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Replicability is a fundamental quality of scientific discoveries: we are
interested in those signals that are detectable in different laboratories, dif-
ferent populations, across time etc. Unlike meta-analysis which accounts for
experimental variability but does not guarantee replicability, testing a partial
conjunction (PC) null aims specifically to identify the signals that are dis-
covered in multiple studies. In many contemporary applications, e.g., com-
paring multiple high-throughput genetic experiments, a large number M of
PC nulls need to be tested simultaneously, calling for a multiple compar-
isons correction. However, standard multiple testing adjustments on the M
PC p-values can be severely conservative, especially when M is large and
the signals are sparse. We introduce AdaFilter, a new multiple testing proce-
dure that increases power by adaptively filtering out unlikely candidates of
PC nulls. We prove that AdaFilter can control FWER and FDR as long as
data across studies are independent, and has much higher power than other
existing methods. We illustrate the application of AdaFilter with three exam-
ples: microarray studies of Duchenne muscular dystrophy, single-cell RNA
sequencing of T cells in lung cancer tumors and GWAS for metabolomics.

1. Introduction. Replication is “the cornerstone of science" [34]. An important scien-
tific finding should be supported by further evidence from similar conditions, by other re-
searchers or with new samples. In the last decade, however, both the popular [29] and the sci-
entific press [3, 1] have reported the lack of replicability in modern research. While there are
many reasons behind this phenomenon, one important factor is that many scientific discover-
ies are obtained from complicated large-scale experiments with biases from various sources.
Even when the data are carefully analyzed, idiosyncratic aspects of a single experiment can
fail to extend to other settings, and any finding from just one study can easily lack external va-
lidity. Thus, it is crucial to have a statistical framework to objectively and precisely evaluate
the consistency of scientific discoveries across multiple studies, while properly accounting
for experimental heterogeneity.

The partial conjunction (PC) test, which was introduced by [15] and further studied
in [4], provides such a framework. Given n null hypotheses (base nulls) and a number
r 2 {2,3, . . . , n}, the PC null states that there are fewer than r base non-nulls. In the setting
where each base hypothesis represents a test from one study, rejecting a PC null explicitly
guarantees that the signal replicates at least r times. The PC framework has been used to
identify replicating signals in neuroimaging [36], to detect genes that show consistent ef-
fects across genetic experiments [21], and recently to study mediation effects [32] and find
evidence factors [27] in causal inference.
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In high-throughput genetic experiments, there is a special need to identify replicating sig-
nals across multiple studies. For instance, for gene expression data, it is important to find
stable gene markers for a disease or cell type, which remain differentially expressed across
similar experiments or in multiple patients. In multi-tissue expression quantitative trait loci
(eQTL) studies, scientists are interested in identifying DNA loci with consistent regulation
over tissues [14, 43]. With a growing trend in multi-omics data sharing [20], there is also ac-
tive research in finding replicating signals across platforms [47], ethnic groups [33, 16] and
even species. Though the PC framework fits all above scenarios, finding multiple replicating
signals by simultaneously performing a large number of PC tests for thousands of genes or
millions of DNA loci, however, typically suffers from extremely low power.

Specifically, let M denote the number of hypotheses in one study and suppose that we
compare across n related studies. Then, to find replicating signals across the n studies, we
have M PC nulls to test, each with n base nulls. The above framework gives us an n⇥M
matrix of base p-values, with one column per PC null and one row per study. Now, as we want
to identify signals whose PC nulls are false, a “direct approach” is to first get a combined
p-value for each PC null and then apply standard multiple testing adjustment to the M PC p-
values. However, this “direct approach” for testing multiple PC tests has been shown to have
extremely low power [23, 41]. Both [23] and [7] suggest procedures to counter that power
loss. Unfortunately, the appoach in [7] is designed only for n= r = 2 and the empirical Bayes
approach repfdr in [23] encounters both accuracy and computational barriers for n as large
as 8, as shown in our simulations. There is thus a need for a powerful and fast method that
can guarantee simultaneous error control and can handle a larger number of studies.

In this paper, we introduce AdaFilter, an adaptive filtering multiple testing procedure for
multiple PC hypotheses. We propose different versions of AdaFilter to control simultaneous
error rates including FDR (false discovery rate) and FWER (familywise error rate). AdaFilter
can control FWER and FDR when all nM base p-values are independent. In addition, it
asymptotically controls FDR when M goes to infinity, allowing base p-values to be weakly
associated within each study. The weak dependence only assumes that within each study, the
number of pairs (j, j0) where the base p-values pj and pj0 are dependent is o(M2), which is
reasonable for most genetics and genomics data. Using simulations and real data applications,
we show that AdaFilter is robust to dependence of p-values within each study and can have
much higher power than the “direct approach” or using repfdr.

Deferring precise statements to later sections, we give an intuitive explanation for how
AdaFilter gains power. The low power of the “direct approach” is due to the fact that partial
conjunction has a composite null. AdaFilter’s power gain is linked to its ability to borrow
information across studies and learn from the data which PC hypotheses are likely to be least
favorable nulls. Intuitively, AdaFilter filters the set of hypotheses down to a number m<M
of candidate least favorable nulls, which are the nulls that have exactly r � 1 base non-
nulls. The PC p-values are still “valid” conditioning on filtering and the decreased number of
hypotheses lowers multiplicity burden. More surprisingly, the power gain also links to a lack
of “monotonicity” of the number rejections in the base p-values, where increasing some base
p-values can result in more rejections. In the extreme case, combining multiple studies while
requiring replicability can even lead to more rejections than the union of rejections by testing
each individual study separately.

The structure of the paper is as follows. Section 2 precisely defines the PC framework, and
illustrates the power limitation of the “direct approach”. Section 3 introduces our AdaFilter
procedures. Section 4 discusses theoretical properties of AdaFilter. Section 5 explores the
performance with simulations. Section 6 applies AdaFilter to several real studies. Section 7
has conclusions. An R package implementing AdaFilter is available at https://github.
com/jingshuw/adaFilter.

https://github.com/jingshuw/adaFilter
https://github.com/jingshuw/adaFilter
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2. Multiple testing for partial conjunctions. In this section, we provide a brief intro-
duction of the partial conjunction hypotheses and the low power in detecting multiple PC
hypotheses using the “direct approach”.

2.1. Problem setup. We consider the problem where M null hypotheses are tested in
n studies. The base null hypotheses are (H0ij)n⇥M . In high-throughput experiments, M is
the number of genes or DNA loci. We work with summary statistics that are base p-values
(pij)n⇥M for (H0ij)n⇥M . Each pij is the realization of a random variable Pij . We assume
that each base P-value is valid, satisfying P(Pij  �)  � under its null. Also, let P(1)j 

P(2)j  · · · P(n)j be the sorted P-values for each j = 1,2, . . . ,M .

