
Mocking Temporal Logic
Colin S. Gordon

csgordon@drexel.edu
Department of Computer Science

Drexel University
Philadelphia, Pennsylvania, USA

Abstract
Temporal logics cover important classes of system specifica-
tions dealing with system behavior over time. Despite the
prevalence of long-running systems that accept repeated
input and output, and thus the clear relevance of temporal
specifications to training software engineers, temporal logics
are rarely taught to undergraduates.

We motivate and describe an approach to teaching tempo-
ral specifications and temporal reasoning indirectly through
teaching students aboutmocking dependencies, which is widely
used in software testing of large systems (and therefore of
more obvious relevance to students), less notationally in-
timidating to students, and still teaches similar reasoning
principles. We report on 7 years of experience using this
indirect approach to behavioral specifications in a software
quality course.

CCS Concepts: • Software and its engineering → Do-
main specific languages; Specification languages; Soft-
ware verification and validation; • Social and profes-
sional topics→ Software engineering education.

Keywords: temporal logic, software specification, software
testing, software engineering education
ACM Reference Format:
Colin S. Gordon. 2024. Mocking Temporal Logic. In Proceedings
of the 2024 ACM SIGPLAN International Symposium on SPLASH-E
(SPLASH-E ’24), October 24, 2024, Pasadena, CA, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3689493.3689980

1 Introduction
Temporal logics have long been known to encompass key
classes of specifications for how systems behave over time [17,
51] and are increasingly widely used in industry [31, 47].
Despite this, temporal logics are rarely taught at the under-
graduate level in computer science and software engineering
curricula. The most recent ACM/IEEE-CS/AAAI curriculum

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1216-6/24/10
https://doi.org/10.1145/3689493.3689980

guidelines for CS mention behavioral specifications only in
regard to concurrent programs [38, p. 224]. The ACM/IEEE
curriculum guidelines for SE [6, 42] make no mention of
behavioral specifications at all. Temporal logics build on
other formal logics which are typically taught to undergradu-
ates [10, 34] — propositional and first-order logic —which are
already specifically perceived as challenging by undergrad-
uates due to both notational challenges [24, 62, 63] and the
challenges inherent tomoving from familiarity with informal
natural language to rigorous formal languages (itself moti-
vating decades of work on using natural languages for spec-
ifications [26, 28, 59, 60]). Application of logic to software
specifications is then a further learning challenge [20, 21, 25],
distinct from learning the formal interpretation.
Additionally, most introductions on how to think about

software, from introductory sequences to software engineer-
ing and software testing material tend to focus on single-
input single-output specifications. This primes students to
think about single invocations of a method or system, but
leaves them less well-prepared to tackle system behavior
over time. State-machine based testing is a well-established
concept [11, 35], but has never been widely adopted in class-
rooms (likely due in part to its limited uptake in industry
outside a few domains [58]). UML is still taught in many
software engineering and computer science programs, and
whatever its merits (its use in industry has been declining
for years [50]) typically only class diagrams dealing with
data and inheritance decisions are taught in any detail. In
our experience, the main portions that addresses behavior
over time are typically either briefly noted in passing (se-
quence diagrams [1, Ch. 17]) or completely ignored (state
machines [1, Ch. 14]).
Yet behavioral specifications remain an important class

of specifications for real systems. This naturally includes
applications of formal methods, given that model checking
of temporal logics is one of the most successful, and widely-
deployed formal methods [18, 31] beyond type systems. But
it also includes muchmore. A substantial fraction, if not a ma-
jority, of software written today takes the form of either long-
running internet or network services or applications with
graphical user interfaces. Both of these large (overlapping)
categories of software are expected to continue running for
extended periods of time, dealing with sequences of inputs
(possibly from multiple sources simultaneously) interleaved

https://orcid.org/0000-0002-9012-4490
https://doi.org/10.1145/3689493.3689980
https://doi.org/10.1145/3689493.3689980


SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA Gordon, C. S.

with actions of the system itself. This falls outside the batch-
processing input-output form of programs used for the bulk
of instruction in software testing. In fact, the overwhelm-
ing majority of software testing and software quality books
lack any coverage of this topic, with a very few exceptions
discussed in Section 4.6 [5, 48, 69, 70]. More broadly, any sys-
tem whose behaviors are amenable to formalization using
temporal logic have such temporal, behavioral specifications,
regardless of whether anyone writes them down formally.

Of course, this is no surprise to practitioners building real
systems, who have their own well-established ways of deal-
ing with such behavioral specifications, which are suitable
for teaching, have obvious industry-relevance, and allow
us to teach some of the same specification principles. We
can bridge the gap to temporal specifications and behavioral
specifications more broadly (Section 2) by focusing on mock-
ing in software engineering courses. Mocking is a common
practice in industry [65, 68] of refactoring code to pass depen-
dencies explicitly, in order to test code in isolation from those
dependencies by using testing-only implementations (called
mocks) that control for external factors. A simple example is
passing a fake clock to code that checks the current time of
day, so for example, behaviors that only run outside business
hours in an actual deployment can be tested during business
hours. This is also used for simulating errors (e.g., testing
how the code handles lack of network connectivity without
actually disconnecting the test machine’s network access).
Mocking is relevant to this discussion because mocking

can be used used to control series of interactions with a de-
pendency, and then check that client code behaves correctly
— much like assume-guarantee reasoning [36, 52]. Widely
used mocking libraries often include their own domain-
specific languages (DSLs) for defining these test-only im-
plementations concisely, styled in a way that is simultane-
ously “regular” code (e.g., as an embedded DSL) but also
shares many commonalities with finite-trace temporal logic
specifications. While common software testing educational
materials emphasize only the isolation-from-dependencies
aspect of mocking (Section 4.6), there is a clear connection
to temporal specifications, which we elaborate on in Section
4. They can specify that successive calls to a mock’s methods
return different values, or to specify certain kinds of relation-
ships between mocked method inputs and results (including
errors). Similar DSLs state assertions about how the client in-
teracted with the mocks over time, including properties like
calling certain methods in appropriate orders, appropriate
numbers of times, or with particular kinds of arguments.

We put forthmocking as a sensible stepping stone to richer
behavioral specifications, particularly but not exclusively
temporal logics, because they separate the behavioral spec-
ifications themselves from totally new syntax; are widely
used in industry and therefore of clear relevance to even the
most application-focused students; have immediate utility to
students in other contexts with minimal preparatory work

(e.g., no need to build a rich or extensive formal model); and
still effectively teach the same core specification and reason-
ing principles. We also argue that they avoid some of the
linguistic confusion that appears when teaching temporal
logics directly [29]. We are are not arguing that this approach
should supplant instruction of temporal logics where it is
offered, but that it may be an effective precursor, and may be
a way to incorporate these principles in curricula that lack
them, in a way that is more palatable to industry-focused or
application-motivated students.

2 A Short Crash Course in Temporal Logic
Temporal logics are a class of modal logics, where the modal
operators deal with time: applying a temporal operator to a
proposition𝜙 shifts the time at which𝜙 is expected to be true.
Temporal logics have a long, rich history with connections
to other fields [8, 12, 17, 18, 51, 54], but are chiefly of interest
in CS because they can be used to specify expected system
behavior over time, and those specifications can be passed
to tools (model checkers [8, 18, 31]) that automatically find
cases where system models violate those descriptions of re-
quired behavior. Over the years, model checking has accumu-
lated an impressive résumé of real-world successes [31, 47].

The most common form, (propositional) Linear Temporal
Logic (LTL), addresses a single linear notion of time: the
state of the world (or, computer system) as it evolves during
a particular execution.1 Beyond propositional logic’s usual
operators, it includes operators that shift the evaluation time
at which their propositional arguments are expected to hold.

