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ABSTRACT: Aryl-substituted aliphatic amines are widely recognized as immensely valuable molecules. Consequently, the
development of practical strategies for the construction of these molecules becomes increasingly urgent and critical. Here, we have
successfully achieved multifunctionalization reactions of alkenyl alcohols in a sequential relay process, which enables transformation
patterns of arylamination, deuterated arylamination, and methylenated arylamination to the easy access of multifarious
arylalkylamines. Notably, a novel functionalization mode for carbonyl groups has been developed to facilitate the processes of
deuterium incorporation and methylene introduction, thereby providing new means for the diverse transformations of carbonyl
groups. This methodology displays a wide tolerance toward functional groups, while also exhibiting good applicability across various

skeletal structures of alkenols and amines.

ryl-substituted aliphatic amines, serving as core structures
in various important molecules, play a crucial role in the
biological systems by acting as neurotransmitters, hormones,
and pharmaceutical agents.' Their diversity and tunability
make them ideal choices for synthesizing new materials or
improving existing ones. Therefore, research and development
of efficient approaches to the construction of arylalkylamines
are of great importance.2
Multifunctionalization of alkenes is a highly valuable
approach in organic synthesis, and it becomes even more
impactful and powerful when the chain-walking strategy is
incorporated.” In comparison with classical functionalization of
alkenes at vicinal vinylic carbons to produce 1,2-functionalized
products,” hydride shifts lead to alkene isomerization prior to
the reaction in the chain-walking process, resulting in the
generation of products with diversified frameworks.” Among
various approaches, the prevalence of metal-catalyzed remote
difunctionalization of alkenes is remarkable due to the ease of
access to feedstock chemicals and the multitude of creative
transformations (Scheme 1a). In recent years, most endeavors
were concentrated on the difunctionalization of olefins with
directing groups preserved (Scheme 1a, path a). On the other
hand, achievements in the functionalization of alkenes
accompanied by the directing group transformation are limited
to oxidation of an alcohol to the carbonyl group”® or f-
elimination of the directing group to an alkene unit’ (Scheme
la, path b). Thus far, research on subsequent post-trans-
formation of a directing group in a relay manner following the
functionalization of a double bond has remained a significant
challenge8 (Scheme 1a, path c).
In recent years, borrowing hydrogen catalysis has emerged as
a powerful synthetic approach for derivatizing alcohols’
(Scheme 1b). Using alcohols as starting materials, this reaction
proceeds with metal-catalyzed dehydrogenation of alcohols, a-
or ipso-functionalization of the resulting carbonyl intermedi-
ates, and subsequent reduction with an in situ-generated metal
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hydride. Inspired by these studies, it is envisioned that
arylamination of alkenols is achievable by integrating remote
arylation with the generation of a carbonyl group via chain-
walking, followed by metal hydride-mediated reductive
amination. Notably, a-functionalization of carbonyl intermedi-
ates would also become feasible in this case if reductive
amination of the carbonyl functionality proves to be a slow
process. This would address a significant challenge in current
carbonyl compound transformations: prioritizing the function-
alization of carbonyl intermediates over direct reductive
amination (Scheme 1c).

Initial investigation was conducted with 4-iodoanisole (1a),
(Z)-pent-2-en-1-ol (2a), and dipropylamine (3a), Pd(OAc),,
tetrabutylammonium tetrafluoroborate (TBA-BF,), and potas-
sium formate (HCOOK) in toluene under N, atmosphere,
furnishing the desired arylpropylamine product (4a) with a
yield of 36% at 115 °C. It is worth noting that only trace
amount of product was formed in the absence of a quaternary
ammonium salt. Given the decisive role of these ammonium
salts, we speculate that Pd nanoparticles (Pd NPs) are most
likely formed and serve as the active catalyst, as it has been well
documented that quaternary ammonium salts are capable of
stabilizing palladium nanoparticles, preventing the aggregation
and subsequent inactivation of the palladium catalyst, thereby
enhancing the reactivity.'” A subsequent survey of representa-
tive ammonium salts revealed that tetrabutylammonium triflate
(TBA-OTf) was optimal (87% yield). Further screening on
solvents and bases did not show any improvement (Table S1
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Scheme 1. Remote Functionalization of Olefins, Transformation Pattern of Carbonyl Compounds, and Our Design
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in the SI). Notably, lowering the temperature to 105 °C
dramatically reduced the reactivity, while almost no product
was detected at 95 °C.

