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Abstract: The paper introduces the novel problem of the synchronization of a pair of identical
mobile nonholonomic oscillators, the so-called Chaplygin sleighs, moving on a movable platform
with springs. Each Chaplygin sleigh is actuated by a periodic torques of the same amplitude
and frequency, resulting in a limit cycle in a reduced velocity space. The frictional constraint
forces couple the motion of the two Chaplygin sleighs and the platform. The limit cycles of the
coupled oscillators are dependent on the relative phase of actuation on the sleighs. We show
that the coupled limit cycles become identical but with anti-phase synchronization, where the
amplitude and frequency of oscillations and the average translational speeds of the two sleighs
become equal. Moreover, in such anti-phase synchronization, the heading angle of both sleighs

converge, producing motion in a formation.
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1. INTRODUCTION

This paper revisits the problem of synchronization of two
coupled oscillators, but with the novelty that the oscilla-
tors are mobile nonholonomic systems moving on a plat-
form. Their motion is coupled through their interaction
with a movable platform with springs. The problem of
synchronization of two coupled pendulum oscillators goes
back to Huygens’ (Huygens (1669)) observation on the
(anti)synchronization of two pendulum clocks that are
weakly coupled by a beam, where he observed that two
identical pendulum oscillators hung on a beam synchro-
nized in about 30 minutes with the same amplitude and
frequency but were out of phase, see Bennett et al. (2002);
Willms et al. (2017) for a historical review. Synchroniza-
tion of large collections of oscillators has seen an explosion
of interest with Winfree’s observation (in Winfree (1967))
of phase transition like behavior in coupled oscillators
underlying circadian rhythms and Kuramoto’s explanation
using an approximate model (in Kuramoto (1975)). The
synchronization of coupled oscillators is a fundamental
concept in nonlinear science; see for example Pikovsky
et al. (2001) and Strogatz (2003). More recent motivation
for the study of synchronization has been from the area of
collective animal locomotion, see for example Buhl et al.
(2006); Bialek et al. (2012); Herbert-Read (2016) and
associated applications in robotics.

The paper considers the motion of two identical Chaplygin
sleighs on a platform. The Chaplygin sleigh is a well-known
nonholonomic system where friction on the sleigh enforces
a (no slip) nonholonomic constraint; see Neimark and Fu-
faev (1972) and Borisov and Mamaev (2009) for a review.
Each Chaplygin sleigh is actuated by a periodic torques of
the same amplitude and frequency, which can be imagined

* This work was supported by the NSF

as being applied due to the motion of an internal rotor.
When the sleigh moves on a fixed surface with viscous
damping, the periodic torque leads to a limit cycle in the
velocity space, as described in Fedonyuk and Tallapragada
(2018). When such an actuated Chaplygin sleigh is placed
on a movable platform, the nonholonomic constraint (fric-
tion) force excites the motion of the platform. When two
identical Chaplygin sleighs with periodic torques, thus
possessing identical limit cycles in the velocity space, are
placed on a movable platform, their dynamics and those of
the platform are coupled. We show that depending on the
phase difference between the actuating torques on the two
sleighs, the individual limit cycles are modified. When the
phase difference in the actuation is 7, the limit cycles of the
two oscillators become identical but are in anti-phase. In
such anti-phase synchronization, the two Chaplygin sleighs
move in the same average direction with the same speed.
This heading direction is determined to be the average of
the initial heading direction of the two sleighs.

