex solution

Ks ¼ YsX
þ
s (9)

whereþ represents the Moore–Penrose pseudoinverse. When the
rank ofXs is greater than or equal to the number of columns ofK, this

Fig. 3 (a) The pressure field for a test case where b58:15 and
d50:18 after the transient period, where red indicates high
pressure andblue lowpressure. The formationof a vortexwake is
evident in the pressure field. (b) The pressure at four points in the
same simulation on the hydrofoil over time, with blue indicating
the trailing edge, orange the top center, green the leading edge,
and red the bottom center and blue indicates low pressure
(behind the plate and hydrofoil). (Color version online).
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solution is unique. The modes of the operator Ks are then calculated
as the eigenvectors and eigenvalues of Ks

KsU ¼ KU (10)

where

U ¼ /1 /2 � � � /Ns

� �
(11)

is the matrix of the eigenvectors and

K ¼ diag k1 k2 � � � kNs

� �
(12)

the diagonal matrix of eigenvalues. By convention, the L2 norm of
each component of U is unity, jj/ijj2 ¼ 1. The modes and
eigenvalues of the operator Ks can be used to reconstruct the
pressure field on the surface of the cylinder m time-steps after an
initial data snapshot hsðtnÞ by

hsðtmþnÞ � UKmU�1hsðtnÞ ¼ UKma (13)

where

af ¼ U�1hsðtnÞ ¼ af ,1 af ,2 � � � af ,Ns

� �
(14)

is a vector of complex numbers defining the relative magnitude of
the modes, as well as their relative phases. The magnitude of ai is
roughly equivalent to the concept of “mode energy” in POD, and in
the case that most of the “energy” is concentrated in a small number
of modes, the flow can be reconstructed with high accuracy using
only those few modes. Similarly, neglecting modes with small
corresponding values of a causes onlyminimal reconstruction error.
This reconstruction ability is demonstrated in Fig. 4, where an
operator is generated using data from time 10 s to 13.75 s, and
reconstructs the pressure starting at a time of 10 s. Compared to the
actual pressure, the reconstructed pressure is qualitatively correct,
with noticeable error only emerging in the high frequency component
of the dynamics. This reconstruction is nearly the same even for

Ns ¼ 100, implying that a small number of measurements capture
many of essential features of the pressure distribution.
While this approach, often referred to as “exact DMD” [40], is

applicable for the surface measurements because N is small,
applying this method on the field data would be computationally
intractable because of the size of Kf and the resulting complexity of
calculating its eigenvalues. For the field measurements, we use
“standard DMD,” which introduces a degree of truncation to greatly
increase the speed of the calculation. Shifted data matrices are first
constructed similarly to Eq. (7)

Xf ¼ pðxi, yi, tnÞ pðxi, yi, tnþ1Þ � � � pðxi, yi, tnþm�1Þ
� �

Yf ¼ pðxi, yi, tnþ1Þ pðxi, xi, tnþ2Þ � � � pðxi, yi, tnþmÞ
� �

Instead of directly calculating Kf using the pseudoinverse, first the
singular value decomposition is computed

Xf ¼ URV	 (15)

where U and V are the left and right singular matrices, respectively,
and R is a diagonal matrix containing the singular values. To
improve computation speed, R can be truncated starting with its
smallest singular values to a smaller r � r matrix Rt, and the
corresponding columns of U and V can be removed, resulting in
truncated matricesUt and Vt, respectively. This allows approximat-
ing the matrix Kf (in a reduced-dimensional space) as

~A ¼ U	
t Yf VtR

�1
t (16)

and its eigenvalues and eigenvectors are computed as

~AWr ¼ KfWr (17)

The eigenvectors in the reduced space can be projected back to the
full space using the truncated left singular matrix

W ¼ UtWr (18)

where this W physically corresponds to modes of the fluid field

W ¼ w1 w2 � � � wr

� �
(19)

Using a known initial condition, it is again possible to reconstruct the
flow field using these truncated modes as

hf ðtnþmÞ � WKm
f W

�1hf ðtnÞ ¼ WKqaf (20)

where

af ¼ W�1hf ðtnÞ ¼ af ,1 af ,2 � � � af ,r
� �

(21)

and hf ðtnÞ is a snapshot of the flow field at t ¼ nDt.