The main property is evaluated at the moment a program
starts, but modalities can express claims about later parts of
execution. □𝜙 / “always” 𝜙 asserts that 𝜙 must be true at the
current moment, and at all future moments. This is often
used to state invariants (e.g., □ValidState). ^𝜙 / “eventually”
𝜙 asserts that 𝜙 is true at some point finitely far in the future
— perhaps right now, but perhaps only once 3,000,000 steps
from now. In particular, it requires 𝜙 to definitely become
true in the future. ⃝𝜙 / “next” 𝜙 asserts that 𝜙 is true in the
state after the current state. Some variants include ^−1𝜙 /
“previously” 𝜙 to assert that 𝜙 occurred in the past, which
allows more properties to be stated more concisely [43].

LTL also includes an assertion 𝜙 U 𝜓 / 𝜙 “until”𝜓 , which
requires that not only is 𝜙 eventually true (in the sense
above), but at all moments in time from now until then,
𝜙 must be true. This is also used for liveness properties, but
additionally constrains the time between now and then.2

These operators can combine to express subtle properties.
For example, LTL specifications like □(RequestReceived →
^ResponseSent) (i.e., whenever a request is received, it is
1Other variants deal the space of possible future executions, rather than
“the one that happens” [17, 23, 40].
2A careful reader will wonder if “until” makes “eventually” redundant;
indeed, ^𝜙 ≡ True U 𝜙 , but beyond being directly tied to earlier temporal
logics that lacked “until,” “eventually” is just very convenient.



Mocking Temporal Logic SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA

eventually responded to) are common — this captures a crit-
ical sort of property for long-running server processes.

3 Teaching Behavioral Specifications
Temporal logics are the most prominent and most well-
established of a broader family of specifications, called be-
havioral specifications, which includes a wide range of type
systems and program logics specifying which series of steps
a program is permitted, required, or forbidden to take [4,
61, 66]. It is worth distinguishing behavioral specifications,
and considering their place in undergraduate curricula, be-
cause they deal with program behaviors beyond the reach of
more common (lightweight) static analyses and widely used
type systems. Traditional input-output tests as covered in
most undergraduate-level software engineering curricula do
not directly address behaviors over time. For as long as be-
havioral specifications (particularly temporal specifications)
have been known as useful, the verification community has
worked on teaching them to students. One recurring chal-
lenge in having undergraduate students work with these
specification classes is providing adequate supporting mate-
rial, in the forms of reference material, a range of existing ex-
amples applied to software specification (since this is a distinct
skill from learning specification forms themselves [24, 25]),
and tool support for students to build intuition. Historically,
this has limited the options to temporal logics. Relevant
undergraduate-suitable books with extended case studies
exist for TLA+ [41, 71], SPIN [9], and mCRL2 [30], but few
other systems. Recent years have seen significant additional
efforts to supplement classic textbook approaches with other
material for teaching temporal logics [37, 39, 46, 55], though
typically in the context of a full course devoted to formal
methods broadly, temporal logics specifically. Many insti-
tutions’ curricula constraints make the addition of such a
course at the undergraduate level difficult. Some institutions
do teach temporal logics as a topic in concurrent program-
ming courses [9] (hence the idiosyncratic placement of the
ACM/IEEE-CS/AAAI mention of temporal logics); our in-
stitution is one such place, but these courses are typically
taken by a small minority of students, and the focus on small
concurrent algorithms leaves many students with an impov-
erished view of the concept’s applicability.
Other classes of behavioral specifications (beyond tem-

poral logics) generally have either only researcher-targeted
monographs [4]; no tools or unmaintained tools [1, 35]; or
both [3]. Mocking is one of two exceptions: undergraduate-
ready materials for the basics exist (Section 4.6, though
not emphasizing the behavioral aspects), and a plethora of
actively-maintained professionally-used libraries, requiring
only a one-line inclusion in a dependency management tool
for most languages. The other partial exception, property-
based testing, is discussed in Section 6.

An additional difficulty is convincing students of the broad
applicability of any software correctness tool they have not
heard is already in widespread use throughout industry. His-
torically, formal methods have been most eagerly and suc-
cessfully adopted outside academia in specific areas where
the costs of bugs are prohibitively high (such as the infamous
Intel Pendium FDIV bug [53] driving adoption of formal
methods at Intel [32], or distributed systems work at Ama-
zon [47]). Various formal methods have been successful in
such conditions because the combined costs of bugs and dif-
ficulty of finding them through other means makes the addi-
tional learning curve for tools beyond standard testing seem
“worth it.” It is generally easy to convince students of this for
those specific domains, but difficult to convince them that the
same styles of specification and thinking are just as valuable
for other domains (in other words, transfer is hard [49, 56]).
This leaves many students with the impression that these
techniques are valuable only in those specific domains, rather
than as general principles. This is a drastic improvement
over the common impression 20 years ago that anything be-
yond testing was wildly impractical, but also a far cry from
teaching students to adopt general reasoning principles re-
gardless of domain. Mocking is widely used in industry. And
because common applications deal with isolating tests from
unpredictable or difficult-to-configure dependencies, there
are a wealth of easy-to-cover domains of relevance, which
many upper-level students have prior experience with (web
requests, general networking, database connections, etc.).

4 Mocking Temporal Specifications
The core idea of mocking is to pass the code under test a
fake, testing-only implementation of some object the code
depends on. This testing-only implementation, called amock
object, has two jobs. First, it simulates specific reactions to
the client code, to trigger specific behaviors (e.g., returning
an error to trigger client error handling). Second, it either
directly checks that the client interacts as expected (e.g., call-
ing methods with expected arguments and/or in appropriate
orders), or records enough information for test code to do so.

Mocking requires no special support; it is fundamentally a
clever refactoring. However, test suites tend to require a new
mock for every test, so mocking libraries that permit mock
configuration within each test, using concise descriptions
of mock behavior — usually an embedded domain-specific
language (DSL) with some similarities to temporal logics —
are popular. These DSLs are claimed to yield more readable
descriptions of how the mock should behave; in our expe-
rience (Section 5) this is at least somewhat true, in the sense
that we do not observe mistakes seen in learning LTL [29].

In Java, one of the most popular tools for this, also used in
our teaching (Section 5), is Mockito. Configuring a Mockito
mock of Figure 1’s interface T begins with:

T dep = mock(T.class);



SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA Gordon, C. S.

interface T {

boolean isValid();

int get(int index);

}

Figure 1. A simple interface for our example.

This allocates a mocked object whose internals are pro-
vided by Mockito using reflection. Notice that this constructs
a mock for an interface with no default implementations
(though abstract and concrete classes can also be mocked in
this way). Each method at this point returns a default value
for its return type (e.g., 0 or null or false).

Now we can consider the typical form of a temporal logic
verification query: env ∧ program ⇒ spec. That is, we typi-
cally are interested in the question of whether under certain
environmental assumptions env, the program being exam-
ined satisfies the spec, where all three components are given
in the form of temporal logic formulae. Each of these three
pieces has a direct analogue in the use of mocking libraries:
the program is the actual program code, and the environment
and specification receive separate assume-guarantee-style
treatments in the form of Java code.

