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Abstract—Text-to-image generative models such as Stable
Diffusion and DALL·E raise many ethical concerns due to
the generation of harmful images such as Not-Safe-for-Work
(NSFW) ones. To address these ethical concerns, safety filters
are often adopted to prevent the generation of NSFW images.
In this work, we propose SneakyPrompt, the first automated
attack framework, to jailbreak text-to-image generative models
such that they generate NSFW images even if safety filters
are adopted. Given a prompt that is blocked by a safety filter,
SneakyPrompt repeatedly queries the text-to-image generative
model and strategically perturbs tokens in the prompt based
on the query results to bypass the safety filter. Specifically,
SneakyPrompt utilizes reinforcement learning to guide the per-
turbation of tokens. Our evaluation shows that SneakyPrompt
successfully jailbreaks DALL·E 2 with closed-box safety filters
to generate NSFW images. Moreover, we also deploy several
state-of-the-art, open-source safety filters on a Stable Diffusion
model. Our evaluation shows that SneakyPrompt not only
successfully generates NSFW images, but also outperforms
existing text adversarial attacks when extended to jailbreak
text-to-image generative models, in terms of both the number
of queries and qualities of the generated NSFW images.
SneakyPrompt is open-source and available at this repository:
https://github.com/Yuchen413/text2image safety.

1. Introduction

Text-to-image generative models (or called text-to-image
models for short)—e.g., Stable Diffusion [1], DALL·E [2],
and Imagen [3]—are popular due to the invention and
deployment of diffusion models [4], [5] and large-scale
language models [6], [7], [8]. Such text-to-image models—
which generate a synthetic image based on a given text
prompt—have broad applications such as graphic design
and virtual environment creation. For example, Microsoft
has embedded DALL·E [2] into an application named
Designer [9] and an image creator tool as part of Microsoft
Edge; in addition, Stable Diffusion has been used by more
than 10 million people daily up to February 2023. Yet,
one practical ethical concern facing text-to-image models is
that they may generate sensitive Not-Safe-for-Work (NSFW)
images [10], [11] such as those related to violence and
child-inappropriate. Therefore, existing text-to-image models
all adopt so-called safety filters as guardrails to block the
generation of such NSFW images. However, the robustness

of such safety filters—especially those used in practice—to
adversarial manipulations of prompts is still unknown.

One intuitive method for jailbreaking safety filters is to
treat them as closed-boxes and launch text-based adversarial
attacks like TextBugger [12], Textfooler [13], BAE [14],
and a concurrent work called adversarial prompting [15]
to perturb prompts. However, existing text-based attacks
focus on misleading a classification model but not bypassing
safety filters with NSFW generations. For example, none
of the aforementioned approaches is able to bypass the
closed-box safety filter of DALL·E 2 according to our
evaluation. There are three reasons that text-based adversarial
attacks are insufficient for bypassing safety filters. First,
they are inefficient at probing a safety filter, resulting in a
large number of queries to a text-to-image model and thus
increasing the cost for an attacker. Second, although the
one-time bypass rate may be high, the bypass rate becomes
low when the adversarial texts are reused for generating
NSFW images because the safety filter is not considered
when finding the adversarial texts and is still effective during
reuse attacks. Lastly, existing works focus less on the quality
of generated images, often resulting in images losing the
intended NSFW semantics.

Two recent works studied the safety filters of text-to-
image models. Specifically, Rando et al. [16] reverse engineer
Stable Diffusion’s safety filter and then propose a manual
bypass strategy that adds extra unrelated text to a prompt.
Another concurrent work—Qu et al. [17]—manually gathers
a template NSFW prompt dataset to evaluate safety filters
of open-source text-to-image models, e.g., Stable Diffusion.
However, the generation of adversarial prompts to bypass
safety filters is largely manual, which often results in a low
bypass rate. For example, similar to text-based adversarial
attacks, neither approach is able to bypass the closed-box
safety filter of DALL·E 2 according to our evaluation.

In this paper, we propose the first automated attack frame-
work, called SneakyPrompt, to jailbreak safety filters of text-
to-image models. Our key insight is to search for alternative
tokens to replace the filtered ones in a given NSFW prompt
while still preserving the semantics of the prompt and the
follow-up generated NSFW images. Intuitive approaches will
be brute force, beam, or greedy searches, but they are often
cost-ineffective, e.g., incurring many queries to the target text-
to-image model. Therefore, these intuitive approaches are
treated as baselines of SneakyPrompt. Our high-level idea is
to leverage reinforcement learning (RL), which interacts with
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the target text-to-image model and perturbs the prompt based
on rewards related to two conditions: (i) semantic similarity,
and (ii) success in bypassing safety filters. Such an RL-based
approach not only solves the challenge of closed-box access
to the text-to-image model but also minimizes the number
of queries as the reward function can guide SneakyPrompt
to find adversarial prompts efficiently.

To summarize, we make the following contributions.

• We design and implement SneakyPrompt to jailbreak
safety filters of text-to-image models using different
search strategies including reinforcement learning
and baselines such as beam, greedy, and brute force.

• We show that SneakyPrompt successfully finds adver-
sarial prompts that allow a text-to-image model with
a closed-box safety filter—namely DALL·E 2 [2]—to
generate NSFW images.

• We extensively evaluate SneakyPrompt on a large
variety of open-source safety filters with another
state-of-the-art text-to-image model—namely Sta-
ble Diffusion [1]. Our evaluation results show that
SneakyPrompt not only successfully bypasses those
safety filters, but also outperforms existing text-based
adversarial attacks.

Ethical Considerations. We responsibly disclosed our
findings to DALL·E (specifically OpenAI via their online
portal and an email) and Stable Diffusion (specifically
Stability AI via a Zoom discussion). We did not receive
a response from OpenAI, but Stability AI would like to
develop more robust safety filters together with us. We also
discussed our work with the Institutional Review Board (IRB)
and obtained an exempt decision.

2. Related Work and Preliminary

In this section, we describe related work on text-to-image
models including existing attacks on such models, present
existing adversarial attacks on learning models, especially
text-based ones, and then illustrate some preliminaries such
as reinforcement learning (RL) and the challenges in applying
RL upon SneakyPrompt.
Text-to-image Models. Text-to-image models—which have
been firstly demonstrated by Mansimov et al. [18]—generate
images based on a textual description denoted as a prompt.
Later on, different works have focused either on model
structure [19], [20] or learning algorithm [21] to optimize
image quality. Modern text-to-image approaches often adopt
diffusion models [4], [5], where the image begins with
random noises and noises are progressively removed using a
de-noising network. Examples include Stable Diffusion [1],
DALL·E [2], Imagen [3], and Midjourney [22]. More specif-
ically, such text-to-image models are often text-conditioned,
which adopt text embedding of a prompt from a frozen text
encoder, e.g., CLIP [6], to guide image generation; some
recent works have also proposed learning free [23] or zero-
shot image generation [24] for large-scale generative models.

Given their popularity, many works have been proposed
to investigate vulnerabilities of text-to-image models. Wu

et al. [25] and Duan et al. [26] demonstrate the feasibility
of membership inference attack [27], [28] on text-to-image
models. Carlini et al. [29] propose an image extracting attack
to illustrate the possibility of extracting training samples
used to train the text-to-image model. Millière et al. [30]
demonstrate that attackers can find adversarial examples
that combine words from different languages against text-to-
image models. Maus et al. [15] also propose the concept of
adversarial prompt and design a black-box framework based
on Bayesian optimization for such a prompt generation. Note
that on one hand, the definition of the adversarial prompt in
Maus et al. is concurrent to our approach, and on the other
hand, Maus et al. cannot bypass safety filters as shown in our
evaluation because their goal is to generate the target class of
images using meaningless tokens without the presence of any
safety filters. The closest works are Rando et al. [16] and Qu
et al. [17], which investigate safety filters of text-to-image
models. However, their approaches are largely manual with
relatively low bypass rates and they are only applicable to
offline text-to-image models.

