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ABSTRACT: Soft gels, formed via the self-assembly of particulate materials,
exhibit intricate multiscale structures that provide them with flexibility and
resilience when subjected to external stresses. This work combines particle
simulations and topological data analysis (TDA) to characterize the complex
multiscale structure of soft gels. Our TDA analysis focuses on the use of the
Euler characteristic, which is an interpretable and computationally scalable
topological descriptor that is combined with filtration operations to obtain
information on the geometric (local) and topological (global) structure of soft
gels. We reduce the topological information obtained with TDA using
principal component analysis (PCA) and show that this provides an
informative low-dimensional representation of the gel structure. We use the
proposed computational framework to investigate the influence of gel
preparation (e.g., quench rate, volume fraction) on soft gel structure and to
explore dynamic deformations that emerge under oscillatory shear in various response regimes (linear, nonlinear, and flow).
Our analysis provides evidence of the existence of hierarchical structures in soft gels, which are not easily identifiable
otherwise. Moreover, our analysis reveals direct correlations between topological changes of the gel structure under
deformation and mechanical phenomena distinctive of gel materials, such as stiffening and yielding. In summary, we show that
TDA facilitates the mathematical representation, quantification, and analysis of soft gel structures, extending traditional
network analysis methods to capture both local and global organization.
KEYWORDS: topological data analysis, soft gels, colloids, rheology, multi-scale structure, Euler characteristic

INTRODUCTION
Particulate gel technology offers a versatile solution with
widespread applications across diverse industries, including
pharmaceuticals, foods, and construction. In the pharmaceutical
and medical device industries, these gels play a pivotal role,
serving as effective drug delivery vehicles, encapsulation systems,
and scaffolds. Their deformability enables the seamless
incorporation of various compounds, medications, or diagnostic
agents, contributing to enhanced bioavailability and therapeutic
efficacy in patient care.1−3 Within the food industry, soft gel
encapsulation is employed for the delivery of functional
ingredients, vitamins, and supplements. The encapsulation of
sensitive compounds not only enhances their stability but also
facilitates precise dosage control, meeting the growing consumer
demand for convenient and palatable nutritional solutions.4−7 In
the construction sector, the utility of soft gels extends to the
realm of binders, sealants, adhesives, and coatings, contributing
to improved performance and durability of building materi-
als.8−11

Gel formation may proceed through phase separation,
aggregation, and self-assembly of polymers, colloids, or other
soft matter components.12 The stochastic and multiscale nature
of these mechanisms produces hierarchical, amorphous

structures, and provides texture, elasticity, and stability.12−16

The multiscale structure of gels can be represented mathemati-
cally as networks defined by the interactions of their building
blocks (e.g., particles, droplets, polymer aggregates). These
network representations provide insight into the deformation of
soft gels, and aid in understanding their mechanical fail-
ure.12−14,17,18 For example, while soft gels can accommodate
large deformations, microscale cracks that result from the
accumulation of local tension can nucleate and trigger
macroscopic failure, in susceptible points determined by both
the local spatial distribution (geometry) and the large scale
connectivity (topology) of the gel network.12,16 It has been
previously found that network structures are not static but highly
dynamically reconfigurable; deformations, such as squeezing or
stretching, and deformation rates can modify the mechanical
characteristics of a gel by altering its network struc-
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ture.12,13,16,19−21 In addition, relaxation of the stresses
accumulated in the gel through the gel formation itself, under
different environmental conditions, is another important source
of restructuring.12,13,19
The adaptable nature of particulate gel materials, their

flexibility and tunability, provide exciting opportunities to
precisely control and design both geometry and topology of
the particle networks, potentially opening up a broad space for
metamaterials design and discovery.22−24 The geometry of the
structure (its local properties) can be controlled through the
physical chemistry of particles and solvent, particles surface
properties, or depletion interactions,25 and, in certain cases, is
directly accessible experimentally through confocal microscopy
imaging.26−28 However, gaining access to the large-scale
(global) organization of the full network and its topology
remains a challenge. This limitation is important, because it is
becoming increasingly clear that a hierarchical organization of
the gel structure controls their mechanical response.29
Specifically, the mechanical response of particulate gels has
been observed to be nonlocal in a range of recent studies, from
the emergence of rigidity to the microscopic dynamics during
aging or under stress.30,31 There is also increasing evidence of a
hierarchical organization of stress transmission through the gel
structure in the linear viscoelastic response.29,32 Computer
simulations can provide access to this type of information,
although many of the methods used in understanding the
structure of gels focus exclusively on geometry or topology, but
not both. From a geometric perspective, the computation of the
particle radial distribution functions provides a link to scattering
experiments and constitutes an excellent tool to quantify the
local structure,33−35 but this does not capture the topology of the
network.36−38 Voronoi and Delaunay tesselation can capture
properties such as cavity size distribution,39−41 but provide
limited quantification tools of the topology of a gel structure.
Graph-theoretic methods use graph descriptors (e.g.,

modularity, average path length, bond number, and minimal
cycle basis) to quantify the structure of a network.12,18,42 These
descriptors, however, are based on averages of local topological
structures and thus might fail to capture the multiscale nature of
soft gels. Parametric methods based for example on distance
thresholds or k-nearest neighbors commonly used to identify a
graph43 provide results which are often highly susceptible to the
selection of parameter (e.g., distance threshold, k-neighbors),
which is problematic if the parameter selection is not obvious
from the data and rooted in the physics of the system. It is also
worth noting that some of these graph-theoretic methods are
computationally expensive. The computational costs become
rapidly daunting for networks that are reconfigurable in nature,
requiring a dynamical analysis. For example, the identification of
a minimal cycle basis for a graph is at least polynomial in the
number of nodes and edges present,44 requiring significant
computational time for simulations of soft gel structures from
simulations which contain hundreds of thousands of nodes and
edges to be able to reproduce the heterogeneities typical of real
materials. It is also important to highlight that a network/graph
is inherently a 2-dimensional object; as such, these representa-
tions might miss important information on the 3-dimensional
structure of soft gels.
In this work, we propose an approach, based on particle

simulations and topological data analysis (TDA), that captures
both the geometry and topology of the 3-dimensional structure
of soft particulate gels. Specifically, we focus on the application
of the Euler characteristic (EC),36,45 which is an intuitive,

interpretable, and computationally scalable topological descrip-
tor. This approach quantifies the structure of the gel network
using basic topological invariants such as the number of
connected components, cycles (holes), and voids. These
topological descriptors aim to quantify the structure of the gel.
We use a mathematical technique known as a filtration to
quantify how topological invariants emerge and disappear at
different length scales. This information is condensed in a
topological summary known as the EC curve. In other words, the
EC curve provides a concise summary on the topological
features of the gel at different length scales; this enables the
detection, for instance, of hierarchical or recurrent structures.
TDA approaches have been successfully applied in the analysis
of complex materials, simulations, and flow networks.36,45−51

