Battle of the BlueFields: An In-Depth Comparison
of the BlueField-2 and BlueField-3 SmartNICs

Abstract—Over the past several years, Smart Network Inter-
face Cards (NIC/SmartNICs) have rapidly evolved in popularity.
In particular, NVIDIA’s BlueField line of SmartNICs has been
effective in a wide variety of uses: Offloading communication in
High-Performance Computing applications (HPC), various stages
of the Deep Learning (DL) pipeline, and is designed especially
for Datacenter/virtualization uses. The BlueField-3 DPU was
released at the end of 2022 as a follow-up to its widely accepted
BlueField-2 predecessor, and this work will serve as an in-
depth performance evaluation between the two to show a) a
comparison of both SmartNICs’ on-chip capabilities (memory
bandwidth, compute speed, etc.), and b) their offload capabilities
through several micro/benchmarks and applications. In single-
DPU programs, we see up to 61% improvements in the latency
of a memcpy operation and up to 82% bandwidth improvement
in the use of the STREAM benchmark [8] on the BlueField-
3. With the use of a DPU-aware MPI library [1], we observe
over 30% improvement at the micro-benchmark level when
comparing staging-based designs on both SmartNICs and up
to nearly double that in the context of an application with
staging-based designs. However, GVMI (Guest Virtual Machine
ID) based designs contained in said library do not exceed 10%
at the benchmark level and provide less than 2% benefits in
applications because of its architecture-insensitive nature — that
is, while CPU clock speed may impact the completion time of
instructions, the performance of the GVMI-based designs in a
DPU-aware MPI library will largely be unaffected by swapping
the BlueField-2 for a BlueField-3.

Index Terms—Datacenter Processing Units, BlueField-2,
BlueField-3, SmartNIC, High-Performance Computing, Offload,
Interconnects

I. INTRODUCTION

Data processing units (DPUs) and other SmartNICs have
rapidly grown in popularity over the past couple of years.
The BlueField-2 DPU (BF2) [3], released at the end of
2020/start of 2021, was picked up by HPC researchers around
the world and experimented on to determine how effective
its components were beyond the capabilities that come with
standard NICs. The BlueField-3 DPU (BF3) [12], featured
at the end of 2022 and released at the beginning of 2023,
comes equipped with up to double the bandwidth and compute
power as well as substantially faster on-chip memory than that
of its predecessor. This paper presents an in-depth evaluation
and comparison of the compute capabilities of the BlueField-
2 and BlueField-3 DPU! over various micro/benchmarks and
applications.

This work was supported by Los Alamos National Laboratory/US Depart-
ment of Defense, Contract #19537 and NSF grants #2007991 and #2018627.

'For the sake of simplicity, we interchange the phrases “DPU” and
“SmartNIC” when discussing the BlueField series in this paper.

A. Motivation: SmartNICs are getting smarter

The BF2’s release into the HPC and Datacenter commu-
nities provided not only a new NIC but one with previously
unseen compute capabilities to aid in the work brought on
by increasing HPC and DL workloads. Previous works (see
Section II) have offloaded communication to the BF2 within
the context of MPI libraries or DL applications, though with
the further increased capabilities on the BF3, systems can arise
where a user can offload more computation-intensive tasks in
place of/in conjunction with communication.

B. Contributions

This paper makes the following contributions:

1) An in-depth comparison of the BF2 and BF3 DPUs on
various micro/benchmarks in DPU-to-DPU communica-
tion.

2) Analysis of performance in micro/benchmarks and ap-
plications on host/DPU communications (host to BF2,
host to BF3), both with and without a DPU-Aware MPI
library.

3) A comparison of the BF3’s capabilities when used on a
system in which the host’s memory and CPU speed may
be outpaced by the SmartNIC, giving rise to systems that
may have slower host CPUs and/or memory.

To the best of our knowledge, this is the first work that
makes this kind of comparison between both SmartNICs
and is the first work to examine the capabilities of the
BlueField-3 DPU.

C. Paper Breakdown

The rest of this paper is broken down as follows: Section II
will detail the background and overarching design of both the
BF2 and BF3. Section IIT will break down our experiments
and the results and inferences obtained from them. Section IV
will showcase work related to SmartNICs and their use in the
HPC ecosystem. Section V concludes our paper and introduces
further thoughts on the future of SmartNICs and their uses in
HPC and DL environments.