4.1 The Program
Whereas typical temporal logic usage requires a model of
the program (either as a temporal formula, or as a state
machine like a Büchi automaton [12] that stands in direct
correspondence to a temporal logic formula), the model in
this case is the actual program code itself. The only change
is the requirement that the code be refactored so that test
cases can use the mock instead of the original dependency.
For example, instead of instantiating the T directly, the client
code would need to accept it as an argument (directly or via
a factory), so that test code can provide the mock (here, dep)
and the normal program can provide the normal dependency.
This refactoring by itself is straightforward to motivate

to students. Every student understands that when testing
code whose behavior depends on the time of day, you want
to be able to swap out the time source for testing: no one
wants to stay at work past 5pm just to run a test case for
functionality triggered after close of standard US business
hours, or wait for a holiday to test holiday behavior.3 Even
better, this type of refactoring often benefits not only testing,
but functionality as well: the system may want to support a
choice of local time or a network time server when available.

4.2 Assume: Specifying Environmental Behaviors
Method behaviors can be configured using a DSL consisting
of method calls on dep. For example,

when(dep.isValid()).thenReturn(true);

3A few students have had the good fortune of running DrRacket on Hal-
loween, and can appreciate that it was tested in advance.

configures dep.isValid() to always return true. We could
also configure it to throw an exception:

when(dep.isValid()) // □(isValid ⇒ IllegalState)
.thenThrow(new IllegalStateException());

Critically, chained calls mimic state changes:4

// (¬isValid) W
(

isValid ∧ return(true)∧
⃝(□(isValid ⇒ IllegalState))

)
when(dep.isValid()).thenReturn(true)

.thenThrow(new IllegalStateException());

The above code configures the first call to isValid() to
return true (if it occurs, which is not required — this is
the purpose of the weak until operator), and all subsequent
calls will throw the specified exception. (The LTL formula
in the comment uses weak until to enforce that the first call
returns true.) Behaviors can also be input-dependent, using
both literals and the matchers (essentially, predicate objects)
common to advanced JUnit usage:

when(dep.get(0)).thenReturn(1);

when(dep.get(greaterThan(0))).thenReturn(2);

when(dep.get(lessThan(0)))

.thenThrow(new IllegalArgumentException());

Semantically, in the casewhere no specifications ofmethod
behavior overlap and disagree, the series of when calls can
be intepreted as the conjunction of temporal logic clauses.
An individual call chain of the form:

when(𝑑.𝑚(𝑎𝑟𝑔𝑠)).thenX𝑖 (𝑣𝑖 )
𝑛

can be interpreted as a temporal logic formula requiring
that from the initial state, the 𝑖th call with matching argu-
ments returns or throws the 𝑖th value, and for all matching
calls after the 𝑛th, the behavior for the 𝑛th call is used. In
the case of overlap the last specification wins (though the
documentation recommends avoiding this).

A natural question for instructors familiar with temporal
logics is whether one can define recurring alternating or
evolving behavior. Not all mocking frameworks permit this,
but Mockito includes a way to provide custom code to com-
pute a behavior for the mockedmethod (thenAnswer), rather
than simply providing values or exceptions. If that custom
code captures state, it can change its behavior over time, and
if the state is shared with handlers for other methods it is
possible to coordinate interactions of mocked methods. This
use is of course less declarative.

4.3 Guarantee: Asserting Interactions
Mocking frameworks augment traditional testing assertions,
they do not replace them. So for example, if a client is sup-
posed to return a particular value, or value with a particular

4The weak until operatorW is like “until” but doesn’t require the second
condition to happen, if the first remains true: 𝜙 W 𝜓 ≡ (𝜙 U 𝜓 ) ∨ (□𝜙 )



Mocking Temporal Logic SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA

property, when run with a particular mock, those checks are
performed the traditional way (e.g., with JUnit assertions).
Mockito provides the ability to check properties of how

the code under test interacted with the mock in the past.
Mocks record the sequence of method calls made after all
configuration calls, providing a finite trace of interactions
over which assertions can be made. These properties are
evaluated at the end of the trace, so we use the past-time
variant of eventually, “previously” (^−1, at some point in the
past) to indicate the temporal logic analogues.

Simple assertions can verify that certain calls occurred at
some (any) point before the end of execution, like checking
that get was called with 0 at some point:

verify(dep).get(0); // ^−1 (get(0))
There are extensions to check that interactions never oc-
curred (verify(dep, never()).get(1)), or occurred some
number of times using matchers (the never() above is actu-
ally a matcher accepting 0, and matchers such as times(5)
and and(atLeast(2),atMost(4)) work).
By default, successive assertions are conjoined, that is

verify(dep).get(0); // ^−1 (get(0))
verify(dep).get(1); // ∧^−1 (get(1))
asserts the same properties as if the lines were swapped.
Asserting that certain interactions took place in a particular
order requires a layer of indirection:

InOrder o = inOrder(dep);

o.verify(dep).get(0); // ^−1 (get(0) . . .
o.verify(dep).get(1); // . . . ∧ ^(get(1)))
asserts that elements 0 and 1 were retrieved in that order, by
writing the checks in that order. Additional setup can assert
the relative order of interactions across multiple mocks.

There are two main differences between typical LTL spec-
ifications and mock specifications. First, because this is a
testing framework, all specifications are necessarily over fi-
nite traces. Second, because assertions are typically checked
at the end of a test case, mocking libraries are tailored for
past-time temporal assertions — the verify calls are evalu-
ated in the last state of the execution rather than the first.
(Note, however, that the mock behaviors configured with
when remain forward-time declarations, as they are estab-
lished prior to (subject) program execution, and without
knowing the length of the execution trace.

4.4 Putting It All Together
Figure 2 gives a longer example of a full JUnit test demon-

strating the mock configuration as specifying an environ-
ment, the program (fragment) under test, and a specification
of expected program behavior under that environment. Com-
ments give corresponding (future-time) LTL specifications
of the mock/environment viewed from before program ex-
ecution in the “Environment” section, and corresponding

@Test public void checkValid() {

// Environment

T dep = mock(T.class);
//□(isValid ⇒ return(true))
when(dep.isValid()).thenReturn(true);
// □(∀𝑛 ≠ 0. get(𝑛) ⇒ IllegalArg)
when(dep.get(lessThan(0))).thenThrow(

new IllegalArgumentException());

when(dep.get(greaterThan(0))).thenThrow(

new IllegalArgumentException());

// ¬get(0) W (get(0)∧...
// ...return(3) ∧ ⃝□(get(0) ⇒ return(5)))
when(dep.get(0)).thenReturn(3).thenReturn(5);

// Program

Client c = new Client(dep); // pass mock

int result = t.sumValidElements();

// Specification

// finalProgramResult = 3
assertEqual(3, result);

// ⋄−1 (get(0) ∧ ⋄−1 (isValid()))
// equivalently ⋄−1 (isValid() ∧ ⋄(get(0)))
InOrder o = inOrder(dep);

o.verify(dep).isValid();

o.verify(dep).get(0);

}

Figure 2. A longer example of env ∧ program⇒ spec.

(past-time) LTL specifications of expected program behavior
in the “Spec” section. These comments are only for clarity
here regarding the association between mock configuration
and verification and LTL; we never show students formal
LTL notations and do not ask for their use. The mock is
configured to always return true for isValid(), and throw
an IllegalArgumentException when asked for elements
at non-zero indices. For index 0, if get(0) is ever called,
that call returns 3 and afterwards subsequent calls return 5.
Expressing this in LTL is quite involved, requiring the weak
until operator W. After calling the code under test (passing
the mock dependency), the test checks the final result, and
verifies that isValid() was called before get(0). For space
we check less than we might for a summation.

This demonstrates the typical shape of a complete test in-
volving mocks, though some cases involve the construction
of more interesting data structures (e.g., if the equivalent
of sumValidElements took arguments). The three segments
must always occur in this arrangement. The mock (environ-
ment) must be configured prior to being passed to the code
under test (the constructor, or other API call where the mock
is passed, might immediately interact with it). The “program”



SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA Gordon, C. S.

