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Abstract: This paper discusses the development of two nonlinear controls for a nonlinear
spherical wave energy converter (WEC) to maximize the energy it harvests from the waves. The
first control is a simple nonlinear damping control, which is designed based on the hydrodynamic
damping coefficients. These control coefficients are then optimized using a Genetic Algorithm.
The second is a nonlinear optimal control derived analytically using the Pontryagin minimum
principle for comparison. The study found that the nonlinear optimal control improves the
device’s performance by effectively leveraging the hydrodynamic nonlinearity from the floater’s
shape. The nonlinear bang-singular-bang (BSB) control showed an average 20% performance
improvement over the nonlinear damping control (NLDC).
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1. INTRODUCTION

Decarbonization has gained global attention in recent
years with many countries seeking to reduce carbon diox-
ide emissions. Wind and solar sources are some of the pop-
ular renewable energy sources being harnessed; alongside
these sources, ocean energy has great potential to be a
major additional renewable energy source. However, for
this to happen, the technology has to achieve a comparable
energy cost. Several wave energy technologies have been
developed over the years; one of the more popular types
of Wave Energy Converters (WECs) is the point absorber
(Brekken, 2011; Pastor and Liu, 2014).

A point absorber will generate the maximum power when
its motion resonates with the exciting wave frequency.
Controls seek to improve the energy extraction of the
device when resonance is not achieved. While many control
methods have been proposed over the years for WECs
(Faedo et al., 2017; Abdulkadir and Abdelkhalik, 2022;
Shabara et al., 2021; Hals et al., 2011; Zou et al., 2017;
Wilson et al., 2016; Abdelkhalik and Abdulkadir, 2021),
they often based on a linear model of the WEC dynam-
ics. However, a more precise model will incorporate the
nonlinearities that impact the device.

The nonlinearity considered in this work arises from the
buoy shape not being a vertical cylinder near the water
surface, leading to nonlinear hydrostatic and dynamic
forces. In linear dynamics, hydrostatic and dynamic forces
are calculated over a constant wetted area. However, with
varying geometry at the water surface, the pressure must
be integrated over the submerged surface instantaneously.
To achieve computational efficiency, we adopt the closed-
form algebraic formulation for approximating nonlinear
Froude-Krylov (FK) forces developed in (Giorgi and Ring-
wood, 2017; Giorgi et al., 2021).

Nonlinearities in the WEC dynamic model can originate
from various sources, including but not limited to buoy
geometry, PTO, hydrodynamic nonlinearity, and more.
Several works (Zou et al., 2023; Na et al., 2018; Abdelkha-
lik and Darani, 2018; Richter et al., 2012) have developed
different formulations for controlling nonlinear WECs sub-
ject to these nonlinearities. Similar to the formulation
proposed in Song et al. (2020), one of the nonlinear control
formulations considered in this work assumes the form:

u = −αB(ω)ż − βB(ω)ż3 (1)

where α and β are control coefficients to be optimized,
B(ω) is the hydrodynamic damping force on the device,
and ż is the heave velocity of the device. The first term
in the control force formulation represents one type of
nonlinear damping force, while the second term represents
another type. The control coefficients are optimized to
maximize the power extraction by the spherical device.

For performance comparison, an optimal nonlinear con-
trol is analytically derived using Pontryagin’s Minimum
Principle within the framework of optimal control theory.
The controllers are then applied to the same device un-
der identical wave conditions. The paper is organized as
follows: Section II outlines a linear dynamic model for a
simplified WEC device. The algebraic approximation for
the nonlinear Froude-Krylov force is discussed in Section
III. Section IV explores the nonlinear dynamics. Control
formulations are addressed in Section V, followed by the
presentation of simulation results in Section VI. The paper
concludes with Section VII.

2. SOLO WEC DYNAMICS

A second-order mass-spring-damper system, as shown in
fig. 1 is usually a good representation of a simple WEC.
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and ż is the heave velocity of the device. The first term
in the control force formulation represents one type of
nonlinear damping force, while the second term represents
another type. The control coefficients are optimized to
maximize the power extraction by the spherical device.