II. BACKGROUND

In this section, we will compare and contrast the designs
presented in the BlueField-2 and BlueField-3 SmartNICs. Note
that while there are three overarching types of SmartNICs
(ASIC-based, FPGA-based, and System-on-Chip-based (SoC))
[11], both the BlueField-2 and BlueField-3 are in the latter
camp. Furthermore, while both DPUs come equipped with
encryption and other features surrounding virtualization such



as Single-Root I/O Virtualization, they are beyond the scope
of this paper and are not discussed here.

A. BlueField-2 and BlueField-3 SmartNICs

See Table I for a detailed breakdown of both the BlueField-2
(BF2) and BlueField-3 (BF3) SmartNICs. The BF3 effectively
has nearly double the capabilities of the BF2, though Section
II will further show that this may not always translate to
improvements in running benchmarks and applications.

III. EXPERIMENTS AND EVALUATION

This section showcases our experiments and the results and
analysis obtained from them.

A. Experimental Setup

Our experimental testbed consists of 16 nodes each
equipped with containing the “Thor” partition on the HPC-
Al Advisory Council’s HPC Center [4]: Dual-socket In-
tel Xeon 16-core CPUs (E5-2697A V4 @ 2.60 GHz),
NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand Adapters,
and 256GB DDR4 RDIMMs running at 2400 MHz (or 4800
MT/s). While all 32 of these nodes contain one BlueField-
2 (BF2) SoC chip, only 16 of them are equipped with the
BlueField-3 (BF3) SmartNICs. Note that these Intel CPUs
have a smaller L1 and L2 cache size than the BF3 — a 32KB
L1 dcache and icache (each), 256KB of L2 cache, and 40MB
of L3 cache. The BF2 is connected via a single port of 100
Gb/s EDR InfiniBand, and the BF3 is connected via a single
port of 200 Gb/s HDR InfiniBand.

B. Intra-DPU Experiments

Here, we detail some simple/small single-DPU experiments,
starting with a single-process environment before scaling
up/utilizing more resources.

1) Speed of a memory copy: The first experiment is a
simple test to determine memory copy latency; one process
performs ten back-to-back memory copies, where we take
the average of these copy times ranging from 64 bytes to
1GB. In this test, we also make a comparison against the
memory of this particular host. Figure 1 shows the increasing
disparity between the BlueField-2 and 3 (BF2/3) alongside
the improved runtime of the BF3’s on-board memory. In
the smallest messages tested, system variance shows little
difference, save for the BF2 always having a non-zero copy
latency. The difference between the host and BF2 (between 30
and 60%), and then the larger difference between the BF2 and
the BF3 (up to 72%) gets shown once we enter the kilobyte
range. Firstly, the BF3’s L1 and L2 cache sizes dwartf those
of the host. Secondly, once we spill into main memory, the
memory clock speed becomes the dominating factor instead
of the cache size. Compute nodes with faster memory and/or
CPUs with larger caches may decrease or reverse the trends
found in these results, though such trends still do not discount
the improvements shown here.

2) The STREAM benchmark: Our second set of experi-
ments examines intra-DPU performance. For this, we utilize
the STREAM benchmark [8]. STREAM is intended to mea-
sure the bandwidth of main memory, and we do this with
array sizes of 10 million and 100 million of type double.
Our results are obtained from averaging ten back-to-back
executions. The memory bandwidth of the BF3 allows for
up to 3.3X improvement in single-threaded executions of
STREAM, and increasing the number of threads allows the
BF3 to obtain up to 5.5X improvement. While the BF3 has
16 cores, we keep the comparison from one to eight OpenMP
threads when running tests on both the BF2/3 and the host, as
shown by Figures 2a and 2b. Using 16 OMP threads on the
BF3 gives no more than 5/6% improvement over eight threads,
as the memory bandwidth on them gets saturated at this point.

When scaling the problem size up to a 100-million-element
array, we note that the BF2 makes no improvements given that
its memory bandwidth gets saturated when using two threads
and see minor improvements for both the host and the BF3
when scaling up to eight threads.

