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Abstract

Condition-based maintenance of multi-component systems is a prevalent engineering
problem due to its effectiveness in reducing the operational and maintenance costs of
the system. However, developing the exact optimal maintenance decisions for the large
multi-component system is computationally challenging, even not feasible, due to the
exponential growth in system state and action space size with the number of components
in the system. To address the scalability issue in CBM of large multi-component systems,
we propose a Component-Wise Markov Decision Process(CW-MDP) and an Adjusted
Component-Wise Markov Decision Process (ACW-MDP) to obtain an approximation
of the optimal system-level CBM decision policy for large systems with heterogeneous
components. We propose using an extended single-component action space to model the
impact of system-level setup cost on a component-level solution. The theoretical gap
between the proposed approach and system-level optima is also derived. Additionally,
theoretical convergence and the relationship between ACW-MDP and CW-MDP are
derived. The study further shows extensive numerical studies to demonstrate the
effectiveness of component-wise solutions for solving large multi-component systems.

Keywords: Condition-Based Maintenance, Multi-Component System, Markov Decision
Process

1 Introduction

In practice, production/service systems often consist of multiple components, for example,
various machines in a production system, a fleet of trucks in a transportation system, or
wind turbines in a windmill farm. In this work, we focus on the condition-based maintenance

problem for a multi-component system that can potentially contain a large number of



components. Maintenance decision for such a system is a challenging decision-making
problem. The complex nature of the problem arises from the dependence of the decisions
at a single component level due to stochastic, economic, or structural dependencies among
components. It is well known that, in most cases, the optimal maintenance decision at the
single component level is not optimal for the whole system. Unfortunately, developing the
exact optimal maintenance decisions for the whole system is computationally challenging,
even not feasible, due to the exponential growth in system state and action space size with
the number of components in the system.

Maintenance decision-making of multi-component systems is an active research area with
a large amount of available literature. Some excellent surveys of this field can be found in
(Keizer et al., 2017a; Wang and Chen, 2016; Dehghani Ghobadi et al., 2022; Pinciroli et al.,
2023). In this work, we will focus on the condition-based maintenance (CBM) method for
multi-component systems. In CBM, the components’ health is monitored using sensory data
collected in real time, and maintenance decisions are made based on the machine’s health
condition. Intuitively, CBM will outperform time/age-based maintenance in most cases
because more real-time information has been taken into consideration in the decision-making
process (Koochaki et al., 2013).

For CBM decision-making, we first need to select a degradation model to describe the
underlying health deterioration path followed by a component in the system. A popular
choice of degradation model in maintenance decision-making is the discrete Markov process,
in which the health condition of the component is represented by a few discrete states, and
the evolving of the health condition is represented by the transition between states (Alaswad
and Xiang, 2017). There are some advantages of using a discrete Markov process as the
degradation model. First, the discrete Markov process is quite a flexible model. In fact,
other degradation models, such as the continuous degradation path models, can be easily
approximated by the discrete Markov processes as shown in (Bouvard et al., 2011; Peng
et al., 2021; Barbera et al., 1999). A recent work showed that a discrete Markov process
effectively approximates continuous degradation processes using only a few states (Andersen,
2022). Second, with the discrete-state Markov process representation, we can naturally
formulate the maintenance decision-making problem into a Markov Decision Process(MDP)

and obtain the optimal maintenance policy under the MDP framework. Indeed, many



research works (Liu et al., 2013; Xu et al., 2022; Zhao et al., 2019) have been reported to
solve the optimal CBM problem for a single component using MDP.

Limited work is available on using MDP to solve CBM problem for multi-component
systems. The reason is that the state space and action space of a multi-component system
is extremely large, which makes it computationally expensive to obtain the exact MDP
solution. For instance, a system consisting of M components with L degradation states
for each component, and each component having only two actions: repair or no repair,
would lead to a state space of size LM and an action space of size 2M. Solving an MDP
with such a state and action space is practically infeasible for systems with a large number
of components. Thus, most existing MDP-based CBM methods for a multi-component
system can only work for a system with a very small number (e.g., two) of components
(Keizer et al., 2017b; Zhang et al., 2011). A recent study showed that it is only feasible to
obtain the exact MDP solution for up to 7 components and 12 degradation levels (Andersen
et al., 2022). To address the scalability issue in CBM of large multi-component systems,
several approaches have been proposed. One approach is to use some heuristic policies to
provide a sub-optimal solution to the problem. For example, a popular heuristic rule is the
(n, N)-policy (Andersen, 2022) for a system with identical components. This rule specifies
that if one or more component is at or beyond health degradation level N, then all the
components at or beyond health degradation level n will be repaired. Obviously, this rule can
be applied to a system with a very large number of components. However, such a rule cannot
be applied to a system with heterogeneous components, where “heterogeneous” means that
the state transition dynamics of a component is different from that of another component.
In addition, the conditions under which the performance of this rule is good are not very
clear. There are other threshold-based heuristic policies for CBM (Xia et al., 2013; Zhang
and Zeng, 2015). Similarly, these heuristic policies are sub-optimal and cannot be applied to
a system with heterogeneous components. In recent years, the deep reinforcement learning
(DRL) method has been used to obtain the optimal maintenance policy for multi-component
system (Zhang and Si, 2020; Yousefi et al., 2022). DRL is a black-box approximation
method that can solve the CBM problem for a relatively large multi-component system when
compared with the systems that exact MDP solvers can handle. However, this approach

still faces significant computational challenges due to the curse of dimensionality because



of exponentially increasing state and action space. A larger state space necessitates a
significant number of simulation trials to learn a good function approximation effectively
(Wong et al. (2023)). Thus, DRL cannot be applied to very large multi-component systems.
One way to reduce the computational space is by reducing state space by considering groups
of identical components in the system and reducing action space by using constraints in the
system. Using these ideas, (Liu et al., 2020) solved for an optimal policy using actor-critic
for 14 components by considering 5 groups of identical components to reduce the state
space and by reducing action space to 8 actions by using resource constraints. Still, these
approximations cannot help solve systems with a very large number of components and
cannot be applied to a general system with heterogeneous components. Another approach
of addressing the scalability issue is to use online planning methods such as the Monte Carlo
Tree Search (MCTS) to obtain a good action only for the current system state instead of
obtaining the complete action policy for all the possible system states. MCTS has been
used in maintenance decision-making problems recently(Barata et al., 2002; Marseguerra
et al., 2002). Similar to DRL, the online planning approach cannot yet handle very large
systems. If we want to obtain high-quality solutions, the computational load is prohibitively
intensive for large systems.