3.1 Dominant Pressure Modes. Modal analysis of flows
reveals that a few modes contain a very large fraction of the energy
[40]. An analysis of the modes of the operators Kf and Ks reveal the
same. We sort the modes of Kf and Ks such that they are labeled in
descending order of magnitude, jaf ,1j 
 jaf ,2j… 
 jaf ,rj and
jas,1j 
 jas,2j… 
 jas,Ns

j, respectively. The components of W and
Kf are also sorted to be in the same order as af , and the components
ofU andKs are sorted in the sameorder as that of as. Figures 5(a) and
5(b) show the eigenvaluesKs andKf on the complex plane.Many of
the eigenvalues Kf are inside the unit circle (Fig. 5(b)) indicating
that the corresponding modes decay. The rest of the eigenvalues on
the unit circle occur as complex conjugates with the corresponding
modal magnitudes af and as also occurring as complex conjugate
pairs. The small number of surface pressure measurements used
introduces approximation error that causes slight deviations in the

Fig. 4 (a) Actual pressure over time for b55:31 and d50:26.
(b) The pressure predicted by the operator calculated based on
Eq. (13), where tn510 s and Ns510.
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magnitude of the eigenvalues of the even second dominant modes,
which lie close to the boundary of the unit circle (in Fig. 5(a)).
However, thesemodes decay very slowly and for short time intervals
persist in being one of the dominantmodes. The first eigenvalues kf ,1
and ks,1 are both real. The corresponding modes w1 and /1 and

modal coefficients af ,1 and as,1 are real. A measure of the sparsity of
the modes containing most of the information of flow is revealed by
the ratios

rf ðnÞ ¼

Xn
i¼1

jaf ,2i�1j
Xr

i¼1

jaf ,ij
, n � r=2 (22)

rsðnÞ ¼

Xn
i¼1

jas,2i�1j

XNs

i¼1

jas,ij
, n � Ns

2
(23)

Figure 5(c) shows a plot ofrsðnÞ andrf ðnÞ, revealing thatrsð3Þ >
0:9 and rf ð3Þ > 0:9, i.e., for the first three modes of both the fluid
field pressure and surface pressure contain much of the information
about the respective fields. The first three modes w1,w2, and w3 of
the pressure field in the fluid domain are shown in Figs. 6(a)–6(c)
which also reveal the physical features of the flow. The first modew1

corresponds to the pressure field of the steady flow,with the next two
modes identifying changes in pressure due to the vortex shedding
past the obstacle (leading bluff body). The eigenvaluesKs andKf (in
Figs. 5(a) and 5(b)) corresponding to the dominant modes have
similar phases: one with a phase of zero, one with a phase near 0.45
(corresponding to the vortex shedding frequency), and another with
a phase near 0.90 (corresponding to the second harmonic of the
vortex shedding). The modes/1,/2, and/3 for the surface pressure
on the hydrofoil are also shown in Figs. 6(d)–6(f) for the case where
Ns ¼ 10.

4 Parameter Estimation

Weuse four different approaches all based on supervised learning
to the problem of estimating the parameters ðb, dÞ. The first of these
is based on using a convolutional neural network (the “TIME” CNN
[43]) which takes as input the time series pressure measurements at
the Ns locations on the trailing hydrofoil. This approach sets a

Fig. 5 Eigenvalues (a)Ks and (b)Kf of themodeson the complex
plane from the simulation for a representative ðb,dÞ, where the 3
corresponding to the highest magnitudes of a, along with their
complex conjugates, are represented by red circles. (c) rf (blue
circles) and rs (red triangles), with rf ð3Þ>0:93 and rsð3Þ>0:93.
(Color version online).

Fig. 6 (a)–(c) The first three modes of pressure field in the fluid domain. Due to the phase of
modes being arbitrary, the red (dark) and blue (light) colors are interchangeable, and white
signifies a value of zero. (d)–(e) The first three modes of the surface pressure field. Parameter
values are b58:15 and d50:18. (Color version online).
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benchmark that uses one of the latest machine learning methods for
time series data. The next three approaches are based on combining
calculations of DMD with machine learning.
Supervised learning necessitates collecting multiple sets of

simulations with nonoverlapping values of ðb, dÞ: one set to train
the estimator (the “training” set), one set to validate howwell trained
the estimator is (the “validation” set), and one set to test the accuracy
of the resulting estimator (the “testing” set). The parameter values
used for each dataset are shown in Fig. 7. The training set has
parameters on an even 6� 6 grid (a ¼ 36 points total) filling the
region 4 � b � 9 and 0 � d � 1, which is selected because the
wake in that region is well-developed and has not fully dissipated.
The even spacing of these training points is designed to sample the
entire space. However, in practical applications, the parameters
would likely not fall on a grid, but rather be scattered throughout the
acceptable parameter space. For this reason, the validation and
testing data are selected from a uniform probability distribution in
the region 4 � b � 9 and 0 � d � 1, with c ¼ 20 points for
validation and e ¼ 38 points for testing.

