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A B S T R A C T

This paper presents a study in which both the control and the shape of a Wave Energy Converter (WEC)
are optimized simultaneously. A heaving point absorber WEC is assumed. To optimize the shape of the
WEC’s buoy, nonlinear hydrodynamics need to be evaluated. One main contribution of this paper is the
integration of nonlinear hydrodynamics and nonlinear control during the optimization of the WEC’s buoy
shape. This approach is referred to as Control Co-Design (CCD). In this work, we present a control co-designed
nonlinear heaving point absorber WEC that leverages the nonlinear dynamic, static Froude–Krylov (FK) forces
to maximize power extraction. The nonlinear FK forces are approximated using a variation of the algebraic
solution; the hydrodynamic forces of the body are computed using an analytic formulation leveraging the
methods of eigenfunction expansion and separation of variables. The nonlinear geometry of the buoy is
modeled as a series of inclined panels; the inclination angles are optimized to arrive at the optimal shape.
The performance of the optimized shape is compared to that of a nonlinear spherical WEC. It is found that an
average of 20% improvement is achieved by the optimized geometry over the spherical device.
1. Introduction

Point absorber WECs are generally characterized by dimensions
smaller than the wavelength of incoming waves. These devices ex-
tract energy from the relative motion between the floating buoy and
their relatively fixed submerged base. Maximum energy extraction is
achieved when the floater resonates with the exciting wave. Since the
interaction between these device structures and the wave determines
the quantity of power generation, geometric optimization to improve
the hydrodynamic performance of wave–structure interaction (WSI)
becomes important for these devices to improve their efficiency. De-
tailed review on geometric optimization of point absorbers is presented
in Guo and Ringwood (2021a), and Garcia-Teruel and Forehand (2021).

To enable WEC technologies to reach commercial maturity within
the renewable energy sector, the Levelized Cost of Energy (LCoE) must
become competitive with other renewable energy alternatives. Optimiz-
ing the structural design, the geometry (shape and size), and the control
were some of the identified ways for cost reduction in developing WECs
by Ochs and Bull (2013). WEC optimization and control have primarily
relied on linear models, mostly due to the associated computational
cost. However, to obtain more practical results, some critical nonlinear
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factors should be considered (Korde and Ringwood, 2016). Nonlinear-
ities in the WEC dynamic model can be from different sources; the
source of nonlinearity considered in this work is the hydrodynamic
nonlinearity resulting from geometries with non-constant water surface
area.

WEC design is traditionally sequential; control engineers generally
design and tune the controllers after the wave energy converter has
been completely designed. The works in Zou et al. (2023), Bacelli
et al. (2015), Giorgi and Ringwood (2018), Na et al. (2018), Wilson
et al. (2018, 2020), Abdelkhalik and Darani (2018), Demonte Gonzalez
et al. (2021), Richter et al. (2012) have developed several innovative
formulations of controller for WECs subject to different nonlinearities.
However, there is often a mismatch in the system’s performance due to
different controllers used during the initial design optimization and the
energy-maximizing control implemented during the final deployment
of the device; it has been observed that the several stages of WEC
design and control development are inherently and non-linearly cou-
pled (Davidson et al., 2019), and a co-design approach is needed (Guo
and Ringwood, 2021b). A control co-design approach that simultane-
ously optimizes the system and the final control design has been shown
to yield superior results in various fields of engineering (O’Sullivan and
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029-8018/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.oceaneng.2024.117827
Received 13 November 2023; Received in revised form 26 March 2024; Accepted 6
 April 2024

https://www.elsevier.com/locate/oceaneng
https://www.elsevier.com/locate/oceaneng
mailto:habeeb19@iastate.edu
https://www.aere.iastate.edu/ossama/
https://doi.org/10.1016/j.oceaneng.2024.117827
https://doi.org/10.1016/j.oceaneng.2024.117827


Ocean Engineering 304 (2024) 117827H. Abdulkadir and O. Abdelkhalik

e
i
d
a

s
h
m
h
b
c
(
D

𝑧

2

u
t
c
i
s
F
f
n
h
o
n
a
0
p
t

j
T
f
F
i

i
t
l
p

Lightbody, 2017; Garcia-Sanz, 2019; Jin et al., 2019; Coe et al., 2020;
Pao et al., 2021; Giannini et al., 2022).

The main focus of this work is the concurrent design optimization of
a heaving WEC geometry and energy-maximizing control that leverages
hydrodynamic nonlinear forces to improve the overall power harvested
from the waves. The hydrodynamic nonlinearities considered result
from the geometry having a varying cross-sectional area along the
water surface, as in the case of a spherical device. In the case of
a heaving cylindrical geometric shape, the hydrostatic and dynamic
forces are calculated over a constant wetted area as the geometry at
the water surface is constant; however, with varying geometry at the
water surface, the pressure needs to be integrated over the submerged
surface instantaneously. The resulting hydrodynamic forces are called
the Froude–Krylov (FK) forces. Generally, to compute these forces at
every instant using the boundary element method or CFD would require
remeshing the submerged geometry at every step, which would be
computationally expensive. So, for ease of computing the nonlinear
FK forces, a closed-form algebraic approximation of nonlinear Froude–
Krylov (NLFK) force developed in Giorgi and Ringwood (2017), Giorgi
t al. (2021) was adopted. A more computationally expensive remehs-
ng method was used to derive the nonlinear FK forces (the static and
ynamic pressure forces) acting on a buoy within 2% error to the
nalytical approach.
An analytic approach that is based on the principle of variable

eparation and eigenfunction expansion was developed to compute the
ydrodynamic coefficients of the changing geometry during the opti-
ization. The computational expense incurred from computing new
ydrodynamic coefficients of the changing geometry is a well-known
ottleneck for geometric optimization (especially irregular waves). The
omputational cost from using numerical boundary element method
BEM) routines such as Aqwa (ANSYS, 2013), NEMOH (Babarit and
elhommeau, 2015), and WAMIT (WAMIT User Manual, 2013) is

significant and grows exponentially as the number of devices increases.
The analytic approach can accurately compute the hydrodynamic coef-
ficients assuming potential flow. Since nonlinear exciting forces (NLFK)
are considered on the geometries, the analytical method would only be
used to solve the radiation problem (the added mass and damping) con-
tributions from linear wave radiation, while the nonlinear diffraction
and hydrostatics will be solved using the algebraic method discussed
earlier.