DEFINITION 2.1 (Partial Conjunction Hypothesis). For integers n � r � 2, the partial
conjunction (PC) null hypothesis is:

Hr/n

0
: fewer than r out of n base hypotheses are non-null.

When r = 1, H1/n

0
is the commonly tested global null for meta-analysis. Rejecting it

would not guarantee replicability. In high-throughput experiments, for each DNA locus or
gene j 2 {1,2, . . . ,M}, we test for a PC null Hr/n

0j
to evaluate if genetic signals have been

replicated at least r times across n studies. Throughout the paper, we assume that p-values
across studies are independent. This can be assumed when samples do not overlap across
studies.

For a multiple testing procedure on {Hr/n

01
, . . . ,Hr/n

0M
}, denote the decision function as

'j = 1 if we reject Hr/n

0j
and 'j = 0 otherwise. The total number of discoveries is then

R =
P

M

j=1
'j . Among these, the number of false discoveries is V =

P
M

j=1
'j1vj=0 where

vj = 0 if Hr/n

0j
is true and vj = 1 otherwise.

There are many measures of the simultaneous error rate [11], with FWER and FDR be-
ing the most common ones. In addition, we consider the per-family error rate (PFER), as it
provides a motivation for our procedures. With the notation introduced, we have

FWER := P(V � 1), PFER := E(V ), FDR := E(FDP).

where FDP = V/(R _ 1) is the false discovery proportion.

2.2. The “direct approach”. We start with a brief review of p-value construction for a
single PC null, while more details can be found in [44] and [4]. Consider a single PC null
Hr/n

0
with a vector of base P-values (P1, P2, . . . , Pn) and let Pr/n = f(P1, P2, . . . , Pn) be

the combined P-value for Hr/n

0
. Benjamini and Heller [4] discussed three approaches, which

we report here, using the standard notation (P(1)  P(2)  · · · P(n)):

1. Simes’ method:

PS

r/n
= min

rin

nn� r+ 1

i� r+ 1
P(i)

o
,

2. Fisher’s method:

PF

r/n
= P

�
�2

(2(n�r+1))
��2

nX

i=r

logP(i)),

3. Bonferroni’s method:

PB

r/n
= (n� r+ 1)P(r).
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The idea is to apply meta-analysis to the largest n � r + 1 base P-values. For instance, if
n = r = 2, then PS

2/2
= PF

2/2
= PB

2/2
= max(p1, p2). All three methods construct valid PC

P -values for Hr/n

0
under independence, and [44] showed that they also provide the most

powerful tests for a single PC null. For M hypotheses, we denote Pr/n,j as the PC p-value
for the jth PC null.

The “direct approach” is to simply apply standard multiple testing adjustment procedures
to the M PC P-values. For example, to control the FWER at level ↵, we could use the Bon-
ferroni rule, rejecting Hr/n

0j
if Pr/n,j  ↵/M , which also controls the PFER at level ↵ [42].

To control the FDR we could apply BH procedure [5] on {Pr/n,j , j = 1, · · · ,M}.
However, this direct approach is often too conservative, as we illustrate now for the case

r = n. To quantify how the performance associates with the composite nature of a PC null,
define sets Ik ⇢ {1, · · · ,M} such that

(1) Ik =
�
j 2 {1, · · · ,M} | exactly k of H01j , . . . ,H0nj are false

 

for k = 0, . . . , n. Sets {Ik, k = 0, . . . , n} define a partition of {1, . . . ,M}. If a false rejection
of Hn/n

0j
happens, then the jth column must belong to one of Ik where k = 0,1, · · · , n� 1.

Thus, if we use Bonferroni to control for FWER at a nominal level ↵, the true FWER instead
satisfies

FWER  E(V ) =
n�1X

k=0

X

j2Ik

P(P(n)j  ↵/M)



n�1X

k=0

X

j2Ik

↵n�k

Mn�k
=

n�1X

k=0

|Ik|
↵n�k

Mn�k
.

where the second inequality is close to an equality when all the tests for non-nulls H1ij have
high power. Let �k = |Ik|/M be the proportion of hypotheses in each partition. Then we have

(2) E(V ) ↵
n
�n�1 + �n�2

↵

M
+ �n�3

⇣ ↵

M

⌘2
+ · · ·+ �0

⇣ ↵

M

⌘n�1o

which in the limit is dominated by �n�1↵ (when �n�1 6= 0) or is of order O(M�1) (when
�n�1 = 0) for large M . Thus, when �n�1 ⇡ 0, a typical scenario in genetics problems with
sparse signal, the expected number of rejections E(V ) would be much smaller than ↵ and the
“direct approach” can become highly deficient, in fact much more conservative than Bonfer-
roni usually is.

The point is that if we do not account for the fact that the PC null is composite, we will
control the simultaneous error rates under the worst case scenario (�n�1 = 1), which is un-
necessary. For general r  n, the level of E(V ) for Bonferroni correction will depend mainly
on �r�1 in the large M setting. So does the BH control for FDR.

It is clear that there can be more efficient procedures if the fractions �k were known or if
good estimates of �k can be obtained. This is what motivates the Bayesian methods [23, 14].
In this paper we take a frequentist perspective. Rather than estimating �k, AdaFilter works
directly on an alternative estimation of V , implicitly and adaptively adjusting for the size of
�r�1, the fraction of the least favorable nulls.

3. The idea of AdaFilter. In Section 2.2, we showed that a PC null hypothesis is com-
posite, thus the inequality P(Pr/n  �)  � for a given � is only tight for the least favor-
able null, while standard multiple testing procedures are designed to control error when
P(Pr/n  �) = � is always true. To overcome this, AdaFilter leverages a region A� ⇢ [0,1]n
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such that the much tighter inequality

P(Pr/n,j  � | (P1j , . . . , Pnj) 2A�) �

holds for any configuration in the PC null space.

p1

p 2

0 γ 1
0

γ

1

Fig 1: Illustration of the rejection (red) and filtering (L-shaped blue) regions at � = 0.2 when
n= r = 2. Each triangle corresponds to a pair of p-values.

Figure 1 illustrates the construction of the filtering region A� for r = n= 2. The PC test j
has base p-values P1j and P2j , and its PC p-value is P2/2,j =max(P1j , P2j). The null H2/2

j0

contains three configurations: (H01j ,H02j) being (True, True), (True, False) or (False, True).
It is easy to see that P(P2/2,j  �) �2 under (True, True), while P(P2/2,j  �) can be close
to � under the other two less favorable configuration. Let us consider, instead, conditioning
on (P1j , P2j) being in the “L”-shaped filtering region A� = {(p1, p2) | min(p1, p2)  �}.
We get P(P2/2,j  � | (P1j , P2j) 2A�) � being true for all three null scenarios, which is
much tighter than P(Pr/n  �) �. The inequality holds since at least one of P1j and P2j is
stochastically greater than uniform under all three configurations.

