

Monolithic Silicon-Photonics Linear-Algebra Accelerators Enabling Next-Gen Massive MIMO

Tzu-Chien Hsueh¹, *Senior Member, IEEE*, Yeshaiahu Fainman¹, *Fellow, IEEE*,
and Bill Lin¹, *Senior Member, IEEE*

Abstract—A system-on-chip (SoC) photonic-electronic linear-algebra accelerator with the features of wavelength-division-multiplexing (WDM) based broadband photodetections and high-dimensional matrix-inversion operations fabricated in advanced monolithic silicon-photonics (M-SiPh) semiconductor process technology is proposed to achieve substantial leaps in computation density and energy efficiency, including realistic considerations of energy/area overhead due to electronic/photonics on-chip conversions, integrations, and calibrations through holistic co-design methodologies to support linear-detection based massive multiple-input multiple-output (MIMO) decoding technology requiring the inversion of channel matrices and other emergent applications limited by linear-algebra computation capacities.

Index Terms—Channel estimation, linear algebra, matrix-matrix addition, matrix-inversion, matrix-matrix multiplication, matrix-vector multiplication, microresonator, MIMO, monolithic integration, optical comb, silicon photonics, WDM.

I. INTRODUCTION

THE newly available millimeter wave (mmWave) spectrum in emerging 5G/6G wireless systems, coupled with advanced multiuser massive multiple-input multiple-output (MIMO) technology will make possible new wireless applications with massive throughput and robust low latency requirements in support of many-user mobility, including new wireless extended reality (XR) experience for large group-based applications. Such advanced MIMO-based wireless XR platforms will enable many users in large groups to freely roam through common areas while jointly experiencing interactive, immersive virtual, or mixed reality environments. While such wireless XR experience has potentially many applications in training, education, and entertainment, delivering such high resolution digital XR experience requires tremendous data rates that necessitate aggressive use of multiple antennas so that the required data rates can be achieved by means of parallel data streams, but in turn, the dimension of matrices involved in the MIMO decoding

Manuscript received 28 January 2024; revised 5 April 2024 and 19 April 2024; accepted 25 April 2024. Date of publication 30 April 2024; date of current version 16 November 2024. This work was supported in part by the National Science Foundation under Award 2023730, Award 2025752, Award 2045935, and Award 2217453, and in part by ASML/Cymer Corporation. (Corresponding author: Tzu-Chien Hsueh.)

The authors are with the Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 USA (e-mail: tzhsueh@ucsd.edu).

Color versions of one or more figures in this article are available at <https://doi.org/10.1109/JLT.2024.3395408>.

Digital Object Identifier 10.1109/JLT.2024.3395408

process increases substantially. In particular, linear-detection based MIMO decoding approaches require the inversion of channel matrices that are estimated by the base-station at a timescale fast enough to accurately capture potentially rapidly changing channel conditions. Unfortunately, the matrix-inversion problem has cubic complexity in the worst-case with M , the number of users that need to be served simultaneously, making the performance of conventional digital electronics approaches a key limiting factor to the future scaling of massive MIMO systems.

To realize matrix-inversions on a single chiplet with massive computation capacities as mentioned, photonic computing through monolithic silicon-photonics (M-SiPh) fabrication and integration [1], [2] is the primary integrated-circuit (IC) fabrication platform of the proposed linear-algebra accelerator based on the major evidence as follows: (I) Since demanding data bandwidth requirements and the maturity of photonic IC developments, optical technology has been broadly used for high-volume data communications [3], [4], [5], [6], [7], [8]. Also, due to the advancement of massive MIMO far outpacing the Moore's law [9] and energy/area limitations of classical von Neumann computing architectures, wavelength-division-multiplexing (WDM) [10] based optical communication systems with on-chip optical devices and circuits, owning inherent parallelism, high degree of connectivity, and speed-of-light propagation, have been broadly adopted in the computation tasks of linear-algebra calculations, passive Fourier transforms [11], and matrix operations [9], [12], [13], [14], [15], [16], [17], [18], [19] which exhibit superior photonic computing performances in terms of bandwidth density, processing latency, silicon area, and power consumption. (II) The availability of commercial M-SiPh process technology, GlobalFoundries 45SPCLO [1], [2], offers an opportunity to explore holistic co-design methodologies leveraging complementary capabilities of CMOS electronics and photonics to break through the development of computing systems currently at a crossroad. Especially, the M-SiPh technology possesses the capability of integrating all advanced electronic and photonic devices/circuits required in the proposed linear-algebra accelerator on a single chiplet, which can tremendously minimize the data-conversion and heterogeneous-interface overhead due to I/O circuits, electrostatic-discharge (ESD) protection diodes, chip bumps/pads, interposers, packages, and bonding-wires among separate electronic and photonic dies. These inevitable downsides of the heterogeneous integrations mostly have been excluded in the performance metrics of photonic computing

literature [9], [13], [14], [15], [16], [17], [18], [19], but revealed by the limited computation scalabilities in their hardware demonstrations. Note that the monolithic integration in this paper only focuses on the interface between CMOS electronic circuits and photonic devices within the proposed accelerator, not between the optical comb source and the photonic accelerator, which is another significant research topic and out of the scope of this paper.

The goal of the proposed M-SiPh linear-algebra accelerators is to practically implement a well-interfaced and energy/area efficient system-on-chip (SoC) with the functionalities of high-dimensional matrix-vector multiplications (MVM), matrix-matrix multiplications (MMM), matrix-matrix additions (MMA), and eventually matrix-inversions (MI) for the wireless-channel estimations in the next-generation massive MIMO. The remainder of the paper is organized as follows. The background of advanced massive MIMO is summarized in Section II. The motivations for using M-SiPh technology and the MI approximation algorithm are elaborated in Section III. The architecture and building-block functionalities with performance specifications of an M-SiPh MVM accelerator are analyzed in Section IV. The architecture scalability, parallelism, and realization of M-SiPh MMM and final M-SiPh MI accelerators are described in Sections V and VI, respectively. The performance evaluation and conclusion are summarized in Section VII.

II. BACKGROUND OF ADVANCED MASSIVE MIMO

Consider a large-scale uplink multiuser massive MIMO system with N antennas at the base-station and M ($< N$) single antenna users, each user transmitting a symbol from an m -QAM constellation set. The resulting transmit vector is denoted by $\mathbf{X} = [x_1, x_2, \dots, x_M]^T$, and the received vector on the base-station side is denoted by $\mathbf{U} = [u_1, u_2, \dots, u_N]^T$. The system model for the MIMO uplink can be expressed as follows:

$$\mathbf{U} = \mathbf{H} \cdot \mathbf{X} + \mathbf{NOISE} \quad (1)$$

where \mathbf{H} is an $N \times M$ complex-value channel matrix, and \mathbf{NOISE} is an additive noise vector. The entries in both \mathbf{H} and \mathbf{NOISE} are typically assumed to be independent and identically distributed (i.i.d.) zero-mean unit-variance complex Gaussian random variables.

In order to compute the soft-estimates in the form of logarithm likelihood ratios (LLRs) for the coded bit streams, given \mathbf{H} and \mathbf{U} , the linear detection method is often employed. This algorithm first constructs an $M \times M$ Gram matrix $\mathbf{Z} = \mathbf{H}^H \cdot \mathbf{H}$, so that the linear detection estimation of the transmitted vector can be computed as follows:

$$\hat{\mathbf{X}} = \mathbf{Z}^{-1} \cdot \mathbf{H}^H \cdot \mathbf{U} \quad (2)$$

III. CO-DESIGN OF MATRIX-INVERSIONS WITH M-SIPH LINEAR-ALGEBRA ACCELERATORS

Although multiple prior works have developed photonic accelerators in the field of neuromorphic computing for convolutional neural networks (CNN) and recurrent neural networks (RNN) [13], [14], [15], [16], [17], [18], [19], many challenges

have to be addressed when utilizing photonic accelerators in the applications of massive MIMO channel estimations requiring high-dimensional MMM computations: (I) Prior work on photonic accelerators for CNN and RNN mainly focused on MVM computations with *static* weights whose matrix elements are rarely reprogrammed once the training process has completed. However, the repetition process in a matrix-inversion approximation algorithm (e.g., Neumann-series approximation) is different: the degree of the approximation accuracy can be enhanced by the repetition number of the algorithm execution *dynamically* taking the previous repetition result as the input of current repetition. (II) The MI calculations involve not only a high-dimensional MMM but also MMA. If an MI accelerator is implemented in a naïve way with photonic MMM and MMA independently, the linear projection of inputs and the calculation of the scaled dot-products would require a certain amount of data conversions between the electronic and photonic domains back and forth. (III) Most of the prior work on photonic accelerators assumed separate chip implementations for the photonic and electronic parts with heterogeneous integrations, which could incur expensive chip-to-chip communication hardware and degrade the effectiveness of a photonic computing approach to the linear-algebra acceleration as mentioned in Section I.

The novelties and methodologies elaborated in Sections IV, V, and VI aim to address these significant challenges by performing MVM, MMM, and MMA purely in the photonic domain on a single M-SiPh chiplet without intermediate optical memory and optical-to-electrical-to-optical (O/E/O) conversions to demonstrate the feasibility of the M-SiPh linear-algebra accelerator for supporting next-generation massive MIMO workloads with two-layer enhancements of energy, area, and computation throughput: (I) The cost reduction of end-to-end computations across electronic and photonics domains through the M-SiPh integration. (II) The energy/area reduction through the hardware-friendly MI approximation algorithm elaborated in the rest of this section.

As shown in (2), the key computational bottleneck in the MIMO linear detection process is computing the inverse of \mathbf{Z} . In particular, the computation of \mathbf{Z}^{-1} using exact inversion methods, such as Cholesky decomposition [20], [21], requires $O(M^3)$ operations, which is very expensive to realize in hardware when an increasingly large number of users need to be served simultaneously (i.e., with increasing M). Further, in mmWave settings, channel conditions can change very rapidly, making the need to perform the inversion of large matrices at increasingly smaller timescales.

To scale to large values of M (e.g., $M \geq 32$) for massive MIMO, this paper proposes a combination of photonic computing to perform efficient MI calculations and algorithmic-efficient approximation based on the Neumann series [22] to obtain the MI result with required accuracy. The Neumann-series approximation approach exploits the property that \mathbf{Z} is an almost diagonal matrix in massive MIMO systems. In particular, \mathbf{Z} can be decomposed as $\mathbf{Z} = \mathbf{D} + \mathbf{E}$, where \mathbf{D} is a diagonal matrix with the diagonal entries of \mathbf{Z} , and \mathbf{E} is the off-diagonal part of \mathbf{Z} . Then, the Neumann series to compute the inverse can be

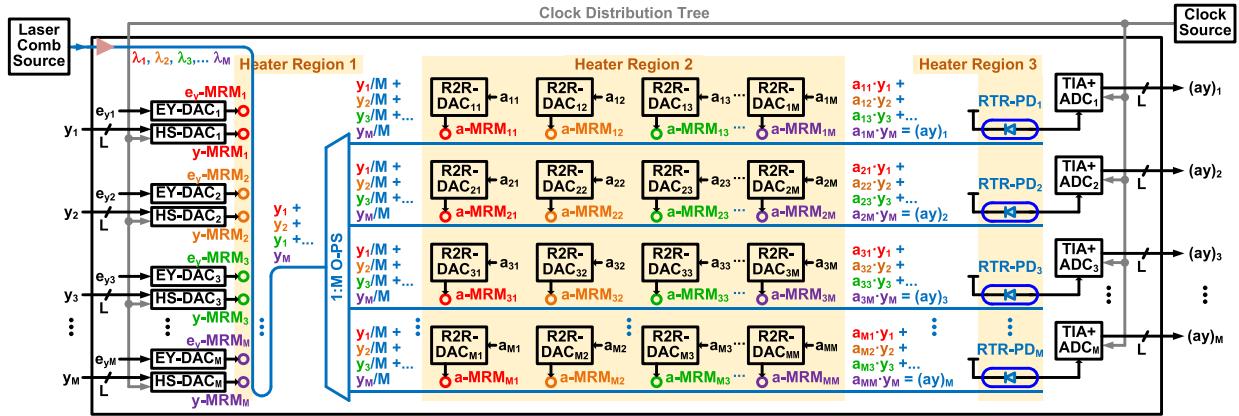


Fig. 1. The system block diagram of the M-SiPh MVM accelerator.

expressed as:

$$\tilde{Z}_k^{-1} = \sum_{n=0}^{k-1} (-D^{-1} \cdot E)^n \cdot D^{-1} \quad (3)$$

where k is the number of repetitions to be computed in the series, and \tilde{Z}_k^{-1} is the k -term approximation of Z^{-1} . Let $\mathbf{Y} [k] = \tilde{Z}_k^{-1}$, $\mathbf{A} = -D^{-1} \mathbf{E}$, and $\mathbf{B} = D^{-1}$. Then, (3) can be rewritten with the following recurrence equation:

$$\mathbf{Y} [k] = \mathbf{B} + \mathbf{A} \cdot \mathbf{Y} [k-1], \forall k \geq 1 \quad (4)$$

with $\mathbf{Y} [0] = 0$. This recurrence computation can be iteratively computed via repeated MMM and MMA operations.

In particular, this paper proposes to efficiently implement (4) in M-SiPh for the Neumann-series approximation, specifically the MMM and MMA, i.e., “ $\mathbf{A} \cdot \mathbf{Y}$ ” and “ $\mathbf{B} +$ ” in (4), respectively, in the photonic domain at the speed of light. Besides accelerating the Neumann-series approximation in M-SiPh process technology, the future work will also explore other MIMO detection algorithms by means of the proposed M-SiPh linear-algebra accelerator, including the successive-over-relaxation [23], Gauss-Seidel [24], optimized coordinated descent [25], conjugate-gradient [26], Richardson [27], and Jacobi [28] methods.