From each simulation, pressure is known atN ¼ 15, 493 points in
the domain, with 80 of those points on the surface of the body. The
pressures are interpolated with a spline function to determine the
pressures at ten evenly spaced points, which represent physical
pressure sensors and is the only data from the simulation for the
parameter estimation, in training, validation, and testing.
Suppose the pressure from the measurements from the surface of

the hydrofoil for the kth pair of parameters ðbk, dkÞ at time tj is
denoted by pkðni, gi, tjÞ. Data from the simulations are stored in three
different sets

T ¼ T1, T2,…, Ta
� �

(24)

V ¼ V1,V2,…,Vc
� �

(25)

E ¼ Eaþcþ1,Eaþcþ2,…,Ee
� �

(26)

where Tk is a matrix corresponding to the kth pair of training
parameters, ðbk, dkÞ, and Tk

ij ¼ pkðni, gi, tjÞ is the pressure at the ith
pressure sensor and jth time interval. Similarly, the kth validation
dataset Vk is the matrix Vk

ij ¼ pðkþaÞðni, gi, tjÞ, and the kth test (or
evaluation) dataset Ek is the matrix Ek

ij ¼ pðkþaþcÞðni, gi, tjÞ,
respectively. We define a sampling function S which acts on these
sets and returns a random window of 150 time-steps of continuous
data from a random element, as well as the parameters ðb, dÞ at that
element. For instance, SðTÞ ¼ ðTk

ij, bðkÞ, dðkÞÞ, where k is a random
variable uniformly distributed over the set 1, 2,…, 36f g, i is the
range of integers where 1 � i � 10, and j is a range
j0, j0 þ 1,…, j0 þ 150f g such that j0 is a uniformly distributed

random integer in the range t0 � j0 � tf � 150. The initial time-step
is chosen as t0 ¼ 400 which allows transient flow conditions to
decay, and the final time is selected as tf ¼ 1000. Therefore, each
matrix of data in training, validation, and test sets have 150 time-
steps of data with the length of each time-step being Dt ¼ 0:025 s.

The estimation problem considered here is to construct an
estimator that predicts ðb, dÞ as

ðbp, dpÞ ¼ DhðFxðPÞÞ (27)

ðP, b, dÞ ¼ SðTÞ (28)

whereF is a function that extracts features from the time series, and
D is a function that maps those features to an estimate of ðb, dÞ. Both
h andx are sets of parameters (referred to as “weights”) that support
those functions. The objective is to select the parameters h and x
such that the expected value of the mean squared error (L) in the
estimation is minimized, or

min
h,x

Le where Le ¼ E½ðbp � bÞ2 þ ðdp � dÞ2Þ� (29)

Below, four different architectures for the feature extractor F are
introduced, two of which are nonparametric (so x ¼ 1). After
optimizing the parameters for each, the overall estimation error values
are investigated to determine which feature extractor is most effective.
To isolate the effect of changing F , the architecture of D is kept the
same for all feature extractors, though h is re-optimized for each F .

The function D is a DNN, selected due to their general utility in
estimation problems. It is fully connected and uses “Rectified linear
unit” activation, with sequential layers containing 200, 100, 100, 50,
and 50 nodes. The output layer has two nodes, representing
estimates of b and d, and has a linear activation function.

4.1 Convolutional Neural Network-Based Estimation. For
time series classification problems, neural network-based para-
metric approaches have been found to have performance compara-
ble to common nonparametric approaches [43]. The best suited
networks for this task are recursive neural networks such as long
short-term memory networks and CNNs, which extract features
from time series data by repeatedly applying a single-dimensional
kernel. We use a CNN as a benchmark feature extractor, using the
hyperparameters determined to be optimal for time series classi-
fication in Ref. [35], a network architecture known as the “time
CNN,” which has been benchmarked against other time series
classification algorithms in Ref. [43]. Though we consider
estimation problems instead of classification, estimation can in a
sense be viewed as a subset of parameter classification, as simply
averaging the classification probability distribution on different
“bins” of parameter values yields an estimate. As a result, we expect
a network architecture designed for classification to be effective at
estimation. In summary, the architecture requires two layers of
alternating one-dimensional convolutional neural networks with
sigmoid activation and average pooling operations. The filters have
length 7, and the pooling operations operate on groups of three
values, reducing the dimension of the latent space by roughly a
factor of 3 with every application. No padding is used on the
convolutional steps. The single input time series vector is split into
six vectors using six separate filters at the first step, and this is
increased to 12 vectors for the second step. After the final pooling
operation, the vectors are concatenated into a single feature vector of
length 168, which serves as the output of F . This procedure is
visualized in the top row of Fig. 8.