(fragment) under test must come before the assertions, which
are eagerly evaluated. The regularity of this structure, and
the fact that it parallels the common “Arrange-Act-Assert”
structure of input-output unit tests, seem to help students
structure their tests.

4.5 Putative Advantages of the Mocking Approach to
Temporal Specifications

Syntax. As suggested above, because the specifications
are expressed in a subset of Java (and the students entering
this course have previous experience with Java), these speci-
fications avoid preemptively discouraging students who are
wary of formal notation due to previous struggles in math,
logic, or CS theory courses. (Similar arguments apply to
mocking libraries embedded in other languages.)
The fact that the “syntax” for specifying assumptions

(when) and checking guarantees (verify) are clearly distinct
seems to alleviate confusion regarding which parts of a log-
ical specification serve what roles. In this setting, the break-
down into env ∧ program ⇒ spec has crisp syntactic dis-
tinctions: env is anything with a when, spec is anything with
an assert or verify, and everything else is the program
being tested. In the case of Mockito specifically, the syntac-
tic difference between specifying dependency behavior (as-
sumptions) and client code requirements (guarantees) makes
explicit which part of a specification is for what purpose.

Complementing Other Material. Unlike standard tem-
poral logics, students see the applicability of mocks imme-
diately, and see it as a natural complement to other software
testing discussions. Many of the natural applications ofmock-
ing deal with dependencies which are already abstracted and
passed, via dependency injection or explicit configuration:
abstractions over backing stores (local, remote, varied for-
mats, replicated or not); messaging channels (local IPC vs. re-
mote); platform (OS) abstractions. These topics tend to arise
in other classes students have already taken or are taking
concurrently (networking, systems programming, courses
with open-ended projects). Students who have taken a course
writing sockets-based networking code or web requests are
often particularly eager to pick up mocks.

Building to Temporal Logics. While mocking libraries
are typically imperative under the hood, as in our earlier ex-
amples, they are largely used as declarative specifications in
the style of a typical logical specification: the order of when
clauses is immaterial, and in practice most verify clauses
focus on checking whether or not certain interactions be-
tween client and mock occurred at all. Only the InOrder
verification reflects an imperative nature.

This bit of imperative leakage into the specifications exists
in all widely-used mocking libraries, though it is not fun-
damental. Samimi et al. [57] propose fully declarative mock
specifications closer in flavor to temporal logic, though also
note that one of the primary advantages of the established

DSL style of mock (and assertion) specifications is that they
are perceived as lower-overhead and less intimidating.

4.6 Teaching Materials
Most textbooks on software testing do not address mocking
at all. In fact, we are aware of only 4 that discuss mocking,
and these still do not discuss behavioral mocking over time
in depth. So pushing students to think about changes in be-
havior over time requires going beyond current off-the-shelf
teaching materials. Tarlinder’s 2016 Developer Testing [69]
mentions the ability to have subsequent calls to a method
behave differently just once, with a trivial example, and no
explanation of why this might be valuable. The latest 2020
edition of JUnit in Action [70] gives a simple example of this,
updated from earlier editions [67]. Aniche’s 2022 Effective
Software Testing [5] does not mention this possibility, nor
does Okken’s updated (2022) Python Testing with pytest [48].
None of these books discuss verifying that interactions with
mocks occur in the specified order, emphasizing the original,
primary goal of mocks: isolating code under test from de-
pendencies which may have unpredictable or environment-
dependent behavior.

This standard coverage does reinforce the idea of specify-
ing the environment as part of a specification, and gets stu-
dents familiar with the basics of the mocking DSL, in a form
where all environment specifications are simple “always”
(□) properties and all verifications are simple “previously”
(^−1) properties. So it is an effective foundation for building
to temporal properties. For Mockito, the chaining of thenX
methods and the use of InOrder verification are syntactically
modest additions beyond the coverage common to the three
Java-centric books above; extensions for other frameworks
and in other languages are similarly (syntactically) modest.

As with LTL, the two key challenges are teaching students
to think about behaviors over time (rather than single-round
input-output behavior), and teaching students how to for-
malize behaviors described in natural language in an un-
ambiguous notation. We cover these by building atop basic
non-temporal mocking material like that above.

5 Experience
We have taught mocking through this implicit temporal logic
lens for the past 7 years (starting in the 2017-2018 academic
year), to roughly 70 students per year, in a broad-coverage
software engineering course focused on software quality,
largely through the lens of testing. The course is required for
software engineering students, serves as an elective for com-
puter science students, and is taken primarily by upper-level
students. Prior to teaching about mocking, we review classic
closed- and open-box testing, code coverage, and in more
recent years basic property-based testing. Mocks are covered
at the end of a week that discusses stateful testing in general,
including a high-level overview of state machine testing [11]



Mocking Temporal Logic SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA

to come up with method call sequences that drive an object
with state into interesting conditions, though students are
not asked to directly apply state machine testing — they are
only asked to actually work with mocks in assignments.

Approach. The introduction to mocking itself starts with
a typical framing for teaching this material, focusing on iso-
lating code from its dependencies for repeatable and efficient
unit testing (e.g., replacing a dependency used to check the
current time, or calls to expensive external dependencies
like databases), in line with textbooks selected for the course
in part based on this goal. The textbooks (initially Tarlin-
der [69], later Aniche [5]) broach coverage up to the use of
mocks which verify a that simple set of operations occur,
though not in any specific order.
During lecture, a live demo is given where various small

tests pass and fail based on changes to the mock specification
and what we verify, to give students a sense of what each
part of the assume (Section 4.2) and guarantee (Section 4.3
portions of the test mean. The three pieces of these tests are
explicitly connected to the common three-piece structure of
unit tests, commonly known as “Arrange-Act-Assert” (which
correspond almost perfectly to env, program, and spec, with
the exception of arranging other non-mocked input values
to the tested code). This is the jumping off point for one of
the course’s homeworks. Lecture material does not discuss
temporal logic directly at all.5 Instead, after showing small
examples of mocks changing behavior over time, we solicit
student examples of cases where they have encountered a
dependency that returns different values during repeated
interactions. Most students have previously encountered
various subsets of stateful network connections (via sockets,
or payment or login APIs), iterators, database connections,
local file APIs, control inversion in GUIs (polling user input),
low-level device APIs, and other examples.

Practice and Assessment. Each year we have given stu-
dents an assignment to test a client of an FTP-like network
connectivity library given only a Java interface (with Javadoc
comments) for the server connection (plus the documenta-
tion forMockito, a Java mocking library). They are instructed
to test the behavior of the client code corresponding to dif-
ferent scenarios depending on which methods of the server
connection interface return what kinds of data or errors.
Each scenario requires students to configure a mock of the
server connection, run the client code with that specific
mock, and assert properties of the resulting execution. This
setup exposes several of the features highlighted earlier:

• The connection being mocked acts as the environment
• The client under test is the system being specified

5Some iterations of the course have momentarily mentioned temporal logics
several weeks after this assignment when discussing static analysis tools,
but we have never discussed this for the mocking assignment.

This setup avoids some challenges typical of teaching tempo-
ral logic directly. First, the configuration and assertion lan-
guages, while embedded domain-specific languages provided
by Mockito, are Java code, which is less intimidating to stu-
dents than LTL; no student has ever expressed apprehension
about Mockito’s syntax.6 Second, the client-server setting is
a natural setting for assume-guarantee reasoning: students
recognize that in making a series of requests to a server, the
server may respond differently based on the particular data
available, and that testing the client together with the server
and an explicit (or generated) dataset is often impractical.