IV. M-SiPh MATRIX-VECTOR MULTIPLICATIONS

A unified M-SiPh MVM accelerator serves as the primary functional block of the M-SiPh MMM, MMA, and eventually M-SiPh MI in the MIMO channel estimation with high degrees of reconfigurability in terms of the internal matrix weights and on-chip interconnections. The M-SiPh MVM functionality is basically realized by utilizing the high-order spatial parallelism of light-waves and the concept of optical WDM technique [10] as illustrated in Fig. 1. The M-SiPh MVM accelerator consists of “ M ” L-bit high-speed vector digital-to-analog data converters (HS-DAC), “ M ” low-power static power-equalization DACs (EY-DAC), “ M^2 ” low-power static matrix DACs (R2R-DAC), “ M ” transimpedance amplifiers (TIA) individually followed by “ M ” L-bit analog-to-digital data converters (ADC), digital registers, clock distribution, and discrete-time

iteration mechanism in the electronic domain as well as “ M ” vector micro-ring modulators (y-MRM) for the input vector E/O conversion, “ M ” power-equalization micro-ring modulators (e_y-MRM) for equalizing all inconsistent light-power generation/transmission/absorption gains, “ M^2 ” matrix micro-ring modulators (a-MRM) for the matrix E/O conversion and WDM-based MVM operations, “ M ” racetrack-resonator photodetectors (RTR-PD), 1-to- M optical power splitter (O-PS), and waveguides (blue lines) in the photonic domain.

The M -by-1 input vector is denoted by $\mathbf{Y}_{M \times 1}$ with its elements y_i , $i = 1 \dots M$; the M -by-1 output vector is denoted by $(\mathbf{AY})_{M \times 1}$ with its elements $(ay)_i$, $i = 1 \dots M$; the M -by- M primary matrix is denoted by $\mathbf{A}_{M \times M}$ with its elements a_{ij} , i and $j = 1 \dots M$ respectively. Mathematically, this MVM functionality is expressed as $\mathbf{A}_{M \times M} \cdot \mathbf{Y}_{M \times 1} = (\mathbf{AY})_{M \times 1}$. The operational timings of input and output vectors are both managed by the electronic circuits in the digital domain for the seamless compatibility and interface-relation between the M-SiPh accelerator and other on-chip digital application-specific integrated-circuits (ASIC), processors, lookup tables, and memory. The circuit and interconnection details of the 1st MVM row from the input y_1 to output $(ay)_1$ within the M-SiPh MVM accelerator is shown in Fig. 2 and further elaborated in the following sub-sections. Note that the clock period per MVM operation, setting the computation speed and throughput, is determined by the signal propagation latency from the clock edge launching the computation data input from each HS-DAC through the MRMs, O-PS, WDM-based MVM operation, RTR-PD, TIA, to the ADC data output sampled by the next clock edge. Therefore, the bandwidths of all electronic and photonic circuits/devices within this critical signal path aggregate decide the limitations of the clock period and eventually computation throughput (MAC/s) of this M-SiPh MVM accelerator, which is dominated by the electronic circuits analyzed in the following sub-sections as well.

A. Optical WDM-Based MVM Architecture

The M-SiPh MVM functionality is established on the theory and concept of optical WDM incoherent data transmission technique [3], [6], [10]. The data carriers are “ M ” of laser

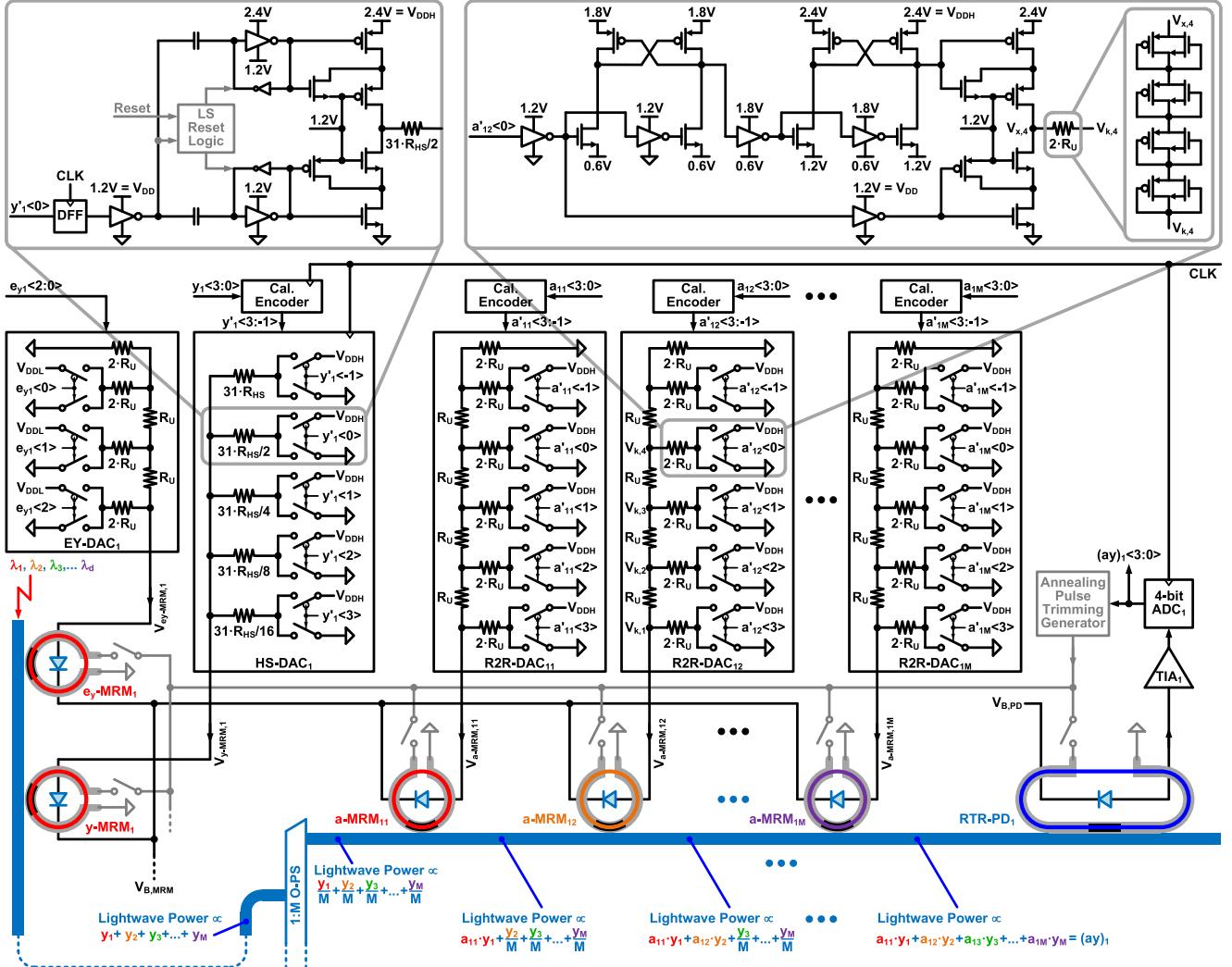


Fig. 2. The zoom-in version of the 1st M-SiPh MVM row from the input $y_1<3:0>$ to output $(ay)_1<3:0>$ with detailed circuits, interconnections, and clocking relation among the EY-DAC, HS-DAC, R2R-DACs, MRMs, RTR-PD, and post-fabrication trimming mechanism.

light-waves with individual wavelengths $\lambda_i, i = 1 \dots M$, injected from an external (off-chip) laser comb source through an on-chip grating coupler into a single waveguide as shown in the left of Fig. 1, where each wavelength λ_i is modulated twice on the input waveguide by e_y -MRM_i and y -MRM_i for light-wave power equalization and E/O conversion processes. Each e_y -MRM_i is statically driven by the power equalization code $e_{y,i}<2:0>$ through its EY-DAC_i, which is a low-power and low dynamic-range (DR) 3-bit R2R-DAC elaborated in Section IV-C, to compensate for the inconsistent λ_i power variations in the range from -2.6 dB to 0 dB due to the non-flatten frequency combs (from -1.8 dB to 0 dB) and residual transmission power-gain errors (from -0.8 dB to 0 dB) after the MRM and RTR-PD thermal tuning processes described in Section IV-H.

After the calibration process for the default power equalization with pre-defined WDM spectrum spacing between adjacent wavelengths, all light-waves are individually and sequentially modulated by the vector MRMs y -MRM_i driven by HS-DAC_i, $i = 1 \dots M$, so that each y_i of the input data vector $\mathbf{Y}_{M \times 1}$

from the electronic domain is correspondingly converted into the light-wave power of λ_i linearly proportional to y_i with a consistent scalar across all $i = 1 \dots M$, which are the E/O conversion processes. At the input of the O-PS in Fig. 1, the aggregate light-wave power is proportional to $\sum_{i=1}^M y_i = (y_1 + y_2 + y_3 + \dots + y_M)$. Since the O-PS evenly splits this aggregate light-wave power into its “ M ” fan-outs, the light-wave powers in the waveguides of all MVM rows shall be identical and proportional to $\sum_{j=1}^M y_j/M = (y_1 + y_2 + y_3 + \dots + y_M)/M$. Note that the wavelength index for the “ i -th” MVM row is “ j ” not “ i ”.

After the O-PS, the light-wave powers of all $\lambda_j, j = 1 \dots M$, in the i -th MVM row will individually and sequentially go through the power modulation effects of “ M ” MRMs (i.e., a-MRM_{ij}, $j = 1 \dots M$). Again, each a-MRM_{ij} driven by a_{ij} can only modulate the λ_j light-wave power ($\propto y_j/M$) when the indexes j of a_{ij} and y_j are matched. For instance, as shown in the bottom of Fig. 2 for the 1st row ($i = 1$) of the MVM operation, all λ_j light-wave powers ($\propto \sum_{j=1}^M y_j/M$) together pass through the power modulation

effect of a-MRM₁₁ ($j = 1$), but only λ_1 light-wave power ($\propto y_1/M$) gets modulated to be proportional to $(a_{11} \cdot y_1)$. The rest of λ_j , $j = 2 \dots M$, light-wave powers can be all-pass filtered through a-MRM₁₁ without any power change. After passing through all a-MRM_{1j}, $j = 1 \dots M$, all λ_j light-wave powers in the 1st MVM row can be respectively modulated based on a_{1j} , $j = 1 \dots M$, at the speed of light. At the input port of RTR-PD₁, the aggregate power on the 1st waveguide becomes proportional to $\sum_{j=1}^M a_{1j} \cdot y_j = (a_{11} \cdot y_1 + a_{12} \cdot y_2 + a_{13} \cdot y_3 + \dots + a_{1M} \cdot y_M) = (ay)_1$, which can represent the equivalent dot-product of the input vector $\mathbf{Y}_{M \times 1}$ and the 1st-row vector of matrix $\mathbf{A}_{M \times M}$. By replicating the same process across all row vectors of $\mathbf{A}_{M \times M}$ in parallel, the total light-wave power of each MVM row can be eventually proportional to $(ay)_i$ with a consistent scalar across all $i = 1 \dots M$. After the following O/E and A/D conversions through RTR-PD_i and ADC_i, respectively, the MVM operation is essentially completed and all elements $(ay)_i$, $i = 1 \dots M$, of output vector $(\mathbf{AY})_{M \times 1}$ is sampled and digitally preserved in the electronic domain.

Both WDM-based communication and computation systems rely on multi-wavelengths simultaneously carrying data information through a communication channel to maximize data communication and computation capacity, respectively. Meanwhile, they have two major differences: (I) WDM-based communication modulates each light-wave power once for the purpose of E/O conversion, but WDM-based computation needs to modulate each light-wave power at least twice to perform the E/O conversions and then the equivalent operation of multiplications. (II) The light-wave power detections in WDM-based communication are designated to distinguish individual light-wave powers for recovering the data information carried by each light-wave. Although WDM-based computation only needs to detect the aggregate light-wave power instead of individuals, the wavelength isolations across the WDM spectrum still have to be well maintained since the multiplication operations are done by independent light-wave power modulations in the presence of all light-waves. In addition, the equivalent summation of the dot-products requires consistent power-absorption photodetections across the entire WDM spectrum to maintain the computation linearity during the O/E conversions. These two major differences between WDM-based communication and computation determine the E/O/E modulation/detection speeds and D/A/D data resolutions of these two systems.

B. High-Speed Digital-to-Analog Converters

In the high-speed computation path, each element y_i of the input vector $\mathbf{Y}_{M \times 1}$ denoted by L-bit digital data is firstly converted into an analog voltage-level through HS-DAC_i to drive y-MRM_i for λ_i light-wave power modulation as the E/O conversion process; i.e., a 2^L -level pulse-amplitude modulation (PAM- 2^L) followed by an electrical-voltage to optical-power converter. Within the maximized E/O DR, the issue of non-linear MRM transmission power-gain across all possible 2^L voltage-levels can be alleviated by adding one calibration bit in HS-DAC_i with a symbol-rate digital calibration encoder to

map the incoming L-bit y_i data to $(L+1)$ -bit y'_i data for better E/O conversion linearity while maintaining the same amount of 2^L voltage-levels, not 2^{L+1} , at the HS-DAC_i output. This E/O linearity improvement technique is further discussed in Section IV-D.

Every HS-DAC is realized by a large-swing voltage-mode source-series terminated (SST) driver architecture [29] to reach up to GHz sampling rates, low static-power consumption, and rail-to-rail voltage driving capability for maximizing the light-wave power modulation DR of each corresponding MRM. As shown in the left of Fig. 2, the binary-weighted driver-segments driven by $y'_1<3:-1>$ in HS-DAC₁ have identical architecture but are reciprocally scaled according to their own series-resistors. For instance, the driver-segment of $y'_1<3>$ is formed by sixteen driver-segments of $y'_1<-1>$. According to the binary data of $y'_1<3:-1>$, some driver-segments short their series-resistors to V_{DDH} through the cascode push-up PMOS transistors, and the rest to GND through the cascode pull-down NMOS transistors. Equivalently, all the parallel push-pull resistances between V_{DDH} and GND together form a voltage-divider at the HS-DAC₁ output, which controls the reverse biased voltage ($V_{B,MRM} - V_{y-MRM1}$) of the y-MRM₁ P/N junction used to modulate the λ_1 transmission power. Note that the AC-coupled level-shifters are required for push-pull pre-drivers as shown in the top-left of Fig. 2 [3] to enable high-speed single-stage $2 \times$ voltage level-shifting from V_{DD} regular digital supply to V_{DDH} high-voltage supply. To maximize the E/O DR up to V_{DDH} and satisfy 45-nm CMOS reliability requirements in 45SPCLO, the AC-coupled level-shifters and cascode push-pull driver architecture are necessary to maintain all transistors operating within the 1.2-V terminal-to-terminal voltages.