The approaches allow us to bypass the need for parameter
selection, improving the robustness of our analysis in
comparison to other parametric methods (e.g., distance
thresholding, neighbor selection). Moreover, these approaches
allow us to capture both topological (global) and geometrical
(local) characteristics of soft gel structures.52,53
We find that our proposed computational framework

effectively represents, quantifies, and summarizes the multiscale
nature of gel structures obtained from particle-based simu-
lations. We reduce the topological information obtained with
TDA using principal component analysis (PCA) and show that
this provides an informative low-dimensional representation of
gel structure. The application of the proposed computational
framework reveals the influence of variations of the gelation
kinetics on the local organization of the gels, alongside with the
impact of volume fraction changes on both local and global
structural aspects. The EC values clearly change with varying the
degree of filtration, expressing precisely the different organ-
ization of the gel networks over different length scales, and
allowing us to extract their full structural hierarchy. The analysis
demonstrates that there is a direct link between the onset of
gelation and the variation of the EC with filtration, as it captures
the sensitivity to changes in the particle volume fraction and in
the gelation protocol of the gel structures.
Furthermore, our analysis identifies topological transitions

underpinning the onset of nonlinear response and flow when the
gels are subjected to large amplitude oscillatory tests, clearly
disentangling recoverable/unrecoverable changes from damage
accumulation and revealing their hierarchical nature. We find a
direct link between the exclusively structural information
contained in the PCA of the Euler characteristic and the time
dependent stress and strain, indicating a definite connection
between the topology of the microscopic structure and the
macroscopic yielding of the gels.
The methods presented here are computationally scalable

(analysis of large simulations can be done in seconds-minutes
and on a personal computer), interpretable, and require minimal
data. The proposed approach can also be used for analysis of
experimental data (such as confocal imaging), providing a route
for a more direct comparison of particle simulation and
experiments.54−56 All data and scripts needed for reproducing
the results are shared as open-source code.

RESULTS
To understand and quantify the structure of particulate gel
simulations, we combine particle simulations with the analysis of
topological invariants of the gel structures based on the EC,
filtration operations, and PCA. These methods are combined to
represent and quantify the gel structures across multiple length
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scales and capture the changes they undergo during shear. PCA
is used to visualize topological changes and provides insight into
the impact of diverse drivers on gel response (such as strain
stiffening/hardening or yielding). A summary of the computa-
tional workflow to quantify the hierarchical topology of a soft gel
is presented in Figure 1.
Topological Analysis of Particle Simulations. We use a

particulate gel model that captures most aspects of microscopic
dynamics and rheology of this class of materials. Each gel is
composed of N particles, which interact via attractive short-
range interactions of maximum strength ϵ, mediated by the
solvent in which they are immersed and through which their
thermal motion is overdamped. Surface roughness, shape
irregularity and sintering processes can limit the relative motion
of particles as they aggregate in real materials. These effects are
included in the model through an angular modulation of the net
attraction that introduces a bending rigidity of the interparticle
bonds.13,19,29,30,57 We use a cubic box of size L with periodic
boundary conditions and number density N/L3 which
corresponds to an approximate solid volume fraction

N d
Ld

/ 6
( )

3

3= . For each value of ϕ, various gel microstructures

are obtained by tuning the rate Γ at which the relative strength of
the attractive interactions (with respect to kBT) is increased to
induce gelation during the sample preparation (see Methods).
Finally, we subject a subset of the gels to large amplitude
oscillatory shear (LAOS) deformation and extract the
rheological response from the virial stress tensor (see Methods).
The numerical model used here has been shown to

recapitulate a broad range of behaviors detected in experiments,
in terms of structural, dynamical, mechanical, and rheological
characteristics. The local particle coordination in the model gels
is consistent with experimental observation in a range of
colloidal systems.26,34,54,58 The multiscale structural hetero-
geneities in the model gels have been shown to produce
dynamical heterogeneities andmicroscopic relaxation consistent
with experiments.30 From these, the linear and nonlinear

mechanical responses also capture many of the experimental
observations reported.12,19,29
The 3-dimensional gel structures obtained from particle

simulation are characterized in terms of three topological
invariants: the number of connected components β0, of holes β1,
and of voids captured by β2 (these so-called Betti numbers are
combined to obtain the EC number).36 A void is an empty cavity
within a shape that is surrounded on all sides by a solid
boundary. To provide an intuitive understanding of the
difference between voids and holes, we can think of an open
cell versus a closed cell gel or foam. An open cell structure
contains many holes, whereas a closed cell structure contains
many voids. To quantify the multiscale structure of our soft gel
simulations we perform filtrations using increasing particle
diameter and quantify the topology of the resulting Čech
complex (simplicial complex) through the EC. The filtration
diameter is scaled such thatD = 1 represents the true diameter of
the simulation particles. For example, a filtration radius D = 2
represents a Euclidean ball that is twice as wide as the original gel
particle. We illustrate the filtration process on a gel simulation
snapshot in Figure 1, and we also visualize the topological
changes for the full simulation, which contains ∼16,000
particles, as the particle diameter is increased. We do this to
illustrate how the various topological invariants: components,
cycles, voids, could evolve during a filtration.
Figure 1 shows how the multiscale structure of soft gels can be

directly quantified through topology and filtrations. The
topology of the gel goes through various topological phase
transitions as the filtration diameter is increased. AtD = 1 toD =
2 particle diameters we see a stable network topology. This
stable topology reflects the bonded structure of the gel, and is
often what is studied via network analysis tools. This network is
dominated by cycles, and yields a negative Euler characteristic.
As we pass to D > 2 particle diameters we see large topological
phase transitions. Here we see a large increase in the number of
cycles, an increasingly negative EC value, and the formation of
an open cell structure. The measured structure now reflects the
3-dimensional structure (e.g., packing) of the gel and captures

