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Abstract—Advances in metagenomic sequencing have provided
an unprecedented view of the microbial world, but untangling the
web of microbe interdependencies and the complex relationship
between microbiome and host is a major challenge in biology.
New statistical methods are needed to analyze metagenomic data
and infer these relationships. Focusing on amplicon sequencing
data, we present methods for leveraging phylogenetic information
in deep neural network models and for transfer learning from
large data repositories. This approach is demonstrated in exper-
iments using data from the Earth Microbiome Project (EMP)
and a dataset of 1500 samples from Waimea Valley on the island
of Oahu, Hawaii.

Index Terms—deep learning, neural networks, phylogeny

I. INTRODUCTION

Rapid advances in metagenomic sequencing technology
have enabled scientists to quantify the composition of micro-
bial communities from environmental samples. These methods
enable us to quantify the relative abundance of hundreds of
thousands of different bacteria and/or fungi variants. From
these measurements, biologists attempt to infer microbe-
microbe or microbe-host relationships. Understanding the de-
pendencies within these microbe communities, their stability,
and their interactions with their host are fundamental problems
in biology.

There is significant interest in developing better machine
learning methods for metagenomic analysis [[1], [2]]. However,
non-linear machine learning methods quickly overfit due to
the relatively small sample size and high dimensionality of
the data: the well-known “large P, small N” problem. Thus,
for most microbiome data analysis applications, deep learning
is not a practical approach [3]]. However, there are two sources
of additional information that could change this situation:
(1) phylogenetic information (which results in correlations
between related microbes, similar to correlations among neigh-
boring pixels in images); and (2) large repositories of meta-
genomic data, such as the EMP [4], [5] and the Human
Microbiome Project (HMP) [6], [[7], which could potentially
be used for transfer learning if good pre-trained deep learning
models were developed. In this work we propose a novel
neural network architecture that enables us to leverage both
sources of information.

Neural architecture design provides a source of inductive
bias in deep learning by constraining the hypothesis space.
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Important examples include convolutional architectures for ex-
ploiting symmetries in sequences and images, graph architec-
tures for capturing spatial relationships in small molecules [8]],
[9]], and “’physics-informed” neural networks for incorporating
physics domain knowledge [10]-[12]. An analogous source
of domain knowledge in microbiology is phylogeny: the
evolutionary history of microbes. Traits have a tendency to
be conserved among related microbes despite the prevalence
of lateral gene transfer [[13]], so a phylogenetic tree provides
a hierarchical clustering of correlated features for analysis
— indeed, it is common to cluster related microbes into
“operational taxonomic units”’ (OTUs) to reduce the data
dimensionality and simplify analysis.

We propose a new deep learning architecture for micro-
biome data analysis that incorporates this phylogenetic in-
formation — an Evolution-Informed Neural Network (EINN).
Typically tree-shaped, the architecture has edges correspond-
ing to phylogenetic relationships (Fig. [T). A neural network
module at each node maps vector-valued representations of
its children to a new vector-valued representation, summariz-
ing the taxon of related microbes included in the subtree.
This local connectivity reduces overfitting by constraining
the function space, just as convolutional neural networks in
computer vision learn local features that summarize patches
of neighboring (and highly-correlated) pixels.
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Fig. 1. Evolution-Informed Neural Networks use phylogenetic information

such as taxonomy to define sparse connectivity. This reduces overfitting on
high-dimensional metagenomic data.

