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Abstract

Condition-based maintenance of multi-component systems is a prevalent engineering
problem due to its effectiveness in reducing the operational and maintenance costs of
the system. However, developing the exact optimal maintenance decisions for the large
multi-component system is computationally challenging, even not feasible, due to the
exponential growth in system state and action space size with the number of components
in the system. To address the scalability issue in CBM of large multi-component systems,
we propose a Component-Wise Markov Decision Process(CW-MDP) and an Adjusted
Component-Wise Markov Decision Process (ACW-MDP) to obtain an approximation
of the optimal system-level CBM decision policy for large systems with heterogeneous
components. We propose using an extended single-component action space to model the
impact of system-level setup cost on a component-level solution. The theoretical gap
between the proposed approach and system-level optima is also derived. Additionally,
theoretical convergence and the relationship between ACW-MDP and CW-MDP are
derived. The study further shows extensive numerical studies to demonstrate the
effectiveness of component-wise solutions for solving large multi-component systems.

Keywords: Condition-Based Maintenance, Multi-Component System, Markov Decision
Process

1 Introduction

In practice, production/service systems often consist of multiple components, for example,

various machines in a production system, a fleet of trucks in a transportation system, or

wind turbines in a windmill farm. In this work, we focus on the condition-based maintenance

problem for a multi-component system that can potentially contain a large number of
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components. Maintenance decision for such a system is a challenging decision-making

problem. The complex nature of the problem arises from the dependence of the decisions

at a single component level due to stochastic, economic, or structural dependencies among

components. It is well known that, in most cases, the optimal maintenance decision at the

single component level is not optimal for the whole system. Unfortunately, developing the

exact optimal maintenance decisions for the whole system is computationally challenging,

even not feasible, due to the exponential growth in system state and action space size with

the number of components in the system.

Maintenance decision-making of multi-component systems is an active research area with

a large amount of available literature. Some excellent surveys of this field can be found in

(Keizer et al., 2017a; Wang and Chen, 2016; Dehghani Ghobadi et al., 2022; Pinciroli et al.,

2023). In this work, we will focus on the condition-based maintenance (CBM) method for

multi-component systems. In CBM, the components’ health is monitored using sensory data

collected in real time, and maintenance decisions are made based on the machine’s health

condition. Intuitively, CBM will outperform time/age-based maintenance in most cases

because more real-time information has been taken into consideration in the decision-making

process (Koochaki et al., 2013).

For CBM decision-making, we first need to select a degradation model to describe the

underlying health deterioration path followed by a component in the system. A popular

choice of degradation model in maintenance decision-making is the discrete Markov process,

in which the health condition of the component is represented by a few discrete states, and

the evolving of the health condition is represented by the transition between states (Alaswad

and Xiang, 2017). There are some advantages of using a discrete Markov process as the

degradation model. First, the discrete Markov process is quite a flexible model. In fact,

other degradation models, such as the continuous degradation path models, can be easily

approximated by the discrete Markov processes as shown in (Bouvard et al., 2011; Peng

et al., 2021; Barbera et al., 1999). A recent work showed that a discrete Markov process

effectively approximates continuous degradation processes using only a few states (Andersen,

2022). Second, with the discrete-state Markov process representation, we can naturally

formulate the maintenance decision-making problem into a Markov Decision Process(MDP)

and obtain the optimal maintenance policy under the MDP framework. Indeed, many

2



research works (Liu et al., 2013; Xu et al., 2022; Zhao et al., 2019) have been reported to

solve the optimal CBM problem for a single component using MDP.

Limited work is available on using MDP to solve CBM problem for multi-component

systems. The reason is that the state space and action space of a multi-component system

is extremely large, which makes it computationally expensive to obtain the exact MDP

solution. For instance, a system consisting of M components with L degradation states

for each component, and each component having only two actions: repair or no repair,

would lead to a state space of size LM and an action space of size 2M . Solving an MDP

with such a state and action space is practically infeasible for systems with a large number

of components. Thus, most existing MDP-based CBM methods for a multi-component

system can only work for a system with a very small number (e.g., two) of components

(Keizer et al., 2017b; Zhang et al., 2011). A recent study showed that it is only feasible to

obtain the exact MDP solution for up to 7 components and 12 degradation levels (Andersen

et al., 2022). To address the scalability issue in CBM of large multi-component systems,

several approaches have been proposed. One approach is to use some heuristic policies to

provide a sub-optimal solution to the problem. For example, a popular heuristic rule is the

(n,N)-policy (Andersen, 2022) for a system with identical components. This rule specifies

that if one or more component is at or beyond health degradation level N , then all the

components at or beyond health degradation level n will be repaired. Obviously, this rule can

be applied to a system with a very large number of components. However, such a rule cannot

be applied to a system with heterogeneous components, where “heterogeneous” means that

the state transition dynamics of a component is different from that of another component.

In addition, the conditions under which the performance of this rule is good are not very

clear. There are other threshold-based heuristic policies for CBM (Xia et al., 2013; Zhang

and Zeng, 2015). Similarly, these heuristic policies are sub-optimal and cannot be applied to

a system with heterogeneous components. In recent years, the deep reinforcement learning

(DRL) method has been used to obtain the optimal maintenance policy for multi-component

system (Zhang and Si, 2020; Yousefi et al., 2022). DRL is a black-box approximation

method that can solve the CBM problem for a relatively large multi-component system when

compared with the systems that exact MDP solvers can handle. However, this approach

still faces significant computational challenges due to the curse of dimensionality because
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of exponentially increasing state and action space. A larger state space necessitates a

significant number of simulation trials to learn a good function approximation effectively

(Wong et al. (2023)). Thus, DRL cannot be applied to very large multi-component systems.

One way to reduce the computational space is by reducing state space by considering groups

of identical components in the system and reducing action space by using constraints in the

system. Using these ideas, (Liu et al., 2020) solved for an optimal policy using actor-critic

for 14 components by considering 5 groups of identical components to reduce the state

space and by reducing action space to 8 actions by using resource constraints. Still, these

approximations cannot help solve systems with a very large number of components and

cannot be applied to a general system with heterogeneous components. Another approach

of addressing the scalability issue is to use online planning methods such as the Monte Carlo

Tree Search (MCTS) to obtain a good action only for the current system state instead of

obtaining the complete action policy for all the possible system states. MCTS has been

used in maintenance decision-making problems recently(Barata et al., 2002; Marseguerra

et al., 2002). Similar to DRL, the online planning approach cannot yet handle very large

systems. If we want to obtain high-quality solutions, the computational load is prohibitively

intensive for large systems.

In this work, we propose a scalable approach to solve the CBM decision-making problem

for systems with a large number of heterogeneous components with economic dependence.

The component degradation is modeled by discrete Markov processes. To capture the

economic dependence among the components, we propose a decomposition of the system

reward function and an extension of the action space to reflect the new reward function.