Figure 1. (Left) Visualization of a soft gel for a single simulation frame. We provide this visualization to illustrate how the various topological
features: components, holes, voids, could evolve during a filtration. (Right) EC curve for the gel simulation along with a visualization of the
changes in the simulation topology at various filtration diameters. The EC curve captures various topological characteristics found at multiple
scales within the soft gel and show how the topological features such as holes (∼2.3 particle diameters) and large voids (∼3.7 particle diameters)
emerge. We also note that there is minimal change in topology between D = 1 and D = 2 particle diameters. This stable topology reflects the
bonded structure of the gel, and is often what is studied via network analysis tools. As we pass to D > 2 particle diameters, we see large
topological transitions in the material, which now reflects the 3-dimensional structure of the gel and captures overlap between particles that are
not necessarily directly bonded.
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overlap between particles that are not necessarily directly
bonded. Finally, atD > 3.5 particle diameters, we see a transition
from the open cell structure dominated by cycles to the closed
cell structure that is dominated by voids driving the EC to a
positive value.
We leverage these topological characterizations to understand

the relationship between soft gel structure and variance in the
preparation parameters for the soft gel. In Figure 2 we show a
direct comparison of the EC curves for soft gels with varying
volume fraction (for a constant quench rate at which the gel was
formed in the simulations) and for soft gels formed with varying
quench rates (at a constant volume fraction of 0.10). We see that
there is a smooth deformation of the EC curves with respect to
changes in these two parameters, but the way in which these
parameters change the gel structure is different. For the soft gels
with varying quench rate shown in Figure 2a, we see that the
changes in the soft gel are primarily impacting the local bonding
structure (D = 1−2.3 particle diameters) and we see minimal
changes in the larger scale structure (D > 2.3 particle diameters).
This suggests that changing the quench rate may modify the
local structure of the gel, but less so its mesoscopic 3-
dimensional organization. Thus, quench rate could be used to
tune/control the local organization of a soft gel without
necessarily impacting its large-scale organization. In Figure 2b
we see that the same is not true when volume fraction is
changed; specifically, here we see that there is a large change in
gel topology across multiple length scales. Interestingly, the
impact on local bonding topology (D = 1−2 particle diameters)
for increasing volume fraction follows a similar trend to
decreasing quench rate, but diverges at larger scales (D > 2
particle diameters). This suggests that a combination of quench
rate and volume fraction tune/control could be used to create
soft gels with targeted structures.
Another important aspect in the application of TDA methods

is computational scalability. The methods employed here are
able to process gel simulations with 16,000−160,000 particles in
a few minutes and on a single laptop computer. Other methods
that attempt to capture similar information, such as minimal
basis cycles of a graph, often run in polynomial time on the
number of edges and nodes in a graph.59 Furthermore, these
graph-theoretic methods are focused at a single length scale; as
such, attempting to perform these computations across various
length scales would compound computational costs and affect

overall scalability. Moreover these methods represent structure
as a 2-dimensional object and thus might miss important
information on how the network graph is embedded in 3-
dimensional space.

Gel Dynamics − Shear Analysis. The ability to rapidly
quantify the topology of these gel structures allows us to perform
high-throughput analysis of large temporal data sets, as those
found in the analysis of gel rheology.60,61 Here, we explore the
topological and geometric deformations of soft gels as they
undergo oscillatory shear. The time-averaged amplitude sweep
response of the gel studied here is shown in Figure 3a. Due to the
density of information contained in the time-resolved
rheological responses, we restrict our analyses to three key
transition amplitudes:61 the transitions (1) between the linear
and nonlinear elastic regimes, (2) the nonlinear elastic and
yielding regimes, and (3) the yielding and flow regimes. These
transitions occur in this specific gel system at amplitudes of 0.1,
0.35, and 1.0 strain units, respectively (see Figure 3a). At each of
these amplitudes, we display time-resolved rheological and
structural data extracted at a frequency of 32 points per period of
oscillation.
Figure 3b illustrates the dynamic evolution of EC curves for a

soft gel undergoing various amplitudes of oscillatory shear that
induce linear, nonlinear, and flow regime responses. The same
initialized gel is used (volume fraction: 0.10, quench rate: 1 ×
10−6 ϵ/kB τ0, using the simulations reduced units) but is exposed
to different shear amplitudes. This figure also shows the initial
EC curve (initial topology) in the lightest color and the darkest
color representing the final EC curve (final topology). We see
that each simulation begins at the exact same EC curve but
evolves differently as the strain amplitude is changed, though the
specific changes are difficult to discern. To more clearly visualize
the changes in the EC curves as the system is sheared, we used
PCA to project the EC curves to a low-dimensional space (see
Methods section). Figure 3c visualizes the projection of all EC
curves onto the first two principal components (orthogonal
dynamic modes) of the collective data set. We found that the
projection onto the first two orthogonal dynamic modes
accounts for approximately 98% of the variance in the EC data.
Figure 3c shows that PCA effectively captures the maximum

amount of variation in the data with the minimum number of
dynamic modes. This analysis reveals that there are two
orthogonal dynamic behaviors captured in this low-dimensional