The problem formulated in this paper and the results can
be of significance in investigating the synchronization of
the motion of robots coupled with the dynamics of the
‘environment’, such a millimeter scale robots moving on
platforms or in pipes or fish-like swimming robots. The
Chaplygin sleigh has in the past been used as a simplified
model for a swimming robot, see for example the papers
Pollard and Tallapragada (2017, 2019); Lee et al. (2019);
Free et al. (2020). The results in this paper can lead to
simplified models for the coordinated motion of hydrody-
namically interacting swimmers. A related problem, that
of the formation control of a collection of Chaplygin-sleigh
like swimming robots, was described in Paley et al. (2021);
Ghanem et al. (2020); however, the formation control
was a result of feedback control, and the hydrodynamic
interaction of two swimmers or the mechanical interaction
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of two sleighs were not modeled. The coupled dynamics of
Chaplygin sleighs and a moving platform were investigated
in Buchanan et al. (2020), but the anti phase synchroniza-
tion of the limit cycles was not shown. To our knowledge,
the current paper is the first where the synchronization of
mobile nonholonomic oscillators is investigated and anti-
phase synchronization of limit cycles is demonstrated.

2. COUPLED NONHOLONOMIC OSCILLATOR
MODEL

2.1 Review of Chaplygin sleigh dynamics

A schematic diagram of the Chaplygin sleigh is shown in
Fig. 1. The sleigh has mass m and Point C shows the
Center of mass. Its moment of inertia is I about point C.
The point P represents the point of contact of the sharp
knife edge or wheel with the ground. At this point(P), the
sleigh can not slip in the transverse direction. The axes
X, and Y, are body fixed where X, is aligned with the
line between P and the center of mass. The position of
the center of mass of the sleigh is denoted by (z,y), and
the orientation of the sleigh is #. The distance between
P and the center of mass is b. The sleigh is imagined
to carry a balanced rotor of the moment of inertia I. at
its center that is driven by a motor. If the relative angle
that the rotor makes with the body axes is denoted by
¢, the motor exerts a torque 7 = —I.¢ on the sleigh.
The configuration manifold for the system, ignoring the
internal shape variable ¢, is Q = SFE2, parameterized by
the (z,y) coordinates of the sleigh center of the mass and
the angle 6 of the body axis with respect to the fixed
spatial axis. The system is subject to the nonholonomic
constraint (1),

—sin 0dx + cos Ody — bdf) = 0 (1)

i.e. the transverse velocity (along the Y, direction) of
the point of contact P, be equal to zero. The velocity
of P in the body frame is then u = Zcosf + gsinb.
The nonholonomic constraint is enforced by friction in the
transverse direction at P. Beyond this friction, we further
suppose that the motion of the sleigh is viscously damped
with dissipation function D = Lcu®+ 1¢,w?, where w = 0.
The reduced equations of motion are then, see Fedonyuk
and Tallapragada (2018)

C

1= bw? — — 2

U= b~ —u (2)
—mbuw c T

- _ 3

v I + mb? I—|—7r7,l)2w—|—I—|—mb2 (3)

2.2 A pair of Chaplygin sleighs on a platform

Now consider two identical Chaplygin sleighs placed on a
platform of mass M which is connected by springs each of
stiffness K to four walls as shown in fig. 2.

The spatial frame is denoted by Xg and Ys and body
frames on the sleighs are denoted by Xp; — Y31 and
Xypo — Yyo respectively. The configuration manifold of the
system is Q@ = SE2 x SE2 x R? parameterized by the
generalized coordinates ¢ = (X,Y,x1,y1,01,%2,Y2,02),
where (X, Y) represent position of the center of the plate in

Fig. 1. The Chaplygin Sleigh. The body frame is denoted
by axes X; — Y. The point of contact, P, has zero
velocity in Y} direction

oz

K

S PP I T T T I I

X AT .,

L K
Xs w7707

Fig. 2. System setup. Two similiar actuated chaplygin
sleigh on a spring supported horizontal plane.

the spatial frame and (z;,y;, ;) for i € [1,2] represent the
spatial position of the center of each sleigh and the angle
made by the body Xj,-axis with the spatial Xg-axis. The
Lagrangian of the system is

L(g,q) =T -V
2
S s
=> FMI(X ) + (Y + ) ]+219i)
i=1
1 2 2 1 2 1 2
+ o M(X?+V?) - D2KX? — 2KY (4)

The two nonholonomic constraints are relative transverse
velocity of P; on each sleigh with respect to the platform
should vanish. The two constraints are then

Ci(qv Q) =
— & sin(6;) + y; cos(;) — bo; + X sin(6;) — Ycos(@i) =0
(5)

We assume a Rayleigh Dissipation function on the sleighs

as
> /1 1 .2
_ Z 2 ,

D = 2 (20'&1 —+ 507-01 > (6)

where u; = 2;cosf; + y; sin6; along the X, axis. Then
Rayleigh dissipation function can also be expressed as a



Ali Mohseni et al. / IFAC PapersOnLine 56-3 (2023) 241-246 243

function of generalized coordinates and velocities:

1 1 .