For performance comparison, an optimal nonlinear con-
trol is analytically derived using Pontryagin’s Minimum
Principle within the framework of optimal control theory.
The controllers are then applied to the same device un-
der identical wave conditions. The paper is organized as
follows: Section II outlines a linear dynamic model for a
simplified WEC device. The algebraic approximation for
the nonlinear Froude-Krylov force is discussed in Section
III. Section IV explores the nonlinear dynamics. Control
formulations are addressed in Section V, followed by the
presentation of simulation results in Section VI. The paper
concludes with Section VII.

2. SOLO WEC DYNAMICS

A second-order mass-spring-damper system, as shown in
fig. 1 is usually a good representation of a simple WEC.

Nonlinear control design for a spherical
Wave Energy Converter.

Habeebullah Abdulkadir ∗ Ossama Abdelkhalik ∗

Mohamed A. Shabara ∗

∗ Department of Aerospace Engineering, Iowa State University, Ames,
IA 50010, USA (e-mail: (see https://www.aere.iastate.edu/ossama/).

Abstract: This paper discusses the development of two nonlinear controls for a nonlinear
spherical wave energy converter (WEC) to maximize the energy it harvests from the waves. The
first control is a simple nonlinear damping control, which is designed based on the hydrodynamic
damping coefficients. These control coefficients are then optimized using a Genetic Algorithm.
The second is a nonlinear optimal control derived analytically using the Pontryagin minimum
principle for comparison. The study found that the nonlinear optimal control improves the
device’s performance by effectively leveraging the hydrodynamic nonlinearity from the floater’s
shape. The nonlinear bang-singular-bang (BSB) control showed an average 20% performance
improvement over the nonlinear damping control (NLDC).

Keywords: Wave energy converter, Control design, Optimal control, Nonlinear model,
Nonlinear Froude-Krylov forces.

1. INTRODUCTION

Decarbonization has gained global attention in recent
years with many countries seeking to reduce carbon diox-
ide emissions. Wind and solar sources are some of the pop-
ular renewable energy sources being harnessed; alongside
these sources, ocean energy has great potential to be a
major additional renewable energy source. However, for
this to happen, the technology has to achieve a comparable
energy cost. Several wave energy technologies have been
developed over the years; one of the more popular types
of Wave Energy Converters (WECs) is the point absorber
(Brekken, 2011; Pastor and Liu, 2014).

A point absorber will generate the maximum power when
its motion resonates with the exciting wave frequency.
Controls seek to improve the energy extraction of the
device when resonance is not achieved. While many control
methods have been proposed over the years for WECs
(Faedo et al., 2017; Abdulkadir and Abdelkhalik, 2022;
Shabara et al., 2021; Hals et al., 2011; Zou et al., 2017;
Wilson et al., 2016; Abdelkhalik and Abdulkadir, 2021),
they often based on a linear model of the WEC dynam-
ics. However, a more precise model will incorporate the
nonlinearities that impact the device.

The nonlinearity considered in this work arises from the
buoy shape not being a vertical cylinder near the water
surface, leading to nonlinear hydrostatic and dynamic
forces. In linear dynamics, hydrostatic and dynamic forces
are calculated over a constant wetted area. However, with
varying geometry at the water surface, the pressure must
be integrated over the submerged surface instantaneously.
To achieve computational efficiency, we adopt the closed-
form algebraic formulation for approximating nonlinear
Froude-Krylov (FK) forces developed in (Giorgi and Ring-
wood, 2017; Giorgi et al., 2021).

Nonlinearities in the WEC dynamic model can originate
from various sources, including but not limited to buoy
geometry, PTO, hydrodynamic nonlinearity, and more.
Several works (Zou et al., 2023; Na et al., 2018; Abdelkha-
lik and Darani, 2018; Richter et al., 2012) have developed
different formulations for controlling nonlinear WECs sub-
ject to these nonlinearities. Similar to the formulation
proposed in Song et al. (2020), one of the nonlinear control
formulations considered in this work assumes the form:
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ular renewable energy sources being harnessed; alongside
these sources, ocean energy has great potential to be a
major additional renewable energy source. However, for
this to happen, the technology has to achieve a comparable
energy cost. Several wave energy technologies have been
developed over the years; one of the more popular types
of Wave Energy Converters (WECs) is the point absorber
(Brekken, 2011; Pastor and Liu, 2014).