Then, we propose a two-step decision-making scheme to find an approximation of the

optimal system-level CBM decision policy. In the first step, we obtain the component level

Q functions under the extended action space and the decomposed reward function by solving

the component level MDP. In the second step, we will select the best system-level actions

based on the component level Q functions obtained in the first step by explicitly taking into

account the economic dependence. This proposed approach is a heuristic approximation

approach. However, different from existing heuristic approaches, our proposed approach is

based on the component-level MDP solution under the extended action space. Thus, this

approach can address heterogeneous components naturally. In addition, the theoretical gap
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between the solution obtained by our proposed approach and the exact optimal solution

can be obtained. The computational time of the proposed algorithm grows linearly with the

number of components in the system, allowing us to scale for extremely large-scale problems.

The paper is organized as follows: In Section 2, the mathematical formulation is provided,

in which the maintenance decision-making for a multi-component system is formulated as

an MDP. In Section 3, we propose a scalable solution to the multi-component CBM problem

based on component-wise MDP. In Section 4, the theoretical properties of the proposed

approach are investigated. Section 5 presents a comprehensive numerical study to illustrate

the advantage of the proposed method. Section 6 concludes the paper and provides some

discussion of future works.

2 Problem Formulation

We consider a system consisting of M heterogeneous components, i.e., different components

follow different transition dynamics. The system is inspected at equal time intervals. The

inspection cost is ignored. At each inspection, we observe the degradation state of each

component in the system. The degradation state si of a component i belongs to set

S(i)
c = {1, 2, 3, ..., Li}, where state 1 corresponds to the new state of the component and Li

corresponds to the failure state of the component.

After each inspection, we take two possible actions for each component {0, 1}, where 0

corresponds to retaining the component and 1 stands for replacement of the component.

After replacement, a component returns to state 1. At degradation state Li, we always

take action ai = 1, which means a failed component is immediately replaced with a new

component with a corrective replacement cost Cb. If a component is replaced at a state

si < Li, it is replaced at a preventive replacement cost C
(i)
m such that Cm < Cb. Thus, we

can define the cost of an individual component at state si and action ai as

ri(si, ai) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Cm si �= L, ai = 1

−Cb si = L

0 otherwise

. (1)

We would like to point out that in (1), we assume each component has the same Cm value
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and the same Cb value, i.e., C
(i)
m = Cm and C

(i)
b = Cb, while Cm < Cb. This assumption is

just for notational convenience. The proposed method can be easily extended to cases where

the repair and replacement costs are different for different components. The degradation of

each component follows a discrete-time Markov decision process with transition probability

from a state si to s′i be Ti(s
′
i|si, ai = 0). Additionally, the transition probability satisfies

Ti(s
′
i|si, ai = 0) = 0 for s′i ≤ si, and

∑
s′i
Ti(s

′
i|si, a = 0) = 1. For any replacement, i.e.

si = Li or ai = 1 we let T (s′i|si, ai = 1) = T (s′i|si = Li, ai = 1) = T (s′i|si = 1, ai = 0) ,

since we assume that all replacements are instantaneous and occurs at the beginning of

a time period. Thus, the replaced component returns to the state 1 and then performs a

transition for the period from state 1.

Using state si and action ai for the individual component, we can form a state vector

s as < s1, s2, s3, ..., sM >, and action vector a as < a1, a2, ...aM >. We can denote the

complete system-level state and action space as S and A, respectively, such that s ∈ S and

a ∈ A. The system-level transition probability of transiting from a state s and action a to

state s′ can be formulated using transition independence of components as:

T (s′|s,a) =
M∏
i=1

Ti(s
′
i|si, ai). (2)

If there is any replacement in the system, there is an additional setup cost of Cs. This

setup cost induces an economic dependence between components, encouraging components to

get replaced simultaneously. We can define the system-level reward function R : S ×A → R

as:

R(s,a) =

⎧⎪⎨
⎪⎩
−Cs +

∑M
i=1 ri(si, ai) Any Replacement

0 No Replacement

(3)

Using the state space, action space, reward function and transition dynamics given

above, we formulate the condition-based maintenance problem as a Markov Decision Process

(MDP){S,A, R, T, γ}, where γ ∈ (0, 1] is the discount factor. Starting at a given state s0 at

time t=0, we find a policy π from a set of all policies Π such that it maximizes the expected

total discounted rewards for the system V ∗(s0) as

V ∗(s0) = max
π∈Π

E

[ ∞∑
t=0

γtR(st, π(st))

]
∀s0 ∈ S. (4)
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The optimal Q-functionQ∗ and value function V ∗ can be obtained by value iteration(Puterman,

2014) over the entire state and action space such that:

Q∗(s,a) = R(s,a) + γEs′∼T (s′|s,a)[V ∗(s′)] (5)

V ∗(s) = max
a

Q∗(s,a). (6)

Using the optimal Q∗ we can obtain an optimal policy π∗(s) for a given state s as:

π∗(s) = argmax
a

Q∗(s,a). (7)

Although value iteration guarantees an exact optimal solution to the problem, the

scalability of this approach is poor. The above formulation leads to a prohibitively large

state and action space, i.e., |S| and |A| would be
∏M

i=1 Li and 2M , respectively. When

using value iteration, iteration over all states and actions is required; this makes obtaining

a solution challenging, even for a small-scale system. In the next section, we propose a

scalable solution method for this problem.

3 Scalable Component-Wise Solution for CBM of Multi-

Component Systems

To address the scalability issue for CBM of multi-component systems, we could find an

optimal CBM decision for each component, called the “component-wise” solution, and then

combine the component-wise decision to form the decision for the whole system. However,

the replacement of components has an economic dependence due to setup cost Cs. Clearly, if

we simply ignore the setup cost in the component-wise decision (i.e., find the optimal CBM

decision for each component under the cost function given in (1)), then the component-wise

solution will not lead to a good solution for the system level CBM problem. To deal with

this issue, we can develop a component-wise solution by considering the impact of a single

component’s decision on the entire system. In other words, we could bring the setup cost

into the component-wise CBM problem so that the economic dependence among components

is taken into consideration to a certain extent when we make a component-wise decision.

Following the above intuition, we propose to reformulate the cost function as in (8)

and establish an extended single-component action space as Ae = {a0,0, a0,1, a1,1} for the
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reformulated cost function,

RI(si, αi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Cb − Cs
M if si = Li

0 if αi = a0,0 & si �= Li

−Cs
M if αi = a0,1 & si �= Li

−Cm − Cs
M if αi = a1,1 & si �= Li

. (8)

In the above equation, αi ∈ Ae is the component-wise action for component i, a0,0

corresponds to the action that a component is not getting replaced and there is no setup

cost, whereas, a1,1 and a0,1 correspond to the action that a component is replaced and not

replaced, respectively, and there is setup cost. This reward function states that if there is one

or more replacements in the system, the setup cost is distributed evenly to all components

in the system. Distributing setup cost evenly among components is just a mathematical way

to adjust the component-level cost so that total system-level cost will be correctly obtained

by summing all component-level costs. The transition dynamics for actions in extended

single-component action space are defined as: T (s′|s, a0,0) = T (s′|s, a0,1) = T (s′|s, ai = 0)

and T (s′|s, a1,1) = T (s′|s, ai = 1). Because the extended single-component actions do not

change the state transition dynamics, the following result can be obtained.