4.2 Direct Mode Estimation. Though the CNN can extract
features from dynamic data, it uses a black-box approach that does
not reveal any specific information about what dynamics it has
identified. By contrast, the highest magnitude Koopman modes of
dynamic data also form a reduced basis of the flow dynamics, which
may also serve as features for further estimation. Further, an
association between the local modes of the surface pressure and the
modes of the entire fluid field are visually obvious, as shown in
Figs. 6(d)–6(f). The surface pressure modes in Figs. 6(d)–6(f)
calculated from Ns ¼ 100 observations are shown as a continuous
mode, and their values at the smaller number Ns ¼ 10 of sensor
locations are shown as circles. Despite the different quantities of
observations, these modes are qualitatively very similar. Because
the modes of the larger flow field are clearly strongly affected by
ðb, dÞ, this motivates the possibility that significant information

Fig. 7 Positions of the pinned leading edge of the hydrofoil
relative to the upstream plate for training (black circles spaced at
uniform horizontal spacing in vertical lines), validation (blue or
light colored), and testing (redordarkcolored) datasets. Training
points are on a grid for even coverage of the parameter space,
while validation and testing points are placed randomly. (Color
version online).
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about ðb, dÞ has been passed from the larger fluid modes to the
pressuremodes on the surface, which can be evaluated from a sparse
set of observations.
Because the dominant three modes have been demonstrated to

contain the majority of the information needed to reconstruct the
flow, they are selected as features of the data, to be input into the
DNN which performs the final estimation. However, to ensure
performance, they must first be standardized. This takes two forms:
standardizing their order and standardizing their phase. The
motivation for standardizing the order is simple: if for one ðb, dÞ
pair the first mode input to the DNN corresponds to the zero phase
mode, but for an adjacent ðb, dÞ pair the first mode input to the DNN
corresponds to the second harmonic, the large difference between
those mode shapes due to their representing different physical
phenomena conceals the subtle changes in the mode shapes that
would be useful in estimating ðb, dÞ. More formally, we label modes
such that for a mode /1

1 with parameters ðb, dÞ and /2
1 with

parameters ðbþ �1, d þ �2Þ, for small values of ð�1, �2Þ we expect
h/1

1,/
2
1i � 1, and their corresponding eigenvalues k11=k

2
1 � 1þ 0i.

The modes are sorted by first neglecting the complex conjugates,
which is done by removing fromU,K, and a all entries with indices i
that satisfy =ðkiÞ < 0. Modes are then labeled using the procedure

/1 ¼ /i where argmax
i
ðjaijÞ subject to/ki ¼ 0

/2 ¼ /i where argmax
i
ðjaijÞ subject to 0 < /ki � 0:6

/3 ¼ /i where argmax
i
ðjaijÞ subject to 0:6 < /ki � 1:2

The values of k1, k2, and k3 are labeled by the same procedure.
The second inconsistency between the modes that must be

standardized is their phases. This is a result of the properties of
eigenvectors: an eigenvector scaled by any arbitrary complex
number remains an eigenvector. As the modes are eigenvectors, the
phase of any individual element of the mode vector is arbitrary,
though the relative phases of different elements are not. For
simplicity, we discard the phase information and use only the
magnitude of the mode elements in the estimation. The feature
information is concatenated into a vector

Z ¼ j/1j j/2j j/3j jk1j jk2j jk3j /k1 /k2 /k3
� �

(30)

where j/j denotes the elementwise magnitude of /, and as a result
each element is a real scalar. The vector Z of length 36 is then the
output of the feature extractor function F .

4.3 Mode-Kernel Estimation. Because modes can be inter-
preted as features of the system that contain a condensed
representation of the system dynamics, it is likely that on top of

parametric approaches (like DNNs), nonparametric algorithms
which compare the test data directly with the stored training data
may also be applicable. Many such algorithms exist, but here we
attempt a kernel-based approach. For each parameter pair k in the
training dataset, sorted benchmark modes ½/1 /2 /3�jk are identified
using the procedure for exact DMD and the sorting from Sec. 4.2,
except using the entire simulation data Tk instead of a sample of Tk.
These modes are stored in a library X such that Xk ¼ ½/1 /2 /3�jk.
The estimation procedure works by estimating the similarity of

the modes /1,/2,/3 from the sample SðTÞ with the dictionary of
benchmark modes using a kernel function. In this case, the kernel
function is the inner product, so the similarity between modes is defined
as bik ¼ jh/i, ðXkÞiij, where a value near 1 indicates a high similarity.
This similarity can be used to estimate ðb, dÞ through simple algorithms,
for example, theK-nearest neighbors algorithm.However, because of the
high performance of parametric approaches to time series [43], aswell as
to keep consistencywith the other approaches, we instead flatten b into a
feature vector of length 108 to be output from F intoD.