The speed and bandwidth specifications of HS-DAC_i are based on two aspects: (I) The circuit latency from the clock edge of the $y'_1<3:-1>$ register (or DFF) to the cascode push-pull drivers, including the delays of DFF clock-to-output, digital buffers, AC-coupled level-shifters, and push-pull pre-drivers, is about 100 ps in 45SPCLO. This circuit latency of HS-DAC_i can be 1st-orderly canceled by delaying the sampling clock edge of the ADC_i accordingly. (II) The RC time-constant of the HS-DAC_i output network is determined by the driver AC resistance = $(31 \cdot R_{HS}/16 \parallel 31 \cdot R_{HS}/8 \parallel 31 \cdot R_{HS}/4 \parallel 31 \cdot R_{HS}/2 \parallel 31 \cdot R_{HS}) = R_{HS}$ and equivalent lump capacitance contributed by the transistors, resistors, and y-MRM_i, $C_{HS-DAC} + C_{MRM} \approx 30 \text{ fF}$ [7]. For 2-GSym/s, 4-bit, and 2.4-V DR data, if HS-DAC_i should spend < 200 ps settling its output to a static voltage level within a half least-significant-bit (LSB/2) of the 4-bit DR, i.e., $\exp(-200\text{-ps}/\tau) < 1/(2^{4+1})$. Then, the time-constant of the HS-DAC_i output network, $\tau = R_{HS} \cdot 30\text{-fF}$, needs to be < 58 ps, and thus R_{HS} should be $< 58\text{-ps}/30\text{-fF} \approx 2 \text{ k}\Omega$. In other words, if this D/A conversion time is designed to spend < 200 ps out of the 500-ps clock-period budget, this bandwidth specification leads to the result of $R_{HS} < 2 \text{ k}\Omega$ and corresponding static power consumption discussed below.

Both dynamic and static power consumptions of each HS-DAC shall be considered: (I) The digital logics, including the DFFs, calibration encoder, data buffers, push-pull pre-drivers, and cascode voltage-mode drivers consume around 2.2-mW

dynamic power at 2-GSamp/s following the convention of $C_{\text{load}} \cdot V_{\text{supply}}^2 \cdot f_{\text{clock}}/2$ with the assumption of 50% logical-HIGH and 50% logical-LOW data pattern per digital gate during the regular MVM operations. (II) The static power consumption is mainly due to the DC current path from V_{DDH} to GND of the voltage-divider formed by the parallel push-pull P/N transistors and series-resistors as mentioned. Note that although the driver AC resistance R_{HS} stays constant, the DC path resistance from V_{DDH} to GND is data-dependent. Again, if the data patterns of y_i with corresponding HS-DAC_i output voltage-levels are uniformly occurred between GND to V_{DDH} during the regular MVM operations, the average static power consumption per HS-DAC can be derived as follows:

$$P_{\text{HS-DAC,ST}} = \frac{V_{\text{DDH}}^2}{R_{\text{HS}}} \cdot \frac{\sum_{k=1}^{2^L-1} (k-1) \cdot (2^L - k)}{2^{L-1} \cdot (2^L - 1)^2} \quad (5)$$

If $L = 4$ bits, $R_{\text{HS}} \approx 2 \text{ k}\Omega$, and $V_{\text{DDH}} = 2.4 \text{ V}$ as shown in Fig. 2, each HS-DAC would consume 0.45-mW static power and total 2.65 mW on average when the dynamic power is also included.

Including the cascode voltage-mode drivers, push-pull pre-drivers, unsilicided poly-resistors, calibration encoder, and digital logics for resetting the initial conditions of the AC-coupled level-shifters [3], the active silicon area of HS-DAC_i is around 100- $\mu\text{m} \times 20\text{-}\mu\text{m}$.

C. Low-Power R2R Digital-to-Analog Converters

The multiplication of each input vector-element and matrix-element $a_{ij} \cdot y_j$ in the photonic domain is realized by the secondary light-wave power modulation to provide a transmission power-gain proportional to a_{ij} on the top of the λ_j light-wave whose power has been pre-modulated and split to be proportional to y_j/M in the i -th waveguide. In other words, after y_i is E/O converted through HS-DAC_i and y -MRM_i and then evenly power split into the i -th MVM row, the element-to-element multiplication is done by another light-wave power modulation through R2R-DAC_{ij} and a-MRM_{ij} only effective to the λ_j light-wave power. Apparently, R2R-DAC_{ij} is used to convert the digital multiplicand a_{ij} to its corresponding voltage-level for setting the transmission power-gain of a-MRM_{ij}, which is the same D/A and E/O operations in Section IV-B. Note that the bandwidth of R2R-DAC_{ij} for converting a_{ij} is not critical since the value of the matrix $A_{M \times M}$ has been pre-determined and stays static during the regular MVM operations as described in Section III for the Neumann-series approximation. This fact beneficially allows the use of low-power small-area R-2R voltage-divider architecture [30] to implement M^2 of DACs with M^2 of MRMs on a single chiplet for such a high-dimensional M-SiPh MVM accelerator as shown in Fig. 1.

Similar to the linearization technique used in HS-DAC_i, the nonlinear transmission power-gain of a-MRM_{ij} across all 2^L voltage-levels is alleviated by adding one calibration bit, so R2R-DAC_{ij} with a digital calibration encoder can map the L -bit a_{ij} to $(L+1)$ -bit a'_{ij} to enhance the E/O conversion linearity and maintain the same amount of 2^L voltage-levels, not 2^{L+1} . R2R-DAC_{ij} shown in Fig. 2 is built by alternating series-R and

shunt-2R resistances with push-pull cascode drivers to perform a voltage-divider driving the capacitive electrode of a-MRM_{ij}. This R-2R voltage-divider architecture is very beneficial to energy/area efficiency by taking advantage of the static operation, low-bandwidth requirement, and minimal amounts of resistors/transistors to generate all required voltage-levels.

The circuit implementation of each shunt-2R segment in R2R-DAC_{ij} is similar to the driver segment in HS-DAC_i, which utilizes a large-swing voltage-mode driver architecture with push-pull cascode transistors to short the $2 \cdot R_U$ resistor in each segment to V_{DDH} or GND. By taking advantage of the low-bandwidth operation, the push-up PMOS transistor can be driven by a two-stage static level-shifter as shown in the top-right of Fig. 2 to accommodate the E/O DR up to 2.4 V and maintain 45-nm CMOS reliability in 45SPCLO with negligible power consumption. The primary power consumption is the static current in the voltage-dividers formed by the R-2R network according to the digital multiplicand a_{ij} . To express the average static power consumption of R2R-DAC_{ij}, multiple indexes and variables are pre-defined as follows: “i” and “j” are row and column indexes of the matrix, respectively, but do not involve in the power calculation; $k = 1 \dots 2^L$ is the voltage-level index; $p = 1 \dots L$ is the circuit-node index, $q = 1 \dots L$ is the Kirchhoff’s Voltage Law (KVL) superposition index of the “p-th” circuit-node; R_U is the R-2R unit-resistor as shown in Fig. 2; $R_p = (G_p/H_p) \cdot R_U$ is the one-side equivalent resistance of the “p-th” circuit-node; G_p and H_p are integers; G_p/H_p forms the simplest fraction; $V_{k,p}$ is the KVL superposition voltage of the “p-th” circuit-node with its “k-th” voltage-level. If the digital values of all a_{ij} and their own R2R-DAC_{ij} output voltage-levels are uniformly distributed between GND to V_{DDH} across the entire matrix $A_{M \times M}$, the average static power per R2R-DAC can be derived as follows:

$$G_1 = 1, H_1 = 0 \Rightarrow R_1 = \infty, p = 1$$

$$R_p = R_{p-1} \parallel (2R_U) + R_U = \frac{G_p}{H_p} \cdot R_U, p = 2 \dots L$$

$$\frac{V_{k,p}}{V_{\text{DDH}}} = \sum_{q=1}^L a_{ij,k} \langle L - q \rangle \cdot \frac{\min[G_p, G_q]}{2^{p+q-1}}, \quad k = 1 \dots 2^L, \quad p = 1 \dots L$$

$$P_{\text{R2R-DAC,ST}}$$

$$= \frac{V_{\text{DDH}}^2}{R_U} \cdot \frac{\sum_{k=1}^{2^L} \sum_{p=1}^L a_{ij,k} \langle L - p \rangle \cdot \left(1 - \frac{V_{k,p}}{V_{\text{DDH}}}\right)}{2^{L+1}} \quad (6)$$

If $L = 4$ bits, $R_U \approx 5 \text{ M}\Omega$, $V_{\text{DDH}} = 2.4 \text{ V}$, R2R-DAC_{ij} consumes about $7.2 \mu\text{W}$. For a small silicon area and large resistance, each $2 \cdot R_U$ is implemented by four stacked P/N parallel diode-connected transistors operated in sub-threshold-region transistors [31] as active-resistor templates shown in the top-right of Fig. 2. Although the temperature coefficients and process-corner variations of these active resistors are relatively high, their resistance ratios in the R-2R network are actually tolerable within the 4-bit accuracy requirement. However, the nonlinearity due to data-dependent terminal voltages across

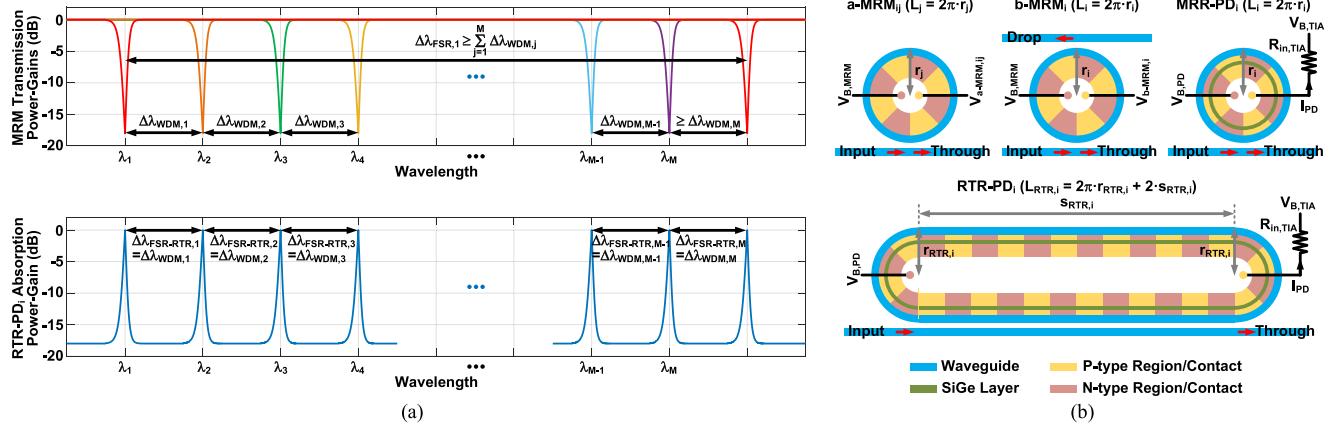


Fig. 3. (a) The transmission responses of a-MRM_{ij}, j = 1 ... M (or y-MRM_i, i = 1 ... M, when λ_j is replaced with λ_i), and the absorption responses of RTR-PD_i. (b) The conceptual geometries and configurations of MRMs, MRR-PD, and RTR-PD_i.

these active resistors requires extra attention. For instance, the $2 \cdot R_U$ between $V_{x,4}$ and $V_{k,4}$ in Fig. 2 is data-dependent because $V_{x,4}$ can be short to either V_{DDH} or GND so $V_{k,4}$ can vary from GND to (85/128)- V_{DDH} according to the $V_{k,p}$ formula in (6). This issue can be alleviated by the complimentary sub-threshold-region P/N active-resistor architecture: (I) If $V_{x,4} = V_{DDH} > V_{k,4}$, the sub-threshold biases are $0 < |V_{GS,PMOS}| < V_{th,PMOS}$ and $V_{GS,NMOS} = 0$. (II) If $V_{x,4} = GND < V_{k,4}$, the sub-threshold biases are $0 < |V_{GS,NMOS}| < V_{th,NMOS}$ and $V_{GS,PMOS} = 0$. In either case, the sub-threshold biases of the P/N transistor are always complimentary to cancel the first-order nonlinearity due to the data-dependent active resistance. In addition, the nonlinearity due to 2^L possible $V_{k,p}$ values based on $a_{ij} < 3:0 >$ can be calibrated by the additional bit in $a'_{ij} < 3:-1 >$ together with the a-MRM_{ij} nonlinear transmission power-gain calibration discussed in Section IV-D.

Including the cascode voltage-mode drivers, push-up level-shifters, sub-threshold-region active resistors, and calibration encoder, the silicon area of R2R-DAC_{ij} is about $20\text{-}\mu\text{m} \times 20\text{-}\mu\text{m}$.

D. Micro-Ring Modulators and E/O Conversion Linearity

Once an input vector-element or matrix-element (y_i or a_{ij}) is converted to a voltage-level through HS-DAC_i or R2R-DAC_{ij} at the P-type electrode of their corresponding y-MRM_i or a-MRM_{ij}, the power of the λ_i or λ_j light-wave located within the MRM resonance bandwidth can be effectively modulated based on the voltage delta (i.e., the reverse bias of the MRM P/N junction) between the N-type (i.e., $V_{B,MRM}$ in Fig. 2) and P-type (i.e., HS-DAC_i or R2R-DAC_{ij} output voltage) electrodes of the y-MRM_i or a-MRM_{ij}, respectively.