In this work, we propose a scalable approach to solve the CBM decision-making problem
for systems with a large number of heterogeneous components with economic dependence.
The component degradation is modeled by discrete Markov processes. To capture the
economic dependence among the components, we propose a decomposition of the system
reward function and an extension of the action space to reflect the new reward function.
Then, we propose a two-step decision-making scheme to find an approximation of the
optimal system-level CBM decision policy. In the first step, we obtain the component level
@ functions under the extended action space and the decomposed reward function by solving
the component level MDP. In the second step, we will select the best system-level actions
based on the component level () functions obtained in the first step by explicitly taking into
account the economic dependence. This proposed approach is a heuristic approximation
approach. However, different from existing heuristic approaches, our proposed approach is
based on the component-level MDP solution under the extended action space. Thus, this

approach can address heterogeneous components naturally. In addition, the theoretical gap



between the solution obtained by our proposed approach and the exact optimal solution
can be obtained. The computational time of the proposed algorithm grows linearly with the
number of components in the system, allowing us to scale for extremely large-scale problems.

The paper is organized as follows: In Section 2, the mathematical formulation is provided,
in which the maintenance decision-making for a multi-component system is formulated as
an MDP. In Section 3, we propose a scalable solution to the multi-component CBM problem
based on component-wise MDP. In Section 4, the theoretical properties of the proposed
approach are investigated. Section 5 presents a comprehensive numerical study to illustrate
the advantage of the proposed method. Section 6 concludes the paper and provides some

discussion of future works.

2 Problem Formulation

We consider a system consisting of M heterogeneous components, i.e., different components
follow different transition dynamics. The system is inspected at equal time intervals. The
inspection cost is ignored. At each inspection, we observe the degradation state of each
component in the system. The degradation state s; of a component ¢ belongs to set
Sc(i) ={1,2,3, ..., L;}, where state 1 corresponds to the new state of the component and L;
corresponds to the failure state of the component.

After each inspection, we take two possible actions for each component {0, 1}, where 0
corresponds to retaining the component and 1 stands for replacement of the component.
After replacement, a component returns to state 1. At degradation state L;, we always
take action a; = 1, which means a failed component is immediately replaced with a new
component with a corrective replacement cost Cp. If a component is replaced at a state
s; < L, it is replaced at a preventive replacement cost Cr(ril) such that C,, < Cp. Thus, we

can define the cost of an individual component at state s; and action a; as

—Cm Si 75 L, a; = 1
7i(8i, i) = —Cy s;=1L : (1)
0 otherwise

We would like to point out that in (1), we assume each component has the same C,, value



and the same CY value, i.e., C( - = C,, and C’(l) Cy, while (), < C%. This assumption is
just for notational convenience. The proposed method can be easily extended to cases where
the repair and replacement costs are different for different components. The degradation of
each component follows a discrete-time Markov decision process with transition probability
from a state s; to s; be T;(s}|s;,a; = 0). Additionally, the transition probability satisfies
Ti(si|si,a; = 0) = 0 for s, < s;, and Zs;Ti(sﬂsi,a = 0) = 1. For any replacement, i.e.
si = L;j or a; = 1 we let T(s}|sj,a; = 1) = T(s}|s; = Li,a; = 1) = T(s}]s; = 1,a;, = 0) ,
since we assume that all replacements are instantaneous and occurs at the beginning of
a time period. Thus, the replaced component returns to the state 1 and then performs a
transition for the period from state 1.

Using state s; and action a; for the individual component, we can form a state vector
s as < S1,892,83,...,S) >, and action vector a as < ai,as,...aps >. We can denote the
complete system-level state and action space as S and A, respectively, such that s € S and
a € A. The system-level transition probability of transiting from a state s and action a to

state s’ can be formulated using transition independence of components as:

‘S a HT |517a2 (2)

If there is any replacement in the system, there is an additional setup cost of Cs. This
setup cost induces an economic dependence between components, encouraging components to
get replaced simultaneously. We can define the system-level reward function R: S x A — R

as:

—Cs + Zf\i ri(si,a;) Any Replacement
Ris,a) = 1 (3)

0 No Replacement
Using the state space, action space, reward function and transition dynamics given
above, we formulate the condition-based maintenance problem as a Markov Decision Process
(MDP){S, A, R, T,~}, where v € (0, 1] is the discount factor. Starting at a given state sy at
time t=0, we find a policy 7 from a set of all policies II such that it maximizes the expected
total discounted rewards for the system V*(sg) as

V*(s0) r71r1eaﬁ<E[ZvRst, (st )] Vsp € S. (4)



The optimal Q-function @Q* and value function V* can be obtained by value iteration(Puterman,

2014) over the entire state and action space such that:
Q"(s,a) = R(s,a) + VEyr(ss.a) V()] (5)

V*(s) = max Q*(s,a). (6)

Using the optimal @* we can obtain an optimal policy 7*(s) for a given state s as:
7(s) = argmax Q" (s, a). (7)
a

Although value iteration guarantees an exact optimal solution to the problem, the
scalability of this approach is poor. The above formulation leads to a prohibitively large
state and action space, i.e., |S| and |A| would be Hf\il L; and 2™ respectively. When
using value iteration, iteration over all states and actions is required; this makes obtaining
a solution challenging, even for a small-scale system. In the next section, we propose a

scalable solution method for this problem.