Result 1. For every system state s and action a, there exists a valid combination of

extended single-agent actions < α1, α2, α3....., αM > such that:

M∑
i=1

RI(si, αi) = R(s,a), (9)

T (s′|s,a) =
M∏
i=1

Ti(s
′
i|si, αi). (10)

The above result is obvious: if there is no replacement in the system, we can take

αi = a0,0 for all i = 1, ...,M , while if k, k > 0, components are replaced in the system, we

can take action a1,1 for the k replaced components and the action a0,1 for the rest of the

components.

With the new reward function and the extended action space, we can develop an

approximated component-wise solution to the CBM of multi-component systems.
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3.1 CW-MDP: Component-Wise Markov Decision Process

For the state space S(i)
c , action Space Ae, and reward structure RI we can formulate a

component-wise MDP {S(i)
c ,Ae, RI , Ti, γ}. We can develop a policy by maximizing total

discounted rewards for each component in the system using this MDP. In this component-wise

MDP, the setup cost is considered in the reward function, so we expect the component-wise

MDP solution will provide a better approximation to the system-level MDP problem. That

being said, please note that CW-MDP is just an approximation and cannot provide the

exact solution to the system-level CBM problem.

We can solve the CW-MDP problem to compute component-wise Q-function Qc as

Qc(si, αi) = RI(si, αi) + γEs′i∼Ti(s′i|si,αi)[V
c(si)] (11)

where V c(si) is the component-wise value function defined as:

V c(si) = max
αi∈Ae

Qc(si, αi) (12)

The above Qc and V c can be computed for each component of the system using their

respective transition matrices Ti. For CW-MDP, the state space only consists of the health

states of a single component; thus, it is quite small. We use the standard value iteration

approach to solve it (Puterman, 2014). For the sake of convenience, we list the value iteration

method in Algorithm 1. In Algorithm 1, Qc
(i) and V c

(i) represent the Qc and V c-function of

the ith component of the system, respectively. For the Qc function, we have the following

result:

Result 2. For any state si given si �= L, we have:

Qc(si, a0,0)−Qc(si, a0,1) =
Cs

M
. (13)

This result is obvious if we consider the fact that the state transition under a0,0 or a0,1

is the same, and RI(si, a0,0)− RI(si, a0,1) =
Cs
M . This result indicates that Qc(si, a0,0) >

Qc(si, a0,1), which means that to maximize the rewards of an individual component, we will

always choose action a0,0 over action a0,1. In other words, we will never choose action a0,1

as an optimal action in CW-MDP. However, it is obvious that in the optimal system-level

solution, a0,1 should be selected for the retained component when there is at least one

replacement in the system. This implies we need a suitable optimal action selection method

for the whole system using the component-wise Qc.
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Algorithm 1 Component-Wise Markov Decision Processes

1: procedure CWMDP({T1, T2, ...TM}, γ)
2: V c

(1), V c
(2), ..., V c

(M): Randomly initialized

3: for all i ∈ {1, 2, ...,M} do

4: Repeat

5: for all si ∈ S(i)
c do

6: for all αi ∈ Ae do

7: Qc
(i)(si, αi)← RI(si, αi) +

∑
s′i∈S Ti(s

′
i|si, αi)[V

c
(i)(s

′
i)]

8: end for

9: V c
(i)(si)← maxαi Q

c
(i)(si, αi)

10: end for

11: Iterate till V c
(i) converges

12: end for

13: return Qc
(1), Qc

(2), ..., Qc
(M)

14: end procedure

3.2 System-Level Action Selection using CW-MDP

Instead of selecting the actions that maximize each individual Qc, which will fall short of

providing the optimal actions at the system level, we can try to find an action vector a for

a given state s that maximizes the sum of Qc of each individual component. The action

vector a can be mapped to a valid combination of extended single agent actions αi using

Result 1. We propose the following way of selecting actions to generate a policy πcw(s) as

πcw(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
argmaxαi∈Ae Qc

(i)(si, αi)∀i if

∑
i

max
αi∈Ae

Qc
(i)(si, αi) ≥

∑
i

Qc
(i)(si, a0,0)

or si = Li

a0,0 ∀i otherwise

(14)

where Ae
= {a0,1, a1,1}.The intuition behind (14) is to explicitly compare the value of

∑
iQ

c
(i)

between two scenarios: no replacement in the system or at least one replacement in the system.

One subtle point we want to mention is that if
∑

imaxαi∈Ae Qc
(i)(si, αi) ≥

∑
iQ

c
(i)(si, a0,0)

holds, then action a1,1 is selected for at least one component. This is due to the result 2,

which indicates that if no a1,1 is selected, then
∑

imaxαi∈Ae Qc
(i)(si, αi) ≥

∑
iQ

c
(i)(si, a0,0)
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Figure 1: Schematic Representation of CW-MDP with system-level action selection

will not hold. Thus, < α1, α2, α3....., αM > selected in the first equation in (14) always gives

a valid combination of extended single-agent actions.

Algorithm 2 gives implementation details for the system-level action selection procedure.

The initial step involves checking whether any component is in a failure state si = Li.

In this scenario, the presence of a failure implies the need for maintenance, consequently

incurring a setup cost. As a result, all components are limited to choosing actions a0,1 and

a1,1, reflecting the necessary maintenance actions under such conditions. Conversely, if

corrective maintenance is not required, we proceed to calculate Q0 and Q1. The subsequent

decision-making process involves comparing Q0 and Q1. If Q0 > Q1, then the system-wide

action chosen is a0,0 for all components. Alternatively, if Q1 is greater than Q0, the system-

level action becomes argmaxαi∈Ae Qc
(i)(si, αi) for each component. This approach simplifies

the complex combinatorial optimization problem by ensuring a valid combination of the

extended single-agent action space is selected at the system level. A diagram of the overview

of the CW-MDP-based solution is also provided in Figure 1.

In Algorithm 1, the estimation of V c in CW-MDP involves maximizing over actions

{a0,0, a0,1, a1,1}, but CW-MDP never chooses action a0,1 in the maximization step. However,

in the system-level action selection process, action a0,1 can be chosen for components that

are not being replaced, given there is maintenance in the system. It is critical to note that

system-level action selection allows us to make system-level decisions from component-wise
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Qc estimates with just M separate binary decisions. This makes the solution feasible for

large-scale problems.