The radius r_{ij} design of a-MRM_{ij} (or r_i of y-MRM_i) in the whole WDM spectrum needs to satisfy at two fundamental requirements: (I) The minimum free spectral range (FSR) is determined by the number of the WDM wavelengths M and all WDM isolation spacing $\Delta\lambda_{WDM,j}$ between adjacent λ_j [32] as shown in the top of Fig. 3(a). (II) The a-MRM_{ij} resonance wavelength λ_j under a particular resonance mode integer m_j is

based on its effective refractive index $n_{eff}(\lambda_j)$, silicon propagation constant $\beta(\lambda_j)$, and ring circumference $L_j = 2\pi \cdot r_j$; i.e., if a resonance condition is satisfied for the MRM cavity L_j , a constructive interference is established by a certain wavelength having its round-trip phase shift equal to an integer multiple of 2π [33]. These two fundamental requirements are expressed in (7) and (8) as follows:

$$\Delta\lambda_{FSR,j} = \frac{\lambda_j^2}{n_g(\lambda_j) \cdot 2\pi \cdot r_j} \geq \sum_{j=1}^M \Delta\lambda_{WDM,j} \Rightarrow r_j \leq \frac{\lambda_j^2}{n_g(\lambda_j) \cdot 2\pi \cdot \sum_{j=1}^M \Delta\lambda_{WDM,j}} \quad (7)$$

$$2\pi \cdot m_j = \beta(\lambda_j) \cdot L_j = \frac{2\pi}{\lambda_j} \cdot n_{eff}(\lambda_j) \cdot 2\pi \cdot r_j \Rightarrow r_j = \frac{\lambda_j}{2\pi \cdot n_{eff}(\lambda_j)} \cdot m_j \quad (8)$$

$\Delta\lambda_{FSR,j}$ is the FSR of a-MRM_{ij}; $n_g(\lambda_j)$ is the silicon group index; $2\pi/\lambda_j$ is the free-space propagation constant; λ_j presents the free-space resonance wavelength of a-MRM_{ij} though the light-wave propagates in the silicon. An example for determining the radius r_j of a-MRM_j is elaborated in the rest of this subsection as the initial design point without considering any post-process trimming or thermal control.

Since the wavelength-spectrum bandwidth in the silicon of 45SPCLO is in the range from 1180 nm to 1550 nm [6], and the MRM quality-factor Q is higher than 10,000 [6], the WDM isolation spacing $\Delta\lambda_{WDM,j}$ across $M = 32$ wavelengths can be set to 0.5 nm to ensure the channel-to-channel crosstalk power ratio is less than -28.31 dB ($= 0.0384$) and within one LSB ($= 0.0625$) of the 4-bit data detection requirement, and the maximum WDM wavelength λ_{32} is set to 1550 nm in this example. Note that the exact 32 resonance wavelengths λ_j , $j = 1 \dots 32$, distributed from 1534.5 nm to 1550 nm and 32 isolation spacing $\Delta\lambda_{WDM,j}$, $j = 1 \dots 32$, slightly varying from 0.49 nm to 0.51 nm listed in Table I are determined by the design equation of the broadband RTR-PD discussed in Section IV-E actually.

TABLE I
DESIGN TRADEOFF EXAMPLES AMONG MVM DIMENSIONS, WDM CROSSTALK, AND MRM FABRICATION ERRORS

M	$n_{\text{eff}}(\lambda_j)$ $j = 1 \dots M$	$n_g(\lambda_j)$ $j = 1 \dots M$	$m_{\text{RTR},i}$ $j = 1 \dots M$	$L_{\text{RTR},i}$	λ_j $j = 1 \dots M$	$\Delta\lambda_{\text{WDM},i}$ $j = 1 \dots M$	m_i $j = 1 \dots M$	r_i $j = 1 \dots M$	$\Delta r_{\text{rms}}/r_i$ Error Scale
32	3.74 ~ 3.73	5.02 ~ 4.98	2321 ~ 2290	951.32 μm	1534.5 ~ 1550 nm	0.49 ~ 0.51 nm	71 or 72	4.63 ~ 4.76 μm	1 \times
32	3.76 ~ 3.73	5.06 ~ 4.98	1160 ~ 1129	469.01 μm	1519.0 ~ 1550 nm	0.97 ~ 1.03 nm	35 or 36	2.25 ~ 2.38 μm	2 \times
16	3.74 ~ 3.73	5.02 ~ 4.98	1160 ~ 1145	475.66 μm	1535.0 ~ 1550 nm	0.99 ~ 1.01 nm	71 or 72	4.63 ~ 4.76 μm	1 \times

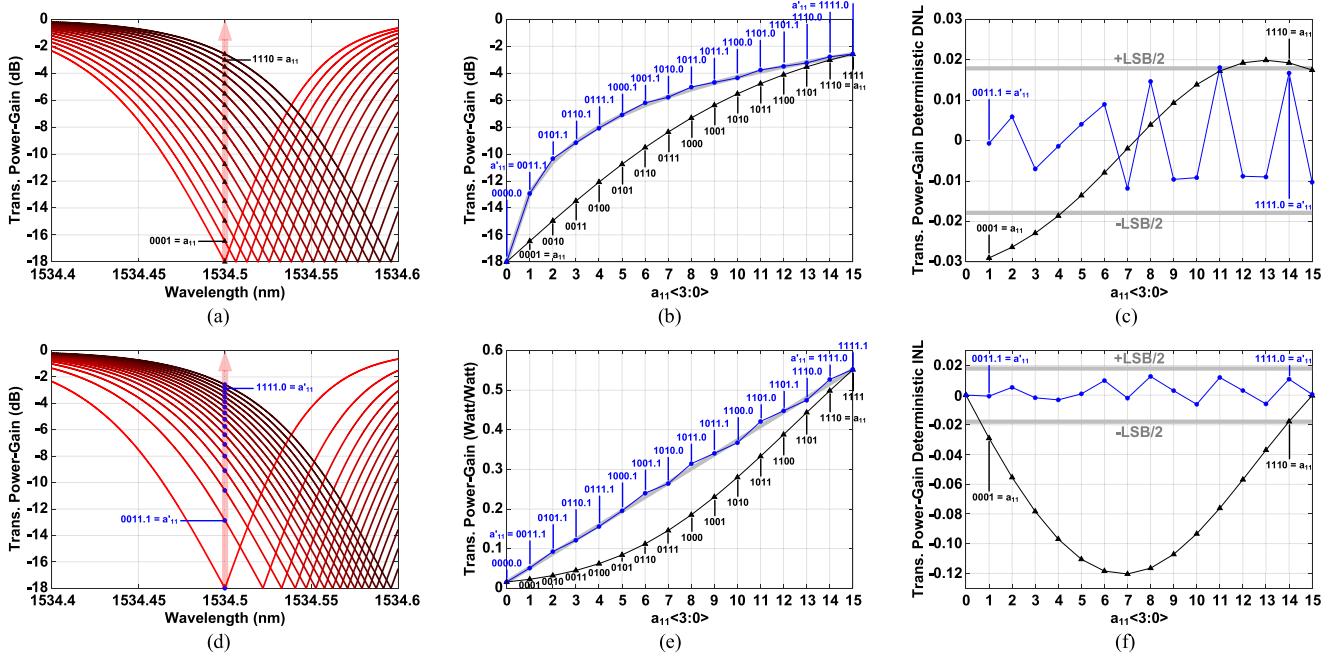


Fig. 4. (a) The transmission responses of a-MRM₁₁ modulated by a 4-bit linear DAC. (b) The transfer curves of $a_{11}<3:0>$ vs. 4-bit nonlinear (black) and linearized (blue) E/O conversions on a dB scale. (c) The deterministic DNL of the 4-bit nonlinear (black) and linearized (blue) E/O conversions. (d) The transmission responses of a-MRM₁₁ modulated by a 4-bit nonlinear DAC for the linearization. (e) The identical transfer curves shown in (b) but on a linear scale. (f) The deterministic INL of the 4-bit nonlinear (black) and linearized (blue) E/O conversions.

Therefore, based on all designated λ_j , $\Delta\lambda_{\text{WDM},j}$, $n_{\text{eff}}(\lambda_j)$, and $n_g(\lambda_j)$ from the RTR-PD specification, the FSRs of all a-MRM_{ij} must satisfy the requirement of $\Delta\lambda_{\text{FSR},j} \geq 32.05 \text{ nm} = 16 \text{ nm}$, so the upper bound of r_j can be determined according to (7). Then, by picking proper mode integer m_j , r_j of a-MRM_{ij}, $j = 1 \dots M$, can be obtained based on (8), which are in the range from $4.63 \mu\text{m}$ to $4.76 \mu\text{m}$ in this example. By setting different values of “ M ” and targeted $\Delta\lambda_{\text{WDM},j}$, the design tradeoffs among the MVM dimension, WDM crosstalk, and MRM fabrication error are summarized in Table I including three scenarios. The 1st case has the worst WDM crosstalk due to the smallest $\Delta\lambda_{\text{WDM},j}$. The 2nd case has the worst MRM fabrication error $\propto (2\pi \cdot \Delta r_{\text{rms}})/(2\pi \cdot r_j)$ where $2\pi \cdot \Delta r_{\text{rms}}$ is the circumference error of a-MRM_{ij} induced by random process variation. The 3rd case has the worst computation throughput because of the smallest value of “ M ” out of these three scenarios. Overall, including the central ring area and peripheral keep-out halo, the silicon area of a-MRM_{ij} or y-MRM_i can be within a $20\text{-}\mu\text{m} \times 20\text{-}\mu\text{m}$ tile. Note that if the 45SPCLO process technology in the future can be enabled to incorporate the design techniques of [34] and [35], for example, into the design libraries and device parameters, the MRM performance can be potentially further optimized and improved.

The linearity issue of the E/O conversion process in the M-SiPh accelerator is extremely crucial. In particular, the deterministic nonlinearity is primarily induced by the sigmoid-like high-Q power transmission response, illustrated in Fig. 4(a) as the zoom-in version of Fig. 3(a) for a-MRM₁₁ and simulated by the MRM models in Verilog-A [36], [37], although the transmission resonance can be linearly shifted with the reverse bias driven by a linear DAC.

For instance, the wavelength of λ_1 light-wave, whose power carries $y_1<3:0>$ information, is designed at 1534.5 nm to match the resonance wavelength of a-MRM₁₁ under a certain reverse bias generated by a linear 4-bit DAC when $a_{11}<3:0> = <0000>$. Then, the a-MRM₁₁ resonance wavelength and transmission response can be horizontally shifted at a constant rate of 0.04 nm/V when any one of the rest 15 possible reverse biases is generated by this linear 4-bit DAC according to $a_{11}<3:0>$ varying between $<0001>$ and $<1111>$ as shown in Fig. 4(a). Unfortunately, this horizontally linear shift causes the power attenuation (i.e., power gain < 1) of the λ_1 light-wave nonlinearly distributed across the vertical E/O DR as marked by black triangles in Fig. 4(a) and (b) on a dB scale. The same $a_{11}<3:0>$ vs. E/O conversion curves are also shown in Fig. 4(e) but on a linear scale for the sake of linearity demonstration. To

alleviate this nonlinear power modulation on the λ_1 light-wave, an additional calibration bit is added to basically perform a 5-bit linear DAC and generate 32 reverse-bias options so that the encoder and calibration logic can pick 16 out of 32 reverse biases to linearize the E/O transfer curve as marked by the blue circles in Fig. 4(b) and (e). Equivalently, all 16 values of $a_{11}<3:0>$ are nonlinearly mapped to 16 values of $a'_{11}<3:-1>$ to inversely cancel the nonlinear power gain effect of the MRM and to eventually obtain better linearity in the E/O conversion. In other words, $a_{11}<3:0>$ is mapped to 16 out of 32 of $a'_{11}<3:-1>$ to shift the transmission response nonlinearly as shown in Fig. 4(d), so that the power attenuation of λ_1 light-wave based on the values of $a_{11}<3:0>$ relatively has better linearity. The linearity improvement of this technique is quantified by the deterministic E/O differential nonlinearity (DNL) and integral nonlinearity (INL) in Fig. 4(c) and (f), respectively, which are both reduced down to within $\pm\text{LSB}/2$ of the 4-bit E/O conversion process.

E. Racetrack-Resonator Photodetectors and O/E Conversions

The monolithic SiPh fabrication technology brings tremendous improvements to the integration and energy efficiency of electronic-photonic circuits and systems. However, the major downsides are the sub-optimized photonic characteristics due to zero change to the underlying CMOS process [8]. A solution utilizing the property of resonance amplification has been proposed to boost the responsivity of a micro-ring-resonator (MRR) based photodetection up to 0.55 A/W [7], [38] in this process. Unfortunately, because of the single wavelength selectivity of an MRR, this solution is only helpful to the WDM-based communication requiring to distinguish the powers of individual wavelengths as discussed in Section IV-A.

To boost the PD efficiency in 45SPCLO and simultaneously detect the aggregate light-wave power of all wavelengths used in the WDM-based computation for the proposed M-SiPh MVM accelerator, a broadband racetrack-resonator (RTR) [39] based PD is adopted as shown in Figs. 1, 2, and 3. The concepts of RTRs and MRRs are basically identical, but the dimensions of their resonance cavities and corresponding FSRs are quite different. As shown in Fig. 3(b), if the waveguide widths and gaps of the MRR and RTR are identical, their resonance-cavity lengths, L_j and $L_{RTR,i}$, are the key design parameters for the power transmission and absorption responses.

This paragraph lists three examples to clarify the difference between power transmission and absorption based on the concept of resonance effect since both play key roles in the E/O and O/E conversions of the M-SiPh accelerators. As shown in the top-left of Fig. 3(b) for the 1st case, a certain amount of light-wave power of a certain wavelength from the Input port of an MRR is coupled into the resonance cavity (i.e., ring waveguide) of the MRR according to the reverse bias of the MRR P/N junction. Ideally, the light-wave power coupled into the resonance cavity can get amplified due to the resonance effect, and the residual light-wave power is transmitted to the Through port of this MRR. The MRR in this case is essentially configured as an MRM, and the reverse bias controls the refractive index n_{eff} of the ring waveguide to shift the wavelength of the critical

coupling as discussed in Section IV-D. The power transmission response is defined by the ratio of the Through-port to Input-port powers. The light-wave power resonating in the MRR resonance cavity can be utilized in two different ways. As shown in the top-middle of Fig. 3(b) for the 2nd case, if another straight waveguide offers the Drop port for the MRR, the light-wave power in the resonance cavity can be further coupled to the Drop port and transmitted. The MRM with a Drop-port configuration is useful to the WDM-based communication receivers discussed in Section IV-A and M-SiPh MMA elaborated in Section VI requiring to extract the information carried by a certain wavelength. In this case, the power transmission response is defined by the ratio of the Drop-port to Input-port powers. As shown in the top-right of Fig. 3(b) for the 3rd case, instead of adding a Drop port, a SiGe layer (highlighted in olive green) is added between the ring waveguide and interleaved P/N junctions so that the amplified light-wave power in the resonance cavity can be effectively absorbed by the P/N junction to stimulate electron-hole pairs for generating a photocurrent, which is similar to a linear PD but exploits the power amplification of the resonance effect to boost the equivalent photodetection responsivity [38]. In this case, the power absorption response is defined by the ratio of the absorbed power to Input-port power. Note that, in the 3rd case, the reverse bias of the P/N junction simultaneously affects the MRR critical coupling condition and PD responsivity. However, a single bias usually cannot meet the criteria for both, so the thermal control mechanism discussed in Section IV-H is necessarily required to provide an additional control knob for calibrating the critical coupling condition when the reverse bias is used for maximizing the responsivity to reach overall optimized power absorption.