4.4 Spectral Image Estimation. While in this case it is simple
to order themodes to perform a direct estimation as was done in both
Secs. 4.2 and 4.3, that may not be the case for more complex fluid
flows where more dominant modes are present, or for larger ranges
of the estimation parameters where the modes change enough
throughout the range to be not easily recognizable. The need for a
human to derive the heuristics used to sort themodes for a given flow
is also an obstacle to using this approach on an autonomous vehicle.
Here, we present a method extract information from Ks without any
heuristics or requirement to sort the modes.We first extract the real-
valued spectra UK of the operator, where

Ks ¼ UKRKV
	
K (31)

is the singular value decomposition of Ks. The matrix UK is then
passed into a two-dimensional CNN. Because two-dimensional
CNNs are most often used for image classification, this can be
interpreted as treating UK as an image. For consistency, the
hyperparameters of this network are chosen to be similar to those in Sec.
4.1: the convolutional steps have a filter size of 7, and max pooling is
performed with a pool size of 3. However, because the operations are
performed on an input matrix of size 10� 10 instead of a vector of size
150, zero padding is required to allowapplying two layers of convolution
without the input becoming smaller than the filter. For the same reason,
only one pooling operation is applied, located after both of the
convolutional layers. After the pooling operation, the result is flattened
into a feature vector also of length 108, which is then output from F .

4.5 Training. Each of the four estimation approaches is trained
separately, with unique weights for each. For methods that have
parameters x associated with the feature extraction, x is trained

Fig. 8 A schematic of the estimation methods. The top row illustrates the CNN-based estimation approach. The
next row down shows spectral image estimation approach. The second to bottom row shows the mode-kernel
estimation approach, and the bottom row shows the direct mode estimation approach.
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jointly with h. Because of the risk of weight optimization finding
local minima with different final loss values, a batch of ten
estimators is trained for each of the estimation approaches, with the
training process of each individual estimator termed a “run.” In total,
40 weight optimizations are performed.
Before training, a training dataset is constructed by evaluating

many realizations of the sampling function

ðPi, bi, diÞ ¼ SðTÞ 8 i 2 1, 2,…, 3600f g (32)

Validation and testing datasets are constructed in a similar manner
on V and E, respectively, with the validation dataset constructed of
400 realizations of SðVÞ and the testing dataset constructed of 760
realizations of SðEÞ. The training and validation datasets are
recomputed for every run, but the testing dataset is only calculated
once for consistency. The predicted values are given by

ðbp,i, dp,iÞ ¼ DhðFxðPÞÞ (33)

where ðbp, dpÞ represent vectors of predicted values of ðb, dÞ. The
weights are updated such that

min
h,x

Lwhere L ¼
Xif
i¼i0

ðbp,i � biÞ2 þ ðdp,i � diÞ2
� 	

(34)

which minimizes the error between predicted and actual values of
ðb, dÞ in a mean-squares sense. Instead of performing this
summation over the entire set at once, it is efficient to iteratively
perform the summation over smaller batches. Here,we chose a batch
size of if � i0 ¼ 50. This batch-based optimization allows the use of
the adam algorithm,which calculates the parameter updates at every
step using a combination of the gradient of the current batch and the
“momentum” from gradients calculated on past batches. After the
entire dataset has been iterated over (known collectively as an
“epoch”), an early-stopping criterion is checked, and either the
training stops or continues with a new set of batches.
The early-stopping algorithm used was first introduced in Ref.

[44]. After every epoch, the loss on the validation dataset Lv is
calculated. If Lv < Lmin,i, where Lmin,i is the lowest validation error
encountered so far in run i, then Lmin,i :¼ Lv and the weights rmin,i ¼
ðh,xÞ are saved before continuing. However, if at any epoch Lv >
1:3Lmin,i and at least 200 epochs have passed, it is assessed that the
network is overtrained and the training run is terminated. The
representative weights of the estimation approach, ropt, are then
defined as

ropt ¼ rmin,iopt (35)

iopt ¼ argmin
i

Lmin,i (36)

which selects the weights form the run with the lowest loss.

5 Results

The loss values during training on the validation data for the
estimation approaches are shown in Fig. 9. The mode-kernel
estimation approach has the highest average loss after epoch 50,
though the lowest mode-kernel estimation approach loss is still
lower than the average loss for all of the other three estimation
approaches at the end of training, indicating that the overall
difference between the estimation approaches is small. The other
three estimation approaches have very similar average losses by the
end of their training. However, the direct mode estimation approach
has the run with the lowest loss by a small margin. A t-test is used to

Fig. 9 The training curve for the four estimation methods. The
shaded region represents the range of loss values on the
validation data for the ten networks trained for each method,
and the solid lines reflect the average. The mode-kernel
estimation approach consistently performs poorly, and other
three methods have roughly equal average loss, with the direct
mode estimation approach having the lowest minimum loss.

Fig. 10 Predictedversus real valuesof ((a), (c), (e), (g))b and ((b),
(d), (f), (h)) d using (a) and (b) the time series-CNN approach,
(c) and (d) the direct mode estimation approach, (e) and (f) the
mode-kernel estimation approach, and (g) and (h) the spectral
image estimation approach
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determine whether themeanminimumvalidation loss is statistically
different between themethods. The result is that none of themethods
used have a statistically significant difference in their mean
minimum loss values from the CNN-based estimation approach
(using P ¼ 0:05 as the cutoff for significance).