Since Bonferroni and BH procedures are based on an implicit estimate of the number of
false rejections V associated with a threshold �: bV� = �M , we can improve their efficiency
with a smaller estimate of bV� using the new inequality. Specifically, the estimated V is now
bVA�

= �⇥
P

M

j=1
1(P1j ,P2j)2A�

, where M is replaced by the number of hypotheses falling into
the L shaped region, a possibly much smaller number than M . Alternatively, the quantity
(1/M)

P
M

j=1
1(P1j ,P2j)2A�

is our “estimate” of �r�1, the fraction of least favorable nulls.
Hypotheses that fall outside of the “L”-shaped filtering region are not counted towards the
multiplicity of the PC hypotheses.

To control the FWER (and PFER) at level ↵, we can adaptively choose the largest � satis-
fying bVA�

 ↵. Similarly, to control the FDR at level ↵, we estimate the FDP as bVA�
/(R_1)

and select the largest � such that bVA�
/(R _ 1) ↵. These are essentially the Bonferroni or

BH procedure with an alternative estimate of V .
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3.1. Definition of AdaFilter procedures. Now we formally define AdaFilter for general
n and r. It is convenient to first introduce the notion of filtering and selection “P -values”.
These are

Fj := (n� r+ 1)P(r�1)j , and(3)

Sj := PB

r/n,j
= (n� r+ 1)P(r)j ,(4)

respectively.

DEFINITION 3.1 (AdaFilter Bonferroni). For a level ↵, and with Fj and Sj given by (3)
and (4) respectively, reject Hr/n

0j
if Sj < �Bon

0
where

�Bon
0 = sup

n
� 2 [0,↵]

��� �
MX

j=1

1Fj<�  ↵
o
.

DEFINITION 3.2 (AdaFilter BH). For a level ↵, and with Fj and Sj given by (3) and (4)
respectively, reject Hr/n

0j
if Sj < �BH

0
where

�BH
0 = sup

(
� 2 [0,↵]

���
�
P

M

j=1
1Fj<�

P
M

j=1
1Sj<� _ 1

 ↵

)
.

REMARK 3.1. We define the filtering region as {Fj < �} instead of {Fj  �} to guaran-
tee that �Bon

0
and �BH

0
themselves satisfy the corresponding inequalities. This is important for

showing the theoretical properties of adaFilter procedures, especially when base p-values are
discrete. The rejection criterion is set to Sj < �0 instead of Sj  �0 where �0 is either �Bon

0

or �BH
0

accordingly (for Lemma 4.1).

We also introduce AdaFilter adjusted “p-values” like those commonly computed for stan-
dard Bonferroni and BH procedures. They provide equivalent sets of rejections as the above
definitions, while can be more efficiently computed.

DEFINITION 3.3 (AdaFilter adjusted p-values). Rank the selection p-values as S(1) 

S(2)  · · · S(M) where S(j) is for the null hypothesis Hr/n

0(j)
. For each j, define an AdaFilter

adjustment number

mAF
(j)

:=
MX

h=1

1FhS(j)
.

Then the AdaFilter Bonferroni adjusted P-value for Hr/n

0(j)
is

PBon
(j)

= S(j)m
AF
(j)

and the AdaFilter BH adjusted P-value for Hr/n

0(j)
is

PBH
(j)

=min

(
min
h�j

(
S(h)

mAF
(h)

h

)
,1

)
.

For any level ↵ > 0, we reject the hypotheses whose AdaFilter adjusted p-values are
smaller than ↵. We can verify that the AdaFilter adjusted p-values give the same set of rejec-
tions as Definition 3.1 and Definition 3.2.
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PROPOSITION 3.4. For any level ↵> 0, the set of rejections defined as {j : P Bon
j

< ↵} is
equivalent to the set of rejections from Definition 3.1. Similarly, the set of rejections defined
as {j : P BH

j
< ↵} is equivalent to the set of rejections from Definition 3.2.

In practice, the AdaFilter adjusted p-values can be more easily computed than finding �Bon
0

and �BH
0

. Our simulations and real data applications in Sections 5 and 6 also compute these
adjusted p-values for getting the rejections of AdaFilter procedures.

3.2. A heuristic comparison with the “direct approach”. Before we discuss the theoreti-
cal properties of AdaFilter procedures in Section 4, we revisit the case of r = n in Section 2.2
to understand the level of power gain from AdaFilter procedures compared with the “direct
approach”. When r = n, the PC p-values for the “direct approach” are Pr/n,j = P(n)j , which
are the same as the selection p-values of AdaFilter procedures. As a consequence, AdaFilter
procedures would not change the ordering/ranking of the individual PC hypotheses. AdaFil-
ter gains power by selecting a much less conservative PC p-values threshold � than the “direct
approach” for the same nominal FWER/FDR level.

If one controls FWER at level ↵, then the PC p-value threshold from the “direct approach”
using Bonferroni adjustment is ↵/M . We now give an approximation of the threshold from
AdaFilter Bonferroni. When r = n, at any given threshold �, the estimate of the number of
false discoveries used in AdaFilter is

V̂ (�) = �
MX

i=1

1Fj<� = �
MX

i=1

1P(n�1),j<� .

AdaFilter Bonferroni finds the largest � so that V̂ (�)  ↵. As defined in (1), let Ik ⇢

{1, · · · ,M} be the set of hypotheses with exactly k base non-nulls and let �k = |Ik|/M .
When M is large, the expected value of V̂ (�) satisfies that

E
⇣
V̂ (�)

⌘
= �

nX

k=0

X

j2Ik

P
�
P(n�1),j < �

�

 �

 
|In|+ |In�1|+

n�2X

k=0

|Ik| ·

⇣
(n� k)�n�k�1(1� �) + �n�k

⌘!

 �M(�n + �n�1) +MO(�2).

The first inequality is due to the fact that all base null p-values are independent and for each
j 2 Ik, we can decompose P

�
P(n�1),j < �

�
into the events that all n� k base nulls i satisfy

Pij  � and exactly n � k � 1 base nulls satisfy this constraint. So roughly, the AdaFilter
Bonferroni threshold �Bon will be around some value that is at least ↵/

�
M(�n + �n�1)

�
+

o(1/M). Compared with the Bonferroni threshold ↵/M in the “direct approach”, AdaFilter
Bonferroni increases this threshold by 1/(�n + �n�1). In our motivating applications, both
�n and �n�1 are typically small, and so such an increase would be substantial. The resulting
actual FWER is also less conservative. If we use a fixed threshold at � = ↵/

�
M(�n+ �n�1)

�
,

then

E(V ) ↵
n �n�1

�n�1 + �n
+O(

1

M
)
o
.