For the M-SiPh MVM accelerator, an RTR-PD has to not only boost its O/E responsivity but also absorb all light-wave powers across the whole WDM spectrum as shown in the bottoms of Fig. 3(a) and (b). In other words, the RTR-PD_i resonance cavity simultaneously establishes constructive interferences with all λ_j wavelengths so that each MVM dot-product result carried by all λ_j light-wave powers in each MVM row can be altogether absorbed by the P/N junction underneath the racetrack waveguide through the SiGe layer. On the condition of critical coupling across all λ_j , the aggregate optical power received by RTR-PD_i is the linear summation of all λ_j power amplified by the concurrent multi-wavelength resonances in the common racetrack cavity, which is the key idea of enhancing O/E responsivity for the broadband photodetection as follows:

$$P_{\text{Absorb-RTR},i} \approx \frac{Q_{RTR,i}}{\pi \cdot L_{RTR,i}} \cdot \sum_{j=1}^M \frac{\lambda_j \cdot P_{\text{trans-MRM},ij} (a_{ij})}{n_g (\lambda_j)} \quad (9)$$

To reach a consistent power absorption gain for all WDM wavelengths as shown in the bottom of Fig. 3(a), the perimeter $L_{RTR,i}$ of RTR-PD_i for the whole WDM spectrum needs to meet two fundamental requirements: (I) The FSR $\Delta\lambda_{\text{FSR-RTR},j}$ of each resonance wavelength λ_j determines each WDM isolation spacing $\Delta\lambda_{\text{WDM},j}$ [32]. (II) Every resonance wavelength λ_j under a particular resonance mode integer $m_{RTR,j}$ is based on its effective refractive index $n_{\text{eff}}(\lambda_j)$, silicon propagation constant

$\beta(\lambda_j)$, and the common perimeter $L_{RTR,i} = 2\pi \cdot r_{RTR,i} + 2 \cdot s_{RTR,i}$ [33]. These two requirements are expressed in (10) and (11) as follows:

$$\Delta\lambda_{FSR-RTR,j} = \frac{\lambda_j^2}{n_g(\lambda_j) \cdot L_{RTR,j}} = \Delta\lambda_{WDM,j} \quad (10)$$

$$\Rightarrow L_{RTR,i} = \frac{\lambda_j^2}{n_g(\lambda_j) \cdot \Delta\lambda_{WDM,j}}$$

$$2\pi \cdot m_{RTR,j} = \beta(\lambda_j) \cdot L_{RTR,i} = \frac{2\pi}{\lambda_j} \cdot n_{eff}(\lambda_j) \cdot L_{RTR,i} \quad (11)$$

$$\Rightarrow L_{RTR,i} = \frac{\lambda_j}{n_{eff}(\lambda_j)} \cdot m_{RTR,j}$$

After combining (10) and (11), all resonance wavelengths $\lambda_j, j = 1 \dots M$, of the WDM spectrum are determined by the resonance mode requirements of RTR-PD_i as follows:

$$m_{RTR,j} = \frac{n_{eff}(\lambda_j)}{n_g(\lambda_j)} \cdot \frac{\lambda_j}{\Delta\lambda_{WDM,j}} \quad (12)$$

$$= \frac{n_{eff}(\lambda_j)}{n_{eff}(\lambda_j) - \lambda_j \cdot \frac{\partial n_{eff}(\lambda_j)}{\partial \lambda_j}} \cdot \frac{\lambda_j}{\Delta\lambda_{WDM,j}}$$

Because all constructive interferences simultaneously occur in the same resonance cavity $L_{RTR,i}$, the only way to distinguish “M” resonance wavelengths λ_j by (11) with a common $L_{RTR,i}$ is done by assigning “M” individual $m_{RTR,j}, j = 1 \dots M$. In sum, the value of “M” and the requirements of (10), (11), and (12) determine the distribution of λ_j and $\Delta\lambda_{WDM,j}$ of the WDM wavelength spectrum for the MVM operation; then the laser wavelengths and the radii of all y-MRM_i and a-MRM_{ij} described in Section IV-D shall be designed correspondingly to match the power transmission and absorption spectrums as illustrated in Fig. 3(a).

In Fig. 3(a) and Table I, the consecutive integer $m_{RTR,j}, j = 1 \dots 32$, are chosen from 2321 down to 2290 so that λ_j and $\Delta\lambda_{WDM,j}, j = 1 \dots 32$, can reach the targeted 0.5-nm WDM isolation spacing with $L_{RTR,i} = 951.32 \mu\text{m}$. About the footprint of RTR-PD_i shown in the bottom of Fig. 3(b), if the radius $r_{RTR,i}$ of the left/right-end half-circles is set to 5 μm , the length $s_{RTR,i}$ of the top/bottom straight waveguides is 459.95 μm . Overall, including the primary racetrack-resonator and peripheral keep-out halo, the silicon area of RTR-PD_i is within a 480- $\mu\text{m} \times 20\text{-}\mu\text{m}$ tile.

F. Transimpedance Amplifiers, Single-Ended-to-Differential Amplifiers and Analog-to-Digital Data Converters

After the dot-product $(ay)_i$ converted from the aggregate light-wave power to a photocurrent in the electronic domain through RTR-PD_i, the following TIA_i, single-end-to-differential amplifier (S2D-AMP_i), and ADC_i as illustrated in Fig. 5, further convert the format of $(ay)_i$ from the photocurrent to an L-bit digital word, where the entire MVM operation is basically completed.

The 1st stage, TIA_i, in Fig. 5 is a voltage-to-current feedback amplifier architecture, whose feedforward path is a complementary P/N transconductance ($G_{m,TIA} = g_{m,p} + g_{m,n}$) stage

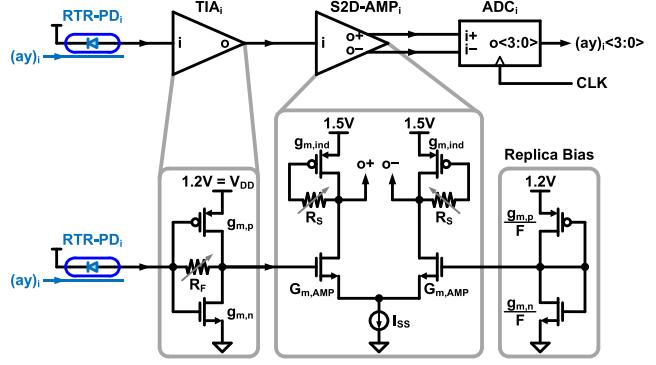


Fig. 5. The block diagram of each M-SiPh MVM dot-product O/E conversion circuit, and the schematics of TIA_i and S2D-AMP_i.

formed by a pair of P/N transistors conducting a self-biased DC current from V_{DD} to GND, and the feedback path is a resistor R_F playing the key role of the TIA gain, bandwidth, and input/output impedance with $G_{m,TIA}$. Because of the high-bandwidth and low-power characteristics, this TIA architecture has been widely used in high-speed optical receiver front-ends [5], [40]. Its simplified output resistance R_{TIA} , transfer function $TF_{TIA}(s)$, and average input-referred noise power spectrum density (PSD) $\overline{I_{n,in,TIA}^2}$ [40] are summarized as follows:

$$R_{TIA} \approx \frac{R_F}{1 + G_{m,TIA} \cdot R_F} \quad (13)$$

$$TF_{TIA}(s) \approx -\frac{G_{m,TIA} \cdot R_F \cdot R_{TIA}}{1 + s \cdot R_{TIA} \cdot C_{TIA}} \quad (14)$$

$$\overline{I_{n,in,TIA}^2} \approx \frac{2\pi \cdot \kappa \cdot T}{R_F^2} \cdot \left(\frac{\gamma}{G_{m,TIA}} + \frac{1}{G_{m,TIA}^2 \cdot R_{TIA}} \right) \quad (15)$$

where Boltzmann constant $\kappa = 1.38 \times 10^{-23} \text{ J/K}$; thermal dynamic temperature $T = 300 \text{ K}$; excess noise coefficient for deep submicron technology $\gamma \approx 2.5$; capacitive load at the TIA_i output $C_{TIA} \approx 30 \text{ fF}$, which is mainly the input capacitance of S2D-AMP_i. If the RTR-PD_i input DR and O/E responsivity are 670- μW and 0.5- A/W , respectively, then the TIA input DR needs to be 335 μA . Meanwhile, if the TIA_i output DR is set to 335 mV, $G_{m,TIA}$ and R_F are chosen to be 1 mA/V and 1.65 k Ω , respectively, so that the TIA DC gain can be about 335-mV/335- $\mu\text{A} = 1 \text{ k}\Omega \approx |\text{TF}_{TIA}(0)|$ according to (14). These design specifications also lead to the TIA_i bandwidth $\approx 1/(2\pi \cdot R_{TIA} \cdot C_{TIA}) = 8.52 \text{ GHz}$, which is sufficient for the 1-GHz Nyquist frequency of the 2-GSym/s per $(ay)_i$ data. More importantly, the average input-referred noise PSD of TIA_i as the first electronic circuit stage is less than 6.26 pA/ $\sqrt{\text{Hz}}$ based on (15). About the average power consumption, TIA_i and its scaled replica consume about 0.1 mW from the 1.2-V supply to support the required 1-mV/A $G_{m,TIA}$ and DC common-mode voltages for the S2D-AMP_i input differential pair.

The 2nd stage, S2D-AMP_i, in Fig. 5 is formed by a common-source differential amplifier with a pair of active-inductor loads to convert and buffer the single-ended TIA output to a differential

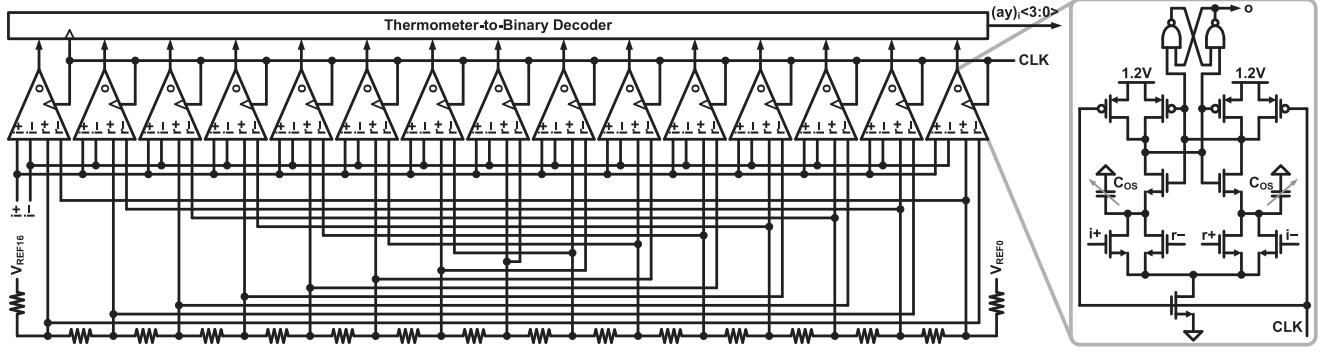


Fig. 6. The schematic of ADC_i in each M-SiPh MVM dot-product O/E conversion circuit, and the schematic of the SAL-based clocked comparator.

signal for minimizing asymmetrical kickbacks and common-mode noise at the input of the following ADC_i . The active-inductor load [41] is a diode-connected PMOS with a tunable Drain-to-Gate feedback resistor R_S to boost the high-frequency gain for linearly equalizing the data symbol and offer unbalanced gains to the positive and negative outputs for canceling the nonideal single-ended-to-differential conversion process caused by the finite output impedance of the tail current source I_{SS} . If the $S2D-AMP_i$ output capacitance C_{AMP} , mainly contributed by the input of ADC_i , is 80 fF, and the $S2D-AMP_i$ output resistance R_{AMP} is chosen to be 600 Ω , then the $S2D-AMP_i$ output bandwidth $\approx 1/(2\pi \cdot R_{AMP} \cdot C_{AMP}) = 3.32$ GHz, which could be the speed bottleneck of the entire MVM operation. Fortunately, the active-inductor load can effectively extend the bandwidth up to 5.5 GHz without extra power consumption, which can not only cover from DC to the first side-lobes of the 2-GSym/s (ay_i) data spectrum but also well filter out all the cross-correlation photocurrent powers at the frequencies of $\pm(f_i - f_j)$ and $\pm(f_i + f_j)$, i and $j = 1 \dots M$, respectively, but $i \neq j$, where f_i and f_j are any pair of the WDM light-wave carrier frequencies. To convert the 335-mV TIA_i output DR to 1-V_{diff} ADC_i input DR through $S2D-AMP_i$, the DC voltage-gain $|TF_{AMP}(0)| = G_{m,AMP} \cdot R_{AMP}$ of $S2D-AMP_i$ is designated to 3 \times , so the transconductance $G_{m,AMP}$ and the static power consumption of $S2D-AMP_i$ can be determined as 5 mA/V and 0.75 mW, respectively.

The 3rd stage, ADC_i , in Fig. 5 is implemented by a L-bit flash ADC architecture containing $(2^L - 1)$ strong-arm-latch (SAL) based clocked-comparators [42] as shown in Fig. 6, which is suitable for high-speed and low-resolution applications with the downside of 2^L exponential-growth of the input capacitance, circuit area, and dynamic power. In the case of this 4-bit M-SiPh MVM accelerator, the 15 comparators in ADC_i actually reach an adequate compromise between area and 2-GS/s conversion rate with negligible static power. Each SAL-based clocked comparator contains a SAL and RS-latch to form an edge-sampled DFF. The dual differential-pairs of each SAL are used to compare the analog voltage difference between the ADC_i differential-input and differential-reference voltages generated by a global resistor ladder for all ADCs. The SAL itself is capable of completing signal integral, regeneration, and decision within a half-period of the sampling clock with a single-phase sampling clock so the ADC_i average power consumption is about $15 \times 80\text{-}\mu\text{W} =$

1.2 mW. Also, within each SAL, 3-bit capacitor-banks C_{OS} are required for individual offset cancellations.