Figure 2. (a) EC curves computed from gels at various quench rates with same volume fraction (0.1). (b) EC curves computed from gels at
various volume fractions and same quench rate (1× 10−6 ϵ/kBτ0, with ϵ and τ0 respectively the unit energy and time in the simulations). There is
a continuous change in the topology/geometry of the gels as quench rate and volume fraction are changed. There are significant differences in
the way the larger scale structure of the gel is changed when either volume fraction or quench rate is changed. This suggests that these
parameters can be used to create bespoke gel structures.
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representation: one that contains much of the fast oscillatory
dynamics associated with the gel oscillation (we call this the
oscillatory component) and one that contains a slow cumulative
structural dynamic change within the soft gels, in particular for
the nonlinear and flow regimes (we call this the accumulated/
cumulative component). To directly analyze these dynamic
modes in the data, we can apply a rigid rotationmatrix to the first
two principal component so that we may observe the cumulative
and oscillatory components independently. The resulting
rotated visualization is found in Figure 3d. Details around the
rigid rotation and criterion for optimal rotation can be found in
the Methods section.
We transformed the high-dimensional set of EC curves into a

couple of simple scalar values that describe the dominating
dynamic modes emerging during shearing. Figure 4a,c shows
how these values evolve during the three simulations. Because
PCA is a linear method, we can identify what portions of the EC

curve are associated with each dynamic mode by observing the
weighting of the EC curve by the oscillatory and cumulative
components shown in Figure 4b,d. Here, a larger gray area
represents a higher weighting of that specific portion of the EC
curve. This information reveals that the oscillatory component is
capturing changes in the mesoscale structure of the soft gel (D >
2.3 particle diameters) while the cumulative component is
capturing local changes in the soft gel network (D < 2.3 particle
diameters).
Figure 4a captures much of the oscillatory behavior that is

induced by the oscillatory shearing of the gel. The linear
response regime shows minimal deformation and all deforma-
tion seems to be elastic as there are no continuous offsets in the
data. The same is true for the nonlinear response, but we see
larger oscillations which are expected as the strain amplitude has
increased. The flow response shows multiple interesting
characteristics that differentiate it from the linear and nonlinear

Figure 3. (a) Plot of the evolution ofG′ andG″with increasing strain amplitude. The three vertical lines represent the strain amplitudes that are
studied during oscillatory shear experiments. (b) EC curves computed at various temporal snapshots for a soft gel that is undergoing linear,
nonlinear, and flow response to shear. The dynamic evolution is illustrated by difference in color, with the initial EC curves in the lightest color
and the darkest color representing the final EC curve. We see that each simulation begins at the exact same EC curve but evolve very different as
the strain amplitude is changed. (c) PCA applied to the EC curve data to create a low-dimensional representation of the dynamics of the gel
during three different shear amplitudes. PCA captures 98% of the variance in the data; we see two orthogonal dynamic modes that emerge, one
associated with the fast oscillations of the gel induced by oscillatory shear and a slower mode capturing cumulative structure changes. (d)
Optimal rigid rotation matrix is applied to the dynamic modes so that we may observe the cumulative and oscillatory components
independently.
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Figure 4. (a, c) Visualization of the oscillatory and cumulative component identified through PCA for gels undergoing oscillatory shear. Each
component evolves over time, which illustrates the different dynamics expressed for linear, nonlinear, and flow regime responses. (b, d)
Visualization of the oscillatory and cumulative component weightings for the EC curves. The area of the weightings (gray) represent higher
emphasis placed on that particular portion of the EC.We see that the oscillatory component focuses on themesoscale structure of the soft gel (D
> 2.3 particle diameters), whereas the cumulative component focuses on the local bonding/network structure of the gel (D < 2.3 particle
diameters). This suggests that these different scales of the material undergo different dynamics during oscillatory shear. (e, f) Demonstrates a
clear correlation identified between the phenomena of shear stiffening of a gel responding nonlinearly, evidence by the increase in peak shear
stress (e), and the dynamics of the cumulative component (c). We compute an R2 = 0.97 which suggests that the cumulative component is an
excellent predictor for the increase in peak shear stress and the phenomena of shear stiffening.
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regimes. First, there is a large shift in topology in the first initial
oscillations of the gel, this suggests that there is immediate
deformation in the mesoscale topology of the gel during flow.
Furthermore, we see that as shear continues the gel reaches a
new topological steady state in which the oscillations are no
longer clearly defined, suggesting that there is a potential
topological transition occurring at the mesoscale in the material
as it undergoes flow. Physically, these changes in the EC suggest
a near immediate formation of larger cavities and holes within
the gel without necessarily disrupting the local bonding
structure.
Moving to the cumulative component shown in Figure 4c, we

see that the linear regime shows almost no change over time.
The nonlinear and flow regimes show similar dynamics but with
a larger magnitude change for flow. We also note there is no
dramatic offset in the flow response which is seen in the
oscillatory component. This dynamic mode is associated with
the local network/bonding structure of the soft gel, suggesting
that this cumulative structural change is capturing the breaking
and forming of bonds within the soft gel, which is supported by

the weighting shown in Figure 4c. This mode is of particular
interest because the structural changes are similar to those
induced by reducing quench rate in gel preparation (Figure 2a),
suggesting that this mode is capturing potential hardening of the
gel. We explore the relationship between stiffening/hardening
and the cumulative component in Figure 4e,f. Figure 4e shows
the shear stress experienced by the soft gel at a shear amplitude
of 0.350. This amplitude induces a nonlinear response in the gel
and also stiffens the gel, this is evidenced by the increase in peak
shear stress over time. Interestingly, we see a similar dynamic
behavior in the cumulative component for the nonlinear
response. We test whether there is a correlation between this
dynamic mode and stiffening of the gel by comparing peak shear
during oscillation and the corresponding value of the cumulative
component at these time points, this is shown in Figure 4f. We
see there is an obvious correlation between the variables (R2 =
0.97), suggesting that the cumulative component could be used
as a possible predictor of changes in peak shear stress. This also
provides evidence that the mechanism for shear stiffening here is
based on local bond reordering with minimal changes to the