With an optimized protocol obtained, a wide range of aryl
iodides were then evaluated (Scheme 2). Substrates bearing
substituents at different positions underwent arylamination
smoothly to provide the corresponding products in excellent
yields, regardless of the presence of an electron-withdrawing or
electron-donating substituent, or mono- or di-substituted
groups on the aromatic ring. It is worth mentioning that a
high yield was obtained with the very strong electron-
withdrawing trifluoromethyl substituent (4h), while the
nitro-substituted iodobenzene gave a moderate yield of the
desired product (4g). Additionally, the coordination-capable

substrates were effective (40, 4p). We also tested 3-
iodopyridine and 4-iodopyridine, but unfortunately, neither
of them gave the corresponding product while both substrates
completely resulted in deiodination. Next, we surveyed the
scope with respect to the alkenol substrates. It was found that
alkenols with different frameworks consisting of a terminal or
nonterminal double bond, as well as a varied chain length
between the double bond and hydroxyl group were
compatible, delivering corresponding products with good to
excellent yields (4q—4w). Moreover, the challenging trisub-
stituted alkenol also provided the arylamine product bearing a
quaternary center, albeit with a moderate yield (4x). Notably,
alkenols bearing a styrene moiety have proven highly
challenging substrates in chain-walking Heck-type processes
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Scheme 2. Substrate Scope of the Arylamination Reaction®
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48 h. Four equiv of amine were used. “Conditions: 1 (0.2 mmol), 2 (0.4 mmol), 3 (0.5 mmol), Pd(OAc), (2 mol %), TBA-OTf (50 mol %),
HCOOK (4 equiv), toluene (2 mL), 115 °C, 24 h, unless otherwise noted. Isolated yields.

due to notorious site-selectivity issues from competing
insertion and f-H elimination. However, excellent site-
selectivity was observed in our case (4y), further demonstrat-
ing the importance of this study. Overall, the compatibility of
diverse alkenols under this catalytic system highlights the great
potential of this methodology in the construction of arylalkyl-
amines with versatile scaffolds. Finally, a wide range of amines
were employed under the optimal conditions. Acyclic amines,
as well as cyclic amines of varying sizes, all fitted well with this
catalytic system and afforded the desired products in
satisfactory yields (4z—4ai).

Deuterated compounds have been extensively researched in
nonclinical settings and are widely used as metabolic or
pharmacokinetic probes both in vitro and in vivo.'' The
incorporation of deuterium atoms into pharmacologically
active agents offers potential benefits such as enhanced
exposure profiles and decreased production of toxic metabo-
lites,'”> which could provide improvements in efficacy,
tolerability, or safety. Although there are many achievements

on the deuteration of amine compounds, most of them focus
on the a@-position of the amino group,"’ while reports on
selective f-deuteration are rare. Furthermore, current methods
with high deuterium incorporation on the f-position of the
amine moiety typically rely on the use of relatively expensive
deuterated reagents, such as deuterated alcohols or carboxylic
acids."* In contrast, those using D,0 as the deuterium source
face significant challenges including the cumbersome proce-
dures, low deuteration incorporation, or restricted substrate
scope (Scheme 3)."° Building on the aforementioned
successes, we attempted to leverage the H/D exchange of in
situ-generated imine intermediates (Scheme 1c) to achieve
site-selective deuteration in the process. According to our
hypothesis, the carbonyl intermediates formed in the system
are present in extremely minute quantities relative to DZO.16
Thus, this “sustained-release” transformation mode could make
this methodology a highly efficient means of conducting
deuteration processes.
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Scheme 3. Reported f-Deuteration of Amines Using D,0 and the Designed Deuterated Arylamination Reaction”
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Gratifyingly, our initial attempt was successful in the optimization resulted in the improvement of deuterium
presence of D,O, the most economical deuterium atom incorporation to 91%.

Next, we conducted an applicability study on the alkenol
substrates and coupling partners. It was found that alkenols
with different frameworks were compatible, resulting in the

source, and product (5a) was obtained in 45% yield with 73%
deuterium incorporation under the established optimal

conditions. After a detailed screening, the superior deuteration . . . .
corresponding products with excellent deuterium incorpora-

was achieved with 1,4-dioxane as solvent instead of toluene, tion (Sa—Se). Additionally, both acyclic amines and cyclic

furnishing the desired product in 81% yield with 83% amines were well-suited for this catalytic system, providing the
deuterium incorporation (Table S2 in the SI). Further desired products in satisfactory results (5f and Sg).
D https://doi.org/10.1021/jacs.4c09522
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Scheme 4. Substrate Scope of the Methylenated Arylamination Reaction”
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yields.

Furthermore, aryl iodides bearing substituents with different
electronic properties or substituents at different positions also
produced the target products with very satisfactory results
(5h-5l1).

To further broaden the multifunctionalization pattern, we
attempted to test compatibility of this newly developed process
with the aldol condensation reaction, aiming to generate
valuable classes of allylamine compounds (Scheme 4). The key
challenge lies in achieving the aldol condensation of carbonyl
group prior to the direct reduction of the imine intermediate.
Gratifyingly, when lithium formate and tetrabutylammonium
tetrafluoroborate were used, the target product was successfully
obtained, albeit in only 18% yield. Replacing Pd(OAc), with
Pd(OPiv), significantly improved the ratio of the target
product to the direct reductive amination product (6:1),
resulting in an increased yield of 31%. Surprisingly, when Cul
was added, the yield could be increased to 40%, along with an
improvement in the selectivity of the allylamine over the direct
reduction product to 10:1, further validating the feasibility of
prioritizing a-functionalization. Although we were not able to
achieve a highly satisfactory yield in the end, the approach to
construct valuable allylamine products through a one-step,
four-component cascade process is still very valuable. Further
substrate examination showed that various types of substituted
iodobenzenes, alkenols, and amines could achieve excellent
chemoselectivity, yielding the corresponding target products in
moderate yields.