The low-power O/E circuit design criteria are bounded by the A/D accuracy along with the specification of the laser injection power for the WDM-based computation. Therefore, the design procedure shall consider the major noise contributors from RTR_{PD_i} shot noise ($I_{n,PD}^2$), TIA_i circuit output noise ($V_{n,TIA}^2$), and $S2D-AMP_i$ circuit output noise ($V_{n,AMP}^2$). The overall noise power at the ADC_i input can be approximated as follows:

$$\begin{aligned}
 P_{n,O/E} &\approx \int_0^{\infty} \overline{I_{n,PD}^2}(f) \cdot |TF_{TIA}(f)|^2 \cdot |TF_{AMP}(f)|^2 \cdot df \\
 &\quad + \int_0^{\infty} \overline{V_{n,TIA}^2}(f) \cdot |TF_{AMP}(f)|^2 \cdot df \\
 &\quad + \int_0^{\infty} \overline{V_{n,AMP}^2}(f) \cdot df \\
 &\approx 0.5qI_{PD} (G_{m,TIA}^2 R_{TIA}^2) G_{m,AMP}^2 R_{AMP} / C_{AMP} \\
 &\quad + kT (\gamma G_{m,TIA} R_{TIA}^2 + R_{TIA}) G_{m,AMP}^2 R_{AMP} / C_{AMP} \\
 &\quad + 2kT (\gamma G_{m,AMP} R_{AMP} + \gamma g_{m,ind} R_{AMP} + 1) / C_{AMP}
 \end{aligned} \tag{16}$$

where the elementary charge $q = 1.602 \times 10^{-19}$ C; $g_{m,ind}$ is the transconductance of the PMOS for the active-inductor; the $S2D-AMP_i$ output resistance $R_{AMP} \approx R_S/(1+g_{m,ind} \cdot R_S) \approx 600 \Omega$. The three frequency-domain integrals in (16) are simplified by only considering the $S2D-AMP_i$ bandwidth due to its speed domination. If the maximum $I_{PD} \approx 335 \mu\text{A}$ equals the TIA input DR as mentioned, the total noise power at the ADC_i input estimated by (16) is about $11 \mu\text{W}$. Compared to the 4-bit quantization noise power of $ADC_i = V_{LSB}^2/12 = (1\text{-}V_{diff}/15)^2/12 = 370 \mu\text{W}$, there is a margin of 2.5 bits $\approx 15.3 \text{ dB} = 10 \cdot \log_{10}(370\text{-}\mu\text{W}/11\text{-}\mu\text{W})$ to accommodate dark noise, flicker noise, supply noise, clock jitter, resistor-ladder noise, comparator noise, and residual offset excluded in the noise estimation of (16). Overall, the silicon area of TIA_i , $S2D-AMP_i$, and ADC_i is about $100\text{-}\mu\text{m} \times 20\text{-}\mu\text{m}$ for each MVM row.

Fig. 7. The mask layout and dimensions of the 50/50 Y-junction power-splitter unit with the nonlinear taper coupling technique.

G. Optical Power Splitters and Laser-Comb Injection Power

The M-SiPh MVM accelerator requires an external laser comb source [43] to offer the WDM wavelengths λ_i , $i = 1 \dots M$ as shown in Fig. 1. After the E/O conversion of the input vector $\mathbf{Y}_{M \times 1}$, the 1-to- M O-PS evenly splits the pre-summed vector elements ($\sum_{i=1}^M y_i$) into “ M ” identical waveguides ready for the following WDM-based MVM operation. This 1-to- M O-PS contains $\log_2(M)$ horizontal stages, and each stage is vertically formed by multiple 50/50 PS units in parallel with a number from 2^0 ($= 1$) to $2^{\log_2(M)-1}$ ($= M/2$) for the first to last stages, respectively. Each 50/50 PS unit is basically an adiabatic Y-junction with a nonlinear taper coupling technique [44] for the characteristics of low-loss, high-bandwidth, low-polarization sensitivity, and high-tolerance to fabrication errors. The simulation result of a single 50/50 PS unit in Fig. 7 on the 160-nm silicon-on-insulator (SOI) platform in 45SPCLO shows that a 17.5- μm nonlinear taper coupler within a total 35- μm footprint, including the length from the single horizontal fan-in to two horizontal fan-outs, can reach about 0.07-dB [45] transverse electric (TE) transmission loss in the range from 1530-nm to 1550-nm WDM wavelength spectrum. The overall silicon area of the 1-to- M O-PS is $[\log_2(M) \cdot 35\text{-}\mu\text{m}] \times [M \cdot 20\text{-}\mu\text{m}]$, which is 175- $\mu\text{m} \times 640\text{-}\mu\text{m}$ when $M = 32$.

The aggregate laser power loss, $\log_2(M) \cdot (3.01 + 0.07)$ -dB, of this 1-to- M O-PS is consolidated with the default transmission losses of e_y -MRM_i, y-MRM_i, and a-MRM_{ij} and absorption losses of RTR-PD_i in each MVM row to estimate the required laser-injection power of each wavelength for the input DR and signal-to-noise ratio of O/E conversion. All laser wavelengths λ_i , $i = 1 \dots M$, shall have the maximum injection power P_λ and must propagate through $\log_2(M)$ horizontal stages of 50/50 Y-junctions (3.01-dB power splitting and 0.07-dB loss per Y-junction), three MRM transmission DR losses (a 2.5-dB loss per e_y -MRM_i, y-MRM_i or a-MRM_{ij}), and one RTR-PD absorption DR loss (a 2.5-dB loss per RTR-PD_i). Meanwhile, the aggregate absorption of all wavelength powers per RTR-PD needs to be confined within the linear DR of the O/E conversion circuit, $DR_{O/E}$. In sum, the laser-injection power per wavelength can be expressed as follows:

$$P_\lambda \cdot \left(10^{\frac{-2.5-dB}{10}}\right)^4 \cdot \left(\frac{1}{M} \cdot 10^{\frac{-\log_2(M) \cdot 0.07-dB}{10}}\right) \cdot M \leq DR_{O/E} \quad (17)$$

Note that P_λ is not a strong function of “ M ” since $DR_{O/E}$ stays constant regardless of “ M ”, and only the number of the horizontal PS-unit stages gradually accumulates the power loss. If $M = 32$ and $DR_{O/E} = 670 \mu\text{W}$, P_λ should be less than

about 7.26 mW, and the total 32 laser-injection power for this WDM-based MVM operation is $32 \times 7.26\text{-mW} = 232.4 \text{ mW}$, which however is directly proportional to the number of WDM wavelengths “ M ”.

H. Thermal Tuning and Post-Fabrication Trimming

Due to the high thermo-optic coefficient, $1.86 \times 10^{-4} \text{ 1/K}$, of silicon [46], proper thermo-control mechanisms are necessary to adjust the on-chip temperature for maintaining consistent characteristics of SiPh devices. Meanwhile, this high-temperature sensitivity also enables high-resolution SiPh characteristic tunability beyond the fabrication resolution. For instance, in Table I, the 32 different radii of all a-MRM_{ij} distributed from 4.63 μm to 4.76 μm cannot be explicitly fabricated by relying on the mask resolution of 45SPCLO. In CMOS-compatible SiPh process technology, tungsten heaters have been widely used for thermo-optic tuning [47], and their power efficiency can reach about 2.4 mW/ $\Delta\lambda_{FSR}$ for a single MRM [48]. Therefore, if an M-SiPh MVM accelerator consisting of “ $M \cdot (2 + M)$ ” MRMs and “ M ” RTR-PDs can be fabricated within a 1-mm² silicon area, and the tuning ranges of each MRM and RTR-PD need to cover about one $\Delta\lambda_{WDM} \approx \Delta\lambda_{FSR}/M \approx \Delta\lambda_{FSR,RTR}$, the total tungsten heater power per M-SiPh MVM accelerator can be expressed as $M \cdot (2 + M) \cdot (2.4\text{-mW})/M + M \cdot 2.4\text{-mW}$, which is 158.4 mW when $M = 32$.

To do the thermal control across a large number of MRMs in a high-dimensional M-SiPh MVM accelerator, one heater source per MRM is impractical. A hybrid tuning approach is proposed by combining the tungsten-heater approach for global coarse tuning with the post-fabrication-trimming approach [49] for individual fine-tuning. For instance, in Figs. 1 and 8, all MRMs and RTR-PDs in the entire M-SiPh MVM accelerator are partitioned into three tungsten-heater regions with their own heater sources, and the area of each region shall be less than 1 mm² to limit the random variation among MRMs or RTR-PDs less than one standard deviation within each region. In this way, a certain heater source of a certain heater region can globally control and shift the transmission/absorption responses of the MRMs/RTR-PDs. Then, the post-fabrication trimming mechanism can take care of low-range but high-accuracy fine-tuning for every MRM and RTR-PD, which is basically realized by implanting a section of SOI rib waveguide with Ge through a photoresist mask on the top of each resonance cavity, so each MRM or RTR-PD critical coupling condition can be trimmed by injecting a voltage pulse to anneal this Ge rib waveguide. This annealing calibration process can be done for each MRM or RTR-PD individually as shown in Fig. 2, and the annealing pulse width for the targeted resonance wavelength(s) of each MRM or RTR-PD can be obtained by an iterative feedback mechanism of the MRM/RTR-PD transmission/absorption power received by its corresponding ADC to adjust the annealing pulse generator output pulse width until converging to the critical coupling condition [49]. Though this post-fabrication trimming approach is tedious, it is thorough, reprogrammable, and hardware reusable, and it only consumes calibration time/power with negligible overhead during the regular M-SiPh accelerator operations.

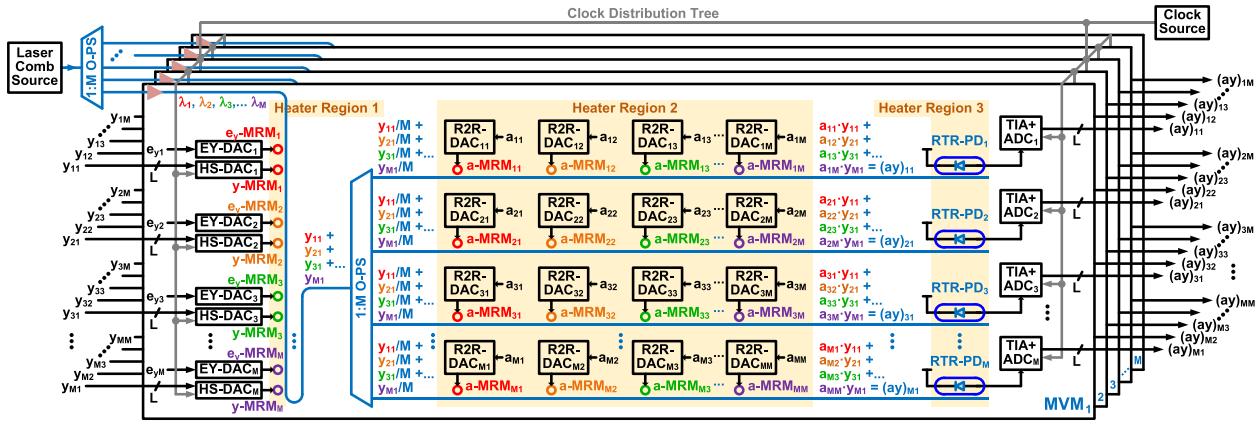


Fig. 8. The system block diagram of the M-SiPh MMM accelerator implemented by the M-SiPh MVM parallelism approach.

V. M-SiPh MATRIX-MATRIX MULTIPLICATIONS

To perform an M-SiPh MMM operation, $\mathbf{A}_{M \times M} \cdot \mathbf{Y}_{M \times M} = (\mathbf{AY})_{M \times M}$, the input M -by- M matrix $\mathbf{Y}_{M \times M}$ with elements denoted by y_{ij} , i and $j = 1 \dots M$ respectively, can be split into “ M ” M -by-1 column vectors as shown in Fig. 8, and each column vector independently performs MVM with matrix $\mathbf{A}_{M \times M}$ in an M-SiPh MVM unit to produce its own output column vector. After combining total “ M ” output column vectors from “ M ” parallel M-SiPh MVMs, the outcome M -by- M matrix $(\mathbf{AY})_{M \times M}$ with elements denoted by $(ay)_{ij}$, i and $j = 1 \dots M$ respectively, of the M-SiPh MMM operation can be obtained.

This hardware parallelism approach can be equivalently implemented in a manner of time-multiplexing. For instance, a single M-SiPh MVM unit can process one of the input column vectors per iteration period, and electronic registers after the ADCs can collect all the output column vectors after “ M ” iteration cycles to form the final outcome matrix $(\mathbf{AY})_{M \times M}$ per M-SiPh MMM operation. These two formats of the M-SiPh MMM implementation linearly consume the silicon area and computation time with the column-dimension “ M ” of $\mathbf{Y}_{M \times M}$, respectively. In sum, energy/area/throughput tradeoffs can be optimized by combining the partial hardware-parallelism and partial time-multiplexing approaches based on realistic applications.

VI. M-SiPh MATRIX-INVERSIONS

Each repetition of the Neumann-series approximation, $\mathbf{Y}_{M \times M}[k] = \mathbf{B}_{M \times M} + \mathbf{A}_{M \times M} \cdot \mathbf{Y}_{M \times M}[k-1]$, for the targeted matrix-inversion (MI) functionality can be energy/area efficiently implemented by the combination of M-SiPh MMM and M-SiPh MMA without intermediate O/E/O conversions as shown in Fig. 9, where the matrices $\mathbf{A}_{M \times M}$, $\mathbf{B}_{M \times M}$, $\mathbf{Y}_{M \times M}[k]$, and $\mathbf{Y}_{M \times M}[k-1]$ are physically presented by their matrix elements a_{ij} , b_{ij} , $y_{ij}[k]$, and $y_{ij}[k-1]$, i and $j = 1 \dots M$ respectively. The bottom-half of Fig. 9 illustrates the MMM operation of $\mathbf{A}_{M \times M} \cdot \mathbf{Y}_{M \times M}[k-1]$, which is essentially realized by the M-SiPh MMM accelerator elaborated in Section V however without the O/E conversion to keep the MMM results in the photonic domain. Then, the top-half of Fig. 9 shows the MMA operation for the completion of $\mathbf{Y}_{M \times M}[k]$ achieved by

element-to-element light-wave power additions of b_{ij} and $(ay)_{ij}$, i and $j = 1 \dots M$ respectively.