C. Inter-DPU Experiments

We utilize the OSU Microbenchmark Suite (OMB) [13]
for Inter-DPU experiments. In particular, we focus on MPI-
based point-to-point. We utilize three point-to-point OMB
MPI benchmarks: latency and uni/bi-directional bandwidth.
The numbers shown in the following figures are the average
of seven back-to-back executions. In particular, we examine
the traditional range of message sizes for point-to-point HPC
workloads (up to 4MB). Here, we purely discuss inter-DPU
experiments without any comparison from the host. For these
and other OMB-related experiments, we utilize the MVAPICH
library developed and maintained by The Ohio State Univer-
sity [14].

For point-to-point communications, we ensure that the right
HCA is used when communicating messages — that is, BF2/3
DPUs communicate over their own adapter as opposed to
traversing the bus to utilize a different HCA on the host nodes
to which they are connected.

Figures 4 and 5 show the results of inter-DPU, point-to-
point latency, where we observe up to 1.78X and 2.34X
improvements between small (less than 16KB) and large
messages, respectively. The majority of improvements the
BF3 gains over the BF2 comes from information previously
mentioned: firstly, we have a Smart/NIC featuring 2X the
bandwidth as its predecessor; secondly, the increased L2 and
L3 cache size will help with being able to hold larger messages
in cache without the need for cache thrashing and/or eviction
when storing smaller messages. Lastly, the higher clock speed
of a single BF3 core will be able to do more than that of a
BF2 core.

Figures 6 and 7 show unidirectional bandwidth results. We
see up to 1.65X and 1.50X bandwidth improvement at small
and large messages, respectively. Similarly, Figures 8 and 9
show up to 1.48X and 1.73X improvements in bidirectional
bandwidth for small and large messages, respectively. The



TABLE I: Breakdown

of the BlueField-2 and BlueField-3 SmartNICs ( [10], [12])

Metric BlueField-2 BlueField-3
Processor ARM Cortex A-72 (2.0 GHz) ARM Cortex A-78 (3.0 GHz)
Core Count 8 16
L1 Cache (per-core) 32KB D-cache, 48KB I-Cache 64KB for both I/D-Cache
L2 Cache (per-core) 1MB 512KB
L3 Cache (shared) 6 MB 16 MB
On-Chip RAM 16GB 32GB
Memory Controller Count 1 2
DRAM clock speed 1600 MT/s (DDR4) 5600 MT/s (DDRS)
Max Interconnect Speed 200 Gb/s 400 Gb/s
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Fig. 1: Memcpy test to determine copy latency on host, BF2, and BF3. Being a single-process operation, the bottlenecks
across all three environments are the clock speed of the CPUs involved, CPU cache sizes, and the clock speed of the memory

controller(s).
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Fig. 2: STREAM benchmark on varying OpenMP thread counts: Comparing a CPU to the BF2 and BF3 (10M-element arrays).
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BF2 loses bandwidth at 4MB due to the memory requirements
spilling into the L3 cache.
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Fig. 7: Inter-DPU comparison of osu_bw (large msgs)

D. Host/DPU Experiments

We replicate the experiments performed in the previous
section here, except with naive Host-DPU communication
instead. The extra difference in running benchmarks and appli-
cations on CPU/DPU configurations is the need to use an MPI

10000
8000 /
6000 ,”i.ABX]

4000
2000 o
o e

0 O
NN oo
— N

Bandwidth (MB/s)

1024
2048
4096
8192
16384

Message size

—o—BF-2 —e—BF-3

Fig. 8: Inter-DPU comparison of osu_bibw (small msgs)
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Fig. 9: Inter-DPU comparison of osu_bibw (large msgs)

library’s “MPMD” mode? to run these experiments; the use of
a configuration file or entering commands at the command line
tells the MPI runtime to run both executables simultaneously,
treating them both as if they were one large MPI program. In
addition, we also use the IB-Verbs-based [7] DPU-Bench [9]
benchmark suite for showing the offload efficiency of various
collective operations onto each of the DPUs. DPU-Bench
explores the offload efficiency of SmartNICS by presenting
microbenchmarks to directly determine how efficient it is to
offload algorithms for various communication patterns (one-
to-all, all-to-one, all-to-all) across different message sizes and
numbers of worker processes placed on the DPU. The higher
the number on a scale of 1-100, the easier/more efficient a
given configuration and message size can be offloaded to the
DPU via naive staging.