Students are not given detailed introductions to Mockito,
but are given template code that constructs an almost-trivial
mock of the interface they need to simulate, and pointers
to the specific sections of the Mockito documentation re-
quired to complete the assignment (in total, this fragment
amounts to roughly 3.5 printed pages’ worth of generously
formatted text, most of which is example code). The assign-
ment asks students to write 14 tests (some similar to each
other). One representative test is “Test that if the connec-
tion succeeds but there is no valid file of that name, the
client code calls no further methods on the connection ex-
cept closeConnection. That is, the client code is expected
to call that method exactly once, but should not call other
methods after it is known the file name is invalid.” Another is
“Test that if the initial server connection succeeds, then if an
IOException occurs while retrieving the file (requesting, or
reading bytes, either one) the client still explicitly closes the
server connection.” Some tests deal with longer scenarios (10–
12 client-mock interactions). Some of the tests (like the sec-
ond above) are intentionally under-specified, which prompts
many students to approach course staff with questions about
under-specification.7 All of the tests require students to con-
ceive of a series of behaviors (interactions between client
and server), correctly configure the mock (environment) to
mimic the server side, and write appropriate verify calls to
check that the client reacted appropriately. Thus these do
test students’ ability to convert high level descriptions of
expected (conditional) behavior into precise behavioral spec-
ifications, in the form of mocks rather than temporal logic.

5.1 Student Reactions and Outcomes
Students generally do quite well on the assignment, with
most students writing correct mocks and correct assertions
for all but one or two scenarios.8 The provided client code
has multiple bugs which students are expected to identify
through testing: they are told multiple scenarios will result
in test failures for correct tests, but are not told which. This

6In contrast, when we teach LTL and TLA+ in graduate courses, syntax is
often a major stumbling block.
7This is a cross-cutting, explicitly-taught topic throughout the course; any
plausible interpretation is given credit.
8Note that at the moment, ChatGPT is terrible at using mocks.



SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA Gordon, C. S.

appears to result in students thinking through their spec-
ifications (mocks and assertions) more carefully based on
students’ self-reported experiences, because it reduces the in-
clination to automatically interpret a passing test as correct.

The course is typically taught in the fall quarter, at a uni-
versity where roughly 2/3 of CS and SE students are on a
spring-summer co-op cycle (i.e., those students are in class
for roughly 6 months in fall and winter quarters, and spend
roughly 6 months in the spring and summer quarters in full-
time co-op positions. Many students choose this specific uni-
versity because the co-op program (3 six-month co-ops over
5 years) offers significant industry experience before gradu-
ation, and as a result the student body skews more towards
career-focused students than other CS and SE programs.

This assignment has been popular among students in the
course for all 7 years it has been used, based on unsolicited
direct student feedback and end-of-course evaluations. Each
year a small number of students report using mocking on
an earlier co-op experience, and a larger number report it
coming up in interviews for upcoming co-ops or full-time
roles during the course.9 This evidence of employer interest
in mocking seems to reinforce student attention for even the
most application-minded students. We do not have specific
evidence that time-varying mocking specifically is valued;
empirical studies of mocking do not investigate that level of
detail in how mocks are used [64, 65, 68] and few resources
on mocking distinguish between mocks that do or do not
change behavior over time.

5.2 Expected and Unexpected Benefits
As anticipated, students were not intimidated by notational
challenges; learningMockito is perceived bymost students as
similar to learning any other testing library. Students are able
to learn the tool quite quickly. Newcombe et al. [47] report
experienced engineers being productive in TLA+ in about 2
weeks of spare time; our undergraduates are given 2 weeks
to learn Mockito and apply it to an abstract problem specifi-
cation and generally succeed, while taking 3-4 other courses.

We initially anticipated spending significant time clarify-
ing the detailed semantics of the specifications and assertions.
In practice, we have spent almost no time on this at all in 7
years. The Mockito documentation is concise and example-
driven; students effectively learn a set of specification pat-
terns [22], which they seem to be able to apply effectively
based on the documentation alone. Instead almost all (faculty
and TA) office hour discussions related to the assignment are
devoted to understanding the event orderings implied by the
English specifications, which is one of the intended main ac-
tivities for the assignment, as it is one of the core intellectual
challenges in formalizing any behavioral specification.
9Fall term is the most common interview time for both final-year students
seeking full-time roles and earlier students seeking a spring-summer co-
op; nearly half of the undergraduate CS majors, and all undergraduate SE
majors, are on this co-op cycle.

An unexpected benefit of emphasizing behavioral specifi-
cations via mocking rather than temporal logic is that many
semantic errors seem to be preempted as well. Greenman
et al. [29] report on the kinds of mistakes made in translating
English into LTL, and comparing the categories of mistakes
to those made by students on this assignment is enlightening:
most kinds of errors they observe are difficult or impossible to
make with Mockito’s specifications. This appears to be partly
incidental to Mockito’s tests having different expressivity
from LTL, and partly due to using a DSL in a familiar PL.
Part of the difference is likely due to working with dif-

ferent classes of linear-time models. Greenman et al. study
mistakes with state-based LTL, where each point in time is
a state of the system, so many properties can be true in a
given state. Mockito’s specifications deal with event-based
linear-time properties, where the moments in time are not
states of the system but which method of the mock is being
called (with which arguments). As a result, many properties
that would be expressed with LTL’s until operator do not
make sense (those describing state invariants). This immedi-
ately suppresses themost common sources of English-to-LTL
misconceptions in Greenman et al.’s study. Greenman et al.
also note that participants sometimes forget that 𝜙 U 𝜓 re-
quires 𝜓 to eventually become true. As noted in Section 4,
the closest common analouge in Mockito (chaining when con-
figurations) corresponds to the weak until operator which is
consistent with that expected behavior.

The next most common family of mistakes in their study
deal with so-called “implicit” operator assumptions: cases
where a participant in their study needed to explicitly write
a temporal operator, but did not, presumably believing that
certain parts of the formula would implicitly be shifted by an
appropriate temporal operator. The most common of those
were cases of assuming an implicit 𝐹 (finally / eventually)
operator. In Mockito, all properties are evaluated at the end
of a finite trace with regard to earlier execution, so are implic-
itly eventually/finally (or previously) properties, removing
opportunities to make this mistake. The next most common
mistake in Greenman et al.’s study was assuming an implicit
always/globally operator. In an event-based model, few “al-
ways” properties make sense, though some desirable proper-
ties are difficult to express (and therefore, rarely expressed in
practice with mocks), such as always-eventually properties.

To some extent the way time evolves in Mockito specifica-
tions is more similar to English than LTL specifications. No-
tice that while the conditionals (“if A, B”) in the assignment
examples above do not explicitly say that the conclusion
of the implication holds later than the antecedent, readers
infer this. Linguists discuss this phenomenon (in almost all
natural languages) through the concept of a narrative “ad-
vancing the time of discourse” [19]: simply continuing a
narrative of a situation implicitly advances the time being
discussed. However, in LTL, every shift in time must be ex-
plicitly marked with a modal operator. Mockito’s DSL in



Mocking Temporal Logic SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA

Java does not perfectly adhere to discourse semantics, but is
closer in some ways: chaining a thenReturn later in a chain
of calls corresponds to it happening later in execution, and
InOrder is similar (things mentioned later are expected to
happen strictly later). Effectively, the LTL modalities that
have analogues in Mockito’s Java DSL are implicit in the
DSL, as in natural language discourse.
One class of mistakes from Greenman et al.’s study that

does appear in student submissions for mocking assignments,
and is the most common conceptual mistake in our experi-
ence, is what Greenman et al. call BadStateIndex mistakes:
where a property is meant to be true at a certain point in a
trace, but a developer instead writes a property that states
its truth at a different point in the trace. Typically for the
mocking assignment this takes the form of having a mocked
method whose behavior changes over time throw an ex-
ception or return a specific value (e.g., one triggering ter-
mination of a loop) one call earlier or one call later than
is appropriate for the intended property (sometimes, not
always, by virtue of misaligning two parts of the specifica-
tion which are always executed in pairs at runtime, such
as a check for availability of more data and a request for
more data if the first call is successful). This results in not
triggering the intended client behavior.