Algorithm 2 System-level Action Selection Algorithm

1: procedure Decision({Qc
(1), Qc

(2), ..., Qc
(M)}, s)

2: if ∃si = Li then

3: for all i ∈ {1, 2, ...,M} do

4: αi ← argmaxαi∈{a0,1,a1,1}Q
c
(i)(si, αi) � Setup cost exists in system

5: end for

6: αi 
→ ai

7: return < a1, a2, ....aM >

8: end if

9: Q0 ← ∑
i Q

c
(i)(si, a0,0)

10: Q1 ← 0

11: for all i ∈ {1, 2, ...,M} do

12: αi ← argmaxαi∈{a0,1,a1,1}Q
c
(i)(si, αi) � Select best action for individual machine

13: Q1 ← Q1 +Qc
(i)(si, αi)

14: end for

15: if Q0 > Q1 then

16: αi ← a0,0∀i
17: αi 
→ ai

18: return < a1, a2, ....aM >

19: else

20: αi 
→ ai

21: return < a1, a2, ....aM >

22: end if

23: end procedure

3.3 ACW-MDP: Adjusted Component-Wise Markov Decision Pro-

cesses

One weakness of the method presented in Section 3.1 is to imitate the system behavior at
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the component level Qc
(i) estimates. Due to Result 2 and the max operation in (12), in

solving CW-MDP, we will avoid selecting the action a0,1 when we estimate V c(si). This

will impact the solution quality even if we use a system-level action selection remedy as

described in Section 3.2.

To address this issue, we propose an Adjusted Component-Wise Markov Decision Process

(ACW-MDP) to consider all the possible actions in the extended single-component action

space when we solve for component-wise MDP. In ACW-MDP, we adjust Qc and V c, such

that instead of maximization over the extended component-wise action space, we use the

probability by which a component i chooses an action αi at a given state si. For this, we

define an adjusted component-wise Q-function Qc′ as:

Qc′(si, αi) = RI(si, αi) + γEs′i∼T (s′i|si,αi)[V
c′(s′i)], (15)

where V c′ is an adjusted component-wise value function defined as:

V c′(si) = P(a0,0|si)Qc′(si, a0,0) + P(a0,1|si)Qc′(si, a0,1) + P(a1,1|si)Qc′(si, a1,1), (16)

where P(a0,0|si), P(a0,1|si), and P(a1,1|si) represent the probability of choosing actions a0,0.

a0,1 and a1,1 for component i given state si.

Understanding that V c′ function differs from V c function is critical. The V c function

maximizes a component’s expected total discounted reward. In contrast, the V c′ function

gives the expected total discounted reward for a component since a component chooses all

actions with some probability instead of choosing one action at a time.

To compute Qc′(si, αi), estimation of probabilities P(a0,0|si), P(a0,1|si), and P(a1,1|si)
is required. This can be challenging since probability P(αi|si) is impacted by the state

and actions of all other components in the system. Accounting for the states of other

components in estimating P(αi|si) would lead to a full system wide solution instead of

a component-wise solution. However, we know that the full system wide solution will

encounter the scalability issue, which is actually the challenge we try to address in this work.

Consequently, we ignore the states of all other components while estimating the probability

P(αi|si). Intuitively, we can view the probability P(αi|si) as an approximation of the

probability P(αi|si, state of other components) regardless the states of other components.

Here, we propose estimating the probability P(αi|si) using softmax response(Kochenderfer
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et al., 2022) as:

P(αi|si) ∝ eλQ
c′ (si,αi) (17)

Hence we can write:

P(αi|si) =
eλQ

c′ (si,αi)∑
αi∈{a0,0,a0,1,a1,1} e

λQc′ (si,αi)
(18)

We can further rewrite the above probability using additional minαi Q
c′(si, αi) as:

P(αi|si) =
eλ(Q

c′ (si,αi)−minαi Q
c′ (si,αi))∑

αi∈{a0,0,a0,1,a1,1} e
λ(Qc′ (si,αi)−minαi Q

c′ (si,αi))
(19)

This will not impact on the value of probability P(αi|si) but allows us to use a large value

of λ without causing overflow in the numerical computation.

The parameter λ allows us to estimate the probability of choosing an action for a

component. The above approximation allows us to use a single λ to decide the probability

P(αi|si) for all state and action pairs of a component. For a given λ, we can use Algorithm

3 to get an estimate of the Qc′ function.

In the above algorithm Qc′
(i) and V c′

(i) are the adjusted component-wise Q-function and

value function of the ith component in the system. Once we compute the Qc′ function

for each component in the system, we can also use system-level action selection by using

Algorithm 2 and replacing Qc with Qc′ . This adjusted policy π′
cw can be expressed as:

π′
cw(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
argmaxαi∈Ae Qc′

(i)(si, αi)∀i if

∑
i

max
αi∈Ae

Qc′
(i)(si, αi) ≥

∑
i

Qc′
(i)(si, a0,0)

or si = L

a0,0 ∀i otherwise.

(20)

It is critical to note that under the condition si = Li, a component undergoes corrective

maintenance and is replaced irrespective of the action taken. Due to the current formulation

of the reward function, when considering a failed unit (si = Li), the same failure reward is

assigned to all actions, and system-level action selection will always replace a failed unit.

For the tuning parameter λ, we can find an optimal λ∗ that gives the best system-level

discounted rewards by doing a search over a possible set of values of λ. This implies that we

iteratively evaluate a generated policy π′
cw(s) for a given λ to get system-level rewards and

choose a λ∗ that best fits the dynamics of a given system. We can mathematically define λ∗
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Algorithm 3 Adjusted Component-Wise Markov Decision Processes

1: procedure ACW-MDP({T1, T2, ...TM}, γ)
2: for all i ∈ 1, 2, ...,M do

3: Repeat

4: for all si ∈ S(i)
c do

5: for all αi ∈ {a0,0, a0,1, a1,1} do

6: Qc′
(i)(si, αi)← RI(si, αi) +

∑
s′i∈S Ti(s

′
i|si, αi)[V

c′
(i)(s

′
i)]

7: end for

8: for all αi ∈ {a0,0, a0,1, a1,1} do

9: P(i)(αi|si)← e
λ(Qc′

(i)
(si,αi)−minαi Qc′

(i)
(si,αi))

∑
αi∈{a0,0,a0,1,a1,1} e

λ(Qc′
(i)

(si,αi)−minαi Qc′
(i)

(si,αi))

10: end for

11: V c′
(i)(si)←

∑
αi

P(i)(αi|si)Qc′
(i)(si, αi)

12: end for

13: Iterate till V c′
(i) converges

14: end for

15: return Qc′
(1), Qc′

(2), ..., Qc′
(M)

16: end procedure

as:

λ∗ = argmax
λ∈L

E

[ ∞∑
t=0

γtR(st, π
′
cw,λ(st))

]
, (21)

where L corresponds to a set of possible values of λ over which we perform a grid search to

find the optimal λ∗, and π′
cw,λ is the adjusted policy for a given λ.