The optimal weights ropt can be evaluated on the testing data to
compare the best estimated values of ðb, dÞ for each approach with
the true values. These predicted and real values are shown in Fig. 10.
The number of unique ðb, dÞ pairs in the testing data (38) ismuch less
than the number of samples evaluated (760), leading to many
different estimations of the true value distributed along a vertical
line. The CNN-based estimation (Figs. 10(a) and 10(b)) and spectral
image estimation (Figs. 10(g) and 10(h)) approaches are imprecise
in their estimates of d, with a large range of predicted values arising
from different samples of data associated with the same true value.
By contrast, themode and kernel-based approaches are precise, with
different samples from the same simulation giving similar outputs.
This is consistent with the theoretical motivation of the Koopman
operator; a given system has exactly one Koopman operator K that
maps its dynamics forward by a specific length of time, which is
valid both during the transient period and during steady-state. The
estimated operatorKs does in practice change slightly depending on
which window of data is selected, but is generally much more
consistent than the time series itself. The spectral image estimation
approach may be inconsistent because the singular value decom-
position is not unique. We make it unique (to within a sign) by
constraining the diagonal of RK to be decreasing from the left to the
right. However, this presents a problem for the use of UK for
estimation: very small changes inKs can result in a reordering ofRK ,
which in turn results in a reordering of Uk. This reordering is likely
responsible for the large range of estimates for d.
More quantitatively, differences between the estimation methods

can be investigated by considering the loss on the testing dataset.
The CNN-based estimation has the highest loss value of 0.0393,
followed by the spectral image estimation at 0.0343, the direct mode
estimation at 0.0340, and themode-kernel estimation at 0.0325. The
relative accuracy of the estimation methods is inconsistent with that
calculated on the validation data; this inconsistency could indicate
that different estimation approaches are suited to different regions of
the parameter space, which is sampled differently by the testing and
validation data due to the random location of samples. This may be
particularly true for the kernel method, which may have difficulty
with testing ðb, dÞ values that are far from those in the training dataset.

6 Conclusion

We have shown that the Koopman operator can extract features
amenable for estimation from a dynamic system more accurately
than a state-of-the-art black-box convolutional neural network
feature extractor. Multiple approaches to extract features from the
Koopman operator are considered, and both directly inputting the
modes to a DNN and inputting the spectrum of the operator into a
CNN were found to be effective in estimating the parameters of the
flow, with the approach using the dynamic modes performing
slightly better and having shorter training times. This motivates the
use of dynamic mode decomposition in the classification and
estimation of parameters for multivariate time series which are
generated by dynamic systems. The significant advantage of the
Koopman operator-based approaches for parameter estimation over
the approach using machine learning directly on time series is the
physical insights offered into the estimation. Training data can be
better selected, and sensitivity of estimation to changes in
parameters can be better understood in light of such physics-
informedmachine learning. Futureworkwill consider inmore depth
these aspects and the relationship between the measurable (surface)
modes and the broader modes of the fluid.
This work opens several future avenues of research to make the

application of the sensing and localization approach described in
this paper practically useful in the mobile robotics context. The
calculation of the Koopman operator and the classification of

obstacle distance have to be done with smaller snapshots of data.
This is a significant challenge that requires further optimization to
the computation of the Koopman operator and the subsequent
machine learning. Besides this, the presence of more complex flows
with disturbances or the existence of more than one obstacle present
more challenges to the sensing framework described in this paper.
We currently envision this framework as one that augments other
sensing modalities. Further research on such sensor fusion can be
expected to improve flow sensing by underwater robots.

Funding Data

� Office of Naval Research (Grant No. 13204704; Funder ID:
10.13039/100000006).

Data Availability Statement

The datasets generated and supporting the findings of this article
are obtainable from the corresponding author upon reasonable
request.

References
[1] Triantafyllou, M. S., Weymouth, G. D., andMiao, J., 2016, “Biomimetic Survival

Hydrodynamics and Flow Sensing,” Annu. Rev. Fluid Mech., 48(1), pp. 1–24.
[2] Gazzola, M., Argentina, M., andMahadevan, L., 2015, “Gait and Speed Selection

in Slender Inertial Swimmers,” Proc. Natl. Acad. Sci. U.S.A., 112(13),
pp. 3874–3879.

[3] Ijspeert, I. A., 2014, “Biorobotics: Using Robots to Emulate and Investigate Agile
Locomotion,” Science, 346(6206), pp. 196–203.

[4] Kelasidi, E., Liljeback, P., Pettersen, K. Y., and Gravdahl, J. T., 2016, “Innovation
in Underwater Robots: Biologically Inspired Swimming Snake Robots,” IEEE
Rob. Autom. Mag., 23(1), pp. 44–62.