The paper is organized as follows. In Section 2, the linear and non-
linear dynamic model of a simplified WEC is established. In Section 3,
the formulation of the analytical method to compute the hydrodynamic
coefficients is presented. Section 4 shows the control co-design problem
formulation. Simulation and results are presented in Section 5, and
finally, conclusions are presented in Section 6.

2. WEC dynamic modeling

In this section, the formulation of a linear model for a heaving WEC
is presented, and then the formulation for the algebraic approximation
for the nonlinear FK forces is introduced. Based on the nonlinear FK
formulation, the nonlinear dynamic model is presented.

2.1. Linear model

Applying Newtow’s second law of motion to modeling a single
degree of freedom WEC yields the equation:

𝑚𝒛̈ = 𝑓𝑒 + 𝑓𝑟 + 𝑓𝑣𝑖𝑠𝑐 + 𝑓ℎ + 𝑢 (1)

where 𝑚 is the mass of the buoy,

𝑓𝑒 = ∫

∞

−∞
ℎ𝑓 (𝜏)𝜂(𝑡 − 𝜏, 𝑧)𝑑𝜏

is the excitation force; 𝜂 is the wave elevation, and ℎ𝑓 is the excitation
2

impulse response function. The viscous loss is modeled as additional f
linear damping as 𝑓𝑣𝑖𝑠𝑐 = 𝐵𝑣𝑖𝑠𝑐 𝑧̇. The hydrostatic restoring force, 𝑓ℎ =
𝐾𝑧, 𝑢 is the linear control force.

𝑓𝑟 = −𝑚∞𝑧̈(𝑡) − ∫

𝑡

−∞
ℎ𝑟(𝜏)𝑧̇(𝑡 − 𝜏)𝑑𝜏

is the radiation force, with 𝑚∞ as the added mass at infinite frequency,
and ℎ𝑟 is the radiation impulse response function. The radiation term
can be approximated in state-space as (Jefferys, 1984).

̇ 𝑟 = 𝐴𝑟𝑧𝑟 + 𝐵𝑟𝑧̇ (2)

𝑓𝑟 = 𝐶𝑟𝑧𝑟 (3)

where 𝑧𝑟 ∈ R𝑛𝑟×1 is the radiation state vectors, 𝐴𝑟 ∈ R𝑛𝑟×𝑛𝑟 , 𝐵𝑟 ∈ R𝑛𝑟×1,
and 𝐶𝑟 ∈ R1×𝑛𝑟 are the radiation matrices and 𝑛𝑟 is the order of the
radiation system. To write the radiation states augmented equation of
motion in a compact state space form, we define the state vectors as
follows:

𝑧 = [𝑧1, 𝑧2, 𝑧𝑟]𝑇

where 𝑧1 is the displacement, 𝑧2 is the velocity, and 𝑧𝑟 is the vector of
radiation states. The state space form of the equations of motion can
now be written as:
⎧

⎪

⎨

⎪

⎩

𝑧̇1
𝑧̇2
̇⃗𝑧𝑟

⎫

⎪

⎬

⎪

⎭

= 𝐴

⎧

⎪

⎨

⎪

⎩

𝑧1
𝑧2
𝑧𝑟

⎫

⎪

⎬

⎪

⎭

+ 𝐵𝑢 + 𝐵𝑓𝑒 (4)

where,

𝐵 =
⎡

⎢

⎢

⎣

0
−[𝑚 + 𝑚∞]−1

0

⎤

⎥

⎥

⎦

(5)

𝐴 =
⎡

⎢

⎢

⎣

0 1 𝟎
−[𝑚 + 𝑚∞]−1𝐾ℎ −[𝑚 + 𝑚∞]−1𝐵𝑣𝑖𝑠𝑐 −[𝑚 + 𝑚∞]−1𝐶𝑟

0 𝐵𝑟 𝐴𝑟

⎤

⎥

⎥

⎦

(6)

.2. Nonlinear Froude–Krylov forces and nonlinear model

In modeling point absorber wave energy converters, many works
se linear hydrodynamic approximations, even for nonlinear geome-
ries like a spherical floater, due to the complexity and computation
ost associated with nonlinear hydrodynamic modeling. However, the
naccuracy in the linear model grows when linear assumptions like
mall amplitude motion and constant area at the water surface fail.
or axis-symmetric point absorbers, the Froude–Krylov (FK) force was
ound to be the most relevant nonlinear component of the hydrody-
amic force. In a linear model, the excitation force is composed of the
ydrodynamic Froude–Krylov force and the diffraction force computed
ver a constant mean wetted surface of the floater. However, for the
onlinear model, the hydrodynamic Froude–Krylov force is computed
t every time instance while the diffraction component is assumed to be
; this is due to the assumption that the characteristic length of heaving
oint absorber WECs is much smaller than the wavelength which means
he device does not impact the wave field.
These nonlinear forces lead to quite significant changes in the tra-

ectory and magnitude of the motion of a linear and nonlinear device.
he physics captured in nonlinear models results in more accurate
orce modeling, which leads to a more realistic response trajectory.
or an arbitrary geometry like Fig. 1, the mean wetted surface changes
nstantaneously.
Rather than having to remesh and recalculate the FK forces on the

nstantaneously changing geometry which could result in high compu-
ation cost, Giorgi and Ringwood (2017) developed algebraic calcu-
ation of the nonlinear FK forces applicable to axisymmetric heaving
oint absorbers. The total Froude–Krylov (FK) force is the hydrostatic

orce 𝐹𝐾𝑠𝑡 and the dynamic force 𝐹𝐾𝑑𝑦. The FK forces are computed by
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Fig. 1. Axisymmetric heaving device with generic profile.