4 Convergence Properties of CW-MDP and ACW-MDP

In this section, we will analyze a few properties of CW-MDP and ACW-MDP, specifically

the convergence of the two methods and the relationship of the Qc and Qc′ functions to

optimal system-level Q function. For ease of notation, we will use Qc and V c instead for Qc
(i)

and V c
(i). Similarly, we will use Qc′ and V c′ instead of Qc′

(i) and V c′
(i). With a slight abuse of

notation, let V c
t ∈ R|Sc| correspond to the V c-function at the given tth iteration step. And,

Qc
t(si, .) corresponds to the Qc-function estimated using V c

t (si) at a given tth iteration step.
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We can further express iterations for CW-MDP given in Algorithm 1 for a single component

using Tm operator which iterates such that TmV c
t = V c

t+1, which is defined as:

(TmV c
t )(si) = V c

t+1(si) = max
αi

(Qc
t(si, αi)) = max

αi

(
RI(si, αi) + γ

∑
s′i

T (s′i|si, αi)V
c
t (si)

)
(22)

For a max operator, we know that it satisfies the non-expansive property (Littman and

Szepesvári, 1996) as:

|max(Qc
1(si, .))−max(Qc

2(si, .))| ≤ ||Qc
1(si, .)−Qc

2(si, .)||∞ (23)

The non-expansive property guarantees the convergence of operator Tm to a fixed unique

solution V c∗ such that TmV c∗ = V c∗ and corresponding to this V c∗(si) we will have a

unique Qc∗(si, .). The relationship between Qc∗(si, αi) of all components in the system and

the system level optimal Q-function Q∗(s,a) is given in the following proposition.

Proposition 1. For a valid combination of extended single-agent actions < α1, α2, ..., αM >

corresponding to a system-level action a, the error bound between Qc∗(si, αi) and the optimal

solution Q∗(s,a) is given by:

max
s

max
a
|

M∑
i=1

Qc∗(si, αi)−Q∗(s,a)| ≤ γ
M − 1

M(1− γ)
Cs (24)

Proof : Let Qc
t(·, ·) and V c(·) be the results at the tth iteration of the CW-MDP

algorithm, we have:

max
s

max
a
|

M∑
i=1

Qc
t(si, αi)−Q∗(s,a)| = max

s
max
a
|
∑
i

RI(si, αi) + γ
∑
i

∑
s′i

T (s′i|si, αi)V
c
t (s

′
i)

−R(s,a)− γ
∑
s′

T (s′|s,a)V ∗(s′)|,

(25)

where V ∗(s) is the optimal global value function for state s. Since < α1, α2, ..., αM > is

a valid combination of extended single-agent actions that correspond to the system-level

action a. Since the transition dynamics of the components are independent of each other,

we have T (s′i|si, αi) = T (s′i|s,a) and∑
i

∑
s′i

T (s′i|si, αi)V
c
t (s

′
i) =

∑
i

∑
s′i

T (s′i|s,a)V c
t (s

′
i) =

∑
i

E(V c
t (s

′
i)|s,a)

=
∑
s′

T (s′|s,a)
∑
i

V c
t (s

′
i)

(26)
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Let V c
t and V ∗ ∈ R|S| be the vectors of V c

t (s) and V ∗(s) for all state s, where V c
t (s) =∑

i V
c
t (si). Based on (25)–(26), we have

max
s

max
a
|

M∑
i=1

Qc
t(si, αi)−Q∗(s,a)| = max

s
max
a
|γ

∑
s′

T (s′|s,a)[
∑
i

V c
t (s

′
i)− V ∗(s′)]|

≤ γ||V c
t − V ∗||∞

(27)

Let’s define another operator TG as:

V ∗(s) = max
a

(Q∗(s,a)) = max
a

(
R(s,a) + γ

∑
s′

T (s′|s,a)[V ∗(s′)]
)
= (TGV ∗)(s) (28)

Then an upper bound of ||V c
t − V ∗||∞ can be obtained as:

||V c
t − V ∗||∞ ≤ ||TmV c

t−1 − TGV c
t−1||∞ + ||TGV c

t−1 − TGV ∗||∞ (29)

We can rewrite ||TmV c
t − TGV c

t ||∞ using equation (9) and (26) as:

||TmV c
t − TGV c

t ||∞ = max
s
|
∑
i

max
αi

Qc
t(si, αi)−max

a

(
R(s,a) +

∑
s′

T (s′|s,a)[
∑
i

V c
t (s

′
i)]
)
|

= max
s
|
∑
i

max
αi

Qc
t(si, αi)−max

a

(∑
i

RI(si, αi) + γ
∑
i

∑
s′i

T (s′i|si, αi)V
c
t (s

′
i)
)
|

= max
s
|
∑
i

max
αi

Qc
t(si, αi)−max

a

∑
i

Qc
t(si, αi)|

(30)

Note that
∑

imaxαi Q
c
t(si, αi) = maxα:αi∈Ae

∑
iQ

c
t(si, αi), where α is a vector of all possible

valid and invalid combinations of extended single-component actions. Furthermore, we can

rewrite ||TmV c
t − TG

∑
i V

c
t ||∞ as:

||TmV c
t − TGV c

t ||∞ = max
s
|max

α

∑
i

Qc
t(si, αi)−max

a

∑
i

Qc
t(si, αi)| (31)

We can obtain an upper bound for maxs |maxα
∑

iQ
c
t(si, αi)−maxa

∑
iQ

c
t(si, αi)| by

analyzing the terms in maxα
∑

iQ
c
t(si, αi) and maxa

∑
iQ

c
t(si, αi). First note that all αi

in α can only be either a0,0 or a1,1. If all αi in α are equal to a0,0, then α is a valid

combination of extended single-component actions corresponding to a system-level action a.

Therefore maxα
∑

iQ
c
t(si, αi)−maxa

∑
iQ

c
t(si, αi) = 0. If at least one αi in α is equal to

a1,1, it can be seen that if we change all αi = a0,0 in α to αi = a0,1, then α becomes a valid

combination of extended single-component actions corresponding to a system-level action a.
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Since changing each αi = a0,0 in α to αi = a0,1 reduces the reward by Cs
M and the number

of changes is at most M − 1, we have

||TmV c
t − TGV c

t ||∞ = max
s
|max

α

∑
i

Qc
t(si, αi)−max

a

∑
i

Qc
t(si, αi)| ≤

M − 1

M
Cs (32)

Further, we can bound ||TGV c
t −TGV ∗||∞, using the fact that operator TG is a contraction

mapping(Puterman, 2014) as:

||TGV c
t − TGV ∗||∞ ≤ γ||V c

t − V ∗||∞ (33)

From (32) and (33) we have

||V c
t − V ∗||∞ ≤||TmV c

t−1 − TGV c
t−1||∞ + ||TGV c

t−1 − TGV ∗||∞

≤M − 1

M
Cs + γ||V c

t−1 − V ∗||∞

≤M − 1

M
Cs[

t∑
k=1

γt−k] + γt||V c
0 − V ∗||∞

(34)