To gain an insight into the reaction mechanism, a series of
control and kinetic experiments have been carried out (Scheme
5). The results with d-potassium formate suggested that the
hydride source is originated from the formate salt, excluding

the borrowing hydrogen catalysis in reductive amination
(Scheme Sa). Additionally, no desired product was detected
when alcohol 9 was subjected into the reaction (Scheme 5b).”
As such, a carbonyl intermediate is most likely formed via the
relay Heck catalysis and serves as the precursor for reductive
amination. To provide some evidence, aldehyde compound 10
was prepared and studied with amine under the optimized
reaction conditions (Scheme Sc). Interestingly, while only a
trace amount of the target product was obtained with 2 mol %
Pd, the efficiency of this reaction was significantly improved by
increasing the Pd loading to 30 mol %, implying that formate/
Pd(1I) could effectively promote reductive amination of the
carbonyl compound.'” We believe that this result is arisen from
the deviation of reaction conditions from the standard process.
In the standard reaction, the formation of aldehyde is
accompanied with the formation of an equivalent amount of
protons, which turns to be crucial for reductive amination.
During the reductive amination with Pd(I1)/HCOOK, the
formation of the amine product is accompanied with the
generation of an equivalent amount of hydroxide ions. While
reductive amination could be well performed in the presence of
protons, Pd(0) is ultimately formed in their absence and thus
the reaction is stopped (Scheme 5d). In the control
experiment, there are no protons to neutralize the hydroxide
ions formed, thus resulting in the termination of the reaction.
To verify this, 2 equiv of ammonium chloride were added to
the control experiment, and the desired product was isolated in
a 92% yield. Moreover, it is noteworthy that almost twice the
amount product was isolated with 30 mol % Pd loading,
reinforcing the essential role of protons in reductive amination.
As Pd(1I) is reduced to Pd(0), an equivalent amount of

E https://doi.org/10.1021/jacs.4c09522
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Scheme 5. Mechanistic Investigations
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protons is also generated, and contributes to the formation of
an additional, nearly an equivalent amount of the product.

To explore whether the aldehyde intermediate accumulates
or undergoes rapid conversion during the reaction, a kinetic
experiment was conducted (Scheme Se). The results revealed
that the aldehyde consistently remained at a very low
concentration in the reaction, indicating that further
conversion of aldehyde is very fast. Notably, this “slow-
release-rapid-conversion” mode of the carbonyl intermediate
allows for a-functionalization to be favored to direct reductive
amination. It is also envisioned that at a high concentration,
aldehyde may partially undergo direct reductive amination
prior to a-functionalization. Unsurprisingly, when aldehyde 11
was used in the deuterated reductive amination reaction, the
deuterium incorporation was significantly reduced (Scheme
5f).

Based on the above observations, a plausible reaction
mechanism involving dual catalytic cycles is proposed (Scheme
5g)."® This process begins with a quaternary ammonium salt-
facilitated, Pd NPs-catalyzed arylation pathway, resulting in
carbonyl intermediate Int 1, which encompasses hydroxyl

group-directed functionalization of the double bond, Pd(II)
migration via chain-walking, and oxidative conversion of the
hydroxyl group. In the second stage, the reduction process is
mediated by the in situ-generated “Pd—H” species from Pd(II)
and formate salts, involving a competition between the direct
reduction of Int 2 to form product 4 and the functionalization-
reduction to form product § or 6. Mechanistic studies indicate
that the aldehyde intermediate consistently remains at a very
low concentration, which is favorable for a-functionalization to
direct reductive amination. Ultimately, this “slow-release-rapid-
conversion” transformation mode promotes the multifunction-
alized products in a sequential relay process.

In conclusion, we have successfully achieved arylation of
olefins accompanied by directing group transformations,
yielding arylalkylamine derivatives with diverse scaffolds.
Building upon this, through functionalization at the a-position
of carbonyl groups and subsequent ipso-transformations, we
have effectively realized the multifunctionalization of alkenyl
alcohols, obtaining a variety of highly useful molecular
structures. Additionally, the eflicient implementation of H/D
exchange facilitated the efficient construction of deuterated
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arylalkylamines. Moreover, highly chemoselective introduction
of the aldol condensation reaction made the synthesis of aryl-
substituted allylamine compounds a reality. The ability to
access various arylalkylamines with a single catalytic system is
likely to have a notable impact on the way in which many
molecules of interest are prepared.
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