D(q,q) = Zl 50(961 cos 0; + yj; sin 0;)% + icTHiQ (7)
The Euler—Lagrange equations are of the following form

d oL

o = S
with k& € [1,8], A; is the Lagrange multlpher associated
with 4¢th constraint, which in this setup is the friction
force acting in the transverse directions at P;(Point of
contact of ith chaplygin seligh with the platform). Qy is
the generalized force. Straightforward calculation of the 8
for each k gives the equations of motion for this system as

2
MX +3 m(X + )+ 2KX = \;sin; (9)

i=1

+ Qk (8)

2
MY+Zm(Y+yZ) +2KY = —\; cosb; (10)

i=1
m(X + &) = —\;sin(0;) — c(@; cos0; + y; sin 6;) cos b;

(11)

m(Y + 9i) = A;cos(0;) — c(2; cos 0; + y; sin ;) sin 0;
(12)
I@z = —b\; — C,«éi + 7 (13)

As a consequence of the nonholonomic constraints, a
reduced number of equations can be used to describe the
motion of the sleigh. This can be done by transforming the
velocities into a body-fixed frame of reference. Further, the
Lagrangian (4) is invariant with respect to translations in
(z4,y:), enabling a decoupling of the velocity equations of
the Chaplygin sleigh with the group equations describing
the evolution of the position of the Chaplygin sleighs. The
velocity of the center of mass of the nth sleigh, can be
expressed as v, = Unipy + bénjb in the respective body
frames. The velocity of each sleigh can be transformed to
the spatial frame as

i = X + u; cos; — bb; sin b, (14)
=Y + u;sin0; + bd; cos b; (15)

and by diffrentiatin with respect to time the accelerations
in the spatial frame can be obtained as

& = X +1; cos 0; — u;0; sin 0; — b@? cos 6; — bf; sin 6; (16)

§j; = Y + 1, sin 0; + u;6; cos 0; — b912 sin 6; + bl; cos 0; (17)

By multiplying equation (11) by (—siné;) and equation
12 by (cos6;) and using equations 16 and 17 we get

m(—QX sin; + 2Y cos0; + u;6; + bﬂz) =A (18)

By multiplying equation (11) by (cos ;) and equation (12)
by (sin ;) and using equations (16) and (17) we get

m(2X cosb; + 2V sinb; + 1; — bh?) = —cu. (19)

Isolating @ and then isolating X;, we have the reduced
equations of motion of each Chaplygin sleigh,

Uy = —%ui + bwi2 —2X cosb; — 2V sinb; (20)
7b>\1 — Cry 3
) I
0; = wi (22)
The equations of motion of the platform are
2
MX = Z (2\;sin@; + cu; cosb;) — 2K X (23)
i=1
. 2
MY = Z (—2X; cos 0; + cu;sinf;) — 2KY. (24)
i=1

with the constraint (friction) forces that couple the motion
of the platform to the two Chaplygin sleighs
m(—2X sin@; + 2V cos 0; + uf; — Ti=exbs
N\ = ( : b; kha ) (25)
1+ 7

The equations (14) and (15), that decoupled from the
velocity equations, describe the evolution of the position
of the Chaplying sleighs.