Similar to the parallelism architecture for realizing an MMM from multiple MVM units in Section V, the M-SiPh MMA can be implemented by “ M ” parallel vector-vector additions (VVA) as shown in the top-half of Fig. 9. The 2nd external laser comb source is required to generate another set of “ M ” wavelengths λ'_i , $i = 1 \dots M$, whose WDM spectrum relationship with λ_i , $i = 1 \dots M$, from the 1st laser comb source is reflected in Fig. 10(a). Accordingly, the power transmission responses of $b\text{-MRM}_i$, $i = 1 \dots M$, have $(\Delta\lambda_{WDM,i})/2$ offsets with respect to those of $y\text{-MRM}_i$, $i = 1 \dots M$, to enable incoherent detections in $RTR\text{-PD}'_i$. Note that each $b\text{-MRM}$ can be driven by a low-power DAC (LP-DAC) implemented by the R-2R architecture due to the static value of b_{ij} in the electronic domain. Also, after the E/O conversion through $b\text{-MRM}_i$, the light-wave λ'_i carrying the b_{ij} information in the photonic domain is individually extracted from the rest of WDM wavelengths at the Drop port of $b\text{-MRM}_i$ as the MRR configuration shown in the top-middle of the Fig. 3(b) for the following M-SiPh VVA operation.

The power absorption spectrum of $RTR\text{-PD}'_i$ shall cover and align with all resonance wavelengths λ_i and λ'_i of $y\text{-MRM}_i$ and $b\text{-MRM}_i$, $i = 1 \dots M$, as shown in the bottom of Fig. 10(a) to incoherently absorb all different light-wave powers carrying the $(ay)_{ij}$ and b_{ij} information. Equivalently, to perform $\Delta\lambda'_{FSR-RTR,2i-1,2i} = (\Delta\lambda_{WDM,i})/2$, $i = 1 \dots M$, the resonance-cavity length of $RTR\text{-PD}'_i$ has to be doubled compared to $RTR\text{-PD}_i$ discussed in Section V-E; i.e., $L'_{RTR,i} = 2 \times L_{RTR,i}$. Meanwhile, reducing the FSR of $RTR\text{-PD}'_i$ by $2 \times$ could indeed cause overlaps between adjacent spectrum “skirts” of the power absorption responses as circled in Fig. 10(a), but these don’t create crosstalk among the wavelengths since the WDM spectrum isolations are still maintained by $\Delta\lambda_{WDM,i}$ and $\Delta\lambda'_{WDM,i}$, $i = 1 \dots M$, individually. Also, to couple both $(ay)_{ij}$ and b_{ij} into the racetrack waveguide, $RTR\text{-PD}'_i$ requires two Input ports implemented by running two input waveguides in parallel with the top and bottom straight waveguides of $RTR\text{-PD}'_i$ as shown in Figs. 9 and 10(b), where the directions of the incoming light-waves carrying $(ay)_{ij}$ and b_{ij} information on these two input waveguides should form consistent clockwise

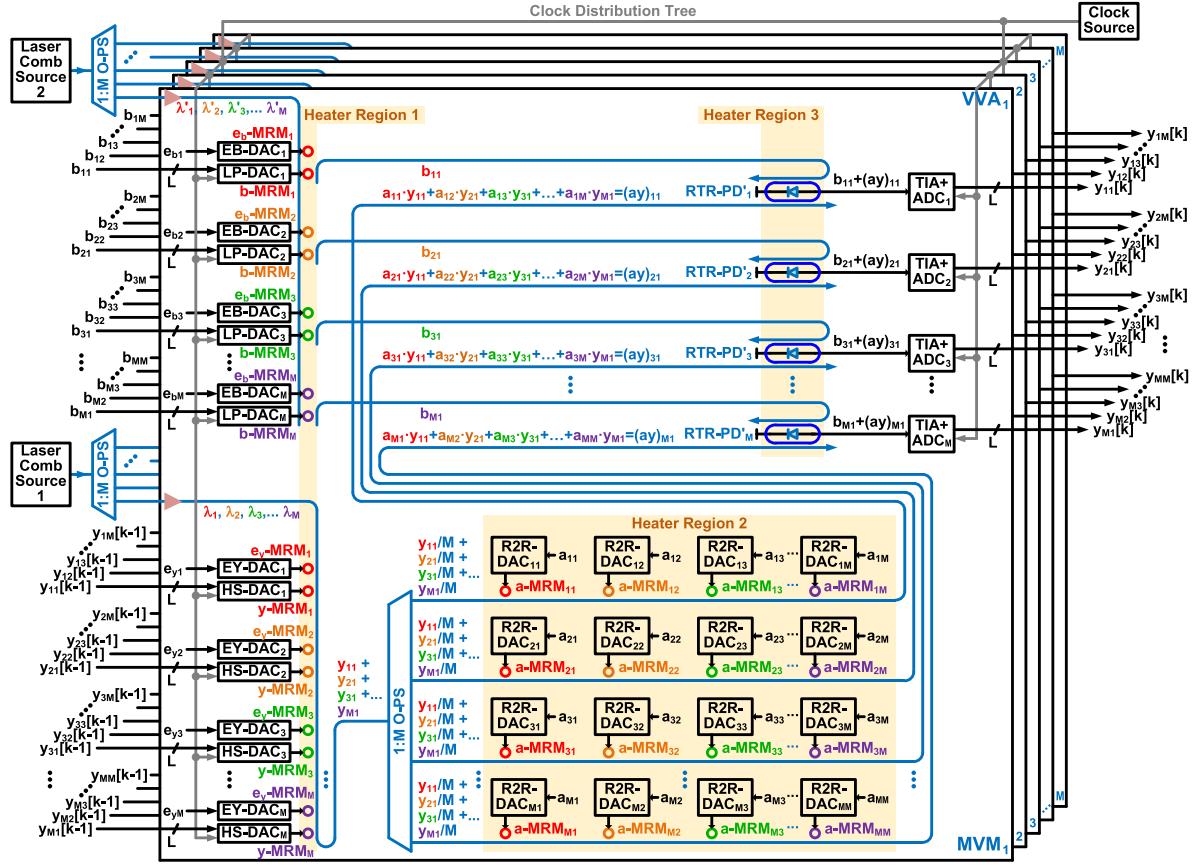


Fig. 9. The system block diagram of the M-SiPh MI accelerator implemented by the M-SiPh MVM and VVA parallelism approach.

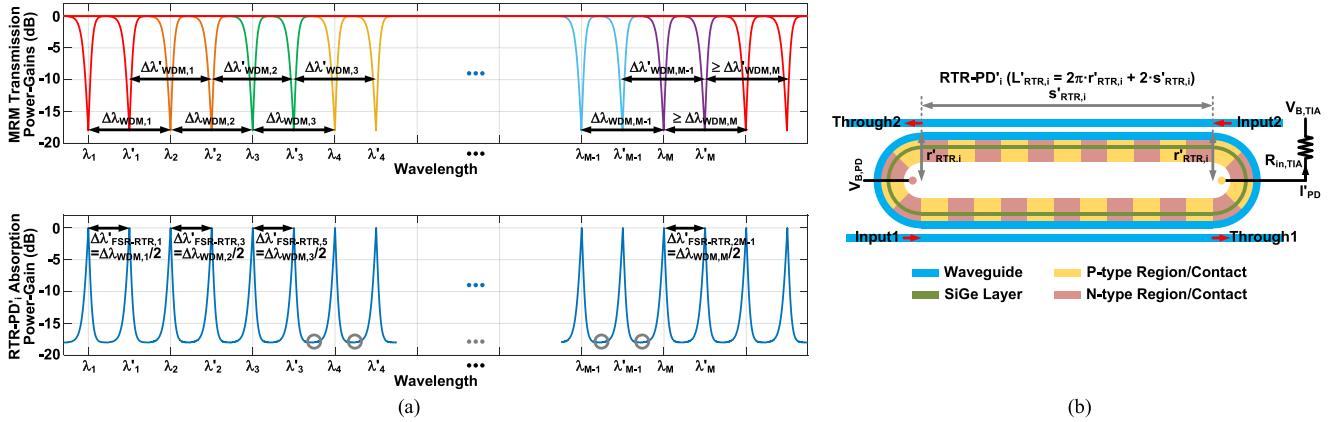


Fig. 10. (a) The transmission responses of $y\text{-MRM}_i$ and $b\text{-MRM}_i$, $i = 1 \dots M$, and the absorption responses of $RTR\text{-PD}'_i$. (b) The conceptual geometry and configuration of $RTR\text{-PD}'_i$.

or counterclockwise coupling to the racetrack waveguide for minimizing crosstalk between these two Input ports due to imperfect absorption leaking through the Input-to-Drop responses of $RTR\text{-PD}'_i$.

Overall, the proposed M-SiPh MI accelerator can effectively accomplish the end-to-end computation of each Neumann-series repetition by executing computation-dominant operations in the photonic domain at the speed of light with a minimal amount of energy/area overhead due to the monolithic photonic-electronic on-chip integrations, conversions and calibrations.

VII. PERFORMANCE SUMMARY AND CONCLUSION

The key performance metrics of linear-algebra SoCs are computation throughput (TMAC/s), computation density (TMAC/s/mm²), and energy consumption (fJ/MAC) [9], [13], [18]. By consolidating the power, area, and clock rate of the proposed building blocks described and analyzed in Section IV, the detailed energy/area breakdowns and computing performance metrics of the M-SiPh MVM accelerator with the on-chip hardware and MVM functionality are summarized in Table II

TABLE II
PERFORMANCE ESTIMATIONS OF M-SiPh MVM vs. ASIC MVM

M-SiPh MVM in 45-nm Monolithic SiPh [This Work]	Vector Dimen. “M”	Laser Power (mW)	Heater Power (mW)	SoC Power* (mW)	SoC Area (mm ²)	Data Precision (bit)	Clock Rate (GHz)	Computation Throughput		Computation Density (TMAC/s/mm ²)	Energy Consumption (fJ/MAC)*
								TOPS/s	TMAC/s		
8	56.3	43.2	126.6	0.13	4	2	0.256	0.128	1.00	989.3	
	114.3	81.6	251.2	0.41	4	2	1.024	0.512	1.25	490.6	
	232.4	158.4	505.0	1.40	4	2	4.096	2.048	1.46	246.6	
	472.3	312.0	1027.5	5.10	4	2	16.384	8.192	1.61	125.4	
	960.0	619.2	2124.6	19.27	4	2	65.536	32.768	1.70	64.8	
	1951.3	1233.6	4511.6	74.69	4	2	262.144	131.072	1.75	34.4	
ASIC MVM Google TPUv4 in 7-nm CMOS [50]	Vector Dimen. “M”	SoC Idle Power (mW)	SoC Busy Power (mW)†	SoC Area (mm ²)	Data Precision (bit)	Clock Rate (GHz)	Computation Throughput		Computation Density (TMAC/s/mm ²)	Energy Consumption (fJ/MAC)†	
	256	55000	78571‡	400	8	1.05	TOPS/s	TMAC/s			

* Including all photonic/electronic devices/circuits power consumption, heater power, and laser injection power on a single M-SiPh chip.

† Including all electronic digital circuits power consumption on the single CMOS chip in the Busy-mode.

‡ The Busy-mode power of TPUv4 is estimated by its Idle-mode power (= 55 W) and Busy-vs.-Idle power ratio of TPUv1 (= 1.43) [51].

to practically cover the overhead of the M-SiPh integrations, conversions, and calibrations, including all electronic-photonic SoC building blocks with complete DACs/ADCs, on-chip digital interface, clock distribution, on-chip calibration hardware, laser injection power, and heater power. For comparison purposes, the performance metrics of the Google Tensor Processing Units v4 (TPUv4) [50], [51] are listed in Table II as well since this TPU is also a complete on-chip MVM accelerator but implemented by a digital ASIC approach in commercial 7-nm CMOS process technology. Note that the performance metrics of the M-SiPh MMM and M-SiPh MI accelerators can be reasonably estimated according to those of the M-SiPh MVM accelerator because of the dimension scalability and parallelism architecture described in Sections V and VI.

The performance scalability with the input vector dimension “M” of the M-SiPh MVM accelerator listed in Table II shows that the energy/area overhead of M-SiPh MVM is getting leveraged by the negligible photonic computing latency and energy consumption when “M” is scaling up though the inevitable increase of the calibration complexity is not reflected by these performance matrices in the regular accelerator operations. In the cases of “M” ≥ 8 , the M-SiPh MVM accelerator outperforms the ASIC counterpart in both computation density and energy consumption. In particular with the future advances in scaling the optical comb generations to “M” = 256, the M-SiPh MVM accelerator can exhibit about $10.3 \times$ computation-density and $33.2 \times$ energy-efficiency superiority over the advanced ASIC MVM accelerator (TPUv4) with the downside of lower data precision due to the limitations of “analog” computing in the photonic domain. Overall, given that novel SiPh devices and circuits are still being discovered and engineered for future foundry manufacturing, the performance of the M-SiPh accelerators will be further enhanced with the development of next-generation SiPh process technology.