3 Scalable Component-Wise Solution for CBM of Multi-

Component Systems

To address the scalability issue for CBM of multi-component systems, we could find an
optimal CBM decision for each component, called the “component-wise” solution, and then
combine the component-wise decision to form the decision for the whole system. However,
the replacement of components has an economic dependence due to setup cost Cs. Clearly, if
we simply ignore the setup cost in the component-wise decision (i.e., find the optimal CBM
decision for each component under the cost function given in (1)), then the component-wise
solution will not lead to a good solution for the system level CBM problem. To deal with
this issue, we can develop a component-wise solution by considering the impact of a single
component’s decision on the entire system. In other words, we could bring the setup cost
into the component-wise CBM problem so that the economic dependence among components
is taken into consideration to a certain extent when we make a component-wise decision.
Following the above intuition, we propose to reformulate the cost function as in (8)

and establish an eztended single-component action space as A° = {ap,a0,1,a1,1} for the



reformulated cost function,

—Cb—% lfsl:LZ

0 ifai:a()?g&siaéLi
R[(Si,ai) = . (8)
—% if a; = ao,1 & S; 75 Lz'

—Cm—% ifai:aLl&Si?éLi

In the above equation, o; € A® is the component-wise action for component 4, ag
corresponds to the action that a component is not getting replaced and there is no setup
cost, whereas, a1,1 and ag,; correspond to the action that a component is replaced and not
replaced, respectively, and there is setup cost. This reward function states that if there is one
or more replacements in the system, the setup cost is distributed evenly to all components
in the system. Distributing setup cost evenly among components is just a mathematical way
to adjust the component-level cost so that total system-level cost will be correctly obtained
by summing all component-level costs. The transition dynamics for actions in extended
single-component action space are defined as: T'(s'|s, ag0) = T(s'|s,a0,1) = T(s|s,a; = 0)
and T'(s'|s,a1.1) = T(s|s,a; = 1). Because the extended single-component actions do not

change the state transition dynamics, the following result can be obtained.

Result 1. For every system state s and action a, there exists a wvalid combination of

extended single-agent actions < aq, s, ag.....,ayr > such that:

M
Z Ri(si, ) = R(s, a), (9)
i=1

M

T(s|s, a) = HTi(s;]si,ai). (10)
i=1

The above result is obvious: if there is no replacement in the system, we can take
a; =app for all i = 1,..., M, while if k, k > 0, components are replaced in the system, we
can take action ay ; for the k replaced components and the action ag 1 for the rest of the
components.

With the new reward function and the extended action space, we can develop an

approximated component-wise solution to the CBM of multi-component systems.



3.1 CW-MDP: Component-Wise Markov Decision Process

For the state space Sc(i), action Space A€, and reward structure R; we can formulate a
component-wise MDP {Sc(i), A€ Ry, T;,v}. We can develop a policy by maximizing total
discounted rewards for each component in the system using this MDP. In this component-wise
MDP, the setup cost is considered in the reward function, so we expect the component-wise
MDP solution will provide a better approximation to the system-level MDP problem. That
being said, please note that CW-MDP is just an approximation and cannot provide the
exact solution to the system-level CBM problem.

We can solve the CW-MDP problem to compute component-wise Q)-function Q¢ as

Q°(si, o) = Ri(si, i) + VEgo1y(st55,00) [V (51)] (11)
where V¢(s;) is the component-wise value function defined as:

Ve(si) = i Q°(si, ) (12)

The above Q¢ and V¢ can be computed for each component of the system using their
respective transition matrices T;. For CW-MDP, the state space only consists of the health
states of a single component; thus, it is quite small. We use the standard value iteration
approach to solve it (Puterman, 2014). For the sake of convenience, we list the value iteration
method in Algorithm 1. In Algorithm 1, Q?i) and V(‘;) represent the Q¢ and V¢-function of
the i*" component of the system, respectively. For the Q¢ function, we have the following

result:

Result 2. For any state s; given s; # L, we have:

Cs

Q“(s4,a0,0) — Q°(s4,a0,1) = U (13)

This result is obvious if we consider the fact that the state transition under agg or ag 1
is the same, and Ry (s;, ao0) — Rr(si,a01) = % . This result indicates that Q¢(s;, ago) >
Q°(si, a0,1), which means that to maximize the rewards of an individual component, we will
always choose action ag o over action ag 1. In other words, we will never choose action a1
as an optimal action in CW-MDP. However, it is obvious that in the optimal system-level
solution, ag1 should be selected for the retained component when there is at least one
replacement in the system. This implies we need a suitable optimal action selection method

for the whole system using the component-wise Q°.



Algorithm 1 Component-Wise Markov Decision Processes
1. procedure CWMDP ({T,T5,...Tx},7)

2 Vi Vigy - Vi

3: for alli € {1,2,...,M} do

: Randomly initialized

4: Repeat

5: for all s; € Séi) do

6: for all o; € A° do

T Q) (sis i) = Ri(si; 00) + Xy es Talsilsiy i) [V (57)]
8: end for

9: Vi) (i) = maxa, Qf (si, i)

10: end for

11: Tterate till V(f) converges

12: end for

13: return Qfl), Q‘(Q), ey Q?M)

14: end procedure

3.2 System-Level Action Selection using CW-MDP

Instead of selecting the actions that maximize each individual @€, which will fall short of
providing the optimal actions at the system level, we can try to find an action vector a for
a given state s that maximizes the sum of Q¢ of each individual component. The action
vector a can be mapped to a valid combination of extended single agent actions «; using
Result 1. We propose the following way of selecting actions to generate a policy ey, (s) as
Z max Qf (si, i) = ZQ(@-)(«S@',GO,O)

i

argmax, e Q&)(Si, ;)i if i o €A
Tew(s) = or s; = L; (14)

ap,o V1 otherwise

where A° = {@o,1,a1,1}.The intuition behind (14) is to explicitly compare the value of ), Q?Z.)
between two scenarios: no replacement in the system or at least one replacement in the system.
One subtle point we want to mention is that if ), max, 7 Q‘(:i)(si, ;) >, in)(si, ap)
holds, then action a; is selected for at least one component. This is due to the result 2,

which indicates that if no ay; is selected, then ), max, .z Qfl.)(si, ;) >, in)(si, ao)

10
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Figure 1: Schematic Representation of CW-MDP with system-level action selection

will not hold. Thus, < a1, ag, as.....,apr > selected in the first equation in (14) always gives
a valid combination of extended single-agent actions.

Algorithm 2 gives implementation details for the system-level action selection procedure.
The initial step involves checking whether any component is in a failure state s; = Lj.
In this scenario, the presence of a failure implies the need for maintenance, consequently
incurring a setup cost. As a result, all components are limited to choosing actions ag ; and
a1,1, reflecting the necessary maintenance actions under such conditions. Conversely, if
corrective maintenance is not required, we proceed to calculate Q° and Q'. The subsequent
decision-making process involves comparing @Q° and Q'. If Q¥ > @', then the system-wide
action chosen is ag,o for all components. Alternatively, if Q! is greater than QU, the system-
level action becomes arg max €A in)(si, ;) for each component. This approach simplifies
the complex combinatorial optimization problem by ensuring a valid combination of the
extended single-agent action space is selected at the system level. A diagram of the overview
of the CW-MDP-based solution is also provided in Figure 1.