Fig. 2. Shape profiles.

integrating the wave pressure from the incident wave over the wetted
surface:

𝐹𝐹𝐾 = 𝐹𝑔 − ∫

2𝜋

0 ∫

𝜎2

𝜎1
𝑃 (𝑡)𝒏𝑑𝑆 (7)

(𝑡) is the instantaneous pressure, on the infinitesimal element 𝒏𝑑𝑆.
he total pressure for deep water waves using Airy’s wave theory is
efined as:

(𝑡) = 𝜌𝑔𝑒𝜒𝜎𝜂(𝑡)𝑐𝑜𝑠(𝜔𝑡) − 𝜌𝑔𝜎(𝑡) (8)

here 𝜌 is the water density, 𝑔 is the gravitational acceleration, 𝜂(𝑡)
s the free surface elevation, 𝜒 is the wave number, 𝜎 is the heave
irection (positive upwards), and 𝜔 is the wave frequency. The dif-
erence between the gravity force 𝐹𝑔 and the static FK force on the
uoy is the nonlinear hydrostatic force. The magnitude of the heaving
roude–Krylov forces becomes:

𝐹𝐾 = ∫

2𝜋

0 ∫

𝜎2

𝜎1
𝑃 (𝑡)𝑓 ′(𝜎)𝑓 (𝜎)𝑑𝜎𝑑𝜃 (9)

𝐹𝐾 = ∫

2𝜋

0 ∫

𝜎2

𝜎1
(𝜌𝑔𝑒𝜒𝜎𝜂(𝑡)𝑐𝑜𝑠(𝜔𝑡) − 𝜌𝑔𝜎(𝑡))𝑓 ′(𝜎)𝑓 (𝜎)𝑑𝜎𝑑𝜃 (10)

At the equilibrium position, ℎ0 is the draft of the buoy, 𝑍𝑑 (𝑡) is the
nstantaneous displacement of the buoy from its equilibrium position.
he algebraic FK forces for the spherical and sloped line profiles
escribed in Fig. 2 can be computed using the equations defined in
q. (10). The limit of integration based on the free surface elevation
nd the draft of the buoy can be described as:

1 = −ℎ0 +𝑍𝑑 (𝑡) − 𝜂(𝑡), 𝜎2 = 0 (11)

For example, the nonlinear hydrostatic and hydrodynamic forces of
spherical buoy can be computed as:

𝐹𝐾𝑠𝑡𝑎𝑡𝑖𝑐
= 𝐹𝑔 + 2𝜋𝜌𝑔

[

(−𝑅 +𝑍𝑑 − 𝜂(𝑡))3

3
−

(−𝑅 +𝑍𝑑 − 𝜂(𝑡))2

2
(𝑍𝑑 + 𝜂(𝑡))

]

(12)

𝐹𝐹𝐾𝑑𝑦𝑛𝑎𝑚𝑖𝑐
= −

2𝜋𝜌𝑔𝜂(𝑡)
𝑐𝑜𝑠(𝜔𝑡)

[(

𝜎 −𝑍𝑑 + 𝜂(𝑡) − 1
)

𝑒𝜒𝜎
]𝜎2

(13)
3

𝜒 𝜒 𝜎1
Fig. 3. Fluid domain discretization.

Similarly, the algebraic form of the static and dynamic FK forces can
be computed for sloped lines or other shapes that can be represented
with algebraic equations. This method of computing FK forces was val-
idated by Giorgi and Ringwood (2017) against a more computationally
expensive remeshing method and was found to only have about a 2%
error. The overall nonlinear dynamic equation can then be written as:

𝑚𝑧̈(𝑡) = −

radiation force 𝑓𝑟
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝜇𝑧̈(𝑡) − ∫

𝑡

−∞
ℎ𝑟(𝜏)𝑧̇(𝑡 − 𝜏)𝑑𝜏 +𝑢 (14)

− 𝑓𝑣𝑖𝑠𝑐 +

NLFK forces
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐹𝐹𝐾𝑑𝑦𝑛+𝐹𝐹𝐾𝑠𝑡

Following the formulation proposed in Song et al. (2020), a simple
onlinear control is formulated as:

= −𝛼𝐵𝑚𝑎𝑥(𝜔)𝑧̇ − 𝛽𝐵𝑚𝑎𝑥(𝜔)𝑧̇3 (15)

here 𝛼 and 𝛽 are control coefficients to be optimized, 𝐵𝑚𝑎𝑥(𝜔) is the
aximum hydrodynamic damping coefficient on the device and 𝑧̇ is the

heave velocity of the device. The linear radiation problem must still
be solved to compute the floating device’s added mass and damping
coefficients. This radiation problem can also be solved analytically
using the variable separation method and eigenfunction expansion
described in the following subsection.

3. Analytic method of solving the hydrodynamic radiation prob-
lem

The theory for the radiation problem of a floating arbitrary shape
is described in this section. This method is based on discretizing the
fluid domain around the device into small panels, for which the velocity
potential for each of these panels is approximated with a Fourier
series. This method is an improvement on the method used for solving
the hydrodynamic problem of floating cylinders as in Yilmaz (1998),
McNatt et al. (2015), Child and Venugopal (2010).