Figure 5. Comparison of the dynamics of stress, the oscillatory component, and the cumulative component versus strain in the material for the
linear (left column), nonlinear (middle column), and flow (right column) regimes. We observe similar changes in oscillatory dynamics as shear
amplitude increases for both stress and the oscillatory component and a dramatic change in the oscillatory component during flow that is not
experienced during the linear and nonlinear shear amplitudes. We also visualize the cumulative component showing how the total cumulative
damage is smoothly increased over each oscillation of the gel in the nonlinear and flow regimes, while showing minimal change in the linear
regime.
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mesoscopic structure of the gel, similar to what is observed when
quench rates are reduced.
Combining the analysis of these components also provides

insight into why this same stiffening is not observed at the
amplitude corresponding to the flow transition. The cumulative
component at this amplitude shows amuch greater change in the
local bonding structure of the gel, which would suggest a greater
stiffening of the gel given the relationship found in Figure 4f for
the amplitude corresponding to the maximum nonlinear
elasticity. However, when comparing the oscillatory component
between these amplitudes, we see minimal nonelastic
deformation in the mesoscale structure of the soft gel (D > 2
particle diameters) in the nonlinear regime, whereas in the flow
regime there is a significant reorganization of the mesoscale
structure of the soft gel, which may be weakening the gel overall.
Similar evidence was found in,19 where significant bond
breaking and forming was observed at high shear amplitudes
(but the gel was becoming weaker). The authors hypothesized
that there was a large scale reorganization of the gel, which is
further supported by our topological analysis.
We can further explore the physical connections by

comparing the oscillatory and cumulative dynamics identified
with PCA and the stress and strain undergone by the soft gel in
Figure 5. Here, we qualitatively compare the evolution of stress
vs strain over each cycle and compare this to the dynamics of the
oscillatory and cumulative component versus strain over each
cycle. We observe strong similarities between the evolution of
oscillatory component and stress when plotted against strain,
illustrating similar changes in dynamics as shear amplitude
increases and the dramatic change in the oscillatory component
during flow that is not experienced during the linear and
nonlinear shear amplitudes. This reinforces the physical
connection between the topology of the soft gel and its
rheological properties. We also see that the cumulative
component smoothly increases over each oscillation during
the nonlinear and flow regimes, while showing minimal change
during the linear regime.

DISCUSSION
The structure of soft gels can be quantified effectively and
efficiently through the use of topological data analysis (TDA).
Specifically, we have shown that the Euler characteristic (EC) of
the Čech complex of the gel network, coupled with filtration
operations, captures the multiscale structure of soft gels that is
missed by existing methods that focus independently on
topology (e.g., bonding networks) or geometry (e.g., radial
particle distributions in the physical space). We demonstrate
that the EC curve provides a concise summary of the topology
and geometry of soft gels and use this information to understand
the physical relationships between preparation parameters (e.g.,
quench rate, volume fraction). Our analysis finds that there are
clear continuous deformations in the structure of soft gels that
correspond with changes in quench rate and volume fraction,
but that the changes in the structure of the gel are not equivalent.
In particular, we find that changing the quench rate impacts the
local organization of the gel and that changes in the volume
fraction impact both local and global structure. This suggests
that fine-tuning of the quench rate and volume fraction could
produce bespoke soft gels with state-of-the-art physical
properties. It also indicates that applying our approach to gels
formed through a range of kinetic processes can gain novel
insight into the notoriously complex interplay between kinetics
and gel structures.

Nonlocal constitutive behavior and microscopic dynamics of
particulate gels, as well as the hierarchical nature of their
viscoelastic response, have become increasingly clear. Recent
studies have shown that there is a hierarchical organization of the
stress transmission originating from the microscopic structure of
these materials.29 However, identifying this hierarchy directly is
very challenging even in simulations, because of the complexity
of the 3d disordered network structure of these materials.18 A
direct evidence of a hierarchical organization of the micro-
structure, apart from the cases where a clear fractal signature can
be detected via scattering, has been elusive. The TDA analysis
conducted in this work allowed us to clearly tease out the
multiscale, hierarchical nature of the topology of the particulate
gel networks. The fact that the EC changes values with varying
the degree of filtration (Figures 1 and 2) quantifies precisely the
different organization of the gel network over different length
scales, and provides their full structural hierarchy. Figure 2
shows how this hierarchy changes as the gel is prepared through
different protocols or by changing the particle volume fraction,
therefore demonstrating that there is a direct link between the
onset of gelation and the variation of the topological structure.
Beyond the structural analysis, we explored the dynamics of

soft gels under oscillatory shear and identified significant
structural changes in soft gels that occur during linear, nonlinear,
and flow responses. In other words, we found that TDA tools can
be used to effectively visualize dynamic effects/processes that
occur to the gel structure. Specifically, our topological analysis
identified a couple of dominant fast/slow dynamic modes within
the sheared soft gels. These modes represent dynamics of the gel
at various length scales. We show that these modes can be
directly correlated to physical phenomena such as shear
stiffening or hardening, and provide insight into the multiscale
dynamics of complex nonlinear flow behaviors. As demonstrated
in Figures 3-5, the oscillatory and cumulative components of the
EC-PCA enable direct structure property relations across the
entire range of amplitudes tested: more than was ever previously
possible when using local microscopic observables, we can
directly connect the exclusively structural information contained
in the EC-PCA to the time dependent stress and strain, and
therefore to the stiffening and to the macroscopic yielding of the
gels.
Overall, these methods can provide significant new insight

into the behavior and potential design of new soft materials that
involve complex and disordered network structures. Especially,
there is often the need to identify where these specific
topological structures exist within a given soft gel or material.
While it is not possible to map directly from the EC curve back
to the soft gel, methods such as the Hodge Laplacian can be used
to identify the topological structures and understand what
portions of a material are contributing to their physical
behavior.62 The generalizability of the mathematical founda-
tions for these methods makes them applicable to a wide range
of data types, such as experimental images or videos. Recent
advancements in 3-dimensional imaging of colloidal gels
provides data that is directly amenable to the approaches
proposed here and can be used to explore physical experiments,
providing a route for direct comparison of particle simulation
and experiments.54−56 The approach described here can be
applied directly to the experimental data in exactly the same way,
to construct the simplicial complexes and the Euler character-
istics, by varying the filtration radius. Experimentally, the
challenges could be in reconstructing a 3d portion of the gel that
is large enough, but sizes similar to those used here for the
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simulations are already possible in experiments.18,63 For the
nonlinear rheological tests, an additional challenge is in
following the particles during the shear deformation and
flow.64−66