A point absorber will generate the maximum power when
its motion resonates with the exciting wave frequency.
Controls seek to improve the energy extraction of the
device when resonance is not achieved. While many control
methods have been proposed over the years for WECs
(Faedo et al., 2017; Abdulkadir and Abdelkhalik, 2022;
Shabara et al., 2021; Hals et al., 2011; Zou et al., 2017;
Wilson et al., 2016; Abdelkhalik and Abdulkadir, 2021),
they often based on a linear model of the WEC dynam-
ics. However, a more precise model will incorporate the
nonlinearities that impact the device.

The nonlinearity considered in this work arises from the
buoy shape not being a vertical cylinder near the water
surface, leading to nonlinear hydrostatic and dynamic
forces. In linear dynamics, hydrostatic and dynamic forces
are calculated over a constant wetted area. However, with
varying geometry at the water surface, the pressure must
be integrated over the submerged surface instantaneously.
To achieve computational efficiency, we adopt the closed-
form algebraic formulation for approximating nonlinear
Froude-Krylov (FK) forces developed in (Giorgi and Ring-
wood, 2017; Giorgi et al., 2021).

Nonlinearities in the WEC dynamic model can originate
from various sources, including but not limited to buoy
geometry, PTO, hydrodynamic nonlinearity, and more.
Several works (Zou et al., 2023; Na et al., 2018; Abdelkha-
lik and Darani, 2018; Richter et al., 2012) have developed
different formulations for controlling nonlinear WECs sub-
ject to these nonlinearities. Similar to the formulation
proposed in Song et al. (2020), one of the nonlinear control
formulations considered in this work assumes the form:

u = −αB(ω)ż − βB(ω)ż3 (1)

where α and β are control coefficients to be optimized,
B(ω) is the hydrodynamic damping force on the device,
and ż is the heave velocity of the device. The first term
in the control force formulation represents one type of
nonlinear damping force, while the second term represents
another type. The control coefficients are optimized to
maximize the power extraction by the spherical device.

For performance comparison, an optimal nonlinear con-
trol is analytically derived using Pontryagin’s Minimum
Principle within the framework of optimal control theory.
The controllers are then applied to the same device un-
der identical wave conditions. The paper is organized as
follows: Section II outlines a linear dynamic model for a
simplified WEC device. The algebraic approximation for
the nonlinear Froude-Krylov force is discussed in Section
III. Section IV explores the nonlinear dynamics. Control
formulations are addressed in Section V, followed by the
presentation of simulation results in Section VI. The paper
concludes with Section VII.
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Fig. 1. Schematic of a simplified WEC device

Under the assumption of small wave height and motion
amplitude, the motion of a floater, constrained to heave
motion only, can be described using a linear equation of
motion with one degree of freedom (1-DoF):

mz̈ = fe + fr + fs + u (2)

where z is the heave displacement of the buoy from the sea
surface, t is the time, m is the buoy mass, u is the control
force, and fs = −Kz is the hydrostatic restoring force. fe
is the excitation force, fr is the radiation force

3. NONLINEAR FROUDE-KRYLOV FORCE
ALGEBRAIC APPROXIMATION.

For spherical geometry, as depicted in Fig. 2, the mean
wetted surface changes instantaneously. Unlike in the lin-
ear model, where the excitation force comprises the hy-
drodynamic forces computed over a constant mean wetted
surface area of the floater. The hydrostatic and hydrody-
namic forces need to be computed at each time step for the
nonlinear geometry. To mitigate the computational bur-
den associated with using high-fidelity models to compute
these forces, (Giorgi and Ringwood, 2017) developed an
algebraic method for calculating nonlinear Froude-Krylov
(FK) forces applicable to axisymmetric heaving point ab-
sorbers. The total Froude-Krylov (FK) force consists of
the hydrostatic force FKst and the dynamic force FKdy.
The nonlinear hydrostatic force represents the difference
between the gravitational force Fg and the static FK force
on the buoy.