A key insight is that EINN architectures can be adapted



to a variety of applications. In addition to predicting host
phenotypes and microbiome-level properties such as stability,
EINNSs can predict properties of individual microbes using a
dynamic, recursive architecture that changes for each input
example (Fig. [J), analogous to work in natural language
processing where semantic parse trees can be used to construct
a unique tree architecture for any given sentence [[14], [15].
This has applications in cataloging microbial functional traits,
which are important for understanding the mechanisms of
microbe-microbe and microbe-host interactions [16].
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Fig. 2. A dynamic EINN can be used to predict properties of microbes from
those of related microbes. The use of weight-sharing enables a unique archi-
tecture to be constructed for each example by transforming the phylogenetic
tree (left) to a tree with the target microbe at the root (right)

Another important advantage of EINNSs is that they enable
the use of transfer learning to improve performance using
external data [[17]]. EINNs can be pre-trained on large repos-
itories such as the EMP (for environmental studies) or the
HMP (for human microbiome studies), then fine-tuned to solve
a related task on a smaller target dataset. EINNs provide
a natural approach to transferring pre-trained models even
when the target dataset contains a different set of amplicon
sequence variants (ASVs), as the tree architecture can simply
be extended to include any new ASVs, with similar ASVs
automatically clustered within the tree.

The contribution of this work is to propose EINNs as a
general framework for leveraging phylogenetic information in
microbiome data analysis. Efficient software implementations
that leverage sparse matrix multiplications are provided in
Tensorflow [[18]] (for static architectures) and Pytorch [19]]
and Deep Graph Library [20] (for dynamic architectures) (to
be released upon acceptance). Experiments demonstrate the
advantages of EINNs over fully-connected neural networks
and standard shallow machine learning approaches on mi-
crobiome classification tasks for two 16S rRNA sequencing
datasets of different sizes: EMP (30,000 samples) and Waimea
Valley (1,500 samples). The advantage of transfer learning is
demonstrated by pre-training on the EMP dataset and fine-
tuning on the Waimea Valley dataset. Finally, we demonstrate
the use of dynamic EINNs to predict the microbe metabolism
from features of related microbes.

II. RELATED WORK

Previous work has demonstrated that phylogenetic infor-
mation can be successfully incorporated into deep learning

models. Reiman, et al. 2017 [21]], Fioravanti, et al. 2018 [22],
Wassan, et al. 2018 [23[], and Manning, et al. 2018 [24],
each incorporate phylogenetic information into deep neu-
ral networks by first embedding amplicon sequence profiles
into images using various strategies before applying standard
convolutional neural networks. In contrast, the most similar
approach to ours is that of Khan and Kelly, 2020 [25] who
use a phylogeny adjacency matrix to define a graph, then apply
graph convolution neural networks [26]. They demonstrate the
performance advantage of their deep learning architecture on
a disease classification task with a dataset of 5,643 samples.
EINNs are similar to this approach in that information is
propagated along a computational graph determined by the
phylogenetic tree, but differ in their use of weight-sharing (not
required in EINNs) and computational efficiency. EINNs are
significantly more efficient in terms of memory and computa-
tion by reducing the number of nodes in subsequent layers,
as opposed to representing the entire graph at each layer.
Furthermore, Khan and Kelly do not discuss microbe property
prediction, even though their graph convolution network could
be directly applied to the application. While we do not perform
any experimental comparisons in this work, we expect the
results to be similar, with any performance differences due to
choices such as weight-sharing, which will be task-dependent.

Other work has explored the use of deep learning for
microbiome analysis, but without incorporating phylogenetic
information. Ditzler, et al. 2015 [27] propose the use of
static, recursive tree architectures to predict microbiome-level
properties. Oh and Zhang 2020 [28]] use fully-connected au-
toencoders to perform dimensionality reduction, an approach
that could be used for transfer learning. However, without
leveraging phylogenetic information as a source of inductive
bias, pre-trained models that take ASV-level inputs are less-
likely to transfer well to datasets with different ASVs.