Compared to the bound ↵�n�1 + O(1/M) in (2) from the “direct approach”, we can now
be much less conservative especially when the proportion of least favorable PC nulls �n�1 is
small.
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4. Theoretical properties of AdaFilter. Now we prove that AdaFilter procedures con-
trol simultaneous error rates under various conditions. As stated in Section 2.1, all the fol-
lowing results assume that p-values across n studies are independent. The key property that
AdaFilter relies on is the following conditional validity lemma:

LEMMA 4.1 (Conditional validity). When Hr/n

0j
is true, for any fixed � > 0

(5) P
�
Sj < � | Fj < �

�
 �

holds whenever P
�
Fj < �

�
> 0. Here Fj and Sj are given by (3) and (4), respectively.

Inequality (5) can be equivalently written as P
�
Sj < �

�
 �P(Fj < �), which holds even

when P(Fj < �) = 0 as Sj � Fj is always true. Intuitively, the “conditional validity” guaran-
tees that for a fixed threshold �, the estimated upper bound on the number of false rejections
V is �

P
j
1Fj<� . However, AdaFilter uses a data-dependent �, so extra assumptions on the

base p-values within one study are needed to prove simultaneous error control of AdaFilter.

4.1. Exact simultaneous error rates control for finite M . First, for a finite number of
hypotheses M , we can show that AdaFilter Bonferroni controls FWER and PFER if we
further assume independence of all nM base p-values.

THEOREM 4.2. Let (Pij)n⇥M contain independent valid p-values. Then AdaFilter Bon-
ferroni in Definition 3.1 controls FWER and PFER at level ↵ for the null hypotheses
{Hr/n

0j
: j = 1,2, . . . ,M}.

REMARK 4.1. Though we name our method AdaFilter Bonferroni, we can only prove
FWER/PFER control under independence of the p-values within each study, though sim-
ulations in Section 5 show that FWER/PFER control can also be achieved in practice for
dependent p-values within each study.

REMARK 4.2. For controlling for FWER, one can combine adaFilter Bonferroni with
the sequential rejection principle [18] to further increase the number of rejections while con-
trolling for FWER at the same level. Intuitively, this is similar to improving the standard
Bonferroni procedure with Holm’s procedure. For a more detailed discussion, see Section
S1.

For AdaFilter BH, however, we can only prove that it controls FDR at the nominal level
of ↵C(M) where C(M) =

P
M

j=1
1/j ⇡ logM . In other words, adjusting the threshold to be

↵/C(M) can guarantee control of the FDR at level ↵.

THEOREM 4.3. Let (Pij)n⇥M contain independent valid p-values. Then AdaFilter BH
in Definition 3.2 controls FDR at level ↵C(M) where C(M) =

P
M

j=1
1/j for the null hy-

potheses {Hr/n

0j
: j = 1,2, · · · ,M}.

The inflation factor C(M) in Theorem 4.3 for the adaFilter BH procedure is due to a tech-
nical difficulty encountered when proving for FDR control for finite M . In Section 5, we
find in simulations that the AdaFilter BH procedure adjusted by C(M) still achieves higher
power than other bench-marking approaches. Our simulations also suggest that the adjust-
ment C(M) is actually not needed in practice. In Section 4.2, we will show that AdaFilter
BH can asymptotically controls FDR without using the inflation factor C(M) when M !1.
The asymptotic results also do not require independence among p-values within each study.
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4.2. Asymptotic FDR control when M !1. Now we discuss FDR control of AdaFil-
ter BH when the number of hypotheses M is very large, the usual case in high-throughput
genetic experiments. Inspired by [13], we make the following three assumptions.

First, instead of requiring independent p-values within each study, we only assume a weak
dependence structure among the p-values within each study.

ASSUMPTION 1 (Weak dependence). Within any study i, the p-values Pij for j =
1,2, · · · ,M satisfy weak dependence where for any fixed �

1

M2

X

j 6=j0

��P(Pij < �, Pij0 < �)� P(Pij < �)P(Pij0 < �)
��! 0

as M !1.

One scenario where the weak dependence holds is that, within each study i, the number
of pairs (Pij , Pij0) where Pij and Pij0 are not independent is o(M2). For microarrays or
RNA-seq experiments, gene-gene networks are typically sparser than O(M2). For GWAS or
eQTLs, DNA loci are usually associated only when they are close enough along the DNA
chain, say when |j � j0| < b for some constant b. The weak dependence assumption is rea-
sonable for both the above two scenarios.

Now let Hr/n

0
= {j :Hr/n

0j
is true} be the set of true PC nulls and M0 be its cardinality.

Similarly, define H
r/n

1
= {j :Hr/n

1j
is true} to be the set of true PC non-nulls and let M1 be

its cardinality. Besides weak dependence, we also assume that when M !1, the following
limits exist:

ASSUMPTION 2 (Existence of limits). The following limits exist:

lim
M!1

M0

M
= ⇡0 2 (0,1)

lim
M!1

1

M0

X

j2H
r/n
0

P (Fj < �) = F̃0(�), lim
M!1

1

M1

X

j2H
r/n
1

P (Fj < �) = F̃1(�)

lim
M!1

1

M0

X

j2H
r/n
0

P (Sj < �) = S̃0(�), lim
M!1

1

M1

X

j2H
r/n
1

P (Sj < �) = S̃1(�).

For a given n, there are 2n combinations of base hypotheses being null or non-null. A
special case where Assumption 2 is satisfied is when each of these combinations has a lim-
iting proportion and within each study, the base p-values have identical distributions under
the null, and identical distributions under the non-null, such as a mixture driven by random
underlying effect sizes. Specifically, for any c 2 {0,1}n representing one of the 2n combina-
tions, let mc be the number of PC hypotheses that fall into this combination. Also, let H0i

and H1i be the sets of true nulls and true non-nulls for the ith study. If (a) limM!1mc/M
exists for all c and, (b) for each i, {Pij : j 2H0i} have identical distributions across j and
{Pij : j 2H1i} also have identical distributions across j, then Assumption 2 is satisfied.

Under Assumption 2, we denote

F̃ (�) = ⇡0F̃0(�) + (1� ⇡0)F̃1(�),

S̃(�) = ⇡0S̃0(�) + (1� ⇡0)S̃1(�),
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and further define the “asymptotic FDR” for a given � as

f1(�) =

(
�F̃ (�)

S̃(�)
, if S̃(�)> 0

0, otherwise,

and the largest �1
0

such that f1(�) ↵, i.e.,

�10 = sup{� : f1(�) ↵}.