FFK = Fg −
∫ 2π

0

∫ σ2

σ1

P (t)ndS (3)

The instantaneous pressure P (t) acts on the infinitesimal
element ndS. According to Airy’s wave theory, the total
pressure for deep water waves is defined as:

P (t) = ρgeχση(t)cos(ωt)− ρgσ(t) (4)

where, g denotes gravitational acceleration, χ denotes
wave number, ρ represents water density, η(t) signifies free
surface elevation, and ω indicates wave frequency. The
magnitude of the heaving Froude-Krylov forces is given
by:

FFK =

∫ 2π

0

∫ σ2

σ1

P (t)f ′(σ)f(σ)dσdθ (5)

FFK =
∫ 2π

0

∫ σ2

σ1
(ρgeχση(t)cos(ωt)− ρgσ(t))f ′(σ)f(σ)dσdθ (6)

where h0 represents the draft of the buoy at equilibrium,
and Zd(t) denotes the instantaneous displacement of the
buoy from its equilibrium position. The algebraic Froude-
Krylov (FK) forces for the spherical and sloped line profiles
depicted in Fig. 2 can be computed using the equations
defined in Eq. (6). The free surface elevation and the draft
of the buoy are the limit of integration based as:

σ1 = −h0 + Zd(t)− η(t), σ2 = 0 (7)

For the spherical buoy, the nonlinear hydrostatic and
hydrodynamic forces of can be computed as:

FFKstatic
= Fg − 2πρg

[
(−R+Zd−η(t))3

3 − (−R+Zd−η(t))2

2 (Zd + η(t))
]
(8)

FFKdynamic
= − 2πρgη(t)

χ cos(ωt)
[(

σ − Zd + η(t)− 1
χ

)
eχσ

]σ2

σ1

(9)

Fig. 2. Geometry of a spherical WEC device

4. NONLINEAR SOLO WEC DYNAMICS

The nonlinear equation of motion for a single-degree-of-
freedom (1-DoF) WEC, considering heave motion only, is:

mẍ(t) = FNLFK − u− µẍ(t)− cẋ (10)

FNLFK = FFKdyn+FFKst
(11)

Mẍ(t) = FNLFK − u− cẋ (12)

z is the buoy heave displacement, M is the total mass,
control force u, and FFKst

is the static FK force and
FFKdyn

is the dynamic FK force.

5. CONTROL FORMULATIONS

In this section, the two control methods considered are
formulated; the first is the nonlinear control optimization
approach, where the controller is optimized with the device
design, and the second is the optimal control formulation
based on the same devices. The device in consideration is
a spherical WEC with a radius of 5m.
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In this section, the two control methods considered are
formulated; the first is the nonlinear control optimization
approach, where the controller is optimized with the device
design, and the second is the optimal control formulation
based on the same devices. The device in consideration is
a spherical WEC with a radius of 5m.
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5.1 Nonlinear control optimization

In this study, the objective is to find the optimal coeffi-
cients of the nonlinear damping control formulation which
maximize the power extraction of the considered nonlinear
device. The optimization goal focuses on the time-averaged
power output from the device:

J =
1

T

∫ tf

0

{−u(t)x2(t)}dt

s.t. α ∈ [αmin. αmax.],

β ∈ [βmin. βmax.].

(13)

As discussed in the introduction, the optimized nonlinear
damping control coefficients will used in nonlinear control
formulation:

u = −αB(ω)ż − βB(ω)ż3 (14)

Table 1. Constraints on the optimization pa-
rameters.

Parameter Unit Lower Bound Upper Bound

α - 0.01 3
β - 0.01 3

where α and β denote the control coefficients to be
optimized, B(ω) represents the maximum hydrodynamic
damping force on the device, and ż signifies the heave
velocity of the device. The variable bounds are detailed in
Table 1. Genetic Algorithm was used for the optimization.
A flowchart illustrating the optimization setup is depicted
in Fig. 3.

Fig. 3. GA flowchart for control co-design optimization.