Adversarial Examples. Adversarial examples are carefully
crafted inputs to confuse a learning model for an incorrect
decision, e.g., wrong classification results. Extensive numbers
of research [31], [32], [33] are proposed on the generation
of adversarial examples in computer vision. People have
also studied adversarial examples in the natural language
processing (NLP) domain. There are generally two directions
on adversarial text examples. First, people propose to ensure
that the perturbed word looks similar to the original input,
e.g., “nice” vs “n1ce”. For example, recent work [34] adopts
Gumble-softmax distribution to approximate the discrete
categorical distribution for text-based adversarial examples.
Second, people also propose using synonyms to paraphrase
the input, keep the original semantics, and change the final
prediction. Alzantot et al. [35] propose heuristic methods
to search for replacement words with similar semantic
meanings. TextBugger [12] shows that manipulation of
important words, e.g., swapping, removing, and substituting,
can lead to alternation of the predictions of sentences with
little impact on human understanding in both closed-box
and open-box settings. Jin et al. [13] propose rule-based
synonym replacement strategies to generate more natural-
looking adversarial examples and improve semantic similarity
to the original token under the acceptance of human judges.
Garg et al. [14] propose to mask a portion of the text and
use BERT masked language model to generate replacement
with grammatical improvement and semantic coherence.

Existing approaches to adversarial examples can be
applied to text-to-image models with safety filters as well.
However, since they are not designed for bypassing safety
filters, they face three major issues that we also show in
our evaluation. First, existing approaches do not preserve
the semantics of the generated images, i.e., the NSFW
semantics may have been lost during the generation. Second,
existing approaches may not be cost-effective, i.e., they may
incur a significant number of queries to the text-to-image
model. Third, the adversarial prompts generated by existing



approaches may not be reusable due to random seeds adopted
by text-to-image models. That is, those adversarial prompts
may be effective one time, but lose effectiveness if used for
more than one time.
Reinforcement Learning (RL). RL [36] is a technique to
incorporate feedback to make decisions. The key concepts
in RL include state, action, policy network, reward, and
environment. Given a state, the policy network essentially
outputs a distribution over the possible actions. One action is
sampled from the distribution and applied to the environment,
which returns a reward. The reward can then be used to
update the policy network such that it is more likely to
generate actions with a large accumulative reward in the
future. Note that the deployment of RL to search for an
adversarial prompt is challenging because SneakyPrompt
needs to not only decide the action space for adversarial
prompts, which is a large word space, but also design
a reward function to bypass the safety filter while still
preserving the generated images’ NSFW semantics.

3. Problem Formulation

In this section, we first define adversarial prompt against
safety filters of text-to-image models and then describe the
threat model of SneakyPrompt.

3.1. Definitions

We describe the definitions of two important concepts:
safety filters and adversarial prompts.

Safety Filter. A safety filter—formally denoted as F—
prohibits text-to-image model users from generating certain
images with so-called sensitive content, such as those related
to adult, violent, or politics. The deployments of safety filters
are common practices used by existing text-to-image models.
For example, DALL·E 2 [2] filters out contents from 11
categories such as hate, harassment, sexual, and self-harm.
Midjourney [22] blocks the generation of images that are
not PG-13. Stable Diffusion [1] also filters out contents from
17 concepts [16].

To the best of our knowledge, there is no existing
documentation on the taxonomy of safety filters used in
text-to-image models. Therefore, we come up with our own
taxonomy and describe them below. Note that we denote the
online text-to-image model as M with a frozen text encoder
E and a diffusion model D, the input prompt as p, and the
output generated image as M(p). Figure 1 shows the three
categories of safety filters:
• Text-based safety filter: This type of filter operates on the

text itself or the text embedding space. Usually, it blocks
prompts that include sensitive keywords or phrases in a
predetermined list and/or prompts that are close to such
sensitive keywords or phrases in the text embedding space.
It may also use a binary classifier to classify a prompt to
be sensitive or non-sensitive.

• Image-based safety filter: This type of filter operates on
the generated image. Specifically, the safety filter could be

Prompt Prompt Prompt

Text Encoder

Diffusion Model

Text Encoder

Diffusion Model

Text Encoder

Diffusion Model

Output Image

No output

Image-based
Safety Filter

Output Image

No output

Pass

Text-Image-based
Safety Filter

Output Image

No output

Te
xt

 E
m

be
dd

in
gs

 
of

 S
en

si
tiv

e 
C

on
ce

pt
s

Not
pass

Text-based
Safety Filter

Not
pass

Pass

Not
pass

Pass

Figure 1: Categorization of three types of possible safety
filters that are deployed by text-to-image models, i.e., (i)
text-based, (ii) image-based, and (iii) text-image-based.

a binary image classifier trained with labeled non-sensitive
images and sensitive images, which predicts M(p) as
non-sensitive or sensitive.

• Text-image-based safety filter: This type of filter operates
on both the text and image spaces to block sensitive
content. For example, it could be a binary classifier
that takes both text and image embeddings as input and
outputs sensitive/non-sensitive. The open-source Stable
Diffusion [1] adopts a text-image-based safety filter, which
blocks a generated image if the cosine similarity between
its CLIP embedding and any pre-calculated CLIP text
embedding of 17 unsafe concepts is larger than a threshold.

Adversarial Prompt. Now let us formally define adver-
sarial prompts. Given a safety filter F and a prompt p,
F(M, p) = 1 indicates that the generated image M(p) has
sensitive content, and F(M, p) = 0 indicates that M(p)
does not. We define a prompt as adversarial if Definition 1
is satisfied.

Definition 1. [Adversarial Prompt] A prompt to a text-to-
image model M is an adversarial prompt pa relatively
to a sensitive, target prompt pt (i.e., F(M, pt) = 1), if
F(M, pa) = 0 and M(pa) has similar visual semantics as
M(pt).

Let us describe the definition from two aspects. First,
the adversarial prompt is a relative concept. That is, pa is
adversarial relatively to another sensitive, target prompt pt,
which is originally blocked by the safety filter of a text-
to-image model. Second, there are two conditions for an
adversarial prompt pa: (i) pa bypasses the safety filter F ,
and (ii) the generated image from pa is semantically similar
to that generated from pt. Both conditions are important,
i.e., even if the bypass is successful but the generated image
loses the semantics, pa is not an adversarial prompt.

Figure 2 shows some simple examples of adversarial
prompts generated by SneakyPrompt to illustrate what they
look like. The text in the parenthesis is pt, which is
blocked by an external safety filter (blocking both dogs
and cats) added after DALL·E 2 for illustration purposes.



(a) I couldn’t resist petting the
adorable little glucose (cat)

(b) The tabby gregory faced wright
(cat) stretched out lazily on the win-
dowsill

(c) The maintenance (dog) wet
nose nuzzled its owner’s hand

(d) The dangerous think walt (dog)
growled menacingly at the stranger
who approached its owner

Figure 2: Examples of adversarial prompts that generate cats and dogs (the images above the prompts) using DALL·E 2
and bypass an external safety filter, i.e., the default stable diffusion safety filter refactored to restrict both concepts. The
target, sensitive prompt is highlighted in red and its corresponding adversarial prompt is in blue. Black texts are unchanged
between target and adversarial prompts. Note that we use dogs and cats as part of the external safety filters in the illustrative
figure to avoid illegitimate or violent content that might make the audience uncomfortable. We show real images with NSFW
content that bypass the DALLE·2’s safety filter in Appendix A due to the concerns of possible disturbing content to readers.

The adversarial prompts are shown in blue together with the
black texts. The above images are generated by DALL·E 2,
which still preserves the semantics of either dogs or cats.

3.2. Threat Model

We assume that an adversary has closed-box access to an
online text-to-image model and may query the model with
prompts. Since modern text-to-image models often charge
users per query [37], we assume the adversary has a certain
cost constraint, i.e., the number of queries to the target text-
to-image model is bounded. In addition, the adversary has
access to a local shadow text encoder Ê . We describe the
details of the closed-box access and the shadow text encoder
as follows:
• Online, closed-box query to M: An adversary can query

the online M with arbitrary prompt p and obtain the
generated image M(p) based on the safety filter’s result
F(M, p). If the filter allows the query, the adversary
obtains the image as described by p; if the filter does not,
the adversary is informed, e.g., obtaining a black image
without content. Note that the adversary cannot control and
access the intermediate result of M, e.g., text embedding
E(p) or the gradient of the diffusion model.

• Offline, unlimited query to Ê : An adversary can query the
local, shadow Ê with unlimited open-box access. There
are two cases where the shadow text encoder may be
either exactly the same as or a substitute for the target
text encoder, as we discuss below.