5.3 Student Challenges
Most student questions to course staff are about uncovering
subtleties of thinking and speaking/writing about these se-
quences of interactions – both the sequencing (the temporal
aspect) and the two-party (assume-guarantee) aspect — on
their way to deciding how to express the intended conditions
with Mockito. These questions are similar to those we get
when teaching TLA+ in a graduate course, so this challenge
is expected and indicates overlap in the reasoning princi-
ples are being exercised by mocking (over time) and TLA+.
A small number of students need reminding that Mockito
can give different behaviors to subsequent calls to a mocked
method, having forgotten about the in-lecture demonstra-
tion of chaining thenReturns and skimmed through the
documentation too fast. But a quick reminder suffices.

Among the students who do poorly, there are a few recur-
ring themes in why and in what way they went astray. Most
students who make BadStateIndex mistakes in Greenman et
al.’s taxonomy do so only once or twice, not systematically.
The most common repeated mistakes are not due to misun-
derstanding the scenarios. Some students focus so heavily
on configuring the mocks via when that they simply forget to
write the assertions at all. Fewer include appropriate verify
calls but omit traditional JUnit assertions to check that the
client returns an appropriate value for the tested scenario,
having become convinced that JUnit and Mockito cannot
mix (despite examples mixing them in lecture).
A less-common tooling-specific difficulty relates to im-

plicit mock configurations. If a method’s behavior is not

explicitly configured for some method input, it returns the
default value of the return type; for booleans, some students
either simply forget to configure a needed method, or as-
sume that unconfigured boolean-returning mock methods
return true though the default is actually false. In these
case, tests often pass for the wrong reason (by not testing the
intended behavior). This is reversed from the corresponding
situation in LTL, where omitting information about some
behavior would cause verification to fail.

Some students who are accustomed to always reading the
code they are working with line-by-line struggle to adapt
their own debugging practices to mocks, because it is im-
practical (or due to dynamic bytecode rewriting, impossible)
to read or step through the mock configuration or execution
in detail. In contrast to tracing code down to a library, they
cannot consult documentation for the behavior of a mocked
call the way they would for a network library call, because
they themselves configured the behavior semi-declaratively.
So understanding the execution of a test without a debugger
requires solid understanding the mock configuration lan-
guage. It is still possible for students to step through their
test code in a debugger if they do not attempt to enter the
mocked methods. In effect students are forced to treat speci-
fications abstractly, though this may differ for other mocking
frameworks or other languages.
A less common point of struggle that is directly related

to the assignment’s intended conceptual challenges is that a
small but noticeable number of students are not accustomed
to speaking or writing about how the state of a system or
component changes over time at a higher level than concrete
scenarios with all details present (e.g., in a specific execution),
though they have experience working with at least some of
the examples of Section 5 in earlier courses. These students
benefit from talking through smaller, simpler examples one-
on-one, often file I/O examples, which students tend to have
the most experience with.

5.4 Contrasting Instruction on Temporal Logic
The term after we teach this material, there is a graduate
course on software quality. The graduate course is structured
around reading research papers (mostly classic or highly-
influential applied papers), with relevant assignments as well.
When we teach that course (the contents vary by instructor),
students spend 2 weeks reading and discussing papers intro-
ducing the roles of formal specification (Wing [72] and Butler
and Johnson [13] one week) and temporal logic (Newcombe
et al.’s discussion of TLA+ at Amazon [47], and the intro-
ductory portions of Wayne’s Practical TLA+ [71] the next).
The audience for that course is predominantly masters-level
students with undergraduate degrees from other universities.
Class time discusses the readings, covers the semantics

of basic temporal operators (those common to both LTL
TLA+ [44]), and includes demonstrations of TLA+ [41] and
the associated model checker. Students are then asked in an



SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA Gordon, C. S.

assignment to write TLA+ specifications for a small buggy
traffic light model (itself given in PlusCal), and find those
bugs. This assignment was in fact the original inspiration for
the the assignment described in Section 5; a desire to cover
similar types of specifications with undergraduates, without
taking as much time to ease students into formal notation
and without focusing on such a small target application,
was the original motivation for considering mocks in the
undergraduate course.
We have limited experience with a small number of stu-

dents who took the undergraduate course with the mock-
ing work proceeding to the graduate course when we have
taught it (all undergraduates we have taught in this graduate
course previously took the undergraduate course). Under-
graduates who learned mocking of behavioral specifications
in the undergraduate course anecdotally appear to pick up
TLA+ more easily than graduate students who have not,
based on one-on-one discussions over the years and high
grades on the TLA+ assignment. However, this is strongly
confounded by the fact that undergraduates are already re-
quired to have strong grades in all earlier courses for the de-
partment to permit them to take any graduate course, while
the graduate students merely need to be in the program. So
this should definitely not be taken as evidence that students
with prior exposure to mocking necessarily learn temporal
logics better or more easily than those who have not.

Likely more informative is the nature of the questions and
discussions raised by students in the two contexts. Aside
from syntactic questions (TLA+ syntax justifiably garners
more questions than Mockito’s DSL) and discussion of it-
erative liveness properties [2] (not expressible via mocks),
the conceptual questions from students learning TLA+ and
Mockito are remarkably similar, and deal primarily with
questions of how to draw formal distinctions based on natu-
ral language descriptions of expected changes in behavior.

6 Alternatives
Earlier we noted that temporal specifications are only a sub-
set of the broader class of behavioral specifications. It is
worth considering what other kinds of behavioral specifi-
cations might be introduced at the undergraduate level, in
the context of a full course on formal methods or temporal
logic being out of reach. As noted in Section 3, property-
based testing (PBT) is the only other approach covering some
behavioral specifications that has undergraduate-ready ma-
terial and working tools for hands-on experience.

PBT [15] is increasingly taught to undergraduates [73] (in-
cluding in this course), but despite its long-established [16]
support for testing imperative programs (which is used in
industry [7, 14, 27, 33, 45]), that aspect of property-based test-
ing is taught even more rarely than temporal logic. This style
of specification does not directly describe overall behaviors
across time. The standard PBT approach to testing stateful

systems is via a form of model-based testing: a (guided) ran-
domly generated sequence of program actions is applied to
both the code under test and a more abstract model. The
generation process on sequences of operations can filter to
include only sequences for a particular scenario in order to
check properties of the code in that situation, so does permit
a form of assume-guarantee type split in the specification.

The test passes if the expected relationship holds between
the final state of the real code and the final state of the
model, and any results returned have the expected prop-
erties. This results in the specification being less directly
stated than in input-output properties — it is essentially
tailored to checking simulation, which is lower-level (and
more code-intensive to implement) than typical behavioral
specifications. (It also emphasizes testing a dependency in
a client environment, rather than testing client code in an
environment describing abstracted dependency behavior.)
We have had a small number of honors students study

these techniques for their honors projects.10 But in the con-
text of broad-coverage software testing and quality course,
even these strong students spend significant time just learn-
ing how to organize the pieces of the specification, which
tends to end up taking much more code to specify. This is rea-
sonable for checking simulation with a model, but verbose
enough to be a distraction for lighter-weight properties like
checking that certain methods were called in order, and such
properties also require manually implementing relevant state
in the model — which is precisely what mocking DSLs avoid.