Then f1(�) is 0 when � = 0 and exceeds 1 when � = 1, thus the above set is not empty.
We make a final technical assumption on the functions f1(·), S̃0(·) and S̃1(·) around �1

0
:

ASSUMPTION 3 (Technical conditions). The following two conditions hold:

(a) There exists � > 0 such that f1(�) is monotonically increasing in the interval (�1
0

�

�,�1
0
], and

(b) S̃0(�) and S̃1(�) are both continuous at the point �1
0

.

Intuitively, (a) guarantees that the limit of the AdaFilter threshold �BH
0

is unique when
M ! 1 and (b) is satisfied if there are sufficient points (selection p-values) around �1

0

when M is large. Now we are ready to state the asymptotic FDR control of AdaFilter BH.

THEOREM 4.4. Under Assumptions 1-3, the AdaFilter BH procedure of Definition 3.2
satisfies

�BH

0

p
! �10 , and

FDP
p
!

⇡0S̃0(�10 )

S̃(�1
0
)

 ↵

as M !1. Thus, AdaFilter BH asymptotically controls FDR at the nominal level ↵ for the
null hypotheses {Hr/n

0j
: j = 1,2, · · · ,M}.

Notice that Assumption 3(a) implies that f1(�1
0
)> 0, thereby guaranteeing S̃(�1

0
)> 0.

REMARK 4.3. Theorem 4.4 still holds if Assumption 2 is weakened to allow ⇡0 = 0
while M0 !1 and Assumption 1 is modified to: for any fixed �,

1

M2
s

X

j 6=j02H
r/n
s

��P(Pij < �, Pij0 < �)� P(Pij < �)P(Pij0 < �)
��Ms!1

�! 0

for both s= 0,1. We can not deal with ⇡0 = 1 as that would lead to S̃(�1
0
) = 0 and violates

Assumption 3(a). In Section 5, we show with simulations that both simultaneous error rates
can be controlled in practice even when M0/M = 0.99.

4.3. Lack of complete monotonicity. The increased power of AdaFilter can lead to an
unexpected power gain when combining multiple similar studies. Suppose that we test the
involvement of M genes in a disease with two studies. One researcher uses BH or Bonferroni
separately on the M base p-values in each study and claims that a gene is important for the
pathology if it is rejected in any of the two studies. Another researcher runs AdaFilter with
r = 2 on the same data while claiming that a gene is selected only when its nulls are false in
both studies. The second researcher has a stricter goal, however, it is possible that she makes
more discoveries than the first.
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To see how this could happen, consider the toy example in Table 1a where M = 2. In both
studies, neither of the two hypotheses can be rejected at significance level ↵ = 0.05 when
using either Bonferroni or BH on each study separately. However, both AdaFilter Bonferroni
and AdaFilter BH can reject H2/2

01
at the same nominal level. This interesting phenomenon

arises from the lack of monotonicity of the number of rejections in the base p-values. A
multiple testing procedure has “complete monotonicity” if reducing any base p-values can
never cause any of the decisions on the null hypotheses to switch from ‘reject’ to ‘accept’.

(a)

Study

j 1 2 Fj Sj

1 0.04 0.03 0.03 0.04
2 0.5 0.9 0.5 0.9

(b)

Study

j 1 2 Fj Sj

1 0.04 0.03 0.03 0.04
2 0.01 0.9 0.01 0.9

TABLE 1
(a) Toy example where AdaFilter is more efficient than testing for each study separately. Values are the p-values.

(b) A counterexample to show that AdaFilter violates “complete monotonicity”. The significance level is
↵= 0.05.

DEFINITION 4.5 (Complete monotonicity). A multiple testing procedure has complete
monotonicity if each decision function 'j is a non-increasing function in all the elements of
(pij)n⇥M for j = 1,2, · · · ,M .

Simes’, Fisher’s and Bonferroni’s meta-analyses have complete monotonicity. So does the
BH procedure with n = 1. Heller, Bogomolov and Benjamini [21] call this property “sta-
bility” and it holds for the PC tests of [22]. However, AdaFilter do not satisfy complete
monotonicity: lowering one of the p-values for gene j can change the rejection of Hr/n

0,j0 to
acceptance for j0 6= j.

Table 1b shows how AdaFilter does not have complete monotonicity. Compared with Ta-
ble 1a, the second hypothesis has a decreased p-value in study 1 while all other p-values are
kept fixed. In Table 1a, both �Bon

0
= �BH

0
= 0.05 so the first PC hypothesis is rejected. In con-

trast, in Table 1b �Bon
0

= �BH
0

= 0.03 so that none of the hypotheses can be rejected though it
has a smaller p-value matrix.

This lack of complete monotonicity, which might appear undesirable, in fact is at the
core of the efficiency of AdaFilter. A larger Pij can increase Fj to reduce the multiplicity
burden. When only a few hypotheses are non-null—as in a sparse genomics setting—we
expect lots of large Pij . This gives AdaFilter a substantial advantage in identifying the few
non-null PC hypotheses. From another perspective, increased base p-values may make the
signal configuration across genes more similar among studies. AdaFilter can implicitly learn
such similarity and utilize it to allow more rejections.

Though lacking “complete monotonicity”, AdaFilter retains a “partial monotonicity” prop-
erty: reducing one of the n base p-values for test j can never change the decision from reject
Hr/n

0,j
to accept.

DEFINITION 4.6 (Partial monotonicity). A multiple testing procedure has partial mono-
tonicity if for all j 2 {1, · · · ,M}, its decision function 'j(p·1, . . . , p·M ) is non-increasing in
all elements of (p1j , p2j , . . . , pnj).
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Partial monotonicity only requires the test of hypothesis j to be monotone in the p-values
for that same hypothesis. It allows a reduction in pij0 for j0 6= j to reverse a rejection of Hr/n

0j
.

We have the following result:

COROLLARY 4.7. Both the AdaFilter Bonferroni and the AdaFilter BH procedures sat-
isfy partial monotonicity for all null hypotheses Hr/n

0j
, j = 1,2, . . . ,M .

Corollary 4.7 indicates that AdaFilter is reasonable in a way that reducing the base p-
values of the jth PC hypothesis indeed strengthens the evidence of replicability for the jth PC
hypothesis, though possibly weakening the evidence of replicability for other PC hypotheses.

4.4. Extensions and discussion of related literature.

4.4.1. Comparison with other strategies. Two directly related methods to AdaFilter are
[7] for n= r = 2 and the empirical Bayes approach in [23] for controlling the Bayes FDR,
both of which are designed to test for multiple PC nulls. Both methods were developed to
improve the efficiency of the “direct approach” we described. AdaFilter is similar to the
method of [7] but works for any n and r. It provides a frequentist approach comparable to
and sometimes better than [23].