Consider a buoyant axis-symmetric object undergoing harmonic
oscillations in water with a depth 𝑑, as depicted in Fig. 3. The maximum
submerged depth of the body in consideration is ℎ0. The horizontal
mean water surface is defined as the 𝑂𝑥𝑦 plane, and polar coordinates
(𝑟, 𝜃) in the horizontal plane are established with the Oz-axis oriented
upwards. Employing linear wave theory, characterized by incompress-
ible, inviscid, and irrotational flow assumptions, the velocity potential
throughout the fluid is represented using a complex form:

𝛷(𝑟, 𝜃, 𝑧, 𝑡) = 𝑅𝑒{𝜙(𝑟, 𝜃, 𝑧)}𝑒−𝑖𝜔𝑡 (16)
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Here, 𝑅𝑒{} represents the real part of the complex expression,
and 𝑡 signifies the time dependence. For it to qualify as a legitimate
solution, the spatial velocity potential 𝜙(𝑟, 𝜃, 𝑧) must adhere to the
aplace equation and the linearized boundary conditions:
- The Laplace equation

2𝜙 = 0 (17)

- Free surface conditions

2𝜙 − 𝑔
𝜕𝜙
𝜕𝑧

|

|

|𝑧=0
= 0 (18)

- Sea bed condition
𝜕𝜙
𝜕𝑧

|

|

|𝑧=−𝑑
= 0 (19)

- Impermeable condition on the body surface
𝜕𝜙
𝜕𝑟

= 0, (𝑟 = 𝑟𝑁 ,−ℎ ≤ 𝑧 ≤ 0) (20)

𝜕𝜙
𝜕𝑧

= 0, (0 ≤ 𝑟 ≤ 𝑟𝑁 , 𝑧 = −ℎ) (21)

- Body surface condition

𝜙.𝑛 = 𝑈⃗ .𝑛 (22)

here 𝑈⃗ is the velocity of the body, and 𝑛 is the unit normal vector on
he body.
- The Sommerfeld radiation condition:

lim
→∞

√

𝑟
(

𝜕𝜙
𝜕𝑟

− 𝑖𝑘𝑛𝜙
)

= 0 (23)

where 𝑘𝑛 is the wave number solved from the dispersion relation:

𝜔2 = 𝑔𝑘𝑡𝑎𝑛ℎ(𝑘𝑑) (24)

the positive real solution, identified as 𝑘0, represents the wavenum-
ber of the progressive mode. The negative imaginary solutions, de-
noted as 𝑘𝑛 for 𝑛 = 1, 2,…, correspond to the wavenumbers of the
vanescent modes (Chamberlain and Porter, 1999). The comprehensive
velocity potential for the entire fluid domain can be decomposed as
follows:

𝜙(𝑟, 𝜃, 𝑧) = 𝜙0(𝑟, 𝜃, 𝑧) + 𝜙7(𝑟, 𝜃, 𝑧) +
6
∑

𝑞=1
𝜙𝑞(𝑟, 𝜃, 𝑧) (25)

where 𝜙0 is the incident wave potential, 𝜙7 is the diffracted potential,
𝜙𝑞 and is the radiated potential due to the motion of the body in
the direction, 𝑞 = 1, 3, 5 corresponding to surge, heave, and pitch
mode of motion, respectively. However, due to our current problem
formulation, we will only be solving the radiation problem, as the NLFK
force will be computed using an algebraic method. To achieve this,
the fluid region will be separated into the interior (II) and exterior
regions (I), the fluid region away from the body maximum radius and
the region below the shape, respectively as in Fig. 3. The interior
region further decomposed into vertical panels. Apart from the inability
of this method to account for nonlinear diffraction, other limitation
includes difficulty in dealing with complex geometries, limitation in
capturing strong coupling effects between fluid and body, and increase
in computation cost as the body becomes more complex or deployment
for arrays.

3.1. Radiation problem

The radiation scenario pertains to a situation in which the body is
positioned in undisturbed water, devoid of any incoming waves, and is
subsequently compelled to oscillate. The overall radiation potential:

𝜙𝑞(𝑟, 𝜃, 𝑧) =
∞
∑

𝑖𝜔𝐻𝜑𝑞,𝑚(𝑟, 𝑧)𝑐𝑜𝑠(𝑚𝜃) (26)
4

𝑚=−∞
w

where 𝐻 represents the complex amplitude associated with the motion
mode. In the heaving mode (𝑞 = 3), only terms with 𝑚 = 0 contribute.
Therefore, we are seeking solutions that can be formulated as:

𝜑3,𝑚(𝑟, 𝑧) = 𝜑3,ℎ + 𝜑3,𝑝 (27)

where 𝜑3,𝑝 denotes a particular solution of the velocity potential in the
heave mode, and 𝜑3,ℎ constitutes the homogeneous component of the
solution for the boundary value problem. The potential function for
each respective region can be decomposed as follows.

3.1.1. Interior region
The interior region’s homogeneous potential can be written as:

𝜑𝐼0
3,ℎ =

𝐶0
𝑅0
2

(

𝑟
𝑟0

)𝑚
+

∞
∑

𝑛=1
𝐶0
𝑅𝑛

𝐼𝑚(
𝑛𝜋𝑟

(𝑑−ℎ0)
)

𝐼𝑚(
𝑛𝜋𝑟0

(𝑑−ℎ0)
)
𝑐𝑜𝑠( 𝑛𝜋𝑧

(𝑑 − ℎ0)
) (28)

hen the innermost panel, 𝑃0 is considered and,

𝐼𝑝
3,ℎ =

∞
∑

𝑛=0

[

𝐶𝑝
𝑅𝑛𝑆𝑛 + 𝐶̃𝑝

𝑅𝑛𝑆̃𝑛
]

𝑐𝑜𝑠(
𝑛𝜋𝑧𝑝

(𝑑 − ℎ𝑝)
) ∀ 𝑝 ∈ [1 𝑁] (29)

for 𝑝 ∈ [1 𝑁 − 1],

0 =

(

𝑟
𝑅𝑝

)𝑚
−
(𝑅𝑝

𝑟

)𝑚

(

𝑅𝑝+1
𝑅𝑝

)𝑚
−
(

𝑅𝑝
𝑅𝑝+1

)𝑚 , 𝑆̃0 =

(𝑅𝑝+1
𝑟

)𝑚
−
(

𝑟
𝑅𝑝+1

)𝑚

(

𝑅𝑝+1
𝑅𝑝

)𝑚
−
(

𝑅𝑝
𝑅𝑝+1

)𝑚 (30)