The analysis methods explored here are computationally
efficient and scalable. Specifically, we are able to perform TDA
computations on large simulations (in excess of 16,000
particles) in a few seconds on a single laptop computer. This
is in stark contrast with other data analysis methods, such as
minimum cycle basis algorithms, which scale nonlinearly in the
number of particles/bonds (nodes/edges) found in a structure
and only focus on a single length scale. The computational
scalability make the TDA approach proposed here particularly
attractive for interfacing data-mining and machine learning
tools.
This work quantifies the gel structure using a data

representation known as a Čech complex, but there are many
other tools and methods from topology and geometry that can
also be incorporated into these analyses. For example, in
flocculated particle networks, the combination of topology with
the Hodge Laplacian, a high-dimensional analog of the graph
Laplacian for simplicial complexes, could be used to quantify the
onset of and extent of flocculation, the stretch of flocks, and
identify which particles are associated with dense flocks and
where flocks might separate. The integration of topological
concepts from knot theory, to start with, can help to understand
the intertwining of soft gel structures and how the presence or
absence of knots/links in the gel structure contribute to its
physical characteristics.67 The use of other methods from
integral geometry, such as the full set of Minkowski functionals,
can also help to understand better the full geometry of the gel
structures as they undergo filtration. TheMinkowski functionals
(i.e., intrinsic volumes) represent orthogonal measures of
intrinsic geometry and for 3-dimensional objects such as soft
gels there are three independent measures: volume, surface area,
and the EC.37,68,69 Future work could therefore explore how
much information those other measures can gain and how the
measures connect to physical characteristics of gels such as
permeability, which has been show to be directly applicable to
quasi-two-dimensional materials.70 Finally, the EC and more
advanced topological characteristics such as those obtained from
persistence homology, can be used to construct null-hypothesis
and test for significant differences in soft gel structures.71

METHODS
Topological Data Analysis. Given a set of points v ∈ m, in our

case the positions of the center of mass of the particles that constitute a
gel, we construct a simplicial complex built from k-simplices of varying
dimension k. A k-simplex is a convex set spanned by k + 1 affinely
independent points, denoted as

v v v v, , . . . , ,n k1 2 1= { }+ (1)

Simplices of varying dimension are illustrated in Figure 6. A simplicial
complex (denoted as ) is obtained by connecting simplicies of

varying dimension and can be used to describe the topology of complex
shapes. In Figure 7, we use a simple 2-dimensional soft gel structure to
illustrate the application of simplicial complexes to soft gel simulations.
Here, the soft gel particles are represented as points in 2-dimensional
space xi ∈ 2, with a diameterD = 1. When a couple of particles overlap
we add an edge (1-simplex) to our simplicial complex; three a triangle
(2-simplex), and so on. The resulting simplicial complex is known as the
nerve of the overlapping particles, and more specifically the Čech
complex (see next section for more details). Simplicial complexes
defined in this way are exact representations of the topology of the
particle system at a given particle diameter (same number of connected
component, cycles, voids, etc.) while being able to be encoded and
measured using simple algebraic operations. In Figure 7a, we show how
at a D = 1 particle diameter, many of the particles overlap with their
immediate neighbors. Here, we begin to form edges or 1-dimensional
simplices that begin to capture a graph structure in our data which
results in four small holes and 5 different connected components,
reflecting a common network representation of a soft gel. However, we
can see that these holes and connected components are not randomly
distributed in space, there is a larger cyclic structure that is not captured
when we consider connectivity at a single particle diameter. As wemove
from D = 1 particle diameters to D = 1.5 particle diameters we see
instances where 3 particles begin to overlap, which yields the formation
of 2-dimensional simplices (e.g., filled triangles). As we continue to
increase D we see increasing levels of overlap and our resulting
simplicial complex is increasingly connected, revealing the larger cyclic
structure captured within the Čech complex. Eventually we will reach a
point where every particle is overlapped and we end up with a fully
connected convex hull of our data, shown at D = 3 particle diameters.
Through the Čech complex we gain an understanding of the geometry
and topology of the soft gel at varying length scales (diameters). We
note that the construction of the simplicies here is similar to the
application of a nearest neighbor algorithm, where nearest neighbors
are defined by an increasing Euclidean distance cutoff. In some contexts
it could be useful to define another method for construction of the
simplicial complexes via methods such as “k”-nearest neighbors (where
the number of neighbors is increased) or via an expanding
neighborhood that is anisotropic around the particles to reflect
nonspherical particles (e.g., liquid crystals) or to represent physical
characteristics of a particular particle such as its van der Waals
interaction.72 Another common representation of structure and
topology is through the Voronoi tesselation. Interestingly, the dual of
the Voronoi tesselation, known as the Delaunay triangulation, can be
used to construct a simplicial complex known as an Alpha complex.73
The Alpha complex is topologically equivalent to the Čech complex at
each filtration threshold and can be more memory efficient in some
cases.74

Čech Complex. To construct a Čech complex from our soft gel
particle simulations, we place at the center of each point (i.e., particle) xi
∈ n an n-dimensional Euclidean ball B(xi,D):= {y∈ n: ||xi − y||2 <D/
2} of diameter D ∈ . The set of these Euclidean balls is known as a
cover B: i i I= { } of the points xi, where I ∈ represents the total
number of particles in our simulation. As we increase the diameter D of
the Euclidean balls B(xi, D), we will obtain some level of overlap
between balls. This overlap is what defines the connectivity, and
subsequently the geometry and topology of our data. Thus, from the
cover of our points we obtain a shape that describes the structure of
our soft gel at a length scale defined by our ball radiusD (see Figure 7).
From the cover of balls, we can construct a nerve which is a simplicial
complex that represents exactly the topology of the overlapping balls.