REFERENCES

- P. Moorhead, “Silicon photonics are here and global foundries are innovating,” Moor Insights & Strategy, Oct. 2022. Accessed: Jan. 2024. [Online]. Available: <https://gf.com/wp-content/uploads/2022/12/Silicon-Photonics-Are-Here-And-Global-Foundries-Is-Innovating-Final-V10.24.2022-2.pdf>
- M. Rakowski et al., “45nm CMOS - silicon photonics monolithic technology (45CLO) for next-generation, low power and high speed optical interconnects,” in *Proc. Opt. Fiber Commun. Conf.*, 2020, Paper T3H.3.
- C. Levy et al., “A 3D-integrated $8\lambda \times 32$ Gbps λ silicon photonic microring-based DWDM transmitter,” in *Proc. IEEE Custom Integr. Circuits Conf.*, 2023, pp. 1–2.
- H. Li et al., “A 112 Gb/s PAM4 silicon photonics transmitter with microring modulator and CMOS driver,” *J. Lightw. Technol.*, vol. 38, no. 1, pp. 131–138, Jan. 2020.
- H. Li, G. Balamurugan, J. Jaussi, and B. Casper, “A 112 Gb/s PAM4 linear TIA with 0.96 pJ/bit energy efficiency in 28 nm CMOS,” in *Proc. IEEE Eur. Solid-State Circuits Conf.*, 2018, pp. 238–241.
- C. Sun et al., “A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning,” *IEEE J. Solid-State Circuits*, vol. 51, no. 4, pp. 893–907, Apr. 2016.
- N. Mehta, S. Buchbinder, and V. Stojanović, “Design and characterization of monolithic microring resonator based photodetector in 45nm SOI CMOS,” in *Proc. IEEE Eur. Solid-State Device Res. Conf.*, 2019, pp. 206–209.
- N. Mehta, C. Sun, M. Wade, S. Lin, M. Popović, and V. Stojanović, “A 12Gb/s, 8.6μApp input sensitivity, monolithic-integrated fully differential optical receiver in CMOS 45nm SOI process,” in *Proc. IEEE Eur. Solid-State Circuits Conf.*, 2016, pp. 491–494.
- M. A. Nahmias, T. F. de Lima, A. N. Tait, H.-T. Peng, B. J. Shastri, and P. R. Prucnal, “Photonic multiply-accumulate operations for neural networks,” *IEEE J. Sel. Topics Quantum Electron.*, vol. 26, no. 1, Jan./Feb. 2020, Art. no. 7701518.
- K. Kikuchi, “Fundamentals of coherent optical fiber communications,” *J. Lightw. Technol.*, vol. 34, no. 1, pp. 157–179, Jan. 2016.
- C. Dragone, “Efficient N*N star couplers using Fourier optics,” *J. Lightw. Technol.*, vol. 7, no. 3, pp. 479–489, Mar. 1989.
- R. A. Athale and W. C. Collins, “Optical matrix–matrix multiplier based on outer product decomposition,” *Appl. Opt.*, vol. 21, no. 12, pp. 2089–2090, Jun. 1982.
- H. Zhou et al., “Photonic matrix multiplication lights up photonic accelerator and beyond,” *Light: Sci. Appl.*, vol. 11, Feb. 2022, Art. no. 30.
- J. Feldmann et al., “Parallel convolutional processing using an integrated photonic tensor core,” *Nature*, vol. 589, pp. 52–58, Jan. 2021.
- L. Yang, L. Zhang, and R. Ji, “On-chip optical matrix-vector multiplier for parallel computation,” in *Proc. SPIE*, Jun. 2013, doi: [10.1117/2.1201306.004932](https://doi.org/10.1117/2.1201306.004932).
- D. Dang, B. Lin, and D. Sahoo, “LiteCON: An all-photonic neuromorphic accelerator for energy-efficient deep learning,” *ACM Trans. Architecture Code Optim.*, vol. 19, no. 3, pp. 1–22, Aug. 2022.
- M. Li and Y. Wang, “An energy-efficient silicon photonic-assisted deep learning accelerator for Big Data,” in *Proc. Conf. Wireless Commun. Mobile Comput.*, 2020, pp. 1–11.
- C. Huang et al., “Prospects and applications of photonic neural networks,” *Adv. Phys.: X*, vol. 7, no. 1, 2022, Art. no. 1981155.
- B. J. Shastri et al., “Photonics for artificial intelligence and neuromorphic computing,” *Nature Photon.*, vol. 15, pp. 102–114, Jan. 2021.
- A. Burian, J. Takala, and M. Ylinen, “A fixed-point implementation of matrix inversion using Cholesky decomposition,” in *Proc. IEEE 46th Midwest Symp. Circuits Syst.*, 2003, vol. 3, pp. 1431–1434.

[21] A. Rontogiannis, V. Kekatos, and K. Berberidis, "A square-root adaptive V-BLAST algorithm for fast time-varying MIMO channels," *IEEE Signal Process. Lett.*, vol. 13, no. 5, pp. 265–268, May 2006.

[22] M. Wu, B. Yin, A. Vosoughi, C. Studer, J. R. Cavallaro, and C. Dick, "Approximate matrix inversion for high-throughput data detection in the large-scale MIMO uplink," in *Proc. IEEE Int. Symp. Circuits Syst.*, 2013, pp. 2155–2158.

[23] X. Gao, L. Dai, Y. Hu, Z. Wang, and Z. Wang, "Matrix inversion-less signal detection using SOR method for uplink large-scale MIMO systems," in *Proc. IEEE Glob. Telecommun. Conf.*, 2014, pp. 3291–3295.

[24] L. Dai, X. Gao, X. Su, S. Han, C.-L. I, and Z. Wang, "Low-complexity soft-output signal detection based on Gauss Seidel method for uplink multiuser large-scale MIMO systems," *IEEE Trans. Veh. Technol.*, vol. 64, no. 10, pp. 4839–4845, Oct. 2015.

[25] M. Wu, C. Dick, J. R. Cavallaro, and C. Studer, "FPGA design of a coordinate descent data detector for large-scale MU-MIMO," in *Proc. IEEE Int. Symp. Circuits Syst.*, 2016, pp. 1894–1897.

[26] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, "Conjugate gradient based soft-output detection and precoding in massive MIMO systems," in *Proc. IEEE Glob. Telecommun. Conf.*, 2014, pp. 3696–3701.

[27] B. Kang, J. Yoon, and J. Park, "Low-complexity massive MIMO detectors based on Richardson method," *ETRI J.*, vol. 39, no. 3, pp. 326–335, Nov. 2017.

[28] F. Jiang, C. Li, and Z. Gong, "A low complexity soft-output data detection scheme based on Jacobi method for massive MIMO uplink transmission," in *Proc. IEEE Int. Conf. Commun.*, 2017, pp. 1–5.

[29] T.-C. Hsueh et al., "A 25.6 Gb/s differential and DDR4/GDDR5 dual-mode transmitter with digital clock calibration in 22nm CMOS," in *Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers*, 2014, pp. 444–445.

[30] D. L. Feucht, *Handbook of Analog Circuit Design*. San Diego, CA, USA: Academic, 1990.

[31] P. E. Allen and D. R. Holberg, *CMOS Analog Circuit Design*, 3rd ed. New York, NY, USA: Oxford, 2011.

[32] E. Hecht, *Optics*, 5th ed. Upper Saddle River, NJ, USA: Pearson, 2015.

[33] T. Hansson, D. Modotto, and S. Wabnitz, "Analytical approach to the design of microring resonators for nonlinear four-wave mixing applications," *J. Opt. Soc. Amer. B*, vol. 31, no. 5, pp. 1109–1117, 2014.

[34] D. W. U. Chan, X. Wu, C. Lu, A. P. T. Lau, and H. K. Tsang, "Efficient 330-Gb/s PAM-8 modulation using silicon microring modulators," *Opt. Lett.*, vol. 48, no. 4, pp. 1036–1039, Feb. 2023.

[35] D. W. U. Chan, X. Wu, Z. Zhang, C. Lu, A. P. T. Lau, and H. K. Tsang, "Ultra-wide free-spectral-range silicon microring modulator for high capacity WDM," *J. Lightw. Technol.*, vol. 40, no. 24, pp. 7848–7855, Dec. 2022.

[36] J. Singh et al., "Neuromorphic photonic circuit modeling in Verilog-A," *APL Photon.*, vol. 7, no. 4, pp. 1–15, Apr. 2022.

[37] C. Sorace-Agaskar, J. Leu, M. R. Watts, and V. Stojanovic, "Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA," *Opt. Exp.*, vol. 23, no. 21, pp. 27180–27203, 2015.

[38] N. Mehta, S. Lin, B. Yin, S. Moazen, and V. Stojanović, "A laser-forwarded coherent 10Gb/s BPSK transceiver using monolithic microring resonators in 45nm SOI CMOS," in *Proc. IEEE Symp. VLSI Circuits*, 2019, pp. C192–C193.

[39] C. Arlotti, O. Gauthier-Lafaye, A. Monmayrant, and S. Calvez, "Achromatic critically coupled racetrack resonators," *J. Opt. Soc. Amer. B*, vol. 34, no. 11, pp. 2343–2351, 2017.

[40] E. Sackinger, *Analysis and Design of Transimpedance Amplifiers for Optical Receivers*. Hoboken, NJ, USA: Wiley, 2018.

[41] B. Razavi, *Design of Integrated Circuits for Optical Communications*, 2nd ed. Hoboken, NJ, USA: Wiley, 2012.

[42] J. Kim, B. S. Leibowitz, J. Ren, and C. J. Madden, "Simulation and analysis of random decision errors in clocked comparators," *IEEE Trans. Circuits Syst. I: Reg. Papers*, vol. 56, no. 8, pp. 1844–1857, Aug. 2009.

[43] H. Hu and L. K. Oxenløwe, "Chip-based optical frequency combs for high-capacity optical communications," *Nanophotonics*, vol. 10, no. 5, pp. 1367–1385, 2021.

[44] C. Ozcan, M. Mojahedi, and J. S. Aitchison, "Short, broadband, and polarization-insensitive adiabatic Y-junction power splitters," *Opt. Lett.*, vol. 48, no. 18, pp. 4901–4904, 2023.

[45] M. Glick et al., *Integrated Photonics for Data Communication Applications*. Amsterdam, The Netherlands: Elsevier, 2023.

[46] S. Y. Siew et al., "Review of silicon photonics technology and platform development," *J. Lightw. Technol.*, vol. 39, no. 13, pp. 4374–4389, Jul. 2021.

[47] A. Masood et al., "CMOS-compatible tungsten heaters for silicon photonic waveguides," in *Proc. IEEE Int. Conf. Group IV Photon.*, 2012, pp. 234–236.

[48] P. Dong et al., "Thermally tunable silicon racetrack resonators with ultralow tuning power," *Opt. Exp.*, vol. 18, no. 19, pp. 20298–20304, 2010.

[49] H. Jayatilleka et al., "Post-fabrication trimming of silicon photonic ring resonators at wafer-scale," *J. Lightw. Technol.*, vol. 39, no. 15, pp. 5083–5088, Aug. 2021.

[50] N. P. Jouppi et al., "Ten lessons from three generations shaped Google's TPUs," in *Proc. ACM/IEEE 48th Annu. Int. Symp. Comput. Archit.*, 2021, pp. 1–14.

[51] N. P. Jouppi et al., "In-datacenter performance analysis of a tensor processing unit," in *Proc. ACM/IEEE 44th Annu. Int. Symp. Comput. Archit.*, 2017, pp. 1–12.

Tzu-Chien Hsueh (Senior Member, IEEE) received the Ph.D. degree in electrical and computer engineering from the University of California, Los Angeles, CA, USA, in 2010. From 2001 to 2006, he was a Mixed-Signal Circuit Design Engineer, Hsinchu, Taiwan. From 2010 to 2018, he was a Research Scientist with Intel Lab Signaling Research and an Analog Engineer with Intel I/O Circuit Technology, Hillsboro, OR, USA. Since 2018, he has been an Assistant Professor of electrical and computer engineering with the University of California, San Diego (UCSD), La Jolla, CA, USA. His research interests include wireline electrical/optical transceivers, clock-and-data recovery, data-conversion circuits, on-chip performance measurements/analyzers, and digital/mixed signal processing techniques.

Dr. Hsueh was the recipient of multiple Intel Division and Academy Awards from 2012 to 2018, 2015 IEEE Journal of Solid-State Circuits (JSSC) Best Paper Award, 2020 NSF CAREER Award, and 2022 UCSD Best Teacher Award. From 2016 to 2018, he was on the Patent Committee for Intel Intellectual Property (Intel IP) and the Technical Committee for Intel Design & Test Technology Conference (DTTC). Since 2018, he has been on the Technical Program Committee for IEEE Custom Integrated Circuits Conference (CICC) and was a Guest Associate Editor of IEEE SOLID-STATE CIRCUITS LETTERS (SSC-L).

Yeshaiahu (Shaya) Fainman (Fellow, IEEE) received the M.Sc. and Ph.D. degrees from the Technion-Israel Institute of Technology, Haifa, Israel, in 1979 and 1983, respectively. He is currently an Inaugural ASML/Cymer Chair Professor with Advanced Optical Technologies and a Distinguished Professor of electrical and computer engineering (ECE) with the University of California, San Diego (UCSD), La Jolla, CA, USA. He is also Directing Research with the Ultrafast and Nanoscale Optics Group, UCSD, and made significant contributions to near field optical phenomena, nanoscale science and engineering of ultra-small, sub-micrometer semiconductor light emitters and nanolasers, inhomogeneous and meta-materials, nanophotonics and Si Photonics. His research interests include near field optical science and technology with Si Photonics applications to information technologies and biomedical sensing. He has contributed more than 340 manuscripts in peer review journals and more than 560 conference presentations and conference proceedings. He has also contributed to editorial and conference committee works of various scientific societies including IEEE, SPIE and OPTICA. He was the recipient of the Miriam and Aharon Gutvitz Prize, Lady Davis Fellowship, Brown Award, Gabor Award, Emmett N. Leith Medal, Joseph Fraunhofer Award/Robert M. Burley Prize and OPTICA Holonyak Award. He is also the Fellow of OPTICA (former OSA) and Fellow of the SPIE.

Bill Lin (Senior Member, IEEE) received the B.S., M.S., and Ph.D. degrees in electrical engineering and computer sciences from the University of California at Berkeley, Berkeley, CA, USA, in 1985, 1988, and 1991, respectively. He is currently a Professor in electrical and computer engineering with the University of California, San Diego, La Jolla, CA, USA, where he is actively involved with the Center for Wireless Communications (CWC), Center for Networked Systems (CNS), and Qualcomm Institute in industry-sponsored research efforts. His research has led to more than 200 journal and conference publications, including a number of Best Paper awards and nominations and also holds five awarded patents. He was the General Chair and on the executive and technical program committee of many IEEE and ACM conferences, and he was an Associate and a Guest Editors for several IEEE and ACM journals.