The procedures of [7] use a filtering step for each study based on the p-values in the
other study and a selection step that rejects hypotheses that have small enough p-values in
both studies. To maximize the efficiency, the authors suggest a data-adaptive threshold. For
instance, to control FWER, they chose two thresholds �1 and �2 to satisfy

�1 ⇥
MX

j=1

1P2j<�2
⇡

↵

2
and �2 ⇥

MX

j=1

1P1j<�1
⇡

↵

2
.

When �1 ⇡ �2, then

�1 ⇥
MX

j=1

1min(P1j ,P2j)<�1
 �1 ⇥

MX

j=1

�
1P1j<�1

+ 1P2j<�1
)⇡ ↵.

Thus �Bon
0

⇡ �1 ⇡ �2 and AdaFilter becomes similar to their procedure. The proposed method
only applies for n = r = 2; this simplification makes the approach less widely applicable,
despite its strong theoretical guarantees. In addition, for n = r = 2, some other methods
[10, 9] have also discussed powerful multiple testing procedures controlling for FWER and
in [? ], the authors proposed a new procedure controlling for local FDR.

In repfdr [23], the authors tried to learn the proportion of each of the 2n (or 3n for
sign replicability) configurations of base hypotheses, along with the distribution of some
Z-values under each configuration. This has cost at least O(M2n) while AdaFilter has cost
O(Mn log(n)). There are other multiple testing procedures that aim to find consistent signals
across conditions [43, 45, 48], all of which use an empirical Bayes framework as in [23].
Compared to these methods, AdaFilter is typically faster, guarantees simultaneous error rate
control and is more robust to the dependence of p-value within each study.

Finally, there has been much other recent literature on efficient FDR control by using some
special data structure as prior knowledge [30, 31, 2, 6] and then adaptively determining the
selection threshold. AdaFilter shares some similar adaptive filtering ideas, but works directly
from an n⇥M matrix of p-values without assuming any special structure and is uniquely
tailored to the special nature of the PC hypotheses.
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4.4.2. Variable r and n. In many genetic problems, the M genes or DNA loci can have
varying rj or nj as they may not be present in every experiment. Then the jth PC null
hypothesis is Hrj/nj

0j
. AdaFilter procedures still work in this scenario because Lemma 4.1

still holds. We only need to replace formulas (3) and (4) by

Fj = (nj � rj + 1)P(rj�1)j and Sj = (nj � rj + 1)P(rj)j
,

respectively.

4.4.3. Requiring sign replicability. Partial conjunctions with two-sided test statistics can
reject Hr/n

0j
in settings where some of the significant findings have test statistics with positive

signs and others negative. It is more natural to think of replication as having concordant
signs, be either consistently positive or consistently negative. In meta-analysis, one can pool
n one-sided tests for positive alternatives, repeat that for negative alternatives and double the
smaller of the resulting one-sided p-values [35]. This approach is very effective when either
the most likely or most useful alternatives to the null have concordant signs. We can adapt
this approach to PC tests and AdaFilter as follows.

We start with two base P-value matrices, (P+

ij
)n⇥M and (P�

ij
)n⇥M , for null hypotheses

(H+

0ij
)n⇥M and (H�

0ij
)n⇥M respectively. The rejection of H+

0ij
is for a positive sign of the

signal and the rejection of H�

0ij
is for a negative sign. We also define two vectors of PC hy-

potheses {Hr/n,+

01
, . . . ,Hr/n,+

0M
} and {Hr/n,�

01
, . . . ,Hr/n,�

0M
}. The PC null Hr/n,+

0j
is rejected

if the signal j is positive in at least r studies, and Hr/n,�

0j
is rejected if the signal j is negative

in at least r studies. If r > n/2 then it will be impossible to reject both Hr/n,+

0j
and Hr/n,�

0j

for the same j.
We can apply AdaFilter twice, separately on {Hr/n,+

01
, . . . ,Hr/n,+

0M
} and {Hr/n,�

01
,

. . . ,Hr/n,�

0M
}, controlling the simultaneous error rate (FWER, PFER or FDR) at levels

↵1 and ↵2 respectively, with ↵1 + ↵2 = ↵ (ordinarily ↵1 = ↵2 = ↵/2). Let the set of
rejected PC nulls be R

+ and R
�, respectively. Rejecting the union of these two sets

R
± = R

+
[R

� controls the corresponding error rate at a level ↵ = ↵1 + ↵2 for the null
hypotheses {Hr/n,±

01
, . . . ,Hr/n,±

0M
}.

If r  n/2, then there might be some j 2R
+
\R

�. While such findings are not what we
usually have in mind with replication they could nonetheless be scientifically interesting.

4.4.4. Testing for all possible values of r. The partial conjunction null Hr/n

0
can be

meaningfully defined whenever 2 r  n, and sometimes it is of interest to test for all pos-
sible r values, adding another layer of multiplicity. In [4], it is shown that as the PC p-values
P r/n

j
are monotone increasing when r increases, the “direct approach” can control for multi-

ple r values simultaneously, without any further multiplicity adjustment of r. Unfortunately,
this is not true for AdaFilter. As the filtering information learnt by AdaFilter varies for dif-
ferent r values, a signal that is rejected by a larger r using AdaFilter is not guaranteed to also
be rejected at a smaller replicability level. The current formulation of AdaFilter is therefore
not suited to data dependent selection of the r value, but requires this to be specified by the
user.

5. Simulations. We benchmark the performance of AdaFilter versus the “direct ap-
proach” with the three forms of PC p-values in Section 2.2. For FDR control, we also include
[23], using their R package repfdr. Within each study, we assume a block dependence
structure while changing the block size to create two scenarios, weak dependence with a
small block size and strong dependence with a large block size.
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We set M = 10,000 and consider six different configurations of n and r, as listed in Ta-
ble 2a. For a given n, there are 2n combinations of base hypotheses. In generating different
configurations of the truth, we use two parameters to control the probability of each com-
bination: ⇡00 is the probability of the global null combination and ⇡1 is the probability of
the combinations not belonging to Hr/n

0j
. We set ⇡1 = 0.01 and consider two values for ⇡00:

0.8 or 0.98, to mimic the signal sparsity in gene expression and genetic regulation studies.
All PC null combinations except for the global null have equal probabilities adding up to
1� ⇡00 � ⇡1. All non-null PC combinations also have equal probabilities.