𝑛 =
𝐼𝑚(

𝑛𝜋𝑟
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

) − 𝐼𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑟

(𝑑−ℎ𝑝)
)

𝐼𝑚(
𝑛𝜋𝑅𝑝+1
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

) − 𝐼𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝+1
(𝑑−ℎ𝑝)

)
(31)

𝑆̃𝑛 =
𝐼𝑚(

𝑛𝜋𝑅𝑝+1
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑟

(𝑑−ℎ𝑝)
) − 𝐼𝑚(

𝑛𝜋𝑟
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝+1
(𝑑−ℎ𝑝)

)

𝐼𝑚(
𝑛𝜋𝑅𝑝+1
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

) − 𝐼𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝+1
(𝑑−ℎ𝑝)

)
(32)

for 𝑝 = 𝑁 ,

𝑆0 =
𝑙𝑛

(

𝑟
𝑅𝑝−1

)

𝑙𝑛
(

𝑅𝑝
𝑅𝑝−1

) , 𝑆̃0 =
𝑙𝑛

(𝑅𝑝
𝑟

)

𝑙𝑛
(

𝑅𝑝
𝑅𝑝−1

) (33)

𝑆𝑛 =
𝐼𝑚(

𝑛𝜋𝑟
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝−1
(𝑑−ℎ𝑝)

) − 𝐼𝑚(
𝑛𝜋𝑅𝑝−1
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑟

(𝑑−ℎ𝑝)
)

𝐼𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝−1
(𝑑−ℎ𝑝)

) − 𝐼𝑚(
𝑛𝜋𝑅𝑝−1
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

)
(34)

𝑆̃𝑛 =
𝐼𝑚(

𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑟

(𝑑−ℎ𝑝)
) − 𝐼𝑚(

𝑛𝜋𝑟
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

)

𝐼𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝−1
(𝑑−ℎ𝑝)

) − 𝐼𝑚(
𝑛𝜋𝑅𝑝−1
(𝑑−ℎ𝑝)

)𝐾𝑚(
𝑛𝜋𝑅𝑝
(𝑑−ℎ𝑝)

)
(35)

the particular solution,

𝜑
𝐼𝑝
3,𝑝 =

1
2(𝑑 − ℎ𝑝)

[

(𝑧𝑝 + 𝑑)2 −
𝑟2𝑝
2

]

(36)

where 𝐶𝑝
𝑅𝑛 are fourier coefficients to be solved for and 𝐼𝑚 is the

modified Bessel function of the first kind order 𝑚.

3.1.2. Exterior region
The exterior radiation’s homogeneous solution is given as:

𝜑𝐸
3,ℎ = 𝐷𝑅0

𝐻𝑚(𝑘0𝑟)
𝐻𝑚(𝑘0𝑎)

𝑍0(𝑧) +
∞
∑

𝑞=1
𝐷𝑅𝑞

𝐾𝑚(𝑘𝑞𝑟)
𝐾𝑚(𝑘𝑞𝑎)

𝑍𝑛(𝑧) (37)

where 𝐷𝑅𝑞 are unknown Fourier coefficients. 𝐻𝑚 is Hankel function,
nd 𝐾𝑚 is the modified Bessel function of the second kind, both of order
. 𝑍𝑞(𝑧) is the depth dependency function. The depth dependency func-
ion 𝑍𝑞(𝑧) is normalized to form an orthonormal set of eigenfunctions
n the corresponding domain.

𝑍𝑛(𝑧), 𝑍𝑞(𝑧)⟩ = 𝛿𝑛𝑞 (38)

here 𝛿 is the Kronecker delta.
𝑛𝑞
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Fig. 4. Arbitrary geometry definition.

3.2. Matching conditions

In addressing the radiation problem, the matching conditions signify
the preservation of mass flux, pressure, and normal velocity continu-
ity. The velocity potentials at the interface between the interior and
exterior domains are aligned at the imaginary boundary. 𝑟 = 𝑟𝑝.

𝜙𝐼𝑝 = 𝜙𝐼𝑝+1 , (𝑟 = 𝑟𝑝,−ℎ𝑝 ≤ 𝑧 ≤ −𝑑) (39)

𝜕𝜙𝐼𝑝

𝜕𝑟
=

𝜕𝜙𝐼𝑝+1

𝜕𝑟
, (𝑟 = 𝑟𝑝,−ℎ𝑝 ≤ 𝑧 ≤ −𝑑) (40)

𝐼𝑝=𝑁 = 𝜙𝐸 , (𝑟 = 𝑟𝑁 ,−ℎ𝑁 ≤ 𝑧 ≤ −𝑑) (41)

𝜕𝜙𝐼

𝜕𝑟
=

𝜕𝜙𝐸

𝜕𝑟
, (𝑟 = 𝑟𝑁 ,−ℎ𝑁 ≤ 𝑧 ≤ −𝑑) (42)

he unknown Fourier coefficients 𝐶0
𝑅𝑛, 𝐶

𝑝
𝑅𝑛, 𝐷𝑅𝑛 are solved using the

atching conditions. The hydrodynamic coefficients (added mass 𝑎33
nd radiation damping 𝑏33) of the device in heave can be calculated
nd defined by:

33 + 𝑖
𝑏33
𝜔

= 2𝜋
𝑁
∑

𝑝=1
𝑟𝑝 ∫

𝑟𝑝

𝑟𝑝−1
𝜑
𝐼𝑝
3 (𝑟, ℎ𝑝 − ℎ)𝑟𝑑𝑟 (43)

More details about this formulation can be found in Zhang et al.
2016), Kokkinowrachos et al. (1986).