7 Conclusions
Wehave described 7 years of experience usingmocks to teach
behavioral specification in an undergraduate software engi-
neering course, rather than ignoring explicitly-behavioral
specifications or reaching for classic but seemingly more
(learning-)time-intensive approaches like temporal logics.
Our experiences have been largely positive, in the sense
that most students are able to grasp and use this class of
behavioral specification — which has clear relation to Linear
Temporal Logic — in a relatively short time. While there
are reasons to prefer teaching temporal logics directly when
possible, we believe that teaching mocking with mock be-
havior varying over time is a valuable alternative that fits
into more undergraduate curricula, and has advantages in
terms of student approachability and motivation.

Acknowledgments
This work was supported by NSF grants CCF-2220991 and
CCF-1844964.

10Honors students at our university earn a special “honors” designation
by doing extra projects in a certain number of courses during their degree.
Acceptance to the program that permits this is highly competitive, so these
are among the strongest students at the university.



Mocking Temporal Logic SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA

References
[1] 2017. OMG Unified Modeling Language (OMG UML). https://www.

omg.org/spec/UML/2.5.1/PDF Version 2.5.1.
[2] Bowen Alpern and Fred B Schneider. 1985. Defining liveness. Infor-

mation processing letters 21, 4 (1985), 181–185.
[3] Torben Amtoft, Hanne Riis Nielson, and Flemming Nielson. 1999. Type

and effect systems: behaviours for concurrency. World Scientific.
[4] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos,

Giuseppe Castagna, Pierre-Malo Deniélou, Simon J Gay, Nils Ges-
bert, Elena Giachino, Raymond Hu, et al. 2016. Behavioral types in
programming languages. Foundations and Trends® in Programming
Languages 3, 2-3 (2016), 95–230.

[5] Maurício Aniche. 2022. Effective Software Testing: A developer’s guide.
Manning Publications.

[6] Mark Ardis, David Budgen, Gregory W Hislop, Jeff Offutt, Mark Se-
bern, and Willem Visser. 2015. SE 2014: Curriculum guidelines for
undergraduate degree programs in software engineering. Computer
48, 11 (2015), 106–109.

[7] Thomas Arts, John Hughes, Ulf Norell, and Hans Svensson. 2015. Test-
ing AUTOSAR software with QuickCheck. In 2015 IEEE Eighth Inter-
national Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 1–4.

[8] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model check-
ing. MIT press.

[9] Mordechai Ben-Ari. 2006. Principles of concurrent and distributed pro-
gramming. Pearson Education.

[10] Mordechai Ben-Ari. 2012. Mathematical logic for computer science.
Springer Science & Business Media.

[11] Robert Binder. 2000. Testing object-oriented systems: models, patterns,
and tools. Addison-Wesley Professional.

[12] J. Richard Büchi. 1960. Weak Second Order Arithmetic and Finite
Automata. Zeitschrift für Math. Log. und Grundl. der Math. (1960).

[13] Ricky Butler and Sally Johnson. 1993. Formal methods for life-critical
software. In 9th Computing in Aerospace Conference. 4516.

[14] Alessandro Cimatti, Sara Corfini, Luca Cristoforetti, Marco Di Natale,
Alberto Griggio, Stefano Puri, and Stefano Tonetta. 2022. A comprehen-
sive framework for the analysis of automotive systems. In Proceedings
of the 25th International Conference on Model Driven Engineering Lan-
guages and Systems. 379–389.

[15] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight
tool for random testing of Haskell programs. In Proceedings of the fifth
ACM SIGPLAN international conference on Functional programming.
268–279.

[16] Koen Claessen and John Hughes. 2002. Testing monadic code with
QuickCheck. In Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell. 65–77.

[17] Edmund M Clarke, E Allen Emerson, and A Prasad Sistla. 1986. Auto-
matic verification of finite-state concurrent systems using temporal
logic specifications. ACM Transactions on Programming Languages
and Systems (TOPLAS) 8, 2 (1986), 244–263.

[18] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick
Bloem, et al. 2018. Handbook of model checking. Vol. 10. Springer.

[19] Elizabeth Couper-Kuhlen. 1989. Foregrounding and temporal relations
in narrative discourse. Essays on tensing in English 2 (1989), 7–29.

[20] Svetlana V. Drachova, Jason O. Hallstrom, Joseph E. Hollingsworth,
Joan Krone, Rich Pak, and Murali Sitaraman. 2015. Teaching Math-
ematical Reasoning Principles for Software Correctness and Its As-
sessment. Trans. Comput. Educ. 15, 3, Article 15 (Aug. 2015), 22 pages.
https://doi.org/10.1145/2716316

[21] Svetlana Drachova-Strang. 2013. Teaching and assessment of math-
ematical principles for software correctness using a reasoning concept
inventory. Ph. D. Dissertation. Clemson University. http://tigerprints.
clemson.edu/all_dissertations/1095/

[22] Matthew B Dwyer, George S Avrunin, and James C Corbett. 1999.
Patterns in property specifications for finite-state verification. In Pro-
ceedings of the 21st international conference on Software engineering.
411–420.

[23] E Allen Emerson and Joseph Y Halpern. 1986. “Sometimes” and “not
never” revisited: on branching versus linear time temporal logic. Jour-
nal of the ACM (JACM) 33, 1 (1986), 151–178.

[24] Kate Finney. 1996. Mathematical notation in formal specification: Too
difficult for the masses? IEEE Transactions on Software Engineering 22,
2 (1996), 158–159.

[25] Kate M Finney and Alex M Fedorec. 1996. An empirical study of
specification readability. In Teaching and Learning Formal Methods.
Academic Press.

[26] Norbert E Fuchs, Uta Schwertel, and Sunna Torge. 1999. Controlled
natural language can replace first-order logic. In 14th IEEE International
Conference on Automated Software Engineering. IEEE, 295–298.

[27] Harrison Goldstein, Joseph W Cutler, Daniel Dickstein, Benjamin C
Pierce, and Andrew Head. 2024. Property-Based Testing in Practice. In
Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering. 1–13.

[28] Colin S Gordon and SergeyMatskevich. 2023. Trustworthy Formal Nat-
ural Language Specifications. In Proceedings of the 2023 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. 50–70.

[29] Ben Greenman, Sam Saarinen, Tim Nelson, and Shriram Krishna-
murthi. 2023. Little Tricky Logic: Misconceptions in the Understanding
of LTL. The Art, Science, and Engineering of Programming (2023).

[30] Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and
analysis of communicating systems. MIT press.

[31] Orna Grumberg and Helmut Veith. 2008. 25 years of model checking:
history, achievements, perspectives. Vol. 5000. Springer.

[32] John Harrison. 2010. Formal methods at Intel—An overview. In Second
NASA Formal Methods Symposium, Vol. 8. 179–195.

[33] John Hughes, Benjamin C Pierce, Thomas Arts, and Ulf Norell. 2016.
Mysteries of dropbox: property-based testing of a distributed synchro-
nization service. In 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE, 135–145.

[34] Michael Huth and Mark Ryan. 2004. Logic in Computer Science: Mod-
elling and reasoning about systems. Cambridge university press.

[35] Jonathan Jacky, Margus Veanes, Colin Campbell, and Wolfram Schulte.
2007. Model-based software testing and analysis with C. Cambridge
University Press.

[36] Cliff B. Jones. 1983. Tentative steps toward a development method for
interfering programs. ACM Transactions on Programming Languages
and Systems (TOPLAS) 5, 4 (1983), 596–619.