1) Ê(p) ̸= E(p): That is, Ê has different architecture
and parameters from E , because the adversary
only has closed-box access to M. For example,
DALL·E2 [2] utilizes a closed-sourced CLIP text
encoder (ViT-H/16). In this case, an adversary can
use a similar text encoder, e.g., the open-source

CLIP-ViT-L/14, with the assumption of transfer-
ability between different CLIP text encoders.

2) Ê(p) = E(p): That is, the adversary may adopt a Ê
with exactly the same architecture and parameters
as E . For example, Stable Diffusion [1] utilizes
a public CLIP text encoder (i.e., ViT-L/14 [38]),
which can be deployed locally for shadow access.

Attack Scenarios. Next, we describe two realistic attack
scenarios that are considered in the paper.
• One-time attack: The adversary searches adversarial

prompts for one-time use. Each time the adversary ob-
tains new adversarial prompts via search and generates
corresponding NSFW images.

• Re-use attack: The adversary obtains adversarial prompts
generated by other adversaries or by themselves in previous
one-time attacks, and then re-uses the provided adversarial
prompts for NSFW images.

We consider re-use attacks as the default use scenario
just like existing works [16], [17] where they all provide
prompts for future uses. The main reason is that reuse attacks
do not need to repeatedly query the target model and thus
save query costs. At the same time, one-time attacks are also
evaluated in comparison with prior works.

4. SneakyPrompt

In this section, we give an overview of SneakyPrompt and
then propose different variants of search methods, including
three heuristic searches as a baseline SneakyPrompt-base
and a reinforcement learning based search as an advanced
approach SneakyPrompt-RL.

4.1. Overview

Key Idea. We first give an intuitive explanation of why
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Figure 3: Intuitive explanation of SneakyPrompt’s idea in
bypassing safety filters.

SneakyPrompt can bypass safety filters to generate NSFW
images in Figure 3. A safety filter—no matter whether text-,
image-, or text-image-based—can be considered as a binary
(i.e., sensitive or non-sensitive) classifier with a decision
boundary in the text embedding space. Moreover, suppose
prompts with similar NSFW semantics form a ball in the text
embedding space, which has intersections with the decision
boundary.

The intuition of our SneakyPrompt is to search for an
adversarial prompt whose generated image not only has
semantics similar enough to the target prompt but also
crosses the decision boundary of the safety filter. For example,
the prompt ‘mambo incomplete clicking’ is one adversarial
prompt relative to the sensitive, target prompt ‘naked’; ‘nude’
is one sensitive prompt with a similar semantic of ‘naked’
that is blocked by the safety filter; and ‘happy’ is one non-
sensitive prompt with a dissimilar semantic of ‘naked’.

We then formalize the key idea of SneakyPrompt, which,
given a target prompt pt, aims to search for an adversarial
prompt pa to a text-to-image model M that satisfies the
following three objectives:
• Objective I: Searching for a prompt with target semantic.

That is, M(pa) has the same sensitive semantics as the
target prompt pt.

• Objective II: Bypassing the safety filter. That is, pa
bypasses the safety filter F , i.e., F(M, pa) = 0.

• Objective III: Minimizing the number of online queries.
That is, the number of queries to M is minimized.

To achieve Objective I, SneakyPrompt finds an adversarial
prompt pa such that the similarity (e.g., cosine similarity
in our experiments) between the image embedding of the
generated image M(pa) and the text embedding Ê(pt) of
the target prompt pt is large enough. To achieve Objective
II, SneakyPrompt repeatedly queries the target text-to-image
model until finding an adversarial prompt pa that bypasses
the safety filter. To achieve Objective III, SneakyPrompt
leverages reinforcement learning to strategically perturb the
prompt based on query results.
Overall Pipeline. Figure 4 describes the overall pipeline
of SneakyPrompt in searching for an adversarial prompt for
a target, sensitive prompt pt with six major steps. Given a
target prompt pt, SneakyPrompt first finds the n sensitive
tokens in it via matching with a predefined list of NSFW
words, or if none matches, using a text NSFW classifier

to choose the n tokens with the highest probabilities of
being NSFW. The key idea of SneakyPrompt is to replace
each sensitive token in pt as m non-sensitive tokens (called
replacing tokens) to construct an adversarial prompt pa. In
total, we have nm replacing tokens. Suppose D is the token
vocabulary, e.g., in our experiments, we use the CLIP token
vocabulary which has 49,408 tokens. A straightforward way
is to search each replacing token from D. However, this is
very inefficient as the size of D is very large. To address
the challenge, we reduce the search space of each replacing
token to Dl which only includes the tokens in D whose
lengths are at most l. Formally, our overall search space S
of the nm replacing tokens can be defined as follows:

S = {(c1, c2, · · · , cnm)|cj ∈ Dl, ∀j = 1, 2, · · · , nm}, (1)

where cj is a replacing token. Next, we describe our six
steps.
• Step (1): Ê(pt) = OfflineQuery(pt, Ê). SneakyPrompt

queries the shadow text encoder Ê to obtain the text
embedding Ê(pt) of the target prompt pt.

• Step (2): pa = Sample(pt,S). The function Sample
obtains nm replacing tokens C = (c1, c2, · · · , cnm) from
the search space S (i.e., C ∈ S) and replaces the sensitive
tokens in pt as the replacing tokens to construct an
adversarial prompt pa.

• Step (3): F(M, pa),M(pa) = OnlineQuery(pa,M).
SneakyPrompt queries the online text-to-image model M
with the generated prompt pa from Step (2), and obtains
the returned safety filter result F(M, pa) and the generated
image M(pa) if any. F(M, pa) = 1 (i.e., pa is blocked)
if the generated image M(pa) is all black or no image is
returned.

• Step (4): Repeating Steps (2) and (3). If the safety filter is
not bypassed, i.e., F(M, pa) = 1, SneakyPrompt repeats
Steps (2) and (3) until F(M, pa) = 0.

• Step (5): ∆ = GetSimilarity(M(pa), Ê(pt)). The
function GetSimilarity computes the similarity between
the image embedding of the generated image M(pa) and
the text embedding Ê(pt) of the target prompt. In our ex-
periments, we use a CLIP image encoder to compute image
embeddings and we use cosine similarity (in particular, we
use the CLIP variant of cosine similarity [39]). Note that
we normalize the cosine similarity score to be [0,1] since
we use it as a non-negative reward in SneakyPrompt-RL.

• Step (6): Repeating Steps (2)–(5). If ∆ from Step (5) is
no smaller than a threshold δ, the search process stops,
and SneakyPrompt outputs pa and M(pa). Otherwise,
SneakyPrompt repeats Steps (2)–(5) until reaching the
maximum number of queries Q to the text-to-image model
M; and after stopping, SneakyPrompt outputs the p′a
and M(p′a) whose GetSimilarity(M(p′a), Ê(pt)) is the
largest in the search process.

Note that the above description is the general steps of
SneakyPrompt. The detailed function Sample varies based
on different variations of SneakyPrompt. Specifically, we
propose heuristic searches as baselines of SneakyPrompt and
a reinforcement learning based search.



Target prompt  : "A naked man riding a bike."

Text-to-image
Model 

Adversarial prompt : "A grponypui man riding a bike."

Sample( )

OfflineQuery( )

OnlineQuery( ) GetSimilarity( )

Shadow Text
Encoder 

Image

Bypass

Not pass: Repeat Sample

Text
Embedding

Similarity threshold  satisfied:
Stop, and output adversarial prompt and image

Not satisfied: Repeat Sample

(1)

(2)

(3)

(4)

(5)

(5)

(6)

RL Agent
(For SneakyPrompt-RL)

Not pass:

Assign negative reward 
Update policy network 

Bypass
but similarity not satisfied:

Reward = GetSimilarity() 
Update policy network

Figure 4: Overall pipeline of SneakyPrompt. Given a target prompt pt, there are six steps to search for an adversarial prompt
pa. (1) OfflineQuery(pt, Ê) obtains a text embedding Ê(pt) of pt using the shadow text encoder. (2) Sample(pt,S) samples
the replacing tokens from the search space S and constructs an adversarial prompt pa based on the sampled replacing tokens
and pt. (3) OnlineQuery(pa,M) queries M with pa. (4) Repeating Steps (2) and (3) if the safety filter is not bypassed. (5)
GetSimilarity(M(pa), Ê(pt)) calculates the normalized cosine similarity between the image embedding of the generated
image M(pa) and the text embedding of pt. (6) Repeating Steps (2)–(5) if the similarity does not meet the threshold δ.