In Algorithm 1, the estimation of V¢ in CW-MDP involves maximizing over actions
{a0,0,@0,1,a1,1}, but CW-MDP never chooses action ag; in the maximization step. However,
in the system-level action selection process, action ag; can be chosen for components that
are not being replaced, given there is maintenance in the system. It is critical to note that

system-level action selection allows us to make system-level decisions from component-wise

11



Q¢ estimates with just M separate binary decisions. This makes the solution feasible for

large-scale problems.

Algorithm 2 System-level Action Selection Algorithm
1: procedure DECISION({Q?I), Q‘(”z),..., Q?M)},s)
2: if ds; = L; then

3: for all i € {1,2,...,M} do

4: O ¢ ArgMAaXy, cfag a1} in)(si, a;) > Setup cost exists in system
5: end for

6: ;> a

7 return < ay,ag,....apy >

8: end if

9: Q<+ >, Qi) (81, a0,0)
10: Q' <0

11: for all : € {1,2,..., M} do

12: Qi 4= argMaXy, cag 11} in)(si, a;) > Select best action for individual machine
13: Q' Q' + Qf(lz,)(si, a;)
14: end for

15: if Q° > Q! then

16: o <— CLQQVi

17: o — a;

18: return < ai, a9, ....ay >
19: else

20: o — a;

21: return < ay, a9, ....ay >
22: end if

23: end procedure

3.3 ACW-MDP: Adjusted Component-Wise Markov Decision Pro-
cesses

One weakness of the method presented in Section 3.1 is to imitate the system behavior at

12



the component level Qf; estimates. Due to Result 2 and the max operation in (12), in
solving CW-MDP, we will avoid selecting the action ag; when we estimate V¢(s;). This
will impact the solution quality even if we use a system-level action selection remedy as
described in Section 3.2.

To address this issue, we propose an Adjusted Component-Wise Markov Decision Process
(ACW-MDP) to consider all the possible actions in the extended single-component action
space when we solve for component-wise MDP. In ACW-MDP, we adjust Q¢ and V¢, such
that instead of maximization over the extended component-wise action space, we use the
probability by which a component i chooses an action a; at a given state s;. For this, we

define an adjusted component-wise Q-function Q° as:
QCI(S’L" ai) = RI(SZ" ai) + /YEs;NT(sﬂshai) [VC/ (5;)]7 (15)

where V¢ is an adjusted component-wise value function defined as:

V< (si) = P(ago|s:)Q° (51, a0,0) + P(a0,1]5:)Q° (si,ao,1) + Pla11|s:)Q (i, a1,1), (16)

where P(ago|si), P(ao1]s;), and P(ay,1|s;) represent the probability of choosing actions ag .
ap,1 and a1, for component i given state s;.

Understanding that V¢ function differs from V¢ function is critical. The V¢ function
maximizes a component’s expected total discounted reward. In contrast, the V¢ function
gives the expected total discounted reward for a component since a component chooses all
actions with some probability instead of choosing one action at a time.

To compute Q (s;, a;), estimation of probabilities P(ago|si), P(ag.1]s;), and P(ay 1|s;)
is required. This can be challenging since probability P(«;|s;) is impacted by the state
and actions of all other components in the system. Accounting for the states of other
components in estimating P(a;|s;) would lead to a full system wide solution instead of
a component-wise solution. However, we know that the full system wide solution will
encounter the scalability issue, which is actually the challenge we try to address in this work.
Consequently, we ignore the states of all other components while estimating the probability
P(c|si). Intuitively, we can view the probability P(c;|s;) as an approximation of the
probability P(«;|s;, state of other components) regardless the states of other components.

Here, we propose estimating the probability P(«;|s;) using softmax response(Kochenderfer

13



et al., 2022) as
P(avsi) o A Q (si,ai) (17)

Hence we can write: ,
Pails) e (18)
Qj|Si) = 7
AQ (si,0v
Zaie{ao,07a0,17al,1} er@ (si.01)

We can further rewrite the above probability using additional min,,, ch(si, a;) as:

ANQ (si,00) —ming, Q (si,04))

; ; 19
Q¢ (si,05)—ming,; Q (si,;)) ( )

P(a;lsi) =
Zaie{ao,o,ao,hal,l} ¢

This will not impact on the value of probability P(c;|s;) but allows us to use a large value
of A without causing overflow in the numerical computation.

The parameter A allows us to estimate the probability of choosing an action for a
component. The above approximation allows us to use a single A to decide the probability
P(cy|s;) for all state and action pairs of a component. For a given A, we can use Algorithm
3 to get an estimate of the Q¢ function.

In the above algorithm Qf;.) and V(‘;’) are the adjusted component-wise Q-function and
value function of the i component in the system. Once we compute the Q¢ function
for each component in the system, we can also use system-level action selection by using
Algorithm 2 and replacing Q¢ with Q. This adjusted policy 7l can be expressed as:

Z max () sz,az >ZQ (si,a0,0)

J .
arg max, . in) (84, ;) Vi €A

Tew(8) = or s; =1L (20)
aop,0 Vi otherwise.