Therefore, we can write maxsmaxa |
∑M

i=1Q
c
t(si, αi)−Q∗(s,a)| as:

max
s

max
a
|

M∑
i=1

Qc
t(si, αi)−Q∗(s,a)| ≤γ

(
M − 1

M
Cs[

t∑
k=1

γt−k] + γt||V c
0 − V ∗||∞

)
(35)

At t −→∞ we have

max
s

max
a
|

M∑
i=1

Qc∗(si, αi)−Q∗(s,a)| = lim
t−→∞max

s
max
a
|

M∑
i=1

Qc
t(si, αi)−Q∗(s,a)|

≤γ lim
t−→∞

(M − 1

M
Cs[

t∑
k=1

γt−k] + γt||
∑
i

V c
0 − V ∗||∞

)

=γ
M − 1

M(1− γ)
Cs

(36)

Let V c′
t ∈ R|Sc| be the vector notation for the V c′-function at a given tth iteration step of

the ACW-MDP algorithm. And, Qc′
t (si, .) corresponds to the Qc′-function estimated using

V c′
t (si) at a given tth iteration step. Further, let boltλ(Q

c′
t (si, .)) be a Boltzman operator

defined as:

boltλ(Q
c′
t (si, .)) =

∑
αi∈Ae

(
eλQ

c′
t (si,αi)∑

αi∈Ae eλQ
c′
t (si,αi)

Qc′
t (si, αi)

)
(37)
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The boltλ(.) operator for a given λ > 0 is not a non-expansive operator as it has the

following property(Cesa-Bianchi et al., 2017):

|boltλ(Qc′
1 (si, .))− boltλ(Q

c′
2 (si, .))| ≤ ||Qc′

1 (si, .)−Qc′
2 (si, .)||∞ +

2 log(3)

λ
(38)

Hence, for boltλ(Q
c′
t (si, .)), convergence to a fixed point cannot be guaranteed. Instead,

we can show that V c′
t eventually converges to a bounded region around V c∗ as given in the

following proposition.

Proposition 2. As t −→ ∞, the value of V c′
t converges to a bounded region around the

optimal V c∗ for a given λ:

lim
t−→∞ ||V

c′
t − V c∗||∞ ≤ log(3)

λ(1− γ)
. (39)

The proof of the above proposition is given in the supplementary material. Since our

decision depends on the estimates of the Qc′ function, we also show that a finite bound

exists between Qc′
t (si, αi) and Qc∗(si, αi) as t −→∞ based on the following proposition.

Proposition 3. As t −→∞, the value of Qc′
t (si, αi) converges to a bounded region around

the optimal Qc∗(si, αi) for a given λ:

lim
t−→∞max

si
max
αi

|Qc′
t (si, αi)−Qc∗(si, αi)| ≤ γ

log(3)

λ(1− γ)
. (40)

The proof of the above proposition is given in the supplementary material. Similarly

to Proposition 1, for ACW-MDP we can find a bound between the Qc′ and the optimal

system level Q function Q∗, as given in the following proposition.

Proposition 4. For a given valid combination of extended single-agent actions < α1, α2, ..., αM >

corresponding to a system-level action a, the bound between
∑M

i=1Q
c′
t (si, αi) for an optimal

parameter λ∗ and Q∗(s,a) as t −→∞ is given by:

lim
t−→∞max

s
max
a
|

M∑
i=1

Qc′
t (si, αi)−Q∗(s,a)| ≤ γ

M log(3)

λ∗(1− γ)
+ γ

M − 1

M(1− γ)
Cs. (41)

The proof of the above proposition is given in the supplementary material.

The bounds in Proposition 2 and 3 can be visualized in Figure 2. The bounds also

provide us with insights into the convergence of ACW-MDP. This shows that though the

exact convergence of ACW-MDP cannot be guaranteed, convergence to a closed region
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in space is always guaranteed, which implies that starting from any arbitrary V c′
0 , we

eventually go close to V c∗ in the space.

Figure 2: Visualization of convergence of single component of CW-MDP to a unique solution V c∗

and Qc∗, whereas single component of ACW-MDP converges to a bounded region around V c∗ and

Qc∗

From bounds in Proposition 2 and 3, we can also observe that the solutions of ACW-MDP

and CW-MDP will be close to each other for system settings that have large parameters

λ∗. For systems with lower Cs
M values, the difference between Qc∗(si, a0,0) and Qc∗(si, a0,1)

would be small, allowing the max operator to be an equivalent choice. Also, in systems with

very high Cs
M value, components will get replaced simultaneously even if they are not close to

failure, implying that the components will predominantly choose between action a0,0 or a1,1.

System settings with exceptionally high and low values of Cs
M tend to choose a higher value

of λ∗. ACW-MDP solutions for such systems would be equivalent to CW-MDP solutions.

5 Numerical Studies

In this section, we conduct numerical studies to evaluate the proposed CW-MDP and ACW-

MDP-based policies for CBM of large multi-component systems. For a large multi-component

system, it is computationally infeasible to obtain an optimal system-level solution using

methods like value iteration or MCTS. Therefore, we compare our proposed methods with

existing heuristic policies: (n,N)-policy (Andersen, 2022) and (n,m,N)-policy(Anonymous,

2023).

The (n,N)-policy, n ≤ N , for CBM of a system with identical components, can be
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stated as follows: If one or more components degrades to a state greater than or equal to N ,

all components with state n or higher are replaced. The parameters n and N are chosen by

performing a heuristic search on all n,N ∈ {1, 2, 3, ....L}. Similar to the (n,N)-policy, we

can define the (n,m,N)-policy, n ≤ m ≤ N , as: If one or more components degrade to a

state greater than or equal to N , or two or more components degrade to a state greater than

or equal to m, then all components that are beyond the state n are replaced. The parameters

n, m and N are chosen by performing a heuristic search over all n,N ∈ {1, 2, 3, ....L}.
In addition, we also compare the proposed methods with an independent component-wise

policy. We solve the independent MDP for each component in the system, considering that

the individual component receives an extra cost Cs/M whenever we choose action ai = 1

(i.e., the component is replaced). The independent component-wise policy is equivalent

to solving CW-MDP with actions a0,0 and a1,1 only. Comparison with an independent

component-wise solution allows us to evaluate the effectiveness of using extended action space

and system-level action selection for solving the CBM problem. We compare all our policies

for 100 simulation steps by averaging the total discounted rewards for 10,000 trials with a

discount factor γ = 0.95. In the numerical study, we use two different reward structures:

(Cm = 200;Cs = 1000;Cb = 1000) and (Cm = 200;Cs = 1200;Cb = 1000). Initially,

we analyze the performance of a system consisting of homogeneous components, i.e., all

components in the system follow the same transition dynamics, i.e., Ti = T∀i. Subsequently,
we analyze the performance of a system consisting of heterogeneous components, i.e., all

components in the system follow different transition dynamics. We can extend the (n,N)

and (n,m,N)-policy to systems with heterogeneous components with the same values Cm,

Cb, and Cs. We consider the same state space Su for all heterogeneous components, allowing

us to choose the same parameters n, m, and N for all components in the system. In both

cases, we also perform a sensitivity analysis over setup cost Cs.