III. METHODS
A. Static EINNs

A frequent application of microbiome data analysis is to
predict some property associated with the microbiome as a
whole, such as sample provenance, host phenotype, or the
stability of the composition. In this scenario an EINN model
will be a feed-forward neural network organized as a tree,
with each leaf node input associated with a particular microbe
(ASV, or alternatively OTU, strain, etc.), and a prediction of
the target variable is read-out at the root node. Intermediate
nodes in the tree can be single neurons, but more typically
would be vector-valued functions represented by one or more
fully-connected layers. In this work each intermediate node is
represented by a single fully-connected neural network layer.
Here we assume a tree architecture, but this is not required in
general, and non-tree architectures could be used to account
for phylogenetic uncertainty or lateral gene transfer.

The particular choice of phylogenetic tree will impact
both inductive bias and computational efficiency. In practice,
shallower neural networks are faster to train and easier to
optimize, and in general we expect trees that are roughly



balanced in terms of height, degree, and microbes to have
better inductive bias. In our experiments with static EINNs,
we start from a simple taxonomic tree in which most of the
differentiation takes place at the lower levels (ASYV, strain,
and species), then reduce the tree height by compressing the
higher levels (domain, kingdom, etc.) in order to achieve a
more balanced tree, treating the compressed tree height as a
hyperparameter to be optimized on a validation set. We leave
further investigation of the effects of tree balancing for future
work.

B. Dynamic EINNs

Dynamic EINNs are proposed as a method for predicting
properties of microbes from features of related microbes. Here
the tree architecture changes with each input, which can be
accomplished using weight sharing (across every edge in the
same layer) or recursive architectures (across every edge in
the entire tree). We demonstrate the latter, using a single
neural network layer repeated for each node in the dynamic
tree architecture. The architecture when predicting a trait for
a target microbe will be the same phylogenetic tree graph
rearranged so that the target microbe is the root, with all other
microbes at the leaves. Fig. [2| shows this for a simple tree,
with the root of the phylogenetic tree removed in the dynamic
EINN for compactness.

Such an architecture requires a node to represent a function
of a variably-sized set of inputs. This can be accomplished by
mean-pooling over the vector-valued representations of the set
elements [9]], [29]]. In the model used for experiments, each
intermediate node of the dynamic EINN takes a set of input
representations x; and outputs a hidden representation z, with

1
X = — . 1
=K k:zl;ka (D
z = tanh(W - X + b) 2

where K is the number of inputs, b is a bias term, and the
hyperbolic tangent non-linearity is applied element-wise to the
vector-value input. At the final layer (the root node), a special
readout layer is used to predict the target variable.

We found this architecture to be quite slow when using the
full tree, as it is harder to exploit parallelism in dynamic graph
neural networks [30]]. In experiments we greatly simplified the
model by restricting the input to only the k nearest microbes,
where k was treated as a hyperparameter and optimized over
the range [1,50]. Thus a microbe trait is predicted by first
finding the k nearest microbe neighbors according to the graph
distance in the phylogenetic tree, constructing the dynamic
EINN for this subgraph, then forward-propagating the features
of the k£ microbes through this EINN to the root (output) node.

C. Datasets

Two datasets of environmental samples were used to eval-
uate the performance of static EINNs for sample-level pre-
diction tasks. The EMP dataset contains 27,751 microbiome

samples from 97 independent studies capturing diverse envi-
ronmental types, geographies, and chemistries [4]], [S]. The
Waimea dataset [31] contains 1,513 samples from a study
conducted at the Waimea Valley on the island of Oahu, Hawaii,
with samples taken at regular intervals from the mountainous
ridge at the top to the coral reef in the bay below. Amplicon
sequencing of the 16S rRNA gene provide sequences for each
sample, resulting in a combined total of 307,572 unique 90-
basepair sequences from the two datasets. Samples in both the
EMP and Waimea datasets are then represented as a 307,572
dimensional vector of ASV counts. All samples are rarefied to
5,000 reads by bootstrap sampling with replacement across the
ASV vector. Each sample in both datasets is annotated with
metadata regarding the source of the sample, and five of these
properties were selected as targets for classification: habitat,
environmental biome, environmental feature, environmental
material, and sample type. Descriptions of these variables are
given in Table