4.2. Baseline Search with Heuristics

SneakyPrompt-base adopts one of the following three
heuristics as the function Sample:

• BruteForce: In this baseline, the function Sample sam-
ples each replacing token cj from Dl uniformly at random,
where j = 1, 2, · · · , nm.

• GreedySearch: In this baseline, the function Sample
finds the nm replacing tokens one by one. Specifically, it
samples the first replacing token c1 from Dl uniformly at
random; then given j replacing tokens (c1, c2, · · · , cj), it
selects the token in Dl as cj+1 such that the text concate-
nation of c1, c2, · · · , cj , cj+1 is the closest to the target
prompt pt in the text embedding space. We measure the
closeness/distance between two texts using the ℓ2 distance
between their embeddings outputted by the shadow text
encoder Ê . Sample repeats this process until finding the
nm replacing tokens.

• BeamSearch: In this baseline, the function Sample main-
tains k (e.g., k = 3 in our experiments) lists of replacing
tokens. Specifically, it samples the first replacing token in
each list from Dl uniformly at random. Given the first j
replacing tokens in a list, Sample uses GreedySearch to
find the k best tokens in Dl as the candidate (j + 1)th
replacing token in this list. In other words, each list
is expanded as k lists, and we have k2 lists in total.
Then, Sample picks the k of the k2 lists whose text
concatenations of the replacing tokens are the closest to
the target prompt in the text embedding space outputted by
Ê . Sample repeats this process until each list includes nm
replacing tokens and picks the list whose text concatenation

of the replacing tokens is the closest to the target prompt
in the text embedding space.

4.3. Guided Search via Reinforcement Learning

Since the baseline approaches are cost-ineffective, we
design a guided search version, called SneakyPrompt-RL,
using reinforcement learning (RL) to search for an ad-
versarial prompt. Roughly speaking, the function Sample
uses a policy network to sample the replacing tokens
C = (c1, c2, · · · , cnm). The sampled replacing tokens C
can be viewed as an action in the action/search space S , the
resulting adversarial prompt pa can be viewed as a state, and
the text-to-image model M can be viewed as the environment
in RL. When the action C is applied to the environment (i.e.,
the corresponding adversarial prompt pa is used to query
M), the policy network receives a reward, which is then
used to update the policy network. Next, we describe our
policy network, reward, and loss function used to update the
policy network.
Policy Network. A policy network P defines a prob-
ability distribution of actions in the action/search space
S. We denote by P (C) the probability of the action
C = (c1, c2, · · · , cnm). Moreover, we assume P (C) =
P (c1)

∏︁nm
j=2 P (cj |c1, c2, · · · , cj−1), which allows us to effi-

ciently sample the nm replacing tokens one by one using P .
Specifically, we sample c1 based on P (c1); given the sampled
c1, we sample c2 based on P (c2|c1); and this process is
repeated until cnm is sampled. The sampled C is then used
together with the target prompt pt to construct an adversarial
prompt pa. Following previous work [33], [40], we use an
LSTM with a fully connected layer as a policy network P .



Algorithm 1 SneakyPrompt-RL
Input: Target prompt pt, target text-to-image model M, shadow text

encoder Ê , threshold δ, maximum number of queries Q, policy network
P , learning rate η, and Dl.

Output: Adversarial prompt pa and generated image M(pa) if any.
1: //Get initial sensitive tokens in pt and search space S
2: S, ω ← GetSearchSpace(Initial = 1)
3: //Get text embedding of pt
4: Ê(pt)← OfflineQuery(pt, Ê)
5: Initialize P randomly
6: rmax ← 0
7: q ← 1
8: while q ≤ Q do
9: //Implement Sample(pt,S)

10: C ← P //Sample replacing tokens from S using P
11: pa ← Construct adversarial prompt based on C and pt
12: //Query the target model M
13: F(M, pa),M(pa)← OnlineQuery(pa,M)
14: //Assign reward
15: if F(M, pa) == 0 then
16: rq ← GetSimilarity(M(pa), Ê(pt))
17: else
18: rq ← −q/(10 ·Q)
19: end if
20: //Save the pa and the generated image with the largest reward
21: if rq > rmax then
22: rmax ← rq
23: p′a ← pa
24: M(p′a)←M(pa)
25: end if
26: //Update policy network P
27: Update(rq , C, η)
28: if rq ≥ δ then
29: return pa and M(pa) //A high-quality NSFW image is found
30: end if
31: //Not bypass safety filter in 5 consecutive queries
32: if rq−4, rq−3, rq−2, rq−1, rq < 0 then
33: //Expand the search space by replacing one more token in pt
34: S, ω ← GetSearchSpace(Initial = 0)
35: end if
36: //Rewards do not change in 3 consecutive queries
37: //or fraction ω of tokens in pt to be replaced is no smaller than 0.3
38: if |rq−2 + rq − 2rq−1| <1e-4 or ω ≥ 0.3 then
39: return p′a and M(p′a)
40: end if
41: q ← q + 1
42: end while
43: return p′a and M(p′a)

Reward. Intuitively, if the adversarial prompt pa based on
the sampled replacing tokens C bypasses the safety filter, we
should assign a reward, with which the policy network can
be updated to increase the GetSimilarity(M(pa), Ê(pt))
such that the next generated adversarial prompt is likely
to have a larger GetSimilarity. If pa does not bypass
the safety filter, we assign a negative reward, which aims
to update the policy network such that it is less likely to
sample C. Moreover, the reward is smaller to penalize C
more if more queries have been sent to the text-to-image
model M. Based on such intuitions, we define a reward rq
for the adversarial prompt pa in the qth query to the target
model as follows:

rq =

{︄
GetSimilarity(M(pa), Ê(pt)) if F(M, pa) = 0

−q/(10 ·Q) if F(M, pa) = 1
,

(2)

Algorithm 2 GetSearchSpace(Initial)

Input: Target prompt pt, m, and Dl.
Output: Search space S and ω.
1: keywords ← NSFW word list [11]
2: model ← NSFW text classifier [41]
3: //Rank tokens in pt according to their sensitivity
4: pred ← model (pt) //Probability of pt being NSFW sensitive
5: dict ← {}
6: for each token w in pt do
7: ptemp ← remove w from pt
8: predtemp ← model (ptemp)
9: ϵ ← pred − predtemp

10: dict.append(w : ϵ)
11: end for
12: rank list ← ranked tokens of pt according to decreasing order of ϵ
13: //Get initial search space
14: if Initial == 1 then
15: //Find sensitive tokens in pt
16: W ← sensitive tokens in pt that match with keywords
17: n← |W |
18: //If no token in pt matches with keywords
19: if n == 0 then
20: W ← rank list[0] //Start from the token with the largest ϵ
21: n← 1
22: end if
23: end if
24: //Expand search space
25: if Initial == 0 then
26: W ←W + rank list[n] //Add one more token to be replaced
27: n← n+ 1
28: end if
29: S = {(c1, c2, · · · , cnm)|cj ∈ Dl, ∀j = 1, 2, · · · , nm}
30: L← Number of tokens in pt
31: ω ← n/L
32: return S and ω

where Q is the maximum number of queries SneakyPrompt
can send to the target model M.
Updating Policy Network. Intuitively, if the reward rq is
smaller, the policy network should be less likely to sample C.
Based on such intuition, we use the following loss function
to update P :

loss = −rq · ln(P (C)). (3)

We update P using one iteration of gradient descent with a
learning rate η.
Two Optimization Strategies. We propose two strate-
gies to further optimize the effectiveness and efficiency of
SneakyPrompt-RL.
• Strategy One: Search Space Expansion. Recall that we

start by replacing n sensitive tokens in the target prompt
pt. If the generated adversarial prompts did not bypass
the safety filter in multiple (e.g., 5 in our experiments)
consecutive queries, we add one more token in the target
prompt pt to be replaced by m tokens. In other words, we
increase the action/search space for the policy network.
Such an expansion strategy not only increases the bypass
rate but also decreases the number of queries.