It is critical to note that under the condition s; = L;, a component undergoes corrective
maintenance and is replaced irrespective of the action taken. Due to the current formulation
of the reward function, when considering a failed unit (s; = L;), the same failure reward is
assigned to all actions, and system-level action selection will always replace a failed unit.
For the tuning parameter \, we can find an optimal \* that gives the best system-level
discounted rewards by doing a search over a possible set of values of A\. This implies that we
iteratively evaluate a generated policy 7., (s) for a given A to get system-level rewards and

choose a A* that best fits the dynamics of a given system. We can mathematically define A\*

14



Algorithm 3 Adjusted Component-Wise Markov Decision Processes
1. procedure ACW-MDP({T,Ts,...Tx},7)

2: forallie1,2,..., M do

3: Repeat
4: for all s; € S do
5: for all a; € {CL070, aop,1, alyl} do
6: Qi) (51, i) <= Ri(si; i) + 3 g es Tilsil si, i) [ViG) (57)]
7: end for
8: for all o; € {(l070, ap,1, CL171} do
]P eA(Q?;)(si,ai)—minai QE:) (s;,;))
o (i)(a2|82) < )\(sz)(siv%)*minai QE:;)(SZ‘?“'L))
Z&iG{ao,Ovﬂ'O,lv“l,l} €
10: end for
11: V((;)(Sz) < Zai IP(z) (OéASJQEZ) (Si, ozi)
12: end for
13: Tterate till V(f/) converges

14: end for

15: return Q?ll), Q‘é), ceey Qf}w)

16: end procedure

as:

A =argmax F [Z’th(st, o (315 (21)
\eL —o ’

where L corresponds to a set of possible values of A over which we perform a grid search to

find the optimal A*, and Wéw, ) is the adjusted policy for a given .

4 Convergence Properties of CW-MDP and ACW-MDP

In this section, we will analyze a few properties of CW-MDP and ACW-MDP, specifically
the convergence of the two methods and the relationship of the Q¢ and Q° functions to
optimal system-level @) function. For ease of notation, we will use Q¢ and V¢ instead for in)
and V(‘;) Similarly, we will use Q¢ and V¢ instead of Q‘é) and Vé’) With a slight abuse of
notation, let V€ RISl correspond to the Ve-function at the given t" iteration step. And,

Q5(si,.) corresponds to the Q°-function estimated using V;°(s;) at a given ' iteration step.
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We can further express iterations for CW-MDP given in Algorithm 1 for a single component
using 7, operator which iterates such that 7,,V;* = V; ;, which is defined as:

(TmVE)(50) = Vi (s1) = max(Qi(si, i) = max (RI(Si, @)+ T(si]si, az’)v;fc(si))

!
Si

(22)
For a maz operator, we know that it satisfies the non-expansive property (Littman and

Szepesvari, 1996) as:

(max(Q7(si, ) — max(Q5(si, )| < [|Q1(si ) — Q5(si, -)[oo (23)

The non-expansive property guarantees the convergence of operator 7, to a fixed unique
solution V* such that 7,V = V¢ and corresponding to this V“*(s;) we will have a
unique Q“*(s;,.). The relationship between Q“*(s;, a;) of all components in the system and

the system level optimal Q-function Q*(s,a) is given in the following proposition.

Proposition 1. For a valid combination of extended single-agent actions < oy, s, ..., apr >
corresponding to a system-level action a, the error bound between Q°*(s;, ;) and the optimal

solution Q*(s, a) is given by:

(24)

M M—1
Cx* i . _ * < -
nglXngX| ;_1 Q (517051) Q (87 a’)’ = VM(I _ '7) Cs

Proof : Let Q§(-,-) and V¢(-) be the results at the ¢ iteration of the CW-MDP

algorithm, we have:

M
msaxmgxlz;Qf(si,ai) —Q*(s,a) —maxmax|ZR1 Si, O —}—WZZT tsi, i) ViE(sh)
1=

) S
’YZT s, a)V*(s)],
(25)
where V*(s) is the optimal global value function for state s. Since < ai,as,...,aps > is
a valid combination of extended single-agent actions that correspond to the system-level

action a. Since the transition dynamics of the components are independent of each other,

we have T'(s|s;, ;) = T'(s|s,a) and

ZZT silsi, i) Vi (s ZZT sils, a) V(s ZEVt Dls.a)
= ZT(s’|s7a>ZVf<s;>
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Let Vi€ and V* € RIS be the vectors of V,(s) and V*(s) for all state s, where V,(s) =
> Vif(si). Based on (25)—(26), we have

M
maxmax| Y Qf(si ;) — Q*(s,a)| = maxmax |y Y T(s'ls,a)[Y_ Vi(si) = V()| e
S a i1 S a s/ i 27
<V = Voo

Let’s define another operator 7¢ as:

a

V¥ (s) = max(Q*(s,8) = max (R(s.2) + 7 3 T(s. a)[V*(s)]) = (TeV*)(s)  (28)
Then an upper bound of ||V,¢ — V*||« can be obtained as:

Vi = Voo < [[TmViZ1 = TeViZalloo + 1T ViZa = Ta V7 |loo (29)
We can rewrite || 7, Vi€ — TaVi€||oo using equation (9) and (26) as:
T Vi = T6Vieloo = ma| 3 move Q4 s ) — max (R(s.2) + Y T(s/|s. ) (Y Vie(s))])|
= msax\ Z max Qf (s, ;) — max (Z Ri(si,05) +7 Z ZT(sﬂsi, aﬂVf(sé))\

= msax| Z max Q5 (si, o) — mgxz Qf (si, i)
(2 7
(30)

Note that ), max,, Qf(si, @) = MaXa.q;eAe »; QF(Si, i), where ac is a vector of all possible
valid and invalid combinations of extended single-component actions. Furthermore, we can

rewrite || 7, V¢ — Ta Y-, V| as:

[T Ve = TaVil oo = max | max 3~ Q5 1) — max >~ Q5 )| (31)

We can obtain an upper bound for maxs | maxq Y, Qf(si, ;) — maxa y _, QF(ss, )| by
analyzing the terms in maxqs Y, Qf(s;, o) and maxa ), Q7(s;, a;). First note that all a;
in o can only be either agp or ai ;. If all a; in a are equal to agp, then a is a valid
combination of extended single-component actions corresponding to a system-level action a.
Therefore maxq Y, Qf(si, ;) — maxa y; QF(ss, o) = 0. If at least one «; in a is equal to
a1,1, it can be seen that if we change all o; = agp in a to oy; = ag 1, then o becomes a valid

combination of extended single-component actions corresponding to a system-level action a.
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Since changing each a; = ag in a to a; = ag,1 reduces the reward by 32 % and the number

of changes is at most M — 1, we have

. . M—-1
T Vi€ — Ta Vi |oo = max | mozimxz Q5 (i, ) — mgxz Qi (siy ;)| < Cs  (32)

Further, we can bound ||7¢ V¢ —T¢V *||~, using the fact that operator 7¢ is a contraction

mapping(Puterman, 2014) as
1TaVe® = TaV¥ o <AV = V7 (33)
From (32) and (33) we have