We assume that p-values belonging to different studies are independent and, within one
study, the correlation of the M Z-values is Ib⇥b ⌦ ⌃⇢ where ⌦ is the Kronecker product.
The covariance block ⌃⇢ 2 RM/b⇥M/b has 1s on the diagonal and common value ⇢ = 0.5
off the diagonal. We set the number of blocks b = 100 for weak dependence and b = 10
for strong dependence, which should cover the spectrum of what is typically expected in
genomics. When the base hypothesis is non-null, we sample the mean of its Z-value uni-
formly and independently from I = {±µ1,±µ2,±µ3,±µ4} where the four levels of signals
{µ1, µ2, µ3, µ4} correspond to detection power of 0.02,0.2,0.5,0.95 respectively.

In the analysis, we target controlling PFER at the nominal level ↵ = 1, FDR at the nom-
inal level ↵ = 0.2, and Bayes FDR at the same level ↵ = 0.2 for repfdr. Bayes FDR
corresponds to the posterior probability of a null hypothesis given the test statistics falling
into the rejection region, which has been shown to be similar to the frequentist FDR under
independence [12]. Studying PFER control, we compare four methods: AdaFilter Bonferroni
and three forms of the “direct approach”. For FDR control, we compare 6 methods: AdaFilter
BH, AdaFilter BH with the inflation factor C(M) =

P
M

j=1
1/j ⇡ logM , repfdr and the

“direct approaches”. For each parameter configuration, we run B = 100 random experiments
and calculate the average power, number of false discoveries and false discovery proportions
of each procedure.

Table 2b shows the average PFER and recall over the six combinations of n and r for each
setting of b and ⇡00. More detailed results for each n and r separately are shown in Figures
S1–S2. All methods that target PFER successfully control it at the nominal level, while the
direct approaches are much more conservative, especially when both n and r are large. The
gain in power is more pronounced when ⇡00 is higher, which is expected in many genetics
applications.

Table 2c shows the average FDR and recall over the six combinations of n and r for
each setting of b and ⇡00. More detailed results for each n and r separately are shown in
Figure S3–S4. AdaFilter BH, even not inflated, and the “direct approach” control FDR at the
nominal level. However, similar to the PFER control, the “direct approach” procedures are
too conservative. The inflated AdaFilter BH has lower power than AdaFilter BH, while its
power still exceed the “direct approach”, especially for large r. The repfdr method fails
to consistently control FDR especially when n is large: we believe that this is due to the
large number of parameters that need to be estimated in these scenarios. In the cases when
repfdr does control FDR, its power is comparable to AdaFilter when ⇡00 = 0.8 while is
less when ⇡00 = 0.98 is large and further reduces when dependence increases.

Finally, we point out that our simulations only compare different methods for a pre-defined
r value. As discussed in Section 4.4.4, AdaFilter needs another layer of multiplicity adjust-
ment if multiple r values are tested simultaneously. In practice, if one aims to testing for
mulitple replicability levels or is interested in obtaining the lower bound of r for each hy-
potheses [26], the “direct approach” may still be a preferred method as it automatically con-
trols for the error rates of multiple r values simultaneously.
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(a) Configurations of n and r

n 2 4 8 4 8 8
r 2 2 2 4 4 8

(b) Comparison of methods targeting a nominal PFER of ↵= 1

⇡00 = 0.8 ⇡00 = 0.98

b= 100 b= 10 b= 100 b= 10

Method PFER Recall(%) PFER Recall(%) PFER Recall(%) PFER Recall(%)

Bon-PB
r/n 0.04 14.72 0.05 14.87 0.00 14.72 0.00 14.83

Bon-PF
r/n 0.05 19.30 0.06 19.50 0.01 19.18 0.00 19.38

Bon-PS
r/n 0.04 14.80 0.05 14.93 0.00 14.78 0.00 14.88

AdaFilter Bonferroni 0.73 28.71 0.76 28.93 0.29 38.10 0.21 38.25

(c) Comparison of methods targeting a nominal FDR of ↵= 0.2

⇡00 = 0.8 ⇡00 = 0.98

b= 100 b= 10 b= 100 b= 10

Method FDR Recall(%) FDR Recall(%) FDR Recall(%) FDR Recall(%)

BH-PB
r/n 0.01 29.50 0.01 29.55 0.00 29.04 0.00 29.10

BH-PF
r/n 0.01 32.94 0.01 32.80 0.00 32.68 0.00 32.74

BH-PS
r/n 0.01 29.68 0.01 29.70 0.00 29.16 0.00 29.28

repfdr 0.33 59.39 0.29 23.53 0.14 24.31 0.13 11.56
AdaFilter BH 0.15 58.64 0.14 58.71 0.06 71.27 0.06 71.49
Inflated AdaFilter BH 0.02 34.39 0.01 34.22 0.01 45.70 0.01 46.17

TABLE 2
Simulation results. (a) lists 6 different n and r scenarios considered in the simulation. (b) and (c) compare the
average error rates and recalls across all 6 n and r combinations under different b and ⇡00 values. The results

for each n and r are shown in Figure S1 - S4.

6. Case studies. We apply AdaFilter to analyze two datasets: one investigates the repli-
cation of gene differential expression results in four microarray experiments of Duchenne
muscular dystrophy and one focuses on identifying marker genes of one T cell subtype from
lung cancer tumors using single-cell RNA-sequencing (scRNA-seq) data. In Section S2, we
also discuss the application of AdaFilter BH to a third dataset, testing for consistently signif-
icant signals across different metabolic super-pathways within one study.

6.1. Duchenne Muscular Dystrophy microarray studies. Following [28], we investigate
four independent Duchenne muscular dystrophy (DMD)-related microarray datasets in the
Gene Expression Omnibus (GEO) database (GDS 214, GDS 563, GDS 1956 and GDS 3027,
Table 3a), to understand the signature genes for the disease. The goal here is to find differen-
tially expressed marker genes for DMD that show replicating signals in multiple datasets. For
each experiment, the data is preprocessed using a standard data reprocessing tool RMA [25]
for microarrays. Within each study, we find genes that are differentially expressed between
the disease and healthy group, using a popular software Limma [40] and adjust for covariates
like batch and patients’ age and gender when they are available.