[5] Pitcher, T. J., Partridge, B., and Wardle, C. S., 1976, “A Blind Fish Can School,”
Science, 194(4268), pp. 963–965.

[6] Bleckmann, H., and Zelick, R., 2009, “Lateral Line System of Fish,” Integr. Zool.,
4(1), pp. 13–25.

[7] Sirovich, L., 1987, “Turbulence and the Dynamics of Coherent Structures. Part 1:
Coherent Structures,” Q. Appl. Math., 45(3), pp. 561–571.

[8] Berkooz, G., Holmes, P., and Lumley, J. L., 2003, “The Proper Orthogonal
Decomposition in the Analysis of Turbulent Flows,” Annu. Rev. Fluid Mech.,
25(1), pp. 539–575.

[9] Everson, R., and Sirovich, L., 1995, “Karhunen–Loève Procedure for Gappy
Data,” J. Opt. Soc. Am. A, 12(8), pp. 1657–1664.

[10] Bui-Thanh, T., Damodaran, M., and Willcox, K. E., 2004, “Aerodynamic Data
Reconstruction and Inverse Design Using Proper Orthogonal Decomposition,”
AIAA J., 42(8), pp. 1505–1516.

[11] Willcox, K. E., 2006, “Unsteady Flow Sensing and Estimation Via the Gappy
Proper Orthogonal Decomposition,” Comput. Fluids, 35(2), pp. 208–226.

[12] Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P., and Henningson, D. S., 2009,
“Spectral Analysis of Nonlinear Flows,” J. Fluid Mech., 641, pp. 115–127.

[13] Schmid, P. J., 2010, “Dynamic Mode Decomposition of Numerical and
Experimental Data,” J. Fluid Mech., 656, pp. 5–28.

[14] Li, Q., Dietrich, F., Bollt, E. M., and Kevrekidis, I. G., 2017, “Extended Dynamic
Mode Decomposition With Dictionary Learning: A Data-Driven Adaptive
Spectral Decomposition of the Koopman Operator,” Chaos, 27(10), p. 103111.

[15] Otto, S., and Rowley, C., 2019, “Linearly Recurrent Autoencoder Networks for
Learning Dynamics,” SIAM J. Appl. Dyn. Syst., 18(1), pp. 558–593.

[16] Champion, K., Lusch, B., Nathan Kutz, J., and Brunton, S. L., 2019, “Data-Driven
Discovery of Coordinates and Governing Equations,” PNAS, 116(45),
pp. 22445–22451.

[17] Raissi, M., Yazdani, A., and Karniadakis, G., 2020, “Hidden Fluid Mechanics:
Learning Velocity and Pressure Fields From Flow Visualizations,” Science,
367(6481), pp. 1026–1030.

[18] Brunton, S. L., Noack, B. R., and Koumoutsakos, P., 2019, “Machine Learning for
Fluid Mechanics,” Annu. Rev. Fluid Mech., 52, p. 2020.

[19] Callaham, J. L., Maeda, K., and Brunton, S. L., 2019, “Robust Flow
Reconstruction From Limited Measurements Via Sparse Representation,” Phys.
Rev. Fluids, 4(10), p. 103907.

[20] Alsalman, M., Colvert, B., and Kanso, E., 2018, “Training Bioinspired Sensors to
Classify Flows,” Bioinspiration Biomimetics, 14(1), p. 016009.

[21] Colvert, B., Alsalman,M., andKanso, E., 2018, “Classifying VortexWakes Using
Neural Networks,” Bioinspiration Biomimetics, 13(2), p. 025003.

[22] Pollard, B., and Tallapragada, P., 2020, “Sensing and Classification of Ambient
Vortex Wake From the Kinematics of a Bioinspired Swimming Robot Using
Neural Networks,” ASME Paper No. DSCC2020-3282.

[23] Pollard, B., and Tallapragada, P., 2021, “Learning Hydrodynamic Signatures
Through Proprioceptive Sensing by Bioinspired Swimmers,” Bioinspiration
Biomimetics, 16(2), p. 026014.