Ve = Voo <IITmViZa = TaVilalloo + 1TaViZa = Ta V|

M—1 c *
< Cs +91IVies = Voo (34)
t
M—1 _ .
<G YT HAIVE = Vil

k=1
Therefore, we can write maxg maxs | Zf\il Qf(si, i) — Q*(s,a)| as

t

CsD_ AV +IV — V*Iloo> (35)

k=1

M
max max | Z Q5 (54, ) — Q" (s,a)| SV(
S a Z:1

At t — oo we have

t—00

M —
< lim (Mlcs[kzlvt—’f] #2S2V  VI)

- M—1
M(1 —7)

M
maxmax\ZQc*(s,-,ai) —Q*(s,a)] = lim maxmax\ZQt si, ) — Q*(s,a)]
S a
i=1

Cs
(36)

O
Let V}f:l € RISl be the vector notation for the V¢ -function at a given " iteration step of

the ACW-MDP algorithm. And, Qfl(si, .) corresponds to the Q¢ -function estimated using

tth

V¢ (s;) at a given t* iteration step. Further, let bolty(Q¢ (s;,.)) be a Boltzman operator

defined as:

, AQS (si,01) ,
boltA(QF (si,-)) = > (E : = Q¢ (si,a@-)> (37)

A 84,04
a; EAC a; EAC e Qt ( )
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The bolty(.) operator for a given A > 0 is not a non-expansive operator as it has the

following property(Cesa-Bianchi et al., 2017):

21og(3)
A

DOl (QS (sis-)) — boltA(QS (six )] < [1QF (sis-) — @5 (sis )l + (38)

Hence, for boltA(Qfl(si, .)), convergence to a fixed point cannot be guaranteed. Instead,
we can show that V;CI eventually converges to a bounded region around V' ¢* as given in the

following proposition.

Proposition 2. Ast — oo, the value of Vfl converges to a bounded region around the

optimal V* for a given \:

) / log(3)
¢ yrex < )

The proof of the above proposition is given in the supplementary material. Since our

(39)

decision depends on the estimates of the Q¢ function, we also show that a finite bound

exists between QY (s;, o) and Q% (s;, ;) as t —» oo based on the following proposition.

Proposition 3. Ast — oo, the value of Qf/(si,ai) converges to a bounded region around

the optimal Q% (s;, ;) for a given A:

log(3)
AL =)

The proof of the above proposition is given in the supplementary material. Similarly

(40)

lim maxmax |Q¢ (si, i) — Q% (s, )| < 7
t—o0 s (o7}

to Proposition 1, for ACW-MDP we can find a bound between the Q¢ and the optimal

system level ) function Q*, as given in the following proposition.

Proposition 4. For a given valid combination of extended single-agent actions < o, ao, ..., apg >
corresponding to a system-level action a, the bound between sz\i1 Qfl(si, «;) for an optimal

parameter \* and Q*(s, a) as t — oo is given by:

M
. / M log(3) M1
lim max max Q5 (si, ) — Q% (s,a)] < + Cs. 41
no s a |; t( ) ( )‘ 7)\*(1_,}/) M(l—’y) ( )

The proof of the above proposition is given in the supplementary material.
The bounds in Proposition 2 and 3 can be visualized in Figure 2. The bounds also
provide us with insights into the convergence of ACW-MDP. This shows that though the

exact convergence of ACW-MDP cannot be guaranteed, convergence to a closed region
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in space is always guaranteed, which implies that starting from any arbitrary V€. we
p y g ) p g y Yy 0 »

eventually go close to V¢* in the space.

oV 0@

<‘ log / /l / \ Iy lg]@)y) I l
K \:P / T K \13* x//tT

% _ \ _ )

S~ — ~ =

T

Figure 2: Visualization of convergence of single component of CW-MDP to a unique solution V ¢*

and Q°*, whereas single component of ACW-MDP converges to a bounded region around V¢* and

Qc*

From bounds in Proposition 2 and 3, we can also observe that the solutions of ACW-MDP
and CW-MDP will be close to each other for system settings that have large parameters

A*. For systems with lower %

values, the difference between Q“*(s;, agp,0) and Q“*(s;, a0 1)
would be small, allowing the max operator to be an equivalent choice. Also, in systems with
very high % value, components will get replaced simultaneously even if they are not close to
failure, implying that the components will predominantly choose between action ago or aj ;.

System settings with exceptionally high and low values of % tend to choose a higher value

of A*. ACW-MDP solutions for such systems would be equivalent to CW-MDP solutions.

5 Numerical Studies

In this section, we conduct numerical studies to evaluate the proposed CW-MDP and ACW-
MDP-based policies for CBM of large multi-component systems. For a large multi-component
system, it is computationally infeasible to obtain an optimal system-level solution using
methods like value iteration or MCTS. Therefore, we compare our proposed methods with
existing heuristic policies: (n, N)-policy (Andersen, 2022) and (n,m, N)-policy(Anonymous,
2023).

The (n, N)-policy, n < N, for CBM of a system with identical components, can be
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stated as follows: If one or more components degrades to a state greater than or equal to IV,
all components with state n or higher are replaced. The parameters n and N are chosen by
performing a heuristic search on all n, N € {1,2,3,....L}. Similar to the (n, N)-policy, we
can define the (n,m, N)-policy, n < m < N, as: If one or more components degrade to a
state greater than or equal to N, or two or more components degrade to a state greater than
or equal to m, then all components that are beyond the state n are replaced. The parameters
n, m and N are chosen by performing a heuristic search over all n, N € {1,2,3,....L}.