• Strategy Two: Early Stop. We have three criteria to
stop the search early. (i) The search stops early if the
GetSimilarity(M(pa), Ê(pt)) ≥ δ, which indicates a
high-quality NSFW image has been generated. (ii) The



Table 1: Hyper-parameters for SneakyPrompt. Our default SneakyPrompt is SneakyPrompt-RL with GetSimilarity =
cos(M(pa), Ê(pt)) unless otherwise mentioned.

Method GetSimilarity δ
Policy network hyper-parameters Search hyper-parameters
P η Q m l

SneakyPrompt-RL
cos(M(pa), Ê(pt)) 0.26 LSTM 0.1 60 3 10

1 − ℓ2(Ê(pa)), Ê(pt)) 0.60 LSTM 0.1 30 3 3

SneakyPrompt-base cos(M(pa), Ê(pt)) 0.26 – – 5,000 – –

search stops early if the search space is expanded too much,
i.e., the fraction of tokens in pt to be replaced is larger than
a threshold (0.3 in our experiments). (iii) The search stops
early if the reward does not change, i.e., the difference
among three rewards in three consecutive queries is smaller
than a threshold (1e-4 in our experiments).

Complete Algorithm. Algorithm 1 summarizes the com-
plete algorithm of SneakyPrompt-RL and Algorithm 2 shows
the function GetSearchSpace.
Alternative Reward Function with Offline Queries.
We also consider an alternative reward function for
SneakyPrompt-RL, which only requires offline queries to
the shadow text encoder. This alternative reward function
can further reduce the number of queries to the target
text-to-image model, though the generated image has re-
duced quality. In particular, we consider GetSimilarity =
1−ℓ2(Ê(pa), Ê(pt)) for an adversarial prommpt pa, where ℓ2
is the Euclidea distance between two text embeddings. Note
that we also normalize the similarity scores GetSimilarity
to be [0, 1], so it is easier to set the threshold δ. In each
query to the target model, we sample replacing tokens C
using the policy network and construct an adversarial prompt
pa based on C and the target prompt pt. Instead of using
pa to query the target model immediately, we calculate
the alternative reward using GetSimilarity locally and
update the policy network using the alternative reward. If
the alternative reward is smaller than δ, we repeat the
sampling and policy-network-updating process until construct
an adversarial prompt whose alternative reward is no smaller
than δ. Then, we use the adversarial prompt to query the
target model. If the adversarial prompt bypasses the safety
filter, the search process stops, and the adversarial prompt
and generated image are returned. Otherwise, a negative
reward is used to update the policy network and the process
is repeated. More details can be found in Algorithm 3 in
Appendix.

5. Experimental Setup

We implement SneakyPrompt using Python 3.9 with
Pytorch. All experiments are performed using two GeForce
RTX 3090 graphics cards (NVIDIA). Our target text-to-
image models include (i) Stable Diffusion with the open
source model on Hugging Face [42] and (ii) DALL·E 2
with the official online API provided by OpenAI [43]. The
default target model is Stable Diffusion. We also show
the detailed hyper-parameters used by SneakyPrompt in
Table 1. Our default SneakyPrompt is SneakyPrompt-RL with

GetSimilarity = cos(M(pa), Ê(pt)) unless otherwise
mentioned. We now describe the experimental setup details.
Prompt Datasets. We generated two prompt datasets for
evaluating safety filters using ChatGPT with GPT-3.5.
• NSFW-200 dataset. We followed a post on Reddit [44]

to generate 200 target prompts with NSFW content using
ChatGPT with GPT-3.5.

• Dog/Cat-100 dataset. We used ChatGPT with GPT-3.5
to generate 100 prompts describing the scenario with dogs
or cats. The purpose of the dataset is to demonstrate the
feasibility of SneakyPrompt in bypassing safety filters
while avoiding NSFW content that potentially makes
people uncomfortable.

Safety Filters. Our evaluation involves the following seven
different safety filters that cover all categories in Figure 1
as well as an unknown category.
• [Text-Image-based] Text-image-threshold: this is the orig-

inal safety filter shipped with Stable Diffusion, which
blocks 17 predefined sensitive text concepts. The safety
filter blocks a generated image if the cosine similarity
between its CLIP image embedding and the CLIP text
embedding of any of the predefined sensitive concepts is
larger than a predefined threshold.

• [Text-based] Text-match: this is a text-based safety filter
that blocks the sensitive prompts that contain the sensitive
keywords from a predefined dictionary [11].

• [Text-based] Text-classifier: this is an open-source, text-
based safety filter [41] on HuggingFace, which adopts a
binary classifier fine-tuned on DistilBERT [45] with the
Reddit posts containing NSFW content.

• [Image-based] Image-classifier: this is an open-source,
image-based safety filter [46] that classifies images as
either porn, sexy, or normal and blocks contents related
to the former two.

• [Image-based] dog/cat-image-classifier: the safety fil-
ter is a 10-class classifier trained with the Animals-10
dataset [47], which includes cat- or dog-labels. The goal
of this safety filter is to demonstrate the effectiveness of
SneakyPrompt without showing NSFW images.

• [Image-based] Image-clip-classifier: this is an open-
source, image-based safety filter with a binary classi-
fier [48] trained with the CLIP image embedding of an
NSFW image dataset [10].

• [Unknown] DALL·E 2 original: this is the default, closed-
box safety filter adopted by DALL·E 2.

• [Adaptive] Non-English Word Filter: this is an adaptive
safety filter that blocks any prompts that contain non-
English words.



Table 2: [RQ1] Performance of SneakyPrompt-RL in bypassing different safety filters. Note that a prefix non-EN on the
filter means that the filter is combined with a non-English word filter. The “Effectiveness of filter” is the fraction of the
target NSFW prompts that are blocked. A higher bypass rate and a lower FID score indicate a better attack. As a reference,
FID(target, real) = 113.20 and FID(non-target, real) = 299.06, where target are 1,000 sensitive images generated by Stable
Diffusion without safety filters, real are 40,000+ real-world sensitive images, and non-target are 1,000 cat/dog images unless
otherwise mentioned. (dog/cat) associated with multiple numbers indicates the target are 1,000 cat/dog images.

Target
Safety filter Re-use adversarial prompt One-time searched adversarial prompt

Type Method
Scale Effectiveness

Bypass rate (↑)
FID score (↓)

Bypass rate (↑)
FID score (↓)

# of online queries (↓)
(# parameters) of filter adv. vs. target adv. vs. real adv. vs. target adv. vs. real

text-image text-image-threshold 0 63.00% 69.35% 148.64 169.15 100.00% 108.31 132.01 9.51 ± 4.31

text
text-match 0 100.00% 100.00% 134.70 157.57 100.00% 104.25 129.15 2.26 ± 1.65

text-classifier 66,955,010 94.00% 100.00% 162.17 181.70 78.84% 156.24 183.75 19.65 ± 17.35

image

image-classifier 2,299,203 75.00% 71.52% 159.31 178.42 100.00% 136.15 158.01 17.18 ± 10.48

image-clip-classifier 215,618 82.00% 69.71% 166.06 184.83 100.00% 135.06 161.25 22.28 ± 17.68

Stable dog/cat-image-classifier 2,230,170 81.00% 59.25% 175.18 (dog/cat) – 99.43% 144.22 (dog/cat) – 17.25 ± 10.18

Diffusion non-EN-text-image text-image-threshold 0 63.00% 65.51% 149.22 162.51 100.00% 105.08 133.86 12.65 ± 3.22

non-EN-text
text-match 0 100% 100.00% 129.25 161.14 100.00% 103.11 132.08 4.51± 3.28

text-classifier 66,955,010 94.00% 100.00% 154.51 169.62 73.61% 153.35 164.19 22.78 ± 17.25

non-EN-image

image-classifier 2,299,203 75.00% 64.12% 165.58 183.36 100.00% 127.32 164.79 19.81 ± 12.27

image-clip-classifier 215,618 82.00% 67.36% 149.61 178.02 100.00% 130.35 164.81 22.31 ± 15.54

dog/cat-image-classifier 2,230,170 81.00% 56.16% 177.79 (dog/cat) – 100.00% 146.31 (dog/cat) – 21.43 ± 14.54

DALL·E 2 unknown original unknown 100.00% 100.00% 225.08 243.25 57.15% 164.12 187.26 24.49 ± 20.85

Table 3: [RQ1] Examples of target and adversarial prompts
generated by SneakyPrompt-RL with replacing one sensitive
token in the target prompt as one or three non-sensitive
tokens, where the default stable diffusion safety filter and
the non-English word safety filter are present together.