Like in the previous subsection, these benchmark numbers
were obtained after averaging seven back-to-back executions
of each OMB benchmark. The DPU-Bench numbers were
obtained after averaging three back-to-back executions of each
benchmark on various numbers of worker processes placed
onto each of the DPUs (these are labeled as “workers per
node”, or WPN).

1) OMB Results: In Figures 10 and 11, we see that naive
utilization of the BF3 in place of the BF2 gives some perfor-
mance benefits — up to 1.67X across small messages, but no
more than 13% at large messages. Not only are we dealing
with a heterogeneous environment in these cases, but the
disparity in resources between the host and the DPU leads
to less of a performance improvement when swapping the
BF2 out for the BF3. A similar trend is found in the bi-

2See https://www.intel.com/content/www/us/en/develop/documentation/mpi-
developer-guide-linux/top/running-applications/mpmd-launch-mode.html
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directional bandwidth results shown in Figures 12 and 13, with
the additional fact that the smaller caches on the BF2 degrade
performance sooner than the BF3.

Host-DPU latency (Figures 14 and 15) behaves similarly
to DPU-DPU latency (Figures 4 and 5); increased bandwidth
and a larger cache size allow the BF3 to outpace the BF2 in
message latency when receiving from the host.
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2) DPU-Bench: In this section, we compare the offload
efficiency of the BF2 and BF3 among the “Cyclic” work
assignments mentioned in [9]. As mentioned in that work, the
offload efficiency calculation is -— (Com;eft-;gfe_wmm) x100.
We run these experiments at a scale of eight nodes, eight
processes per node (PPN), and varying numbers of workers,
from one worker total to eight worker processes (one WPN),
which get placed on each of the BF2’s (or BF3) cores.

We start by displaying the offload efficiency when using
anywhere between one worker total, up to one WPN in Figures
16 and 17. The cyclic work assignment for broadcast and
gather-like communication patterns give similar benefits for
both SmartNICs, though we note that we achieve a higher level
of offload efficiency on the BF3 with even just one worker,
especially in “Cyclic-Gather’s” case. What is most impressive
is that the communication time in the “Multi-Root-Cyclic-
Allgather” gets exceeded by the compute time as we hit one
WPN, leading to hitting 100% offload efficiency — this means
that, while efficient communication offload mechanisms are
preferred, it is easier to more naively offload communication
patterns with the BF3’s advanced hardware.

Similar trends exist for DPU-Bench as shown in Figures
18 and 19. In “Multi-Root-Cyclic-Allgather”, this unusual
work distribution is a massive point of contention as the
degradations shown in the runs on the BF2 DPU get amplified
in the runs on the BF3. Several factors could contribute to this,
such as congestion on either the PCle bus or the InfiniBand
network itself.

3) In the context of Applications w/ a DPU-Aware MPI
library: Here, we examine the use of a DPU-aware MPI
library on an application and compare the results from the
BF2 and BF3 SmartNICs. We obtained a license from X-
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Fig. 19: DPU-Bench results between the host and BF3 DPU at an 8-node, 8 PPN scale, from 2 WPN to 8 WPN

ScaleSolutions [1] to use their MVAPICH2-DPU library and 16 nodes with various PPN (Figures 23 and 24). In addition
with it, we show two sets of results: 1) the improvement BF3  to staging-level results, we also show the use of GVMI-based
DPUs give over BF2s in osu_ialltoall (Figures 20, 21, and 22  designs within MVAPICH2-DPU, where GVMI (Guest Virtual
for sixteen-node results), and 2) through the use of a modified Machine ID) exists as firmware on the DPU which exposes
P3DFFT [15] to utilize nonblocking alltoall calls at 8 and memory regions from the host to the DPU.
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Our osu_ialltoall results are averaged over four back-to-back
executions with a comparison to pure-host runtime results. As
the message size increases, staging overhead causes degrada-
tions on both SmartNICS, even with the BF3 having faster
cores than the host servers used. For small and medium mes-
sage sizes, system variances can dictate results that would lead
to at most a 5% degradation in the BF3’s offload capabilities,
as observed at 512 bytes in Figure 21 and 256 bytes in Figure
22. While Staging shows substantial benefits between the two
DPU models, GVMI does not show more than 10% benefits
at the benchmark level thanks to its architecture-insensitive
nature.