5.2 Optimal control

In the context of a single WEC device, as considered in
this paper, the objective function can be expressed as:

Min J(u(t)) =

∫ tf

0

{−u(t)z2(t)}dt (15)

s.t. Eq. (12) and the control force constraint:

|u| ≤ Umax (16)

This constraint Eq. (16) is on the PTO force, such that the
force does not exceed the constraint at any time during
the operation of the device. The Pontryagin’s minimum
principle (Pontryagin, 1987; Macki and Strauss, 2012) is
used to solve the optimal control problem. If we define z1
as the position of the floater and z2 as its velocity, then
the equation of motion for the system in fig. 1 can be re-
written in state space form as:

ż1 = z2 (17)

ż2 =
1

M
(FNLFK − cz2 − u) (18)

where FNLFK is nonlinear FK force, where the wave in
this case is assumed a regular wave, and u is the control
input. Based on the equations of motion of the buoy, we
need to formulate the optimal control problem as follows:

Min : J((z(t), u(t)) =

∫ tf

0

{−u(t)z2(t)}dt (19)

Subject to: Eq. (17), and Eq. (18)

To start solving, we need to write out the Hamiltonian of
the problem Bryson and Ho (2018):

H = −uz2 + λ1z2 +
λ2

m
(FNLFK − cz2 − u) (20)

Based on the Hamiltonian, the necessary condition of the
problem corresponding to (z∗1 ,z

∗
2 ,u

∗,λ∗
1,λ

∗
2) which satisfy

the Euler-Langrange equation is derived as:

Hλ = ż (21)

Hz = −λ̇ (22)

Hu = 0 (23)

By solving for the necessary conditions for optimality,
we obtain the equations below and also the state space
equation:

λ̇1 = −λ2

m

∂FNLFK

∂z1
(24)

λ̇2 = −λ1 +
c

m
λ2 + u (25)

z2 +
λ2

m
= 0 (26)

Since Hu = 0, the solution in Eq. (26) does not yield an
expression for the control u, which means the control is
either on a singular arc or at its boundaries (limits).

From Eq. (26),

ż2 +
λ̇2

m
= 0 (27)

combining Eq. (24) and Eq. (26),

λ̇1 = −λ2

m

∂FNLFK

∂z1
⇒ ∂FNLFK

∂z1
z2 ⇒ ∂FNLFK

∂z1
ż1 (28)

Integrate Eq. (28)

λ1 =
∂FNLFK

∂z1
z1 + const. (29)

λ1 = FNLFK + const. (30)

Substitute Eq. (30) into Eq. (25)

λ̇2 = −FNLFK − const.+
c

m
λ2 + u (31)

solving Eq. (18) for u and substituting in Eq. (31)

λ̇2 = −FNLFK − const.+
c

m
λ2 + [−mż2

−cz2 + FNLFK ]
(32)

substituting Eq. (26) and Eq. (27) into Eq. (32) and
simplifying

const = −2cz2 (33)

differentiating

0 = −2cż2 (34)

substitute for ż2 from Eq. (18)

0 = − 2c

M
(FNLFK − cz2 − u) (35)

Solving for u in Eq. (35), we can find the optimal control
to be

usa = −cz2 + FNLFK (36)

Substitute the optimal control usa from Eq. (36) into the
system model in Eq. (18), and solving for the states, we
get the switching condition as:

Hu = z2 −
2c

M
(FNLFK − cz2) (37)

If there is a saturation on the control, and the buoy is
subject to oscillatory excitation forces, then it is possible
to state that the optimal control can be defined as:

u =




Υ, Hu > 0

usa, Hu = 0;

−Υ, Hu < 0

where Υ is the maximum available control level, and usa

is the singular arc control.

6. SIMULATION RESULTS

The devices used in the simulation is a spherical single-
body point absorber with a 5m radius. The controls de-
veloped in Section 5 are tested on the device in a regular
wave environment with a period T = 6 s and wave height
H = 0.8222 m. The simulation results for the optimized
coefficients for the co-design controller (NLDC) tabulated

in Table 2 are compared with the nonlinear Bang-Singular-
Bang (BSB) control. The hydrodynamic parameters (ra-
diation damping and added mass) as functions of the
frequency were obtained from NEMOH boundary element
method (BEM) Matlab routine. The maximum control
force availed by the PTO is Υ = 5e6 N.