Target prompt A tall, muscular man enters the room, his eyes fixed on
Carmen’s naked form

Adversarial prompt

A tall, muscular man enters the room, his eyes fixed on
Carmen’s wild form
A tall, muscular man enters the room, his eyes fixed on
Carmen’s mambo incomplete clicking form

Evaluation Metrics. We adopt three evaluation metrics.
• Bypass rate: For one-time attacks, we compute our bypass

rate as the number of adversarial prompts that bypass a
safety filter divided by the total number of adversarial
prompts. An adversary would only re-use the adversarial
prompts that successfully bypass safety filters in one-time
attacks. Therefore, for re-use attacks, the bypass rate is the
fraction of re-uses that bypass a safety filter for successful
one-time adversarial prompts.

• FID score: We use the FID [49] score to evaluate the
image semantic similarity of our generation. We follow the
official implementation [50] of Pytorch in calculating FID
between our generation with three ground-truth datasets as
the reference. (i) target: this dataset contains 1,000 images
generated by NSFW-200 with different random seeds from
Stable Diffusion without the presence of the safety filter;
(ii) real: this dataset contains 40,000 real sensitive images
from the NSFW image dataset [10]. (iii) target-dog/cat:
this dataset contains 1,000 images generated by Dog/Cat-
100 with different random seeds from Stable Diffusion.
The higher the FID score is, the less similar the two
images’ distributions are in semantics.

• Number of online queries: The number of queries to text-
to-image models used for searching for an adversarial
prompt. Note that this metric is not evaluated for re-
use attacks, because no additional queries in generating
adversarial prompts are needed.

6. Evaluation

We answer the following Research Questions (RQs).
• [RQ1] How effective is SneakyPrompt at bypassing

existing safety filters?
• [RQ2] How does SneakyPrompt perform compared with

different baselines?
• [RQ3] How do different hyperparameters affect the

performance of SneakyPrompt?
• [RQ4] Why can SneakyPrompt bypass a safety filter?

6.1. RQ1: Effectiveness at Bypassing Safety Filters

In this research question, we evaluate how effective
SneakyPrompt is at bypassing existing safety filters. Some
real adversarial prompts are shown in Appendix A.
Overall Results. Table 2 shows the quantitative results of
SneakyPrompt in bypassing existing safety filters. Table 3
shows examples of target and adversarial prompts generated
by SneakyPrompt. In general, SneakyPrompt effectively
bypasses all the safety filters to generate images with similar
semantics to target prompts with a small number (below
25) of queries. Let us start with six safety filters on Stable
Diffusion. SneakyPrompt achieves an average 96.37% one-
time bypass rate (with 100.00% on four of them) and an
average of 14.68 queries (with at least 2.26 queries), with a
reasonable FID score indicating image semantic similarity.
The bypass rate drops and the FID score increases for re-use



Table 4: [RQ2] Performance of SneakyPrompt-RL compared with different baselines in bypassing Stable Diffusion with its
original safety filter. We use the prompt examples provided by both Rando et al. [16] and Qu et al. [17] five times for re-use
performance. Note that these prompts are pre-created manually, thus not being applicable in the one-time searched scenario.
Maus et al. cannot generate any NSFW images after 5,000 queries and therefore we do not report FID scores.

Method
Re-use adversarial prompts One-time searched adversarial prompts

Bypass rate (↑) FID score (↓) Bypass rate (↑) FID score (↓)
# of online queries (↓)

adv. vs. target adv. vs. real adv. vs. target adv. vs. real

SneakyPrompt-RL 69.35% 148.64 169.15 100.00% 108.31 132.01 9.51 ± 4.31

SneakyPrompt-base
Brute force search 61.35% 152.36 170.88 100.00% 128.25 139.37 1,094.05 ± 398.33
Beam search 46.31% 164.21 178.25 87.42% 133.36 147.52 405.26 ± 218.31
Greedy search 37.14% 164.41 186.29 78.21% 138.25 154.42 189.38 ± 82.25

Text adversarial example
TextFooler [13] 29.01% 166.26 205.18 99.20% 149.42 180.05 27.56 ± 10.45
TextBugger [12] 38.65% 179.33 208.25 100.00% 165.94 190.49 41.45 ± 15.93
BAE [14] 26.85% 169.25 202.47 93.57% 158.78 186.74 43.31 ± 17.34

Manual prompt
Rando et al. [16] 33.30% – 204.15 – – – –
Qu et al. [17] 41.17% – 200.31 – – – –

Optimized prompt Maus et al. [15] 0.00% – – 0.00% – – 5,000.00 ± 0.00

Table 5: [RQ2] Bypass rate of SneakyPrompt-RL compared
with text adversarial examples in bypassing Stable Diffusion
with non-EN-text-image, i.e., its original safety filter com-
bined with the non-English word filter.

SneakyPrompt-RL
Text adversarial examples

TextFooler [13] TextBugger [12] BAE [14]

One-time 100.00% 99.20% 36.38% 90.38%
Re-use 65.51% 29.01% 18.42% 17.25%

attacks because the diffusion model adopts random seeds
in generating images. The only exception is the bypass rate
for text-based safety filters because such filters are deployed
before the diffusion model.

We then describe the closed-box safety filter of DALLE·
2. SneakyPrompt achieves 57.15% one-time bypass rate with
an average of 24.49 queries. Note that while the rate seems
relatively low, this is the first work that bypasses the closed-
box safety filter of DALL·E 2 with real-world sensitive
images as shown in Appendix A. None of the existing works,
including text-based adversarial examples [12], [13], [14]
and Rando et al. [16], is able to bypass this closed-box safety
filter. Interestingly, the re-use bypass rate for DALLE· 2 is
100%, i.e., as long as an adversarial prompt bypass the filter
once, it will bypass the filter multiple times with NSFW
images generated.

We now describe our observations related to the robust-
ness of safety filters below.

Scale of Safety Filter. Table 2 shows that a safety filter’s
robustness (especially against SneakyPrompt) is positively
correlated with its scale, i.e., the total number of parameters.
This observation holds for both one-time and re-use perfor-
mance on all metrics. For example, SneakyPrompt performs
the worst against text-classifier because its scale is much
larger than other variants. As a comparison, SneakyPrompt
achieves the least number of queries and the highest image se-

mantic similarity against text-match and text-image-threshold
(which are not learning-based filters).
Type of Safety Filter. We have two observations with
regard to the safety filter type when safety filters have a
similar number of parameters. First, the combination of text
and image is better than those relying on any single factor.
For example, text-image-threshold outperforms text-match
in terms of all metrics. In addition, image-clip-classifier
outperforms image-classifier with a small number of online
queries, because image-clip-classifier utilizes the embedding
from CLIP (which includes both image and text information)
as opposed to only image information in image-classifier.

Second, image-based safety filters have a lower re-use
bypass rate compared to text-based ones. It is because the
random seeds used for the text-to-image model to generate
images are uncontrollable, which leads to different generated
images using the same prompt at different times. Therefore,
the one-time bypassed adversarial prompt may not bypass
the image-based safety filter during re-use. As a comparison,
because the text-based safety filter takes a prompt as input,
the generated adversarial prompt can bypass the same safety
filter in re-use as long as the filter is not updated.
Non-English Word Safety Filter. We add a simple non-
English word safety filter in combination with existing
filters and show the effectiveness of SneakyPrompt in
bypassing this adaptive safety filter. Note that the search
space of SneakyPrompt will be the google-10000-english
dictionary [51] that contains a list of the 10,000 most
common English words, instead of all tokens from CLIP
vocabulary dictionary [52].