3. SYNCHRONIZATION

We assume sinusoidal torques on the Chaplygin sleighs as

71 = Bsin (Q + ¢1) and 75 = Bsin(Qt+ ¢2) (26)

where Q = 3,/ % [ is the ratio of forcing frequency to the

natural frequency of platform. The equations of motion
(20)-(25) and (14)-(15) are numerically integrated using
an explicit Runge-Kutta(4,5), Dormand-Prince solver in
MATLAB. The results of such simulations presented here
are based on the following parameters : for the Chaplygin
sleigh m = 1kg, I = 1lkgm? and b = 1m, for the platform
M =1kg and K = 1N The damping coefficients are
set to ¢ = 1127715 and ¢, = 1]\;’25 As the inputs to the
system we set B = 1 N.m and f = 1. The results do
not change for values of the frequency ratio § ranging
from 0.8 to 2. The parameter that has a significant effect
on the synchronization behavior is the phase difference
A¢ = ¢o — ¢9 in the torques on the sleighs.

The initial velocity of the platform and the Chaplygin
sleighs is assumed to be zero in all simulations and the
initial orientations(6;(0)) are varied by selecting random
numbers between [0 27]. The platform is assumed to be
initially motionless (X (0) = Y (0) = 0). All simulations are
done for a time duration of ¢ = 1000s (about 160 cycles of
forcing) to ensure the velocities of the Chaplygin sleighs
are close to the limit cycles, thus essentially identifying the
limit cycles. Similar to the limit cycle solution (u(t),w(t))
for a single Chaplygin sleigh moving on a fixed platform,
the solutions (u;(t),w;(t)) are periodic and appear as
figure-8 limit cycles when projected onto the u; — w;. We

will denote the average values u; = limp_, % fOT u;dt,

@ = limr oo & [ widt and 8; = limp_,oo & [ Odt.

When A¢ = 0, the average heading angles 0, and 65 differ
by 7 as shown in the first row of fig. 3. Despite this the
angular velocities w; are equal and in phase (seen in the
plot of 6 versus time) and the limit cycles (and hence
u;(t)) are identical. In this case the two oscillators are
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Fig. 3. Long time behavior of the coupled Chaplygin sleighs for four different values A¢. The two colors red and blue
correspond to the variables of the two Chaplygin sleighs respectively. The first column shows the 6 as a phase angle
on the unit circle, the second and third columns shows the w;(t) and 6;(¢) and the fourth column shows the limit
cycles in the (u; — w;) space. The fifth column is the steady state trajectory of the sleighs for the same period of

time(40s).

synchronized in their phase, but anti-synchronized in their
heading angle. As A¢ increases to 5 the average angles 0,

and 05 converge but the average speeds @, and Ty are no
longer identical as shown in the second row of fig. 3. The
angular velocities w; and the limit cycles are also no longer
identical.

As A¢ increases further, the limit cycles of the Chaplygin
sleighs once again converge and become identical at A¢ =
7. The average heading angles 6, and 05 are also identical
as seen in the third row of fig. 3. However the heading angle
0, and 05 are out of phase as seen in the plot of 8 vs time.

As A¢ increases to %ﬂ‘ the average angles 6; and 6, remain
identical but ue and uw; are no longer identical as shown
in the last row of fig. 3. The angular velocities w; and the
limit cycles are also no longer identical. The rightmost
column in fig. 3 shows the steady state trajectories of
the Chaplygin sleighs. The steady state trajectories of the
Chaplygin sleighs are anti-synchronized when A¢ = 0 and
synchronized in the average heading angle for the steady
state trajectories when A¢ = 7. At A¢g = 5 and A¢ = %”
one of the Chaplygin sleighs has a small speed and the
steady state trajectory of the slower sleigh does not show a
large displacement over time. In fact the the slower sleigh’s
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motion is bounded in the numerical simulations. The
steady state trajectories (x;(¢),y;(t)) shown in fig. 3 were
obtained by shifting (translating) the trajectories back to
the origin for comparison. Figure 4 shows a schematic of
the two Chaplygin sleighs overlaid on the steady state
trajectories and the phase on the limit cycles.

Fig. 4. Anti-phase synchronization of 6;(¢) leads to iden-
tical limit cycles and the same average heading angle

6.