.3. Hydrodynamic coefficients for a sample geometry

To test the present method and its efficiency, the hydrodynamic
oefficient of the heaving semi-submerged 5m radius spherical body,
s shown in Fig. 4 is computed. For a range of frequencies between
= 0.1−6 rad∕s, the hydrodynamic forces are computed. The constant
ater depth is 𝑑 = 50 m, and the incident wave-heading angle is 00

long the 𝑥-axis. Since we considered only the radiation problem, the
dded mass and damping coefficients computed for the device using the
nalytic formulation and NEMOH BEM software are plotted in Figs. 5
nd 6.

. Control co-design problem formulation

In this section, the control co-design optimization problem is set up.
he general goal of this section is to find the optimal geometry and its
ontrol, which performs better in a specified wave site. To achieve this,
wo control co-design problems are formulated; the first is the control
5

𝑉

Fig. 5. Added mass coefficients.

Fig. 6. Damping coefficients.

co-design of a standard spherical WEC where both the dimension and
the control are co-optimized for the wave condition of the deployment
site. The second control co-design problem is that of arbitrary geometry
WEC devices, which intend to find better leverage on the nonlinear
forces acting on the devices. The size of the spherical and arbitrary
geometry WEC are constrained to be comparable using a set reference
volume. The formulations are presented in the following subsections.

4.1. Control co-design for a spherical device

In the current problem, the objective is to determine the optimal
radius and control coefficients of the nonlinear control that maximizes
the power extraction by the nonlinear spherical device. The instanta-
neous power captured by the device is computed as the product of the
power take-off (PTO) force and velocity of the floater. The optimization
objective is the time-averaged power from the device:

𝐽 = 1
𝑇 ∫

𝑡𝑓

0
{−𝑢(𝑡)𝑧2(𝑡)}𝑑𝑡

𝑠.𝑡. 𝑅 ∈ [𝑅𝑚𝑖𝑛. 𝑅𝑚𝑎𝑥.]

𝛼𝑠 ∈ [𝛼𝑚𝑖𝑛. 𝛼𝑚𝑎𝑥.],

𝛽𝑠 ∈ [𝛽𝑚𝑖𝑛. 𝛽𝑚𝑎𝑥.],

(44)
𝑜𝑙𝑢𝑚𝑒𝑠𝑝ℎ𝑒𝑟𝑒 ≤ 𝑉 𝑜𝑙𝑢𝑚𝑒𝑀𝑎𝑥.
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Fig. 7. GA flowchart for control co-design of a nonlinear sphere.
Table 1
Lower and upper bounds of design variables.
Parameter Unit Lower Bound Upper Bound

𝑅 m 2 15
𝛼𝑠 – 0.1 3
𝛽𝑠 – 0.1 3

where 𝑢 is the PTO force, 𝑧2 is the velocity of the device, 𝑅 is the
sphere’s radius, 𝛼𝑠 and 𝛽𝑠 are control coefficients to be optimized,
𝐵𝑚𝑎𝑥(𝜔) is the maximum hydrodynamic damping coefficient. The total
volume of the sphere is constrained to not exceed a reference volume,
which is to be decided by the designer based on economic or technical
reasons. The optimization is completed using Genetic algorithm. A
flowchart of the optimization setup is presented in Fig. 7. The upper
and lower bound of the optimization variables are as presented in
Table 1.

4.2. Control co-design for an arbitrary geometry

This section discusses the problem formulation for the control co-
design of a more arbitrary geometry that seeks to leverage the nonlin-
earities to further improve the energy extraction from the waves. The
geometry is constructed by connecting several panels end-to-end. The
idea of choosing the panel method is the ease of describing individual
panels algebraically as a function of their slope and height, which
makes it easier to compute the hydrostatic and hydrodynamic FK forces
using the method described in Section 2.2. For a geometry symmetrical
bout the X and Z axes, the parameterization of the nonlinear geometric
hape using sloped lines is illustrated in Fig. 8.
The parameters are (1) the draft, (2) a flat horizontal base, and

3–6) which are sloped lines all connected end-to-end. The goal of
he optimization is to find the combination of design parameters that
aximize the power extraction by the device, subject to constraints.
6

Fig. 8. Arbitrary shape parameterization.

The optimization objective remains the maximization of the P-factor:

𝑃 =
𝑷 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦

𝑷 𝑠𝑝ℎ𝑒𝑟𝑒

𝑠.𝑡. 𝑣1 ∈ [𝑣1𝑚𝑖𝑛 . 𝑣1𝑚𝑎𝑥. ],

𝑣2 ∈ [𝑣2𝑚𝑖𝑛. 𝑣2𝑚𝑎𝑥. ]

𝑣3 ∈ [𝑣3𝑚𝑖𝑛. 𝑣3𝑚𝑎𝑥. ]

𝑣4 ∈ [𝑣4𝑚𝑖𝑛. 𝑣4𝑚𝑎𝑥. ]

𝑣5 ∈ [𝑣5𝑚𝑖𝑛. 𝑣5𝑚𝑎𝑥. ]

𝑣6 ∈ [𝑣6𝑚𝑖𝑛. 𝑣6𝑚𝑎𝑥. ]

𝛼𝑎𝑟𝑏 ∈ [𝛼𝑚𝑖𝑛. 𝛼𝑚𝑎𝑥.],

𝛽𝑎𝑟𝑏 ∈ [𝛽𝑚𝑖𝑛. 𝛽𝑚𝑎𝑥.]