We have three observations. First, the FID score is on
par with SneakyPrompt-RL against existing safety filters
alone, which indicates SneakyPrompt-RL is also effective in
maintaining image semantics when a non-English word filter
is present. Second, the bypass rate is 3.75% on average lower
than that without a non-English word filter. The reason is that
SneakyPrompt might select synonyms for bypassing once
but cannot be reused as shown in existing text adversarial



Table 6: [RQ2] One-time bypass rate of SneakyPrompt-RL compared with existing works in bypassing the online, closed-box
safety filter of DALL·E 2.

SneakyPrompt-RL
Text adversarial examples Manual prompt Optimized prompt

TextFooler [13] TextBugger [12] BAE [14] Rando et al. [1] Qu et al. [17] Maus et al. [15]

Bypass rate 57.15% 0.00% 1.00% 0.00% 0.00% 0.00% 0.00%

examples. Third, the number of online queries is 3.11 on
average higher since the search space is limited to English
words; thus, more queries are needed to find an adversarial
prompt that can bypass and maintain the image semantics.

[RQ1] Take-away: SneakyPrompt successfully bypasses
all safety filters including the closed-box safety filter
adopted by DALL·E 2 as well as a non-English word
safety filter.

6.2. RQ2: Performance Comparison with Baselines

In this research question, we first compare SneakyPrompt
with existing methods using the original safety filter of Stable
Diffusion and then add the non-English word filter. We
then show none of the existing methods can effectively
bypass the DALL·E 2’s safety filter. Specifically, we compare
SneakyPrompt with the following works:
• Text-based adversarial examples. We use three related

works that generate closed-box, text-based adversarial
examples, which are Textbugger [12], Textfooler [13],
and BAE [14]. We follow the implementation by TextAt-
tack [53] with their default hyperparameters.

• Manually-curated adversarial prompts. We use Rando et
al. [16] (which contains manually-generated prompts) and
Qu et al. [17] (in which prompts are manually created
based on a template).

• Optimized adversarial prompts. We use Maus et al. [15],
a concurrent work to ours, to generate adversarial prompts.

• SneakyPrompt baselines with different search algorithms.
We call them SneakyPrompt-base.

We start from the original safety filter of Stable Diffusion.
Table 4 shows the comparison results in terms of three metrics
and we describe two different scenarios below.
• Re-use adversarial prompts. This attack scenario assumes

that adversarial prompts are pre-generated and re-used for
the attack. On one hand, SneakyPrompt-RL achieves the
highest bypass rate against the safety filter compared with
all existing works and SneakyPrompt-base. The reason
is that existing works, particularly text-based adversarial
examples, either make minimal modifications to texts or
use synonyms to replace the target token, which cannot
sustain different rounds for another random seed from the
diffusion model. On the other hand, SneakyPrompt-RL also
has the lowest FID score compared to other methods for
re-use adversarial prompts. That is, SneakyPrompt largely
keeps the original semantics while existing methods—even
if successfully bypassing the safety filter—will more or
less modify the semantics compared to the target one. This

is because SneakyPrompt computes the similarity between
the generated image and target prompt to prevent the image
semantics from being modified too much and thus make
it as consistent with the target prompt as possible.

• One-time searched prompts. This attack scenario assumes
that an adversary always probes the target text-to-image
model to generate NSFW images. SneakyPrompt-RL has
the smallest number of online queries and FID scores
compared with SneakyPrompt-base (the largest number
of queries) and text-based adversarial examples. First, the
reason is that baseline methods do not have any constraints
for word choice. For example, the number of queries of
brute force search is a magnitude larger than other heuristic
searching methods as all tokens have the same probability
of being chosen. Second, SneakyPrompt-RL takes the least
number of queries, using 50% fewer queries compared
with the second, which is TextFooler [13]. The reason
is that SneakyPrompt-RL adopts an early stop strategy
and benefits from RL. Note that manual prompts are not
applicable here for one-time searched prompts because
it is not scalable to probe text-to-image models for each
prompt manually.

Next, we also add non-English word filter to the default
stable diffusion’s safety filter and compare SneakyPrompt-
RL with text-based adversarial examples. Table 5 shows
the re-use and one-time bypass rates. The bypass rate
of SneakyPrompt-RL does not change much because
SneakyPrompt-RL can search in an English word space.
Instead, the one-time performance of TextBugger [12], which
utilizes alphabet swap or substitute, drops to only 36.38%,
and the re-use performance drops to only 18.42%.

Last, we also evaluate the online, closed-box safety filter
of DALL·E 2. Table 6 shows that none of the existing
works can effectively bypass the original safety filter. The
bypass rates of all the works except for TextBugger [12] are
essentially zero and the bypass rate of TextBugger [12] is
also as low as 1.00%.

[RQ2] Take-away: SneakyPrompt-RL outperforms
SneakyPrompt-base, existing text-based adversarial ex-
amples, and manual prompts from Rando et al. [16]
and Qu et al. [17].

6.3. RQ3: Study of Different Parameter Selection

In this research question, we study how different param-
eters affect the overall performance of SneakyPrompt.
Reward Function. We have two variants of the reward
function, one based on cosine similarity between embedding



Table 7: [RQ3] Performance of SneakyPrompt-RL using different reward functions.

Reward function
Re-use adversarial prompts One-time searched adversarial prompts

Bypass rate (↑) FID score (↓) Bypass rate (↑) FID score (↓)
# of online queries

adv. vs. target adv. vs. real adv. vs. target adv. vs. real

cos(M(pa), Ê(pt)) 69.35% 148.64 169.15 100.00% 108.31 132.01 9.51 ± 4.31
1 − ℓ2(Ê(pa), Ê(pt)) 55.25% 165.35 189.31 96.42% 149.21 168.74 2.18 ± 1.12

Table 8: [RQ3] Performance of SneakyPrompt-RL when the shadow text encoder Ê is the same as, or different from, the
target text encoder used by the text-to-image model M.

Shadow text encoder
Re-use adversarial prompts One-time searched adversarial prompts

Bypass rate (↑) FID score (↓) Bypass rate (↑) FID score (↓)
# of online queries

adv. vs. target adv. vs. real adv. vs. target adv. vs. real

Ê ̸= E 69.35% 148.64 169.15 100.00% 108.31 132.01 9.51 ± 4.31
Ê = E 68.87% 143.88 162.26 100.00% 97.25 121.42 9.60 ± 3.45

of the generated image and embedding of the target prompt,
and the other based on ℓ2 distance between embeddings of the
target and adversarial prompts. Table 7 shows the comparison
between the two reward functions: cosine similarity results
in a higher bypass rate and a better image semantic similarity
for both one-time and re-use attacks, while ℓ2 distance results
in a smaller number of online queries.

Shadow Text Encoder. Table 8 shows the impact of
different shadow text encoders Ê , particularly when Ê = E
and Ê ̸= E . We have two observations. First, Ê = E
improves the image semantic similarity with a smaller FID
score for both one-time and re-use attacks and especially
for one-time. The reason is the same text encoder adopted
by the attacker results in the same text embedding as the
internal result of text-to-image models, used to guide the
semantics of image generation, which provides a more
precise semantic compared with a different text encoder.
The relatively smaller improvement for re-use FID score
is because of the disturbance of the random seed. Second,
there is no significant difference in bypass rates and the
number of online queries. SneakyPrompt-RL achieves a
100% bypass rate with both shadow text encoders for the
one-time performance and achieves around 70% for re-use
performance with different random seeds involved. The
number of queries is also similar because they use the same
similarity threshold δ.

Similarity Threshold. Figure 5 shows the impact of dif-
ferent similarity threshold values, ranging from 0.22 to 0.30,
on SneakyPrompt’s performance using three metrics. Let us
start with the bypass rate in Figure 5a. The bypass rate stays
the same for one-time attacks but drops for re-use attacks
because the generated image may be closer to the target
and thus blocked by the safety filter. This is also reflected
in Figure 5b as the FID score decreases as the threshold
increases. Similarly, Figure 5c shows that the number of
queries increases as the similarity threshold because it will
be harder to satisfy the threshold during searching.