Journal of Dynamic Systems, Measurement, and Control NOVEMBER 2024, Vol. 146 / 061108-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/146/6/061108/7367978/ds_146_06_061108.pdf by C

lem
son U

niversity user on 05 N
ovem

ber 2024

http://dx.doi.org/10.1146/annurev-fluid-122414-034329
http://dx.doi.org/10.1073/pnas.1419335112
http://dx.doi.org/10.1126/science.1254486
http://dx.doi.org/10.1109/MRA.2015.2506121
http://dx.doi.org/10.1109/MRA.2015.2506121
http://dx.doi.org/10.1126/science.982056
http://dx.doi.org/10.1111/j.1749-4877.2008.00131.x
http://dx.doi.org/10.1090/qam/910462
http://dx.doi.org/10.1146/annurev.fluid.25.1.539
http://dx.doi.org/10.1364/JOSAA.12.001657
http://dx.doi.org/10.2514/1.2159
http://dx.doi.org/10.1016/j.compfluid.2004.11.006
http://dx.doi.org/10.1017/S0022112009992059
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1063/1.4993854
http://dx.doi.org/10.1137/18M1177846
http://dx.doi.org/10.1073/pnas.1906995116
http://dx.doi.org/10.1126/science.aaw4741
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1103/PhysRevFluids.4.103907
http://dx.doi.org/10.1103/PhysRevFluids.4.103907
http://dx.doi.org/10.1088/1748-3190/aaef1d
http://dx.doi.org/10.1088/1748-3190/aaa787
http://dx.doi.org/10.1115/DSCC2020-3282
http://dx.doi.org/10.1088/1748-3190/abd044
http://dx.doi.org/10.1088/1748-3190/abd044


[24] Rodwell, C., Pollard, B., and Tallapragada, P., 2023, “Proprioceptive Wake
Classification by a BodyWith a Passive Tail,” Bioinspiration Biomimetics, 18(4),
p. 046001.

[25] Rodwell, C., and Tallapragada, P., 2022, “Embodied Hydrodynamic Sensing and
Estimation Using Koopman Modes in an Underwater Environment,” American
Control Conference (ACC), Atlanta, GA, June 8–10, pp. 1632–1637.

[26] Rodwell, C., Sourav, K., and Tallapragada, P., 2024, “Feel the Force: From Local
Surface Pressure Measurement to Flow Reconstruction in Fluid–Structure
Interaction,” Phys. Fluids, 36(1), p. 013606.

[27] Bright, I., Lin, G., and Kutz, J. N., 2013, “Compressive Sensing Based Machine
Learning Strategy for Characterizing the Flow Around a Cylinder With Limited
Pressure Measurements,” Phys. Fluids, 25(12), p. 127102.

[28] Gomez, D. F., Lagor, F. D., Kirk, P. B., Lind, A. H., Jones, A. R., and Paley, D. A.,
2019, “Data-Driven Estimation of the Unsteady Flowfield Near an Actuated
Airfoil,” J. Guid., Control, Dyn., 42(10), pp. 2279–2287.

[29] Lidard, J. M., Goswami, D., Snyder, D., Sedky, G., Jones, A. R., and Paley, D. A.,
2021, “Output Feedback Control for Lift Maximization of a Pitching Airfoil,”
J. Guid., Control, Dyn., 44(3), pp. 587–594.

[30] Yen, W.-K., Huang, C.-F., Chang, H.-R., and Guo, J., 2020, “Localization of a
Leading Robotic Fish Using a Pressure Sensor Array on Its Following Vehicle,”
Bioinspiration Biomimetics, 16(1), p. 016007.

[31] Abdulsadda, A. T., and Tan, X., 2013, “Underwater Tracking of a Moving Dipole
Source Using an Artificial Lateral Line: Algorithm and Experimental Validation
With Ionic Polymer–MetalComposite FlowSensors,” SmartMater. Struct., 22(4),
p. 045010.

[32] Wolf, B. J., van de Wolfshaar, J., and van Netten, S. M., 2020, “Three-
Dimensional Multi-Source Localization of Underwater Objects Using Convolu-
tional Neural Networks for Artificial Lateral Lines,” J. R. Soc. Interface, 17(162),
p. 20190616.

[33] Souza, F. A., Ara�ujo, R., and Mendes, J., 2016, “Review of Soft Sensor Methods
for Regression Applications,” Chemom. Intell. Lab. Syst., 152, pp. 69–79.

[34] Facco, P., Doplicher, F., Bezzo, F., and Barolo, M., 2009, “Moving Average PLS
Soft Sensor for Online Product Quality Estimation in an Industrial Batch
Polymerization Process,” J. Process Control, 19(3), pp. 520–529.

[35] Zhao,B.,Lu,H.,Chen,S., Liu, J., andWu,D., 2017,“ConvolutionalNeuralNetworks
for Time Series Classification,” J. Syst. Eng. Electron., 28(1), pp. 162–169.

[36] Issa, R. I., 1986, “Solution of the Implicitly Discretised Fluid Flow Equations by
Operator-Splitting,” J. Comput. Phys., 62(1), pp. 40–65.

[37] Koopman, B. O., 1931, “Hamiltonian Systems and Transformation in Hilbert
Space,” Proc. Natl. Acad. Sci., 17(5), pp. 315–318.

[38] Lasota, A., and Mackey, M. C., 1994, Chaos, Fractals, and Noise: Stochastic
Aspects of Dynamics, Springer, New York.
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