TABLE I
CLASSIFICATION TASKS
Task Description N Classes
(EMP/Waimea)
Habitat Global ecological context of a sam- | 13 /4
ple (eg. Marine, Terrestrial)
Biome Broad ecological context of a sample | 43 /3
(eg. freshwater, desert, woodland)
Feature Local ecological context of a sample | 97 / 11
(eg. harbor, sandy beach, cliff)
Material General material displaced by the | 45/ 8
sample (eg. air, water, soil)
Sample Type | Specific material displaced by the | 120/ 54
sample (gill tissue, bird egg shell)

A separate evaluation of dynamic EINNs was conducted
using a microbe trait dataset. This dataset contains 14,887
microbes and (incomplete) labels for 330 microbial traits
including metabolism type, genome size, and cell shape. We
focus on the metabolism type feature, for which the dataset
contains labels (one of six classes) for 9,869 microbes. Exper-
iments with dynamic EINNs are conducted on this subset and
classification task.

IV. EXPERIMENTAL RESULTS
A. EINNs for Microbiome Classification

The five classification tasks were used to compare EINNs
against four other machine learning classifiers: LASSO
classification (LC), Ridge Classification (RC), Random
Forests (RFs), and fully-connected neural networks (FCNNs).
For each experiment the data was split 60/20/20% into
train/validation/test sets, and the hyperparameters in Table [[I]
were optimized using the validation set before final evaluation
on the test set. Hyperparameters for LC, RC, and RF models
were obtained by using grid search, while hyperparameters for
deep learning models were obtained using a random search of
50 trials using SHERPA on a GPU cluster [32].

The deep learning models were optimized using Adam [33].
Bootstrap sampling of the ASV counts was used as a form



of data augmentation during training — rather than rarefying
the relative abundance profiles as a pre-processing step, we
sampled (with replacement) 5,000 ASVs from the empirical
distribution of each sample at each training iteration. At test
time for each model, the data was rarefied five times in the
same way in order to expand the size of the test set and
obtain a better measure of performance. Training was stopped
when no improvement on the validation set was observed
over 10 epochs (passes through the training set). In all tasks,
EINNs were either the first or second best performing method

(Table [I).

TABLE 11
HYPERPARAMETER SEARCH SPACE
Model Parameter Min Max
LC L1 factor 107° 1
RC L2 factor 107° 1
RF Max depth 5 50
FCNN/EINN | Learning rate | 10~° 10~2
Batch size 16 128
Dropout rate | 0 0.5
N neurons 256 2048
N layers 1 6
TABLE III
EMP CLASSIFICATION TEST PERFORMANCE
Task LC RC RF FCNN  EINN
Habitat
NLL 0.023  0.023 0.042 0.010 0.014
ACC 0.996 0996 0.98.7 0.997 0.997
Biome
NLL 0.243  0.248 0.498 0.237 0.207
ACC 0.935 0.935 0.888 0.928 0.937
Feature
NLL 0.267  0.251 0.524 0.225 0.195
ACC 0.941 0.939 0.904 0.950 0.941
Material
NLL 0.265 0.251 0.436 0.291 0.208
ACC 0.934 0934 0.904 0.921 0.937
Sample
NLL 0.340 0.321 0.568 0.309 0.277
ACC 0.920 0.921 0.882 0.918 0.920

B. Transfer Learning with EINNs

The deep representations learned by neural networks such
as EINNs can be transferred between datasets, enabling us to
leverage large data sets for improving predictions on smaller
data sets. Here, we demonstrate this ability by pre-training
EINNs on the EMP dataset then fine-tuning the model for the
same classification task on the much smaller Waimea dataset.
The transfer is performed by replacing the final softmax layer
of the EINN and fine-tuning on the target dataset. The trans-
ferred EINN (T-EINN) is compared to the same set of models
from Table [lII, using the same hyperparameter optimization
procedure, except using 5-fold nested cross-validation instead
of a single 60%/20%/20% split. Table shows the mean
NLL and ACC over all cross validation splits. As expected,
the linear models are more competitive on this smaller dataset.