In addition, we also compare the proposed methods with an independent component-wise
policy. We solve the independent MDP for each component in the system, considering that
the individual component receives an extra cost Cs/M whenever we choose action a; = 1
(i.e., the component is replaced). The independent component-wise policy is equivalent
to solving CW-MDP with actions ago and aq,; only. Comparison with an independent
component-wise solution allows us to evaluate the effectiveness of using extended action space
and system-level action selection for solving the CBM problem. We compare all our policies
for 100 simulation steps by averaging the total discounted rewards for 10,000 trials with a
discount factor v = 0.95. In the numerical study, we use two different reward structures:
(Cp, = 200;Cs = 1000;C, = 1000) and (C,, = 200;Cs = 1200;C, = 1000). Initially,
we analyze the performance of a system consisting of homogeneous components, i.e., all
components in the system follow the same transition dynamics, i.e., T; = T'Vi. Subsequently,
we analyze the performance of a system consisting of heterogeneous components, i.e., all
components in the system follow different transition dynamics. We can extend the (n, N)
and (n,m, N)-policy to systems with heterogeneous components with the same values C,,
Cy, and Cs. We consider the same state space S, for all heterogeneous components, allowing
us to choose the same parameters n, m, and N for all components in the system. In both

cases, we also perform a sensitivity analysis over setup cost Cs.

5.1 Homogeneous Component Systems

For a homogeneous component system, we consider a system with 20, 30, 40, 50, and 60
components, each component having the same state space S, and transition dynamics. The
transfer matrix is generated randomly using the assumption T'(s}|s;,a;) = 0 if s, < s;and

a; = 0; and T'(s|s;,a;) > 0if st > s;, and T(s}|s;,a;) > T(s?]si,a;) if 7 > s} > s;. In
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Figure 3: Bar plots showing improvement in average discount rewards with standard deviation(using
whiskers) w.r.t independent component-wise solution for 20, 30, 40, 50, and 60 homogeneous
components for (n, N)-policy, (n,m,N)-policy, CW-MDP, and ACW-MDP using two different

reward structures

Figure 3, we show an improvement in the average discount rewards w.r.t independent

component-wise solution for 20, 30, 40, 50, and 60 homogeneous components.
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Figure 4: Improvement in discounted rewards for homogeneous components from CW-MDP and

ACW-MDP w.r.t. (n, N) and (n, m, N)-policy with changing setup cost

For a system with 20 homogeneous components, we observe that under the reward
structure C,, = 200;Cs = 1000;C, = 1000, the performance of ACW-MDP and CW-
MDP is close to that of (n,m, N)-policy. When we increase the setup cost to Cs = 1200
with the same corrective replacement cost C; = 1000, we observe that CW-MDP and
ACW-MDP perform better than the (n, N) and (n,m,N) policies. For systems with 30,
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40, 50, and 60 components, we observe that our proposed CW-MDP and ACW-MDP
approach performs better than the (n, N) and (n,m, N) policy. Under all cost structures,
ACW-MDP performs equivalently or better than CW-MDP. Furthermore, the independent
component-wise solution performs worse in comparison to all other policies. This is evident
since independent solutions do not consider the impact of setup cost on component-wise
maintenance decisions.

Since the setup cost Cs has a significant impact on the maintenance decisions of the
components due to the induced positive economic dependence, we performed a sensitivity
analysis to understand the impact of the setup cost Cs on the performance of CW-MDP and
ACW-MDP. In Figure 4, we plot the improvement in total discounted rewards from CW-
MDP and ACW-MDP w.r.t. (n, N) and (n,m, N)-policy for 30, 40, 50 and 60 component
systems. For Cy = 800 the performance of both ACW-MDP and CW-MDP is close to
that of (n,m, N). However, under the same setup cost Cs = 800, the improvement in
discounted rewards w.r.t. (n, N)-policy decreases with the number of components in the
system. This behavior is because, under the specific cost structure, CW-MDP and ACW-
MDP perform comparably to the (n,m, N) policy. However, As the number of components
increases, the impact of economic dependence between components decreases, leading to
inferior performance of the (n, N) policy when compared to CW-MDP and ACW-MDP.
Furthermore, on increasing setup cost, we observe that the performance of both ACW-MDP
and CW-MDP maximizes in a region of the setup cost. At a higher setup cost, components
tend to be replaced together even if they are close to failure; this makes (n,m, N) and

(n, N)-policy to perform close to ACW-MDP and CW-MDP.

5.2 Heterogeneous Component Systems

For a heterogeneous component system, we consider a system with 20, 30, 40, 50, and
60 components, each component having the same state space S, but different transition
dynamics 7T; for each component. This choice is motivated by the fact that the existing
heuristic policies, such as (n, N)-Policy and (n,m, N)-Policy, are typically designed for
systems where components have the same degradation level L. We generate a random
transition matrix for the problem using the assumption 7'(s}|s;, a;) = 0 if s} < s;and a; = 0;

and T'(sh|s;,a;) > 0 if s& > s;, and T(s}|s;, a;) > T(s3|s;,a;) if 2 > sk > s;.
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Figure 5: Bar plots showing improvement in average discount rewards with standard deviation(using
whiskers) w.r.t independent component-wise solution for 20, 30, 40, 50, and 60 heterogeneous
components for (n, N)-policy, (n,m,N)-policy, CW-MDP, and ACW-MDP using two different

reward structures

In Figure 5, we show an improvement in the average discount rewards w.r.t independent
component-wise solution for 20, 30, 40, 50, and 60 heterogeneous components. Under both
reward structures for systems with 20, 30, 40, 50, and 60 heterogeneous components, our
proposed ACW-MDP and CW-MDP perform better than (n, N), (n,m, N). Specifically,
for systems with 50 and 60 heterogeneous components, the (n, N) and (n,m, N)-policy
performs worse than the independent component-wise solution. Also, ACW-MDP always
performs either equivalently or better than CW-MDP. The improvement in the policies
generated using ACW-MDP and CW-MDP w.r.t. (n,N) and (n, m, N)-policy increases
with the number of components in the system. A higher number of components in the
system implies a higher heterogeneity in the system, leading to poor performance of heuristic
policies.

Similar to the homogeneous component systems, we perform a sensitivity analysis
for heterogeneous component systems to understand the impact of setup cost Cs on the
performance of CW-MDP and ACW-MDP. In Figure 6, we plot the improvement in the
total discount rewards of CW-MDP and ACW-MDP w.r.t. (n, N) and (n,m, N)-policy for
30, 40, 50 and 60 heterogeneous component systems. In contrast to the homogeneous case,
in heterogeneous systems, improvements do not peak in a region of setup cost. Instead, we
observe an almost significant improvement in total discounted rewards of ACW-MDP and

CW-MDP w.r.t. (n,N) and (n,m, N)-policy on changing the setup cost. This happens
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Figure 6: Improvement in Discounted Rewards for heterogeneous components from CW-MDP and

ACW-MDP w.r.t. (n, N) and (n,m, N)-policy with changing setup cost
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Figure 7: Computational time(in minutes) for CW-MDP, ACW-MDP, (n, N) and (n, m, N)-policy

for Heterogeneous component system for 10,000 trials

due to the different transition dynamics of each component, allowing each component to be
impacted differently by the setup cost in the system. Some components tend to fail faster
compared to other components that require replacement more often, irrespective of the
setup cost. Also, we observe that magnitude of improvement increases with the number of
components in the system.