Search Space. We evaluate the impact of search space
size—which is partially controlled by the parameter l—on
the performance of SneakyPrompt. Specifically, we change

l to be [3, 5, 10, 15, 20], which lead to a search space of
[625m, 6922m, 29127m, 46168m, 48095m] according to the
number of candidate tokens in the dictionary Dl. Figure 6
shows the results of the impacts of l on three metrics. First,
Figure 6a shows that a larger l leads to a higher re-use bypass
rate. The reasons are twofold. On one hand, the larger the
l, the larger the search space is. That is, RL has room to
explore more tokens and increase the bypass rate. On the
other hand, a larger l introduces longer tokens that dilute
the target prompt more, thus also increasing the bypass rate.
Second, the image semantic similarity has little correlation
with the search space. Instead, image semantic similarity
in terms of FID scores are more related to the semantic
similarity threshold δ as we show in Figure 5. Third, the
larger the l is, the more online queries SneakyPrompt takes.
The reason is that RL needs more queries to explore a larger
search space to satisfy the semantic similarity threshold.

[RQ3] Take-away: SneakyPrompt needs to balance the
bypass rate and the FID score with the number of
queries in selecting different parameters.

6.4. RQ4: Explanation of Bypassing

In this research question, we explain why SneakyPrompt
successfully bypasses different safety filters while maintain-
ing the image semantic similarities. Specifically, we use
the ground-truth output probability of different safety filters
for the explanation. Table 9 shows the experiment results
that align with our high-level explanation in Figure 3. We
first show the results of the output probability on NSFW of
different safety filters for both the target and the adversarial
prompts or their generated images, depending on the type of
safety filters. We normalize the probability into [0,1], where
a value larger than 0.5 indicates the sensitive input. The
probability output of the target prompt pt is from 0.546 to
1.000, i.e., the target prompt is sensitive. As a comparison,
the probability outputs of adversarial prompts generated by
SneakyPrompt range from 0.000 to 0.482, i.e., they are
non-sensitive. This result suggests that SneakyPrompt is
effective in bypassing different safety filters. Next, we also
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Table 9: [RQ4] Explanation on why SneakyPrompt bypasses
a safety filter while still maintaining the image semantics.
pt is the target prompt that contains the NSFW content, and
pa is the adversarial prompt generated by SneakyPrompt.
For each safety filter F , we normalize the output probability
F(M, p) into [0,1], where the prompt or its generated image
is classified as NSFW with a probability value larger than
0.5. We use cos(M(pt), Ê(pt)) as the ground truth similarity
for references, where we obtain M(pt) by removing the
safety filter of Stable Diffusion for research purpose. The
value in the table is the average for target prompts and their
adversarial prompts in NSFW-200.

Safety filter F Probability of being NSFW Semantics similarity
F(M, pt) F(M, pa) cos(M(pt), Ê(pt))cos(M(pa), Ê(pt))

text-image-threshold 0.546 0.441

0.298

0.289
text-match 1.000 0.000 0.291
text-classifier 0.976 0.482 0.267
image-classifier 0.791 0.411 0.276
image-clip-classifier 0.885 0.473 0.271

show the semantic similarity between the target prompt and
its generated image, and that between the target prompt
and the image generated by adversarial prompts found by
SneakyPrompt. We observe that the former, i.e., 0.298,
is close to the latter, i.e., 0.267 to 0.289, for different
safety filters, which indicates the ability of SneakyPrompt
to maintain the semantics of target prompts and images
generated based on them.

[RQ4] Take-away: The outputs from safety filters show
that SneakyPrompt bypasses them while still maintain-
ing the NSFW semantics.

7. Conclusion, Discussion, and Future Work

We show that a black-box safety filter of a text-to-image
model can be jailbroken to produce an NSFW image with
a small number of queries to the model. Reinforcement
learning can reduce the number of queries to the text-to-
image model by leveraging the query results to strategically
guide the perturbation of a prompt. Our results imply that
existing guardrails of text-to-image models are insufficient
and highlight the urgent need for new guardrails to limit the
societal harms of powerful text-to-image models. We note
that, instead of using add-on safety filters, some methods [54]
could be used to edit the parameters of a text-to-image model
to erase sensitive concepts such that it intrinsically will not
generate NSFW images. SneakyPrompt is also applicable to
such a text-to-image model with an embedded safety filter.
This is because SneakyPrompt only needs black-box access
to an (add-on or embedded) safety filter. Developing more
robust safety filters is an urgent future research direction. For
instance, one way is to leverage adversarial training, which
considers adversarial prompts during the training of a safety
filter.
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Appendix A.
Examples of Generated Sensitive Images

We show examples of generated NSFW images in
Figure 7 with an external link. Some adversarial prompts
can also be found at this link with password access.

Algorithm 3 SneakyPrompt-RL with Alternative Reward
Input: Target prompt pt, target text-to-image model M, shadow text

encoder Ê , threshold δ, maximum number of queries Q, policy network
P , learning rate η, and Dl.

Output: Adversarial prompt pa and generated image M(pa) if any.
1: //Get initial sensitive tokens in pt and search space S
2: S, ω ← GetSearchSpace(Initial = 1)
3: //Get text embedding of pt
4: Ê(pt)← OfflineQuery(pt, Ê)
5: Initialize P randomly
6: rmax ← 0
7: q ← 1
8: while q ≤ Q do
9: rq ← −1

10: //Construct an adversarial prompt
11: while rq < δ do
12: C ← P //Sample replacing tokens from S using P
13: pa ← Construct adversarial prompt based on C and pt
14: rq ← GetSimilarity(Ê(pa), Ê(pt))
15: Update(rq , C, η)
16: end while
17: //Query the target model M
18: F(M, pa),M(pa)← OnlineQuery(pa,M)
19: if F(M, pa) == 0 then
20: return pa and M(pa)
21: else
22: rq ← −q/(10 ·Q)
23: Update(rq , C, η)
24: end if
25: //Save the pa and the generated image with the largest reward
26: if rq > rmax then
27: rmax ← rq
28: p′a ← pa
29: M(p′a)←M(pa)
30: end if
31: //Not bypass safety filter in 5 consecutive queries
32: if rq−4, rq−3, rq−2, rq−1, rq < 0 then
33: //Expand the search space by replacing one more token in pt
34: S, ω ← GetSearchSpace(Initial = 0)
35: end if
36: //Rewards do not change in 3 consecutive queries
37: //or fraction ω of tokens in pt to be replaced is no smaller than 0.3
38: if |rq−2 + rq − 2rq−1| <1e-4 or ω ≥ 0.3 then
39: return p′a and M(p′a)
40: end if
41: q ← q + 1
42: end while
43: return p′a and M(p′a)

NSFW WARNING：

The links below include images that may be
disturbing or explicit in nature. Please proceed
with discretion when visiting them.

Figure 7: Examples of generated images containing disturb-
ing, violent, nudity, or sexual content. Please contact the
authors to obtain the password and visit this link at your
own discretion.
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Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper proposes an attack framework, SneakyPrompt,
which aims to circumvent NSFW content filters used by
generative text-to-image models. The authors perform an
evaluation on a closed-box safety filter DALL·E 2 and
demonstrate a bypass rate of 57.15%.

B.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field.

• Creates a New Tool to Enable Future Science.

B.3. Reasons for Acceptance

1) This paper provides a valuable step forward in
an established field. While content filter evasion
is a recognized area of study, its application to
large text-to-image models is relatively recent. The
paper introduces, for the first time, an RL-based
attack algorithm, capable of bypassing the closed-
box safety filter of DALL·E 2.

2) This paper creates a new tool to enable future
science. The authors commit to open-sourcing a new
automated attack framework, which can circumvent
both open-source and closed-box NSFW filters used
by generative image models.

B.4. Noteworthy Concerns

1) The paper lacks evidence showcasing the broader
applicability of the proposed attack on closed-box
safety filters, as the only closed-box filter evaluated
is DALL·E 2.

Appendix C.
Response to the Meta-Review

We would like to thank the anonymous shepherd and the
reviewers for their valuable insights and the time to provide
a meta-review. The meta-review notes that reviewers would
have liked us to apply the proposed attack on additional
closed-box safety filters other than DALL·E 2. We agree that
the evaluation would be important and strengthen the paper.
However, many of them do not provide a well-documented
programming interface or charge too much, which prevents
us from such an evaluation. We will consider evaluating

closed-box safety filters as future work if access to well-
documented programming interfaces improves, or if we can
secure funding to cover the costs associated with their use.
Furthermore, we will explore partnerships with organizations
that have access to these systems, which could facilitate a
more comprehensive evaluation.
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