The nerve of collection B: i I= { } is the simplicial complex
with vertices I and k-simplices built from {i0, i1, ..., ik} if and only if Bid0

∩
Bid1

∩··· ∩ Bidk
≠ {Ø}. The nerve of the cover is known as the Čech

complex that is defined by the particle positions and selected ball
diameter. We then quantify the topology of the Čech complex through
the Euler characteristic.

Euler Characteristic. The Euler characteristic (EC), introduced by
Leonard Euler in 1758, is a scalar value that quantifies the topological
invariants of a shape. A topological invariant is a characteristic of a shape

Figure 6. Examples of k-dimensional simplexes. A simplex is a
generalization of a triangle to higher (or lower) dimensions. (a) 0-
simplices are vertices (points), (b) 1-simplices are edges, and (c) 2-
simplices are triangles.
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that is unaffected by continuous deformation of the shape (e.g.,
stretching, bending), but is affected by discontinuous deformations
(e.g., cutting, glueing). In our work, we are focused on 3-dimensional
objects, which means that we are interested in three particular
topological invariants: connected components (1-dimensional), holes
(2-dimensional), and voids (3-dimensional). The total number of
unique i-dimensional invariants in a shape are referred to as the Betti
numbers βi where i represents the dimension of the invariant being
counted. The EC χ is defined as the alternating sum of the Betti
numbers:

( 1)
i

n
i
i

1

=
= (2)

Computationally, there are many ways to quantify the Betti numbers
and the overall EC of a given Čech complex nerve.48,75,76 These
methods range from the use of simplicial algebra to discrete Hodge
theory.77 One of the simplest methods (we use this in our work) is an
extension of Euler’s original formula for polyhedra to simplicies given
by78

k( 1)
i

n
i
i

1

=
= (3)

where ki represents the number of k-dimensional simplicies in the Čech
complex.

Filtration and Euler Characteristic Curves. The EC is able to
effectively quantify the topology of a shape, but it does not account for
all possible particle diameters and is thus sensitive to the diameter
selected. We can account for this issue by applying a filtration to our
data where we measure the EC at multiple, increasing particle
diameters. For example, through the analysis of the simplified 2-
dimensional system in Figure 7, we notice how the topology of the
resulting Čech complex is sensitive to the selection of particle diameter
D. This change in topology with respect to diameter provides us an
understanding of the multiscale nature of the system. For example, we
see that at a radius D = 1 particle diameters, we capture multiple small
cycles in the structure, while at a larger radiusD = 1.5 particle diameters
we see that there is a much larger cycle captured. For a set of increasing
diameters D1 < D2 <··· < Dl, we can compute the EC χ(D) of the
resulting Čech complex at each diameter. From this, we can create an
ordered pairing of these values to construct an Euler characteristic
curve. An example curve for our simple 2-dimensional gel is found in

Figure 7. (a) Illustration of the changing topology of a 2-dimensional system as the diameter of the particles are increased. The overlap of the
particles defines the formation of edges and higher-dimensional simplicies in the Čech complex (shown below). The Čech complex is a
simplicial complex representation of the connectivity of the particles shown above. The simplicial complex representation allows us to compute
and quantify the topology of the system. (b) Euler characteristic (EC) curve computed from the filtration of structure shown in (a).Wemeasure
the EC χ(D) of the Čech complex at increasing particle diametersDi ∈ . The ordered pairing of these values {χ(Di),Di} is the EC curve. The EC
curve summarizes the topological and geometrical changes in the structure at various scales.

Figure 8. (a) Cumulative explained variance percentage captured with consecutive leading principal components. It is shown that the first two
principal components explain over 98% of the total variance within the data set (b) illustration of the absolute amplitude of oscillation
contained within the first and second component as they are rotated. We see that there is an obvious minimum amplitude in the cumulative
component and maximum amplitude in the oscillatory component at a rotation of 0.40 radians which is used in our analysis.
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Figure 7. These curves summarize the evolution of the soft gel topology
as we vary the diameter of the particles (moving from local to global
structures). We can see in Figure 7 that we begin our filtration at D = 1
particle diameter which captures a series of 4 small cycles and a total of 5
connected components giving χ(1) = 5−1, this structure reflects what
might be analyzed in a network representation of the system. We then
reach a threshold at D = 1.5 where we see that the smaller cycles in our
graph are collapsed and we retain a single large cycle, χ(1.5) = 1−1.
Eventually the Čech complex becomes fully connected and we end with
a single connected component at D = 3 particle diameters, χ(3) = 1−0.
We can see from Figure 7 that the EC curve quantifies and summarizes
these various topological changes. Furthermore, the EC curve can be
represented directly as a vector, which can be integrated into common
data analysis methods such as PCA and for use in quantifying
relationships between the structure of the system and its physical
behavior.
Principal Component Analysis. To apply PCA we construct

vectors Xt ∈ n of EC values χ(D) ∈ of the Čech complex measured
at n diameters D ∈ for each simulation snapshot time point t ∈ .
This vector Xt:= [χ(D1), χ(D2), ..., χ(Dn)] represents the EC values
measured at increasing diameter D1 < D2 <··· < Dn. From this we can
construct a matrix by stacking each of our t ∈ simulation snapshot
EC curves: M:= [X1

T, X2
T, ... Xt

T]T ∈ t n◊ . We construct a matrix Mi for
each shear amplitude i ∈ 0.100, 0.350, 1.00. In order to ensure the PCA
projections are consistent across all simulations we perform PCA on all
Mi simultaneously so that the derived principal components are the
same for each simulation. Figure 3c visualizes the projection of all
simulation snapshot EC curves onto the first two principal components
of the collective Mi.