The four datasets are from three different microarray platforms where different probe-sets
are used. In order to compare across platforms, we map probe-sets to common gene names.
When multiple probe-sets map to the same gene, a Bonferroni rule is applied combining p-
values of these probe sets into a single p-value for the gene. There are only M = 1871 genes
present in all four studies, with M = 9848 genes shared in at least 3 studies and M = 13912
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(a) GEO datasets information

GEO ID Platform Description Source

GDS 214 custom Affymetrix 4 healthy, 26 DMD Muscle
GDS 563 Affymmetrix U95A 11 healthy, 12 DMD Quadriceps Muscle
GDS 1956 Affymetrix U133A 18 healthy, 10 DMD Muscle
GDS 3027 Affymetrix U133A 14 healthy, 23 DMD Quadriceps Muscle

(b) AdaFilter BH rejections

r M Rejected

2 13912 494
3 9848 142
4 1871 32

(c) Known marker genes detected by AdaFilter at r = 4

Gene Symbol GDS 214 GDS 563 GDS 1956 GDS 3027

MYH3 5.47e-14 2.18e-69 3.31e-07 2.49e-20
MYH8 5.74e-06 9.09e-11 2.58e-03 5.16e-33
MYL5 8.97e-04 3.06e-06 1.87e-03 6.63e-08
MYL4 1.48e-06 7.94e-08 1.21e-02 2.66e-08

TABLE 3
Replicability analysis for DMD microarrays

genes in at least two studies. As discussed in Section 4.4.2, AdaFilter can work with varying
nj thus allow missing entries in the p-value matrix.

The application of AdaFilter BH at level ↵= 0.05 leads to the discovery of many consis-
tently differentially expressed genes at r = 2,3,4 (Table 3b). Specifically, at r = 4, AdaFil-
ter BH finds 32 significant genes (Table S2). By contrast, a BH adjustment on the Fisher
combined PC p-values (PF

r/n,j
) only detects two genes (MYH3 and S100A4) and repfdr

reports no significant genes as it fails to perform the distribution estimation of p-values with
M = 1871 being too small. Table 3c shows four of the 32 genes that are known to play im-
portant roles in muscle contraction (Table S1). Notice that besides MYH3, all three markers
do not have a small enough p-value in the third study (GDS1956, which is the least powerful
study) to be detected when BH is applied to the study alone with a nominal FDR level 0.05.
However, AdaFilter can compensate for this deficiency by leveraging the overall similarity
of the results in this study compared with other studies.

6.2. scRNA-seq of T cells in lung cancer tumors. Understanding T cell heterogeneity in
tumors brings in key information to cancer immunotherapies, and the recent single-cell RNA-
sequencing (scRNA-seq) technology enables measurement of gene expression levels at the
single cell resolution. In [19], the authors sequenced tumor T cells from 14 treatment-naïve
non-small-cell lung cancer patients and one main finding is the discovery of a new subtype
of the CD4+ regulatory T cells (Tregs), named the suppressive tumor-resident Tregs (CD4-
C9-CTLA4), that is different from the normal Tregs (CD4-C8-FOXP3). We download data
from the GEO database (GSE99254), where cell type labels are also provided.

In order to characterize the new cell type CD4-C9-CTLA4, one need to identify a list of
reliable marker genes that are consistently highly expressed in CD4-C9-CTLA4 across multi-
ple patients. Thus we apply AdaFilter treating each patient as a “study”. For each patient, we
obtain p-values of each gene for whether the gene expression is higher in CD4-C9-CTLA4
than in CD4-C8-FOXP3. These one-sided base p-values are calculated using the Wilcoxon
rank-sum test, which is the standard test for analyzing scRNA-seq. Two patients who have
less than 10 Treg cells in either of the two groups are excluded from the analysis. In summary,
we obtain a p-value matrix for 23459 genes and n= 12 patients.

We vary the replicability level r and Figure 2a compares the number of genes detected
using different methods. For large r(r � 8), AdaFilter is more powerful than the “direct
approach” with Fisher’s PC p-values. However, it is less powerful when r is relatively small,
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as the power gain of Fisher’s combination to construct PC p-values may exceed the power
gain using AdaFilter, whose selection p-values are from the Bonferroni’s combination. The
other two forms of “direct approach” show limited power for all r and repfdr fails to run
with insufficient memory for r � 6 even with 300G of RAM. In Table S3, we list the 20
genes that are detected at r = 10, most of which are known to be linked to immunoresponse
in tumors.

BH−Pr n
B

BH−Pr n
F

BH−Pr n
S

AdaFilter BH

scRNA−seq data

 base p-values < 0.01*

1

1

0.58

1

1

0.003
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0.027

0.003
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1.3e-6

1.8e-3

1.0e-6
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Fig 2: (a) scRNA-seq data: the number of genes whose Hr/n

0j
were rejected by each of the

compared procedures. FDR is controlled at ↵ = 0.05. (b) The left is a heatmap of each pa-
tient’s one-sided Wilcoxon rank-sum p-values for 10 genes. The darker color represents a
smaller p-value and a ‘*’ label is added if it is smaller than 0.01. The right table shows the
adjusted p-values of each gene. The first column contains the adjusted AdaFilter BH p-values
for H4/12 and the second column contains the standard BH adjusted merged p-values com-
bining cells in all patients.

To further show the benefit of requiring replicability on marker gene selection, we compare
a list of genes on their base p-values per patient, their standard BH adjusted merged p-values
and AdaFilter BH adjusted p-values at r = 4 (Figure 2b). All 10 genes in Figure 2b would
be selected in the original paper as their adjusted merged p-values are far less than 0.05.
However, the top 5 genes only have one or two patients whose base p-values are less than
0.01. Intuitively, they are less convincing markers as there is no replicability across patients.
While the merged p-values can not distinguish the more convincing markers, they can easily
be separated with their AdaFilter BH adjusted p-values.

7. Conclusion. Testing PC hypotheses provides a framework to detect consistently sig-
nificant signals across multiple studies, leading to an explicit assessment of the replicability
of scientific findings. We introduced AdaFilter, a multiple testing procedure which greatly
increases the power in simultaneous testing of PC hypotheses over other existing methods.
AdaFilter implicitly learns and utilizes the overall similarity of results across studies and
exhibits a lack of complete monotonicity.



18

We proved that AdaFilter procedures control FWER and FDR under independence of all p-
values for a given finite number of hypotheses, and further showed that AdaFilter BH asymp-
totically controls FDR allowing weak dependence within each study. In our simulations, we
demonstrated that both AdaFilter Bonferroni and AdaFilter BH are robust to the dependence
of p-values within each study in practice, even when such dependence is not weak. On the
other hand, the validity of AdaFilter does need independence of the base p-values across dif-
ferent studies, as Lemma 4.1 can be easily violated when these base p-values are dependent.

We applied AdaFilter to three case studies, encompassing gene expression and genetic as-
sociation. Other types of applications include eQTL studies and multi-ethnic GWAS (such
as new Population Architecture using Genomics and Epidemiology (PAGE) study) where it
is of great interest to understand which genetic regulations are shared and which are tissue /
population specific. Actually, PC tests can be quite useful in even broader context. According
to Hume [24], “constant conjunction” is a characteristic of causal effects. If some hypotheses
are rejected repeatedly under various distinct settings, that can be supportive evidence for
some causal mechanism instead simple associations. These directions can be further investi-
gated in future research.
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