The dependence of the synchronization and anti-phase
synchronization of the average heading angles 0 is found
to be almost the same for a large set of initial angles 6, (0)
and 05(0). Figure 5(a) shows the 6; — 65 as a function of
Ag for 20 randomly chosen initial angles. For all the initial
angles of the Chaplygin sleighs the average heading angles
are synchronized for A¢ € [0,% — €] and A¢ € [3F +
€,2m] where numerical simulations show that ¢ < 0.045.
Similarly the dependence in the difference of the average
speeds of the Chaplygin sleighs is found to be almost the
same for a large set of initial angles 64 (0) and 62(0). Figure
5(b) shows the w; — ua versus A¢. This graph of this
difference has the shape of a half cosine function; it is
zero at A¢ = 0 and decreases until A¢ = w/2. Then we
see step increase at this point and decreases as a cosine
function until falls to zero again at A¢ = .

Most interestingly when the angles 6; and 65 are anti-
phase synchronized, the mean values of 6 (t) and 65(¢)
converge to the mean of the initial angles 6;(0) and 05(0)
when A¢ = 7 as shown in fig. 6(a). This behavior persists
across different randomly chosen initial conditions.

The motion of the Chaplying sleighs on the platform have
an interesting relation to the motion of the platform itself.
Figure 7 shows the steady state motion (X(t),Y(t)) of
the plate. In the top row the amplitude is negligibly small
when A¢ = 0 and grows when the Chaplygin sleighs are
not synchronized in either the angle nor the limit cycles.
When A¢g = 5 or A¢ = 37” the limit cycles of the sleighs
differ significantly with the speed of one of the sleighs
being smaller than that of the other. The slower sleigh
does not move significantly and its motion is bounded
upto numerical accuracy. In such cases the oscillations of
the platform are larger. When the sleighs’ motion is anti-
phase synchronized and they move with identical speeds

0y — 6,

0 72 s 3n/2 27

0 72 T 3n/2 2T

A¢

Fig. 5. (a) 01 — 0 as a function of A¢ and (b) u — Uz
as a function of A¢ for 20 different randomly chosen
initial conditions.
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Fig. 6. (a) Blue is 0; and red is 6. Both converge to
1(61(0) + 62(0)) when A¢ = 7. (b)A plot of 1(6; +
62) — 3(61(0) + 62(0)). The average heading of the
Chaplygin sleighs converges to the mean of the initial

angles when A¢ = 7 for 20 randomly chosen initial
angles

in the same direction, the amplitude of the oscillations of
the platform is smaller. This decrease can be attributed to
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the anti-phase of the angles 61 and 65. This results in the
friction force exerted between each sleigh and the platform
to oppose each other for one half of the cycle along a limit
cycle.

%1015 Ap=0 2x10'15 Ap=0
1
=<9 >0
-2
3 -2
0 10 20 30 40 0 10 20 30 40
time time
Ap=m/2 Ap=m/2
0.2
X 0 > 0
02 0.1
0 10 20 30 40 0 10 20 30 40
time time
Ap=m Ap=m
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X 4 >
0.01
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time time
A¢ = 37/2 A¢ = 3m/2
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= > 0
0 -0.1
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time time

Fig. 7. Steady state oscillations of the platform for different
A¢. In the top row, the amplitude is negligibly small
when A¢ = 0.

4. CONCLUSION

This paper describes a novel problem of the synchroniza-
tion of a pair of mobile coupled nonholonomic oscilla-
tors. The coupling of the motion is via a movable plate.
When the actuation for the oscillators are out of phase,
it is shown that the average angle of the oscillators are
also out of phase. In this anti-phase synchronization, the
nonholonomic systems move in the same direction at the
same speed. During such anti-phase synchronization, the
plate’s motion is of smaller amplitude. In contrast, when
the oscillators are not synchronized, the motion of the
plate has a higher amplitude. This novel problem and the
results of the synchronized motion in ‘formation’ and con-
ditions leading to such a phenomenon can have important
applications in mobile robotics.
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