The principal component analysis conducted provides an effective
and interpretable dimensionality reduction for the EC curve data
measured from the soft gel simulations. Here, we report the total
explained variance captured in the 10 leading principal components and
justify the optimal rotation of the first two principal components to
separate the oscillatory and cumulative components. Figure 8a shows
the cumulative variance percentage contained in the leading 10
principal components. We see that the first two components capture
over 98% of the total variance in the data set supporting our selection of
the first two principal components for our analysis. Figure 8b illustrates
the optimal selection of rotation, in radians, for the data projected on
the first two principal components in order to identify the oscillatory
and cumulative components which are used in our analysis. Given data
projected onto the first two principal components v = [v1, v2] ∈R2 320◊ ,
we apply a rotation matrix R(θ) given as

R( ):
cos( ) sin( )

sin( ) cos( )
=
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where θ represents the rotation angle in radians. We can identify the
optimal rotation θ̂ by finding the θ value that maximizes the amplitude
of oscillation in the oscillatory component and minimizes the
oscillatory amplitude in the cumulative component. We measure the
oscillatory amplitude through a simple Fourier transform. Figure 8b
shows how these two values evolve as θ is increased from 0, showing an
optimal value θ̂ = 0.4. Thus, we obtain and optimally rotated principal
component projection as ṽ = R(0.4)v.
Numerical Gel Model and Simulation. We use an established

numerical model for particulate gels12,19,29,57,61 consisting of self-
assembling spherical particles of diameter d that interact via a short-
range attraction, U2 and a three body term, U3 which limits the bond
angles and introduces a bending stiffness. This three-body term is
meant to model hindrance of the relative particle motion upon
aggregation, arising from sources such as particle surface roughness or
irregularly shaped aggregates. The Molecular Dynamics (MD)
simulations are implemented in a system of N particles with position
vectors {r1, ..., rN} and interacting with the potential energy:
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where rij = rj − ri, ϵ is the depth of the attractive well U2 and sets the
energy scale, and d is the particle diameter, representing the unit length
scale. In typical (colloidal) systems, d corresponds approximately to the
range d ≃ 10 to 100 nm and ϵ ≃ 10 to 100 kBT, where kB is the
Boltzmann constant and T, typically room temperature. The functional
forms of the two-body (U2) and three-body (U3) terms in eq 4 are
detailed elsewhere.12,19,57,61 Gels generated with the same model and
the same approach followed here have been shown to reproduce not
only global behavior and rheological properties but also complex
microstructural features and microscopic dynamics detected in
experiments.

Gel Preparation. The preparation of the particulate gel
configurations studied here has been detailed in prior works12,30,61;
here we cover the basics of the process. The preparation protocol
consists of two parts.

In a cubic simulation box of size L, we start from particles initially
equilibrated at kBT/ϵ = 0.5 and brought into a spontaneously self-
assembled network at kBT/ϵ = 0.05 through NVT (using a Nose-
Hoover thermostat). The network is composed of strands (particles
that have coordination number z = 2) connected by branching points (z
= 3) and the system is further equilibrated for additional 2 × 104 MD
steps.

In the second part of the gel preparation, a damped dynamics is used
to bring the configuration obtained as just described to a local minimum
that more likely corresponds to a mechanically stable state. This is
achieved by withdrawing the kinetic energy of the system to ∼10−10 of
its initial value with an overdamped dissipative dynamics:
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i i
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2 i
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wherem is themass of each particle and ζ represents the drag coefficient
due to the surrounding solvent.

For the static structural analysis detailed in Discussion, we study the
effect of varying the initial quench rate between 10−2 and 10−6 ϵ /kBτ0 at
constant volume fraction ϕ = 0.1, and we study the effect of varying the
volume fraction from 0.05 to 0.15 at a constant quench rate Γ ≈ 10−6 ϵ
/kBτ0. For the rheological measurements in Methods, we exclusively
study a system prepared with volume fractionϕ = 0.1 and quench rate Γ
≈ 10−5 ϵ /kBτ0, which has been extensively studied in prior work.19,61

Rheological Simulations.The rheological response is measured as
in61 by imposing an oscillatory strain signal γ(t) = γ0 sin ωt in the xy-
plane of the simulation box through
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while updating the Lees-Edwards boundary conditions at every time
step. Here γ0 is the strain amplitude and x̂ denotes the unit vector in the
x-direction. In all the rheological measurements we used a Stokes-like
drag with m/ζ = 0.5τ0, having verified that the results do not change
qualitatively with further decreasing the m/ζ ratio.

To systematically study how the gels’ nonlinear rheological
responses depend on their microstructures, we perform large amplitude
oscillatory shear (LAOS) using a rate-controlled deformation:

t t( ) cos( )0= (7)

We specifically chose to perform an amplitude sweep by varying the
amplitude over the range 0.001 < γ0 < 10 strain units and holding the
frequency of oscillation at ω = 0.0025τ0−1. This range of strain
amplitudes spans from the linear viscoelastic regime through the point
where deformations are large enough to yield the material. It is worth
noting that, every amplitude in this amplitude sweep corresponds to a
separate rheological test that starts from the same unperturbed gel
configuration.61 This differs from most experimental amplitude sweep
tests, where the different amplitudes are typically performed
sequentially.
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Under applied deformation, we compute the instantaneous shear
stress σxy (t). The stresses are computed from the interaction part of the
global stress tensor using the standard virial equation79 while neglecting
other contributions (kinetic and viscous terms) as in previous
studies.19,61,80

The complex viscoelastic modulus G*(ω) is obtained from the
Fourier transforms of the stress output σ ∼ (ω) and the strain input γ ∼
(ω) signals, asG*(ω) = σ ∼ (ω)/γ ∼ (ω), from which we compute the
storage modulus G′(ω) and the loss modulus G″(ω) defined
respectively as the real and imaginary part of G*(ω). The data used
for these moduli is taken from cycles once the response has reached
steady alternance61 (typically achieved after 4−6 cycles of deforma-
tion). Prior oscillatory shear and steady shear measurements12,19,61
indicate that the dynamic moduli are linear at small strain amplitudes
(γ0) while the response becomes nonlinear at large γ0 values.

For three specific stress amplitudes identified from the amplitude
sweep (0.1, 0.35, and 1.0 strain units) additional oscillatory tests were
run for ten cycles of deformation, with rheological data and structural
configurations being extracted from the system 32 times per period for
use in the topological analysis discussed in Methods.
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