5.1 Homogeneous Component Systems

For a homogeneous component system, we consider a system with 20, 30, 40, 50, and 60

components, each component having the same state space Su and transition dynamics. The

transfer matrix is generated randomly using the assumption T (s′i|si, ai) = 0 if s′i < siand

ai = 0; and T (s′i|si, ai) ≥ 0 if s′i ≥ si, and T (s1i |si, ai) ≥ T (s2i |si, ai) if s2i ≥ s1i ≥ si. In
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Figure 3: Bar plots showing improvement in average discount rewards with standard deviation(using

whiskers) w.r.t independent component-wise solution for 20, 30, 40, 50, and 60 homogeneous

components for (n,N)-policy, (n,m,N)-policy, CW-MDP, and ACW-MDP using two different

reward structures

Figure 3, we show an improvement in the average discount rewards w.r.t independent

component-wise solution for 20, 30, 40, 50, and 60 homogeneous components.

Figure 4: Improvement in discounted rewards for homogeneous components from CW-MDP and

ACW-MDP w.r.t. (n,N) and (n,m,N)-policy with changing setup cost

For a system with 20 homogeneous components, we observe that under the reward

structure Cm = 200;Cs = 1000;Cb = 1000, the performance of ACW-MDP and CW-

MDP is close to that of (n,m,N)-policy. When we increase the setup cost to Cs = 1200

with the same corrective replacement cost Cb = 1000, we observe that CW-MDP and

ACW-MDP perform better than the (n,N) and (n,m,N) policies. For systems with 30,
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40, 50, and 60 components, we observe that our proposed CW-MDP and ACW-MDP

approach performs better than the (n,N) and (n,m,N) policy. Under all cost structures,

ACW-MDP performs equivalently or better than CW-MDP. Furthermore, the independent

component-wise solution performs worse in comparison to all other policies. This is evident

since independent solutions do not consider the impact of setup cost on component-wise

maintenance decisions.

Since the setup cost Cs has a significant impact on the maintenance decisions of the

components due to the induced positive economic dependence, we performed a sensitivity

analysis to understand the impact of the setup cost Cs on the performance of CW-MDP and

ACW-MDP. In Figure 4, we plot the improvement in total discounted rewards from CW-

MDP and ACW-MDP w.r.t. (n,N) and (n,m,N)-policy for 30, 40, 50 and 60 component

systems. For Cs = 800 the performance of both ACW-MDP and CW-MDP is close to

that of (n,m,N). However, under the same setup cost Cs = 800, the improvement in

discounted rewards w.r.t. (n,N)-policy decreases with the number of components in the

system. This behavior is because, under the specific cost structure, CW-MDP and ACW-

MDP perform comparably to the (n,m,N) policy. However, As the number of components

increases, the impact of economic dependence between components decreases, leading to

inferior performance of the (n,N) policy when compared to CW-MDP and ACW-MDP.

Furthermore, on increasing setup cost, we observe that the performance of both ACW-MDP

and CW-MDP maximizes in a region of the setup cost. At a higher setup cost, components

tend to be replaced together even if they are close to failure; this makes (n,m,N) and

(n,N)-policy to perform close to ACW-MDP and CW-MDP.

5.2 Heterogeneous Component Systems

For a heterogeneous component system, we consider a system with 20, 30, 40, 50, and

60 components, each component having the same state space Su but different transition

dynamics Ti for each component. This choice is motivated by the fact that the existing

heuristic policies, such as (n,N)-Policy and (n,m,N)-Policy, are typically designed for

systems where components have the same degradation level L. We generate a random

transition matrix for the problem using the assumption T (s′i|si, ai) = 0 if s′i < siand ai = 0;

and T (s′i|si, ai) ≥ 0 if s′i ≥ si, and T (s1i |si, ai) ≥ T (s2i |si, ai) if s2i ≥ s1i ≥ si.
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Figure 5: Bar plots showing improvement in average discount rewards with standard deviation(using

whiskers) w.r.t independent component-wise solution for 20, 30, 40, 50, and 60 heterogeneous

components for (n,N)-policy, (n,m,N)-policy, CW-MDP, and ACW-MDP using two different

reward structures

In Figure 5, we show an improvement in the average discount rewards w.r.t independent

component-wise solution for 20, 30, 40, 50, and 60 heterogeneous components. Under both

reward structures for systems with 20, 30, 40, 50, and 60 heterogeneous components, our

proposed ACW-MDP and CW-MDP perform better than (n,N), (n,m,N). Specifically,

for systems with 50 and 60 heterogeneous components, the (n,N) and (n,m,N)-policy

performs worse than the independent component-wise solution. Also, ACW-MDP always

performs either equivalently or better than CW-MDP. The improvement in the policies

generated using ACW-MDP and CW-MDP w.r.t. (n,N) and (n,m,N)-policy increases

with the number of components in the system. A higher number of components in the

system implies a higher heterogeneity in the system, leading to poor performance of heuristic

policies.

Similar to the homogeneous component systems, we perform a sensitivity analysis

for heterogeneous component systems to understand the impact of setup cost Cs on the

performance of CW-MDP and ACW-MDP. In Figure 6, we plot the improvement in the

total discount rewards of CW-MDP and ACW-MDP w.r.t. (n,N) and (n,m,N)-policy for

30, 40, 50 and 60 heterogeneous component systems. In contrast to the homogeneous case,

in heterogeneous systems, improvements do not peak in a region of setup cost. Instead, we

observe an almost significant improvement in total discounted rewards of ACW-MDP and

CW-MDP w.r.t. (n,N) and (n,m,N)-policy on changing the setup cost. This happens
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Figure 6: Improvement in Discounted Rewards for heterogeneous components from CW-MDP and

ACW-MDP w.r.t. (n,N) and (n,m,N)-policy with changing setup cost

Figure 7: Computational time(in minutes) for CW-MDP, ACW-MDP, (n,N) and (n,m,N)-policy

for Heterogeneous component system for 10,000 trials

due to the different transition dynamics of each component, allowing each component to be

impacted differently by the setup cost in the system. Some components tend to fail faster

compared to other components that require replacement more often, irrespective of the

setup cost. Also, we observe that magnitude of improvement increases with the number of

components in the system.