A mixture of large messages and resource contention in
using all of the BF3’s cores may result in staging-based
designs performing worse on the BF3 than on the BF2. In the
same figures, larger message sizes show up to 10% degradation
on the BF3. While not shown in the paper, we also see a 15%

degradation at 16 Nodes/4 PPN.
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Fig. 21: osu_ialltoall with MVAPICH2-DPU (16 nodes, 16
PPN on host)

P3DFFT’s process mapping internally used by its sample
programs makes an impact on performance, so we try to mit-
igate any degradations by keeping the X and Y dimensions of
the process mapping as (Node-count x PPN) for these our runs.
This partially explains the lack of degradation/improvement
seen at the smallest scale (8 Nodes/8 PPN) when using a 1920
x 1920 x 1920 mesh in Figure 23. Given the real-life compute
shown here, GVMI shows benefits over staging-based designs,
but again, its architecture-insensitive nature shows little to no
benefits when comparing the BF2 against the BF3.
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Fig. 22: osu_ialltoall with MVAPICH2-DPU (16 nodes, 32
PPN on host)

In this setup, we note that the pure-host execution does
better than staging designs on the BF2 at a small scale (up
to 2X against BF2), and better than the BF3 at a larger scale
(up to 2X against BF3), though still worse than GVMI-based
designs in both scales. Further analyses (profiling and tuning)
with larger and smaller problem sizes/scales are needed along
this line to show the efficacy of even naive staging for larger
scales on both chips.
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IV. RELATED WORK

This section details some of the vast related work to current
designs and research that have either used or examined DPUs
in various designs/environments.

A. MPI-based designs and Benchmarks

The authors of [2] made the first proposal to use DPUs in
the context of MPI libraries. This work employed an efficient
staging design in the context of MPI_Ialltoall. [16] extended



this idea to MPI_Ibcast and MPI_Igather patterns. [9] explores
preliminary designs of a benchmark suite to determine how

efficient it is to offload different communication patterns to a
DPU.

B. Applications in the HPC/DL communities

The authors of [6] performed a case study on MiniMD after
modifying its code to recognize the BF2 and achieve a 20%
increase in runtime with no loss in simulation accuracy. [5]
showed how to enhance DL training through the use of DPUs,
where various stages of DL training were placed on the BF2
to performance gains on three different models.

C. Applications outside of HPC

The authors of [17] utilized the BF2 for DBMS-based
operations (Database Management Systems); they show how
throughput gets affected when offloading portions of the B-
Tree representing the DBMS. While most of the aforemen-
tioned MPI-related works mention the use of offloading com-
munication, this and [6] make use of the DPU for offloading
computation — a less trivial task on the BF2.

It should be noted that given the results from Section III,
most of the efficient designs made for the BF2 will not only
be applicable to the BF3 but could be improved to further take
advantage of the enhanced hardware on later DPUs.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a comprehensive compar-
ison of the performance of the BlueField-2 and BlueField-
3 SmartNICs in various capacities: intra-DPU, both with
simple, single and multi-threaded benchmarks, inter-DPU with
industry-standard micro-benchmarks, and in the context of
working with a host server (micro-benchmarks and applica-
tions) to judge the ability to receive offloaded communication
data. We have systematically analyzed how much more pow-
erful the BlueField-3 DPU is compared to its predecessor to
the best of our abilities. We aim to design more intelligent
offloading schemes to take better advantage of the BlueField-
3 and other DPUs. With systems that have multiple Smart-
NICs/SmartNIC generations per node, or multiple generations
of them such as the experimental cluster we used for this paper,
it will be interesting to see if attempting to offload to multiple
SmartNICs on a single node will result in some performance
degradation or even further improvement given the disparity
between both BlueField DPUs. We plan to expand our work
to include potential offloadable applications potentially using
OpenSHMEM and OpenMP.
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