[37] Jan Kofroň, Pavel Parízek, and Ondřej Šerỳ. 2009. On teaching for-
mal methods: behavior models and code analysis. In Teaching Formal
Methods: Second International Conference, TFM 2009, Eindhoven, The
Netherlands, November 2-6, 2009. Proceedings 2. Springer, 144–157.

[38] Amruth N. Kumar, Rajendra K. Raj, Sherif G. Aly, Monica D. An-
derson, Brett A. Becker, Richard L. Blumenthal, Eric Eaton, Susan L.
Epstein, Michael Goldweber, Pankaj Jalote, Douglas Lea, Michael Oud-
shoorn, Marcelo Pias, Susan Reiser, Christian Servin, Rahul Simha,
Titus Winters, and Qiao Xiang. 2024. Computer Science Curricula 2023.
Association for Computing Machinery, New York, NY, USA.

[39] Markus A Kuppe. 2023. Teaching TLA+ to Engineers at Microsoft. In
Formal Methods Teaching Workshop. Springer, 66–81.

[40] Leslie Lamport. 1980. " Sometime" is sometimes" not never" on the
temporal logic of programs. In Proceedings of the 7th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. 174–185.

[41] Leslie Lamport. 2002. Specifying systems: the TLA+ language and tools
for hardware and software engineers.

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.1145/2716316
http://tigerprints.clemson.edu/all_dissertations/1095/
http://tigerprints.clemson.edu/all_dissertations/1095/


SPLASH-E ’24, October 24, 2024, Pasadena, CA, USA Gordon, C. S.

[42] Richard Joseph LeBlanc, Ann Sobel, Jorge L Diaz-Herrera, and
Thomas B Hilburn. 2006. Software engineering 2004: curriculum guide-
lines for undergraduate degree programs in software engineering. IEEE
Computer Society.

[43] Nicolas Markey. 2003. Temporal logic with past is exponentially more
succinct. Bulletin-European Association for Theoretical Computer Sci-
ence 79 (2003), 122–128.

[44] Stephan Merz. 2008. The specification language TLA+. Logics of
specification languages (2008), 401–451.

[45] Wojciech Mostowski, Thomas Arts, and John Hughes. 2017. Mod-
elling of Autosar libraries for large scale testing. arXiv preprint
arXiv:1703.06574 (2017).

[46] Tim Nelson, Ben Greenman, Siddhartha Prasad, Tristan Dyer, Ethan
Bove, Qianfan Chen, Charles Cutting, Thomas Del Vecchio, Sidney
LeVine, Julianne Rudner, et al. 2024. Forge: A Tool and Language for
Teaching Formal Methods. Proceedings of the ACM on Programming
Languages 8, OOPSLA1 (2024), 613–641.

[47] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. 2015. How Amazon web services
uses formal methods. Commun. ACM 58, 4 (2015), 66–73.

[48] Brian Okken. 2022. Python Testing with pytest. Pragmatic Bookshelf.
[49] David N Perkins, Gavriel Salomon, et al. 1992. Transfer of learning.

International encyclopedia of education 2 (1992), 6452–6457.
[50] Marian Petre. 2013. UML in practice. In 2013 35th international confer-

ence on software engineering (icse). IEEE, 722–731.
[51] Amir Pnueli. 1977. The temporal logic of programs. In 18th annual

symposium on foundations of computer science (sfcs 1977). ieee, 46–57.
[52] Amir Pnueli. 1984. In transition from global to modular temporal

reasoning about programs. In Logics and models of concurrent systems.
Springer, 123–144.

[53] Dick Price. 1995. Pentium FDIV flaw-lessons learned. IEEE Micro 15, 2
(1995), 86–88.

[54] Nicholas Rescher and Alasdair Urquhart. 1971. Temporal Logic= Library
of Exact Philosophy, Vol. 3. Springer Verlag.

[55] Raven Rothkopf, Angel Leyi Cui, Hannah Tongxin Zeng, Arya Sinha,
and SantolucitoMark. 2023. Towards the usability of reactive synthesis:
Building blocks of temporal logic. In Plateau Workshop.

[56] Gavriel Salomon and David N Perkins. 1989. Rocky roads to trans-
fer: Rethinking mechanism of a neglected phenomenon. Educational
psychologist 24, 2 (1989), 113–142.

[57] Hesam Samimi, Rebecca Hicks, Ari Fogel, and Todd Millstein. 2013.
Declarative mocking. In Proceedings of the 2013 International Sympo-
sium on Software Testing and Analysis. 246–256.

[58] Ina Schieferdecker and Andreas Hoffmann. 2012. Model-based testing.
IEEE software 29, 1 (2012), 14–18.

[59] Rolf Schwitter. 2002. English as a formal specification language. In Pro-
ceedings. 13th International Workshop on Database and Expert Systems
Applications. IEEE, 228–232.

[60] Hiroyuki Seki, Tadao Kasami, Eiji Nabika, and Takashi Matsumura.
1992. A method for translating natural language program specifica-
tions into algebraic specifications. Systems and computers in Japan 23,
11 (1992), 1–16.

[61] Christian Skalka, Scott Smith, and David Van Horn. 2008. Types
and trace effects of higher order programs. Journal of Functional
Programming 18, 2 (2008), 179–249.

[62] Colin Snook and Rachel Harrison. 2001. Practitioners’ views on the
use of formal methods: an industrial survey by structured interview.
Information and Software Technology 43, 4 (2001), 275–283.

[63] Colin Frank Snook. 2001. Exploring the barriers to formal specification.
Ph. D. Dissertation. University of Southampton.

[64] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bac-
chelli. 2017. To mock or not to mock? an empirical study on mocking
practices. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, 402–412.

[65] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bac-
chelli. 2019. Mock objects for testing java systems: Why and how
developers use them, and how they evolve. Empirical Software Engi-
neering 24 (2019), 1461–1498.

[66] Robert E Strom and Shaula Yemini. 1986. Typestate: A programming
language concept for enhancing software reliability. IEEE transactions
on software engineering 1 (1986), 157–171.

[67] Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. 2010.
JUnit in action. Manning Publications.

[68] Kunal Taneja, Yi Zhang, and Tao Xie. 2010. MODA: Automated test
generation for database applications via mock objects. In Proceedings
of the 25th IEEE/ACM International Conference on Automated Software
Engineering. 289–292.

[69] Alexander Tarlinder. 2016. Developer testing: Building quality into
software. Addison-Wesley Professional.

[70] Catalin Tudose. 2020. JUnit in action. Manning Publications.
[71] Hillel Wayne. 2018. Practical TLA+: Planning Driven Development.

Apress.
[72] Jeannette M Wing. 1990. A specifier’s introduction to formal methods.

Computer 23, 9 (1990), 8–22.
[73] John Wrenn, Tim Nelson, and Shriram Krishnamurthi. 2021. Using

Relational Problems to Teach Property-Based Testing. The art science
and engineering of programming 5, 2 (2021).

Received 2024-07-05; accepted 2024-08-08


	Abstract
	1 Introduction
	2 A Short Crash Course in Temporal Logic
	3 Teaching Behavioral Specifications
	4 Mocking Temporal Specifications
	4.1 The Program
	4.2 Assume: Specifying Environmental Behaviors
	4.3 Guarantee: Asserting Interactions
	4.4 Putting It All Together
	4.5 Putative Advantages of the Mocking Approach to Temporal Specifications
	4.6 Teaching Materials

	5 Experience
	5.1 Student Reactions and Outcomes
	5.2 Expected and Unexpected Benefits
	5.3 Student Challenges
	5.4 Contrasting Instruction on Temporal Logic

	6 Alternatives
	7 Conclusions
	Acknowledgments
	References