Figure 7 shows a comparison of the computational time for the CW-MDP, ACW-MDP,

(n,N) and (n,m,N)-policy for heterogeneous component system for 10,000 trials to evaluate

a policy for 100 simulation steps with L = 10. We observe that CW-MDP is highly efficient

compared to all other methods since it requires solving an MDP of state space size |Su| = L

and action space |Ae| = 3. Further, the computational time of ACW-MDP is higher than

CW-MDP because we iteratively evaluate our policy at the system level to find parameter λ.
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Furthermore, the (n,m,N)-policy has the highest computational time because it requires

a huge heuristic search for all combinations of n, m, and N . For each combination, we

need to evaluate policy at the system level making (n,m,N)-policy highly computationally

expensive to estimate.

Additionally, We can analyze the computational complexity of the method by making the

assumption that both methods require n iterations to converge. For n iterations, CW-MDP

would require 3nL computational steps. Similarly, for ACW-MDP, assuming a search space

L of size k for λ∗, and considering n iterations, it would require 3nkL computational steps.

Additionally, ACW-MDP involves evaluating individual λ values by simulating the system to

find the optimal λ∗. We can see that the computational overhead of ACW-MDP compared

with CW-MDP is mainly determined by the tuning efforts for the parameter λ∗. It is

important to note that, in theory, ACW-MDP can provide a solution equivalent to or better

than CW-MDP. Therefore, it is beneficial to explore a certain set of values L to check if

there exists a λ∗ that can improve the CBM policies.

5.3 Case Study: Maintenance of Wind Turbine Bearings

In this section, we show an application of our proposed ACW-MDP and CW-MDP to

develop a maintenance policy for a large multi-component system consisting of a gearbox

bearing for multiple wind turbines. The gearbox is a crucial component of a wind turbine

used to increase the rotational speed of a low-speed rotor to a high-speed electrical generator.

Gearbox bearings are usually subjected to wear due to external and internal factors. Failure

of a gearbox can lead to failure of wind turbines and would lead to massive operational and

equipment loss. Timely maintenance of the gearbox can prevent these failures and allow

efficient functioning of wind turbines. We consider a gearbox-bearing system consisting of

20 to 150 homogeneous components. The degradation of the gearbox is modeled using a

discrete state degradation process with L = 4 for which we consider a transition matrix T

as given in (Li et al., 2019) defined as:

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.8571 0.1429 0 0

0 0.8571 0.1429 0

0 0 0.8 0.2

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(42)
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Figure 8: Bar plots showing improvement in average discount rewards with standard deviation(using

whiskers) w.r.t independent component-wise solution for systems with a large number of bearings for

(n,N)-policy, (n,m,N)-policy, CW-MDP, ACW-MDP

In the above matrix, the (i, j)th element, Ti,j , corresponds to the probability of transi-

tioning from a state i to a state j. We consider a reward structure with Cm = 200, Cs =

800, and Cb = 1000. We evaluate all policies by finding the average total discounted

rewards for 100 simulation steps with a discount factor γ = 0.95, averaging over 10,000

trials. In Figure 8, we show improvement in average discount rewards w.r.t independent

component-wise solution for systems with 20 to 150 bearings using different policies.

We observe that for system size ranging from 20 to 150, our proposed ACW-MDP and

CWMDP perform better than (n,N), (n,m,N) and independent component-wise solution.

Additionally, when the number of components is greater than 80, we observe that the

(n,N)-policy performs equivalent to an independent component-wise solution. This happens

because of a fixed setup cost; by increasing the number of components in the system, the

impact of positive economic dependence decreases. Also, the ACW-MDP always performs

better or is equivalent to CW-MDP. We can also note that, as the number of components

increases, the rewards from ACW-MDP start to come closer to CW-MDP. This happens

as increasing the number of components decreases the value of Cs
M allowing the system to

choose a higher λ∗ making ACW-MDP equivalent to CW-MDP.

6 Conclusion

In this work, we proposed two different methods, CW-MDP and ACW-MDP, for developing

a CBM policy for large multi-component systems. Using extensive experimental studies,

we show that our proposed methods perform better than the existing heuristic policies,
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namely, (n,N) and (n,m,N)-policy. We observe that our proposed policies give a large

improvement in total discounted rewards compared to the policy (n,N) and (n,m,N) for

both homogeneous and heterogeneous component systems. We also studied the impact

of setup cost on ACW-MDP and CW-MDP and compared improvements with respect to

(n,N) and (n,m,N)-policy. For a homogeneous system, we observe that for lower setup-cost

our methods give similar performance w.r.t. (n,m,N)-policy. However, with increasing

setup cost, we observe that CW-MDP and ACW-MDP perform better than the (n,N)

and (n,m,N)-policy. For a heterogeneous system, we observe a consistent improvement

in performance using ACW-MDP and CW-MDP w.r.t., (n,N) and (n,m,N)-policy. In

addition, the scale of improvements increases with the number of components in the system.

Additionally, we observe that ACW-MDP and CW-MDP are computationally efficient

in comparison to (n,N) and (n,m,N)-policy, allowing us to scale our method for large

multi-component systems. Furthermore, we analyzed the convergence and relationship

between the solutions of ACW-MDP and CW-MDP. Though the component-wise solution

does not converge to the exact optimal system-level solution, it allows us to solve problems

that are computationally infeasible.

The future research direction for this work is to extend the component-wise solutions for

more complex system dependence structures such as series-parallel systems or k-out-of-n

systems. Another major limitation of this work is that we consider a uniform distribution of

setup cost among the components. In the future, we will work on developing methods that

can consider the non-uniform distribution of setup costs or more complex reward structures

with multiple setup costs in heterogeneous systems.

7 Data Availability Statement

The data that support the findings of this study are available from the corresponding author

upon request.
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Littman, M. L. and Szepesvári, C. (1996). A generalized reinforcement-learning model:
Convergence and applications. In ICML, volume 96, pages 310–318.

Liu, X., Li, J., Al-Khalifa, K. N., Hamouda, A. S., Coit, D. W., and Elsayed, E. A. (2013).
Condition-based maintenance for continuously monitored degrading systems with multiple
failure modes. IIE transactions, 45(4):422–435.

29



Liu, Y., Chen, Y., and Jiang, T. (2020). Dynamic selective maintenance optimization
for multi-state systems over a finite horizon: A deep reinforcement learning approach.
European Journal of Operational Research, 283(1):166–181.

Marseguerra, M., Zio, E., and Podofillini, L. (2002). Condition-based maintenance optimiza-
tion by means of genetic algorithms and monte carlo simulation. Reliability Engineering
& System Safety, 77(2):151–165.

Peng, S. et al. (2021). Reinforcement learning with gaussian processes for condition-based
maintenance. Computers & Industrial Engineering, 158:107321.

Pinciroli, L., Baraldi, P., and Zio, E. (2023). Maintenance optimization in industry 4.0.
Reliability Engineering & System Safety, page 109204.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons.

Wang, R. and Chen, N. (2016). A survey of condition-based maintenance modeling of multi-
component systems. In 2016 IEEE International Conference on Industrial Engineering
and Engineering Management (IEEM), pages 1664–1668. IEEE.
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