(45)
𝑉 𝑜𝑙𝑢𝑚𝑒𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 ≤ 𝑉 𝑜𝑙𝑢𝑚𝑒𝑀𝑎𝑥.
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Fig. 9. GA flowchart for control co-design optimization.
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Table 2
Lower and upper bounds of design variables.
Parameter Unit Lower Bound Upper Bound

𝑣1 m 3 15
𝑣2 m 0 5
𝑣3 – 0.2 1.5
𝑣4 – 0.2 1.5
𝑣5 – 0.2 1.5
𝑣6 – 0.2 1.5
𝛼𝑎𝑟𝑏 – 0.1 3
𝛽𝑎𝑟𝑏 – 0.1 3

where 𝑣1 and 𝑣2 are the variables representing the draft and length of
he horizontal base, 𝑣3, 𝑣4, 𝑣5, 𝑣6, are the slopes of the inclined panels,
𝑎𝑟𝑏, and 𝛽𝑎𝑟𝑏 are the linear and nonlinear control coefficients for the
nonlinear damping control also formulated as:

𝑢 = −𝛼𝑎𝑟𝑏𝐵𝑚𝑎𝑥(𝜔)𝑧̇ − 𝛽𝑎𝑟𝑏𝐵𝑚𝑎𝑥(𝜔)𝑧̇3 (46)

Finally, the volume of the optimized geometry is constrained not to
exceed a set maximum volume, the same as that used in the spherical
co-design. Genetic algorithm (GA) is the chosen optimization algo-
rithm. The denominator of the objective is the power from the opti-
mized spherical device in Eq. (45), while the numerator is the power
rom the arbitrary geometry device. When 𝑃 > 1, this indicates an
mproved performance by the arbitrary shape over the spherical device;
therwise, 𝑝 < 1 means the arbitrary shape has a worse performance.
flowchart of the geometric optimization of the nonlinear device is
resented in Fig. 9; it is important to note that the power from the
pherical devices is not recomputed at every optimization step. At the
nd of the optimization, the optimal shape and control parameters
re returned. The optimization variables’ bounds are as presented in
able 2.
In setting up the GA for optimization, a number of factors has to

e considered. The design space has to be large enough to ensure
7

Table 3
Genetic algorithm optimization variables.
Variable Value

Population Size 10*𝑁𝑣
Generations 30
Elite count 5
FunctionTolerance 1e-4

diverse potential solutions. To achieve this, the parameters of GA like
the number of population members, generations, the probabilities for
crossover and mutation operators has to be selected carefully. The GA
parameters used for the optimization in this work are summarized in
Table 3. Where 𝑁𝑣 is the number of variables in the optimization
problem.

5. Numerical simulations

The designated wave site is PacWave South, an approved testing
facility set to be built 7 nautical miles (NM) off the central coast of
Newport, Oregon. The location provides four test berths located in
depths ranging from 65 to 78 m. Its purpose is to address the testing
site gap in the United States (US). specifically for wave energy (Batten
et al., 2016; Freeman et al., 2022). The annual frequency of occurrence
of sea states parameterized in terms of the significant wave heights
and energy period is presented in Fig. 10. The prevalent sea state at
the PacWave South site typically features a significant wave height
of 1.75 m and an energy period of 8.5 s. In contrast, the highest
annualized wave energy sea state is characterized by a significant wave
height of 2.75 m and an energy period of 10.5 s. (Dunkle et al., 2020).
o transform the energy period to peak period, the equation is 𝑇𝑝 =
1

0.83𝑇𝑒 (Ahn, 2021). The monthly average sea conditions at the site are
summarized in Table 4.

Referencing the PacWave generation scenarios presented in Letten-
maier et al. (2022), it can be deduced that two identical point absorber
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Table 4
Monthly sea condition at PacWave South.
Average monthly sea condition at PacWave South.

Month Significant wave height (m) Energy period (s)

January 3.2 11.2
February 3.1 11.3
March 2.8 10.8
April 2.4 10.0
May 1.9 9.2
June 1.7 8.8
July 1.5 8.2
August 1.5 8.6
September 1.7 9.2
October 2.3 10.2
November 3.0 10.6
December 3.2 11.2

Fig. 10. Sea-state histogram from 1980–2010 at PacWave South (annual mean
conditions).

Fig. 11. RM3 device design and dimensions.

wave energy converters (WECs) were deployed at two test berths.
Both are a 5-MW peak output power Reference Model 3 (RM3) WEC.
The reference model 3 (RM3, USA) is a self-referencing floating point
absorber (PA) type WEC Fig. 11. Since the same PacWave site has been
chosen for consideration in this work, the maximum reference volume
of the nonlinear spherical and arbitrary geometry floater is assumed to
be about twice the volume of the RM3 floater, which is calculated to
be approximately 1284.4496 m3.
8

Fig. 12. Wave spectrum.

Fig. 13. Wave amplitude.

.1. Problem setup

The devices are optimized for the most commonly occurring sea
tate at the PacWave South site, with a significant wave height of
.75 m and an energy period of 8.5 s considering a Bretschneider
pectrum. At the end of the optimization, the performances of both the
onlinear spherical WEC and the arbitrary geometric WEC are com-
uted and compared for the monthly wave condition. The 𝑉 𝑜𝑙𝑢𝑚𝑒𝑀𝑎𝑥,
hich is twice the volume of the RM3 floater, is computed to be approx-
mately 2568.8992 m3. The analytical hydrodynamics solution presented
n Section 3 is employed to compute the exact hydrodynamics for
qually spaced 34 frequencies between 0.1 and 3.0 rad/s. For the wave
pectrum, the time domain wave elevation in the time domain can be
omputed using multiple sinusoids with different wave amplitudes and
andom phases using the series:

(𝑡) =
𝑁
∑

𝑖=1
𝑎𝑖𝑐𝑜𝑠(𝜔𝑖𝑡 + 𝜙𝑖) (47)

here 𝑎𝑖 is the amplitude, 𝜔𝑖 is the frequency and 𝜙𝑖 is the phase.
The wave spectrum and amplitude for the significant wave height and
frequency are shown in Figs. 12 and 13.