The transfer learning improves performance for two out of five
tasks, and is only slightly worse than the best method in the
other tasks.

TABLE IV

WAIMEA CLASSIFICATION TEST PERFORMANCE
Task LC RC RF FCNN EINN T-EINN
Habitat
NLL 0.142 0.149  0.278 0.237  0.162 0.210
ACC 0.963  0.968 0.943 0.943  0.966 0.960
Biome
NLL 0.178 0.185 0.259 0.162  0.119 0.147
ACC 0.959 0.957 0.931 0968  0.970 0.967
Feature
NLL 0.429 0493  0.644 0.853  0.406 0.395
ACC 0.897 0.875 0.781 0.863  0.877 0.877
Material
NLL 0.265 0.404  0.410 0.336  0.230 0.203
ACC 0.951 0915 0.891 0.938 0927 0.930
Sample
NLL 1.120 1.189  1.694 1.330  1.085 1.136
ACC 0.718 0.693  0.626 0.678  0.708 0.698

C. Dynamic EINNs for Microbe Trait Imputation

Functional traits of microbes tend to be phylogenetically
conserved, particularly at the shallowest branches of the
tree [34]], [35]]. Thus, accounting for phylogenetic information
is likely to help improve the performance of statistical models
for inferring traits. We evaluate Dynamic EINNs and NN
benchmarks on imputing microbial metabolism, a six-class
classification task, given 324 microbial properties as input
features. Table[V]shows the test set performance for this task in
terms of negative log-likelihood (NLL) and accuracy (ACC).

To further investigate the benefit of the EINN architecture,
we added explicit taxonomic information to each input node as
a vector of engineered features. This was a one-hot vector for
each taxonomic level excluding the species level, describing
the location of the microbe with the tree. When including these
engineered features, the total number of features per microbe
was 4,040. Interestingly, the best performance was obtained by
a Dynamic EINN trained with these features, suggesting that
even though the dynamic EINN had phylogenetic information
contained in the architecture, it still benefited from having the
taxonomic features explicitly encoded.

TABLE V
MICROBE TRAIT CLASSIFICATION TEST PERFORMANCE
Metabolism
Model NLL ACC
FCNN 0.992  0.655
FCNN + Taxonomy Encoding | 0.737  0.747
EINN 0.643  0.840
EINN + Taxonomy Encoding 0469 0.932

V. CONCLUSION

The proposed Evolution-Informed Neural Network frame-
work provides a general strategy for incorporating phyloge-
netic information into deep neural networks. We demonstrate



two different applications of EINNs: predicting properties of
microbiomes and predicting microbe traits, the latter using a
dynamic neural architecture. For both types of EINNs, we
provide efficient software implementations that use sparse
matrix multiplications. Furthermore, we demonstrate the use
of transfer learning from the large EMP dataset to a smaller
dataset.

Our experimental results show that this deep learning ap-
proach works best on large datasets with tens of thousands of
samples, much larger than most microbiome studies. However,
the results show a clear improvement over fully-connected
architectures, suggesting that the phylogenetic information
provides useful inductive bias, in agreement with previous
studies. Compared with previous work, EINNs provide a more
flexible and computationally efficient approach to incorporat-
ing phylogenetic information.

There are many details of EINN design that are left for
future work. One important strategy to be explored is weight-
sharing, where the nodes in a single layer could be constrained
to share weights (or partially share weights) with every other
node in the same layer, a technique that has provided extremely
useful inductive biases in computer vision [36]]. Previous work
with graph convolutional networks [25] is a special case of
EINNs where strict weight-sharing is enforced. Other details to
be explored are the choice of phylogenetic tree, the importance
of tree balance (in terms of height, degree, and/or samples),
and how these choices affect transfer learning.
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