Figure 7 shows a comparison of the computational time for the CW-MDP, ACW-MDP,
(n, N) and (n, m, N)-policy for heterogeneous component system for 10,000 trials to evaluate
a policy for 100 simulation steps with L = 10. We observe that CW-MDP is highly efficient
compared to all other methods since it requires solving an MDP of state space size |S,| = L
and action space |A.| = 3. Further, the computational time of ACW-MDP is higher than

CW-MDP because we iteratively evaluate our policy at the system level to find parameter \.
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Furthermore, the (n,m, N)-policy has the highest computational time because it requires
a huge heuristic search for all combinations of n, m, and N. For each combination, we
need to evaluate policy at the system level making (n, m, N)-policy highly computationally
expensive to estimate.

Additionally, We can analyze the computational complexity of the method by making the
assumption that both methods require n iterations to converge. For n iterations, CW-MDP
would require 3nL computational steps. Similarly, for ACW-MDP, assuming a search space
L of size k for \*, and considering n iterations, it would require 3nkL computational steps.
Additionally, ACW-MDP involves evaluating individual A values by simulating the system to
find the optimal A\*. We can see that the computational overhead of ACW-MDP compared
with CW-MDP is mainly determined by the tuning efforts for the parameter \*. It is
important to note that, in theory, ACW-MDP can provide a solution equivalent to or better
than CW-MDP. Therefore, it is beneficial to explore a certain set of values £ to check if

there exists a A* that can improve the CBM policies.

5.3 Case Study: Maintenance of Wind Turbine Bearings

In this section, we show an application of our proposed ACW-MDP and CW-MDP to
develop a maintenance policy for a large multi-component system consisting of a gearbox
bearing for multiple wind turbines. The gearbox is a crucial component of a wind turbine
used to increase the rotational speed of a low-speed rotor to a high-speed electrical generator.
Gearbox bearings are usually subjected to wear due to external and internal factors. Failure
of a gearbox can lead to failure of wind turbines and would lead to massive operational and
equipment loss. Timely maintenance of the gearbox can prevent these failures and allow
efficient functioning of wind turbines. We consider a gearbox-bearing system consisting of
20 to 150 homogeneous components. The degradation of the gearbox is modeled using a
discrete state degradation process with L = 4 for which we consider a transition matrix T

as given in (Li et al., 2019) defined as:

(08571 01420 0 0]
0 08571 0.1429 0
T= (42)
0 0 08 02
0 0 0 1|
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Figure 8: Bar plots showing improvement in average discount rewards with standard deviation(using
whiskers) w.r.t independent component-wise solution for systems with a large number of bearings for

(n, N)-policy, (n, m, N)-policy, CW-MDP, ACW-MDP

In the above matrix, the (i, j )th element, 7; j, corresponds to the probability of transi-
tioning from a state i to a state j. We consider a reward structure with C,, = 200,C;s =
800, and C, = 1000. We evaluate all policies by finding the average total discounted
rewards for 100 simulation steps with a discount factor v = 0.95, averaging over 10,000
trials. In Figure 8, we show improvement in average discount rewards w.r.t independent
component-wise solution for systems with 20 to 150 bearings using different policies.

We observe that for system size ranging from 20 to 150, our proposed ACW-MDP and
CWMDP perform better than (n, N), (n,m, N) and independent component-wise solution.
Additionally, when the number of components is greater than 80, we observe that the
(n, N)-policy performs equivalent to an independent component-wise solution. This happens
because of a fixed setup cost; by increasing the number of components in the system, the
impact of positive economic dependence decreases. Also, the ACW-MDP always performs
better or is equivalent to CW-MDP. We can also note that, as the number of components
increases, the rewards from ACW-MDP start to come closer to CW-MDP. This happens
as increasing the number of components decreases the value of % allowing the system to

choose a higher A* making ACW-MDP equivalent to CW-MDP.

6 Conclusion

In this work, we proposed two different methods, CW-MDP and ACW-MDP, for developing
a CBM policy for large multi-component systems. Using extensive experimental studies,

we show that our proposed methods perform better than the existing heuristic policies,
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namely, (n, N) and (n,m, N)-policy. We observe that our proposed policies give a large
improvement in total discounted rewards compared to the policy (n, N) and (n,m, N) for
both homogeneous and heterogeneous component systems. We also studied the impact
of setup cost on ACW-MDP and CW-MDP and compared improvements with respect to
(n, N) and (n, m, N)-policy. For a homogeneous system, we observe that for lower setup-cost
our methods give similar performance w.r.t. (n,m, N)-policy. However, with increasing
setup cost, we observe that CW-MDP and ACW-MDP perform better than the (n, N)
and (n, m, N)-policy. For a heterogeneous system, we observe a consistent improvement
in performance using ACW-MDP and CW-MDP w.r.t., (n, N) and (n,m, N)-policy. In
addition, the scale of improvements increases with the number of components in the system.
Additionally, we observe that ACW-MDP and CW-MDP are computationally efficient
in comparison to (n, N) and (n,m, N)-policy, allowing us to scale our method for large
multi-component systems. Furthermore, we analyzed the convergence and relationship
between the solutions of ACW-MDP and CW-MDP. Though the component-wise solution
does not converge to the exact optimal system-level solution, it allows us to solve problems
that are computationally infeasible.

The future research direction for this work is to extend the component-wise solutions for
more complex system dependence structures such as series-parallel systems or k-out-of-n
systems. Another major limitation of this work is that we consider a uniform distribution of
setup cost among the components. In the future, we will work on developing methods that
can consider the non-uniform distribution of setup costs or more complex reward structures

with multiple setup costs in heterogeneous systems.

7 Data Availability Statement

The data that support the findings of this study are available from the corresponding author

upon request.
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