5.1.1. Spherical device co-design optimization
In this section, the resulting optimized spherical devices are pre-

sented. The optimal radius and the corresponding control coefficients
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Table 5
The optimized parameters for a sphere.
S/N R 𝛼𝑠 𝛽𝑠 Power (W)

1 8.4655 0.2088 0.1113 1.9391e07
2 8.4900 0.1835 0.1119 1.9252e07
3 8.4500 0.2293 0.1081 1.9123e07
4 8.1722 0.2582 0.1112 1.8275e07
5 8.3849 0.3448 0.1047 1.7913e07

Table 6
Optimized parameters.
Parameter Unit 1 2 3

v1 m 8.4041 9.5823 8.3204
v2 m 0.2082 0.3546 0.0470
v3 – 1.4994 1.4091 1.4669
v4 – 0.3550 0.2143 0.3420
v5 – 0.3929 0.4363 0.6860
v6 – 0.9738 0.4182 0.6273
𝛼𝑎𝑟𝑏 – 0.8967 2.4899 2.6480
𝛽𝑎𝑟𝑏 – 0.5222 0.2752 2.1860
Power W 2.26e08 2.32e08 1.95e08
P – 1.2116 1.2240 1.0435

Fig. 14. Optimized nonlinear spherical device.

re tabulated in Table 5. The average power from a 200s time domain
ptimization run is also tabulated. The optimized device plotted in
ig. 14, with a radius 𝑅 = 8.45 m, and its corresponding power
s selected as the base device to be used in the arbitrary geometry
ptimization.

.1.2. Co-design of arbitrary shaped WECs
In this section, the optimized spherical device from Section 5.1.1

s the basis for the geometry to be optimized. The optimizer sought
o find the combination of optimization variables that achieved better
ower extraction than the optimized spherical device in the same wave
ondition and under the same volume constraint. The result of the best-
erforming geometry is plotted in Fig. 15. The optimizer returned the
eometry with minor variations in the variables, some of which are
isted in Table 6.
The time domain simulation of optimized geometry is plotted

gainst that of the reference spherical device using constrained and
nconstrained control solutions while considering the significant wave
ondition. Also, the monthly performance of the devices was compared
sing the average monthly sea condition presented in Table 4.

.1.3. Performance of an device
In this section, the time domain performance of the optimized

hape and the spherical devices. The devices used in this performance
imulation are the spherical and the optimized arbitrary geometry 3
9

Fig. 15. Performance of optimized geometry using constrained control.

Fig. 16. Velocity of the sphere and optimized geometry using constrained control.

Fig. 17. Velocity of the sphere and optimized geometry using constrained control.

from Table 6. The nonlinear controls co-optimized are applied to the
devices while being excited by irregular waves. The resulting perfor-
mance of both devices is presented. Like the optimization setup, the
Bretschneider spectrum was used to generate the irregular waves.

The performance of the optimized geometry in the predominant
wave with a significant period of 𝑇𝑝 = 10.2409 s, and significant wave
height 𝐻𝑠 = 1.75 m, is plotted in Fig. 15. The optimized geometry was
able to achieve a 24% performance improvement over the spherical
device.

The displacements, velocities, and PTO forces are plotted in Figs. 16,
17 and 18 respectively. Although an irregular excitation was simulated,
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Fig. 18. PTO force of the sphere and optimized geometry using constrained control.

Fig. 19. Static FK force on the devices using constrained control.

Fig. 20. Power extracted by the sphere and optimized geometry using constrained
ontrol.

regular response was observed; this is due to the controller driving
he devices to respond at a particular frequency that maximized the
ower extraction over the period of operation. The sphere achieves
igher velocity, but the optimized geometry’s control force is larger
han the PTO force exerted on the sphere by the nonlinear control. The
onlinear hydrostatic force on the devices is plotted in Fig. 19; there
is a large variation in the forces acting on the spherical device and a
relatively small variation in the magnitude of the force on the optimized
10
Fig. 21. Energy extracted by the sphere and optimized geometry using constrained
control.

Fig. 22. Monthly performance of the sphere and optimized geometry using constrained
control.

shape. On average, the hydrostatic force acting on the spherical device
geometry is larger than that on the optimized geometry.

The power from the device is calculated as a product of the PTO
force and velocity; the power from both devices is as shown in Fig. 20.
It can be observed that the power from the optimized geometry has
some of the plots below the zero line; this represents the power taken
from the grid to drive the system in order to maximize the overall
energy extraction, while the spherical devices only extract power from
the waves. Fig. 21 is a plot of the cumulative power over the operation
time (𝐸 = ∫ 𝑡𝑓

0 {−𝑢(𝑡)𝑧2(𝑡)}𝑑𝑡). The plot shows a 24% performance im-
provement achieved by the optimized shape over the standard spherical
buoy. This energy improvement achieved by the optimized geometry
is partially due to the reactive power which contributes to the overall
energy extraction by the device. The ratio of performances from the
devices over the months of the year is plotted in Fig. 22; the perfor-
mance varies between 10 − 50%, improvement. Overall, the optimized
geometry consistently outperforms the spherical device.

6. Conclusion

In this work, we investigated the control co-design of nonlinear
wave energy converters; the geometry of the buoy is modeled as panels
which angles are optimized alongside their nonlinear controls, within
constraints. The objective is to achieve devices that can leverage the
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hydrodynamic nonlinear Froude–Krylov forces to improve the power
extraction from the waves. An algebraic method of approximating
the Froude–Krylov forces was developed to avoid the computation-
ally expensive methods. Time-domain dynamic model coupled with
a nonlinear control formulation was used to compute the power to
ensure the most realistic results. An analytic method of computing the
hydrodynamic coefficients (added mass and radiation damping) based
on variable separation and eigenfunction expansion was developed
for use in the optimization; this analytic approach for hydrodynam-
ics calculations is critical for efficient numerical optimization. The
performance of the optimized device in the various wave conditions
of the PacWave site is presented. The performance of the optimized
device yielded an average of 20% improvement over the spherical
device. Overall, in all simulations, the optimized geometry was found to
have leveraged the hydrodynamic nonlinearity better than the spherical
device. The optimized device consistently outperformed the spherical
device in all wave conditions of the different months of the year. Future
work will investigate how an array of nonlinear devices can leverage
these nonlinearities and the inter-device hydrodynamic coupling.
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