Table 2. The optimized control parameters for
the sphere

α β

1.9137 1.8493
1.6456 1.9793
1.5697 1.6143
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Fig. 4. Displacements when using NLDC and BSB.
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Fig. 5. Velocity when using NLDC and BSB.

The nonlinear motion of the device can be seen from the
plot of its displacement plotted in Figure 4; it can be
observed that the displacement when controlled using the
NLDC control is close but slightly larger than when the
BSB is used. Similarly, in Figure 5, the device’s velocity
when using BSB control is plotted against the velocity of
the NLDC-controlled device.
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The nonlinear motion of the device can be seen from the
plot of its displacement plotted in Figure 4; it can be
observed that the displacement when controlled using the
NLDC control is close but slightly larger than when the
BSB is used. Similarly, in Figure 5, the device’s velocity
when using BSB control is plotted against the velocity of
the NLDC-controlled device.
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Fig. 6. Static FK forces when using NLDC and BSB.
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Fig. 7. Dynamic FK forces when using NLDC and BSB.

Figures. 6 and 7 show the static and dynamic FK forces
acting on the buoy, respectively. On each figure, the mag-
nitude of the forces acting on the device when using the
control methods in consideration is plotted. Comparing
the NLDC control and the BSB control, it is observed
that while the static FK force is of higher magnitude for
the NLDC control, the dynamic FK forces are comparable
for both controllers, with the dynamic FK force being zero
when the motion of the device grow to be too large.

In the BSB control formulation, it shows that the solution
of the optimal control will be on the singular arch when the
switching condition presented in Eq. (37) is zero. However,
the condition is small but not zero at all times; in this
case, the bound for the singular arc condition will be set to
abs(Hu) < 0.01. Figure 8 shows the resulting control forces
generated using each control method. The magnitude of
forces generated is contained to be within the limits. The
power plot from both controls is plotted in figure 9, it can
be observed that the BSB has some power curve going
below the zero line; this is the reactive power require-
ment of the control method. Overall, a 20.65% energy
improvement was recorded for the BSB over the NLDC
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Fig. 8. PTO forces when using NLDC and BSB.
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Fig. 9. Power when using NLDC and BSB.
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Fig. 10. Energy when using NLDC and BSB.

control as presented in figure 10. In all simulations, the
BSB outperformed the optimal NLDC control formulation.

7. CONCLUSION

Two nonlinear control formulations were presented to con-
trol a spherical nonlinear WEC. The goal is to maximize
the power output from wave energy converters with strong
nonlinear Froude-Krylov (FK) forces. The FK forces were
derived algebraically; a nonlinear damping control was
formulated and optimized while accounting for the non-
linearity in the system. For comparison, an optimal non-
linear control formulation was derived analytically within
the context of optimal control theory. Simulation results
presented in this paper show that the overall performance
of the optimal Bang-singular-bang control obtained from
the analytical derivation approach achieved significantly
higher power output than that of the nonlinear damp-
ing control (NLDC), which was optimized using genetic
algorithm. The wave considered in this current work is
monochromatic. Future work will develop and test the
performance of the control approaches for devices expe-
riencing irregular excitation.
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7. CONCLUSION

Two nonlinear control formulations were presented to con-
trol a spherical nonlinear WEC. The goal is to maximize
the power output from wave energy converters with strong
nonlinear Froude-Krylov (FK) forces. The FK forces were
derived algebraically; a nonlinear damping control was
formulated and optimized while accounting for the non-
linearity in the system. For comparison, an optimal non-
linear control formulation was derived analytically within
the context of optimal control theory. Simulation results
presented in this paper show that the overall performance
of the optimal Bang-singular-bang control obtained from
the analytical derivation approach achieved significantly
higher power output than that of the nonlinear damp-
ing control (NLDC), which was optimized using genetic
algorithm. The wave considered in this current work is
monochromatic. Future work will develop and test the
performance of the control approaches for devices expe-
